xref: /linux/include/net/sock.h (revision 5de6c855e23e99d76c143ee2a29766e7f7f9fe65)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the AF_INET socket handler.
8  *
9  * Version:	@(#)sock.h	1.0.4	05/13/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Florian La Roche <flla@stud.uni-sb.de>
15  *
16  * Fixes:
17  *		Alan Cox	:	Volatiles in skbuff pointers. See
18  *					skbuff comments. May be overdone,
19  *					better to prove they can be removed
20  *					than the reverse.
21  *		Alan Cox	:	Added a zapped field for tcp to note
22  *					a socket is reset and must stay shut up
23  *		Alan Cox	:	New fields for options
24  *	Pauline Middelink	:	identd support
25  *		Alan Cox	:	Eliminate low level recv/recvfrom
26  *		David S. Miller	:	New socket lookup architecture.
27  *              Steve Whitehouse:       Default routines for sock_ops
28  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
29  *              			protinfo be just a void pointer, as the
30  *              			protocol specific parts were moved to
31  *              			respective headers and ipv4/v6, etc now
32  *              			use private slabcaches for its socks
33  *              Pedro Hortas	:	New flags field for socket options
34  */
35 #ifndef _SOCK_H
36 #define _SOCK_H
37 
38 #include <linux/hardirq.h>
39 #include <linux/kernel.h>
40 #include <linux/list.h>
41 #include <linux/list_nulls.h>
42 #include <linux/timer.h>
43 #include <linux/cache.h>
44 #include <linux/bitops.h>
45 #include <linux/lockdep.h>
46 #include <linux/netdevice.h>
47 #include <linux/skbuff.h>	/* struct sk_buff */
48 #include <linux/mm.h>
49 #include <linux/security.h>
50 #include <linux/slab.h>
51 #include <linux/uaccess.h>
52 #include <linux/page_counter.h>
53 #include <linux/memcontrol.h>
54 #include <linux/static_key.h>
55 #include <linux/sched.h>
56 #include <linux/wait.h>
57 #include <linux/cgroup-defs.h>
58 #include <linux/rbtree.h>
59 #include <linux/rculist_nulls.h>
60 #include <linux/poll.h>
61 #include <linux/sockptr.h>
62 #include <linux/indirect_call_wrapper.h>
63 #include <linux/atomic.h>
64 #include <linux/refcount.h>
65 #include <linux/llist.h>
66 #include <net/dst.h>
67 #include <net/checksum.h>
68 #include <net/tcp_states.h>
69 #include <linux/net_tstamp.h>
70 #include <net/l3mdev.h>
71 #include <uapi/linux/socket.h>
72 
73 /*
74  * This structure really needs to be cleaned up.
75  * Most of it is for TCP, and not used by any of
76  * the other protocols.
77  */
78 
79 /* This is the per-socket lock.  The spinlock provides a synchronization
80  * between user contexts and software interrupt processing, whereas the
81  * mini-semaphore synchronizes multiple users amongst themselves.
82  */
83 typedef struct {
84 	spinlock_t		slock;
85 	int			owned;
86 	wait_queue_head_t	wq;
87 	/*
88 	 * We express the mutex-alike socket_lock semantics
89 	 * to the lock validator by explicitly managing
90 	 * the slock as a lock variant (in addition to
91 	 * the slock itself):
92 	 */
93 #ifdef CONFIG_DEBUG_LOCK_ALLOC
94 	struct lockdep_map dep_map;
95 #endif
96 } socket_lock_t;
97 
98 struct sock;
99 struct proto;
100 struct net;
101 
102 typedef __u32 __bitwise __portpair;
103 typedef __u64 __bitwise __addrpair;
104 
105 /**
106  *	struct sock_common - minimal network layer representation of sockets
107  *	@skc_daddr: Foreign IPv4 addr
108  *	@skc_rcv_saddr: Bound local IPv4 addr
109  *	@skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
110  *	@skc_hash: hash value used with various protocol lookup tables
111  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
112  *	@skc_dport: placeholder for inet_dport/tw_dport
113  *	@skc_num: placeholder for inet_num/tw_num
114  *	@skc_portpair: __u32 union of @skc_dport & @skc_num
115  *	@skc_family: network address family
116  *	@skc_state: Connection state
117  *	@skc_reuse: %SO_REUSEADDR setting
118  *	@skc_reuseport: %SO_REUSEPORT setting
119  *	@skc_ipv6only: socket is IPV6 only
120  *	@skc_net_refcnt: socket is using net ref counting
121  *	@skc_bound_dev_if: bound device index if != 0
122  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
123  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
124  *	@skc_prot: protocol handlers inside a network family
125  *	@skc_net: reference to the network namespace of this socket
126  *	@skc_v6_daddr: IPV6 destination address
127  *	@skc_v6_rcv_saddr: IPV6 source address
128  *	@skc_cookie: socket's cookie value
129  *	@skc_node: main hash linkage for various protocol lookup tables
130  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
131  *	@skc_tx_queue_mapping: tx queue number for this connection
132  *	@skc_rx_queue_mapping: rx queue number for this connection
133  *	@skc_flags: place holder for sk_flags
134  *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
135  *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
136  *	@skc_listener: connection request listener socket (aka rsk_listener)
137  *		[union with @skc_flags]
138  *	@skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
139  *		[union with @skc_flags]
140  *	@skc_incoming_cpu: record/match cpu processing incoming packets
141  *	@skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
142  *		[union with @skc_incoming_cpu]
143  *	@skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
144  *		[union with @skc_incoming_cpu]
145  *	@skc_refcnt: reference count
146  *
147  *	This is the minimal network layer representation of sockets, the header
148  *	for struct sock and struct inet_timewait_sock.
149  */
150 struct sock_common {
151 	union {
152 		__addrpair	skc_addrpair;
153 		struct {
154 			__be32	skc_daddr;
155 			__be32	skc_rcv_saddr;
156 		};
157 	};
158 	union  {
159 		unsigned int	skc_hash;
160 		__u16		skc_u16hashes[2];
161 	};
162 	/* skc_dport && skc_num must be grouped as well */
163 	union {
164 		__portpair	skc_portpair;
165 		struct {
166 			__be16	skc_dport;
167 			__u16	skc_num;
168 		};
169 	};
170 
171 	unsigned short		skc_family;
172 	volatile unsigned char	skc_state;
173 	unsigned char		skc_reuse:4;
174 	unsigned char		skc_reuseport:1;
175 	unsigned char		skc_ipv6only:1;
176 	unsigned char		skc_net_refcnt:1;
177 	int			skc_bound_dev_if;
178 	union {
179 		struct hlist_node	skc_bind_node;
180 		struct hlist_node	skc_portaddr_node;
181 	};
182 	struct proto		*skc_prot;
183 	possible_net_t		skc_net;
184 
185 #if IS_ENABLED(CONFIG_IPV6)
186 	struct in6_addr		skc_v6_daddr;
187 	struct in6_addr		skc_v6_rcv_saddr;
188 #endif
189 
190 	atomic64_t		skc_cookie;
191 
192 	/* following fields are padding to force
193 	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
194 	 * assuming IPV6 is enabled. We use this padding differently
195 	 * for different kind of 'sockets'
196 	 */
197 	union {
198 		unsigned long	skc_flags;
199 		struct sock	*skc_listener; /* request_sock */
200 		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
201 	};
202 	/*
203 	 * fields between dontcopy_begin/dontcopy_end
204 	 * are not copied in sock_copy()
205 	 */
206 	/* private: */
207 	int			skc_dontcopy_begin[0];
208 	/* public: */
209 	union {
210 		struct hlist_node	skc_node;
211 		struct hlist_nulls_node skc_nulls_node;
212 	};
213 	unsigned short		skc_tx_queue_mapping;
214 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
215 	unsigned short		skc_rx_queue_mapping;
216 #endif
217 	union {
218 		int		skc_incoming_cpu;
219 		u32		skc_rcv_wnd;
220 		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
221 	};
222 
223 	refcount_t		skc_refcnt;
224 	/* private: */
225 	int                     skc_dontcopy_end[0];
226 	union {
227 		u32		skc_rxhash;
228 		u32		skc_window_clamp;
229 		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
230 	};
231 	/* public: */
232 };
233 
234 struct bpf_local_storage;
235 struct sk_filter;
236 
237 /**
238   *	struct sock - network layer representation of sockets
239   *	@__sk_common: shared layout with inet_timewait_sock
240   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
241   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
242   *	@sk_lock:	synchronizer
243   *	@sk_kern_sock: True if sock is using kernel lock classes
244   *	@sk_rcvbuf: size of receive buffer in bytes
245   *	@sk_wq: sock wait queue and async head
246   *	@sk_rx_dst: receive input route used by early demux
247   *	@sk_rx_dst_ifindex: ifindex for @sk_rx_dst
248   *	@sk_rx_dst_cookie: cookie for @sk_rx_dst
249   *	@sk_dst_cache: destination cache
250   *	@sk_dst_pending_confirm: need to confirm neighbour
251   *	@sk_policy: flow policy
252   *	@sk_receive_queue: incoming packets
253   *	@sk_wmem_alloc: transmit queue bytes committed
254   *	@sk_tsq_flags: TCP Small Queues flags
255   *	@sk_write_queue: Packet sending queue
256   *	@sk_omem_alloc: "o" is "option" or "other"
257   *	@sk_wmem_queued: persistent queue size
258   *	@sk_forward_alloc: space allocated forward
259   *	@sk_reserved_mem: space reserved and non-reclaimable for the socket
260   *	@sk_napi_id: id of the last napi context to receive data for sk
261   *	@sk_ll_usec: usecs to busypoll when there is no data
262   *	@sk_allocation: allocation mode
263   *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
264   *	@sk_pacing_status: Pacing status (requested, handled by sch_fq)
265   *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
266   *	@sk_sndbuf: size of send buffer in bytes
267   *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
268   *	@sk_no_check_rx: allow zero checksum in RX packets
269   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
270   *	@sk_gso_disabled: if set, NETIF_F_GSO_MASK is forbidden.
271   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
272   *	@sk_gso_max_size: Maximum GSO segment size to build
273   *	@sk_gso_max_segs: Maximum number of GSO segments
274   *	@sk_pacing_shift: scaling factor for TCP Small Queues
275   *	@sk_lingertime: %SO_LINGER l_linger setting
276   *	@sk_backlog: always used with the per-socket spinlock held
277   *	@sk_callback_lock: used with the callbacks in the end of this struct
278   *	@sk_error_queue: rarely used
279   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
280   *			  IPV6_ADDRFORM for instance)
281   *	@sk_err: last error
282   *	@sk_err_soft: errors that don't cause failure but are the cause of a
283   *		      persistent failure not just 'timed out'
284   *	@sk_drops: raw/udp drops counter
285   *	@sk_ack_backlog: current listen backlog
286   *	@sk_max_ack_backlog: listen backlog set in listen()
287   *	@sk_uid: user id of owner
288   *	@sk_prefer_busy_poll: prefer busypolling over softirq processing
289   *	@sk_busy_poll_budget: napi processing budget when busypolling
290   *	@sk_priority: %SO_PRIORITY setting
291   *	@sk_type: socket type (%SOCK_STREAM, etc)
292   *	@sk_protocol: which protocol this socket belongs in this network family
293   *	@sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred
294   *	@sk_peer_pid: &struct pid for this socket's peer
295   *	@sk_peer_cred: %SO_PEERCRED setting
296   *	@sk_rcvlowat: %SO_RCVLOWAT setting
297   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
298   *	@sk_sndtimeo: %SO_SNDTIMEO setting
299   *	@sk_txhash: computed flow hash for use on transmit
300   *	@sk_txrehash: enable TX hash rethink
301   *	@sk_filter: socket filtering instructions
302   *	@sk_timer: sock cleanup timer
303   *	@sk_stamp: time stamp of last packet received
304   *	@sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
305   *	@sk_tsflags: SO_TIMESTAMPING flags
306   *	@sk_bpf_cb_flags: used in bpf_setsockopt()
307   *	@sk_use_task_frag: allow sk_page_frag() to use current->task_frag.
308   *			   Sockets that can be used under memory reclaim should
309   *			   set this to false.
310   *	@sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock
311   *	              for timestamping
312   *	@sk_tskey: counter to disambiguate concurrent tstamp requests
313   *	@sk_zckey: counter to order MSG_ZEROCOPY notifications
314   *	@sk_socket: Identd and reporting IO signals
315   *	@sk_user_data: RPC layer private data. Write-protected by @sk_callback_lock.
316   *	@sk_frag: cached page frag
317   *	@sk_peek_off: current peek_offset value
318   *	@sk_send_head: front of stuff to transmit
319   *	@tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
320   *	@sk_security: used by security modules
321   *	@sk_mark: generic packet mark
322   *	@sk_cgrp_data: cgroup data for this cgroup
323   *	@sk_memcg: this socket's memory cgroup association
324   *	@sk_write_pending: a write to stream socket waits to start
325   *	@sk_disconnects: number of disconnect operations performed on this sock
326   *	@sk_state_change: callback to indicate change in the state of the sock
327   *	@sk_data_ready: callback to indicate there is data to be processed
328   *	@sk_write_space: callback to indicate there is bf sending space available
329   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
330   *	@sk_backlog_rcv: callback to process the backlog
331   *	@sk_validate_xmit_skb: ptr to an optional validate function
332   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
333   *	@sk_reuseport_cb: reuseport group container
334   *	@sk_bpf_storage: ptr to cache and control for bpf_sk_storage
335   *	@sk_rcu: used during RCU grace period
336   *	@sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
337   *	@sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
338   *	@sk_txtime_report_errors: set report errors mode for SO_TXTIME
339   *	@sk_txtime_unused: unused txtime flags
340   *	@sk_scm_recv_flags: all flags used by scm_recv()
341   *	@sk_scm_credentials: flagged by SO_PASSCRED to recv SCM_CREDENTIALS
342   *	@sk_scm_security: flagged by SO_PASSSEC to recv SCM_SECURITY
343   *	@sk_scm_pidfd: flagged by SO_PASSPIDFD to recv SCM_PIDFD
344   *	@sk_scm_rights: flagged by SO_PASSRIGHTS to recv SCM_RIGHTS
345   *	@sk_scm_unused: unused flags for scm_recv()
346   *	@ns_tracker: tracker for netns reference
347   *	@sk_user_frags: xarray of pages the user is holding a reference on.
348   *	@sk_owner: reference to the real owner of the socket that calls
349   *		   sock_lock_init_class_and_name().
350   */
351 struct sock {
352 	/*
353 	 * Now struct inet_timewait_sock also uses sock_common, so please just
354 	 * don't add nothing before this first member (__sk_common) --acme
355 	 */
356 	struct sock_common	__sk_common;
357 #define sk_node			__sk_common.skc_node
358 #define sk_nulls_node		__sk_common.skc_nulls_node
359 #define sk_refcnt		__sk_common.skc_refcnt
360 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
361 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
362 #define sk_rx_queue_mapping	__sk_common.skc_rx_queue_mapping
363 #endif
364 
365 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
366 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
367 #define sk_hash			__sk_common.skc_hash
368 #define sk_portpair		__sk_common.skc_portpair
369 #define sk_num			__sk_common.skc_num
370 #define sk_dport		__sk_common.skc_dport
371 #define sk_addrpair		__sk_common.skc_addrpair
372 #define sk_daddr		__sk_common.skc_daddr
373 #define sk_rcv_saddr		__sk_common.skc_rcv_saddr
374 #define sk_family		__sk_common.skc_family
375 #define sk_state		__sk_common.skc_state
376 #define sk_reuse		__sk_common.skc_reuse
377 #define sk_reuseport		__sk_common.skc_reuseport
378 #define sk_ipv6only		__sk_common.skc_ipv6only
379 #define sk_net_refcnt		__sk_common.skc_net_refcnt
380 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
381 #define sk_bind_node		__sk_common.skc_bind_node
382 #define sk_prot			__sk_common.skc_prot
383 #define sk_net			__sk_common.skc_net
384 #define sk_v6_daddr		__sk_common.skc_v6_daddr
385 #define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
386 #define sk_cookie		__sk_common.skc_cookie
387 #define sk_incoming_cpu		__sk_common.skc_incoming_cpu
388 #define sk_flags		__sk_common.skc_flags
389 #define sk_rxhash		__sk_common.skc_rxhash
390 
391 	__cacheline_group_begin(sock_write_rx);
392 
393 	atomic_t		sk_drops;
394 	__s32			sk_peek_off;
395 	struct sk_buff_head	sk_error_queue;
396 	struct sk_buff_head	sk_receive_queue;
397 	/*
398 	 * The backlog queue is special, it is always used with
399 	 * the per-socket spinlock held and requires low latency
400 	 * access. Therefore we special case it's implementation.
401 	 * Note : rmem_alloc is in this structure to fill a hole
402 	 * on 64bit arches, not because its logically part of
403 	 * backlog.
404 	 */
405 	struct {
406 		atomic_t	rmem_alloc;
407 		int		len;
408 		struct sk_buff	*head;
409 		struct sk_buff	*tail;
410 	} sk_backlog;
411 #define sk_rmem_alloc sk_backlog.rmem_alloc
412 
413 	__cacheline_group_end(sock_write_rx);
414 
415 	__cacheline_group_begin(sock_read_rx);
416 	/* early demux fields */
417 	struct dst_entry __rcu	*sk_rx_dst;
418 	int			sk_rx_dst_ifindex;
419 	u32			sk_rx_dst_cookie;
420 
421 #ifdef CONFIG_NET_RX_BUSY_POLL
422 	unsigned int		sk_ll_usec;
423 	unsigned int		sk_napi_id;
424 	u16			sk_busy_poll_budget;
425 	u8			sk_prefer_busy_poll;
426 #endif
427 	u8			sk_userlocks;
428 	int			sk_rcvbuf;
429 
430 	struct sk_filter __rcu	*sk_filter;
431 	union {
432 		struct socket_wq __rcu	*sk_wq;
433 		/* private: */
434 		struct socket_wq	*sk_wq_raw;
435 		/* public: */
436 	};
437 
438 	void			(*sk_data_ready)(struct sock *sk);
439 	long			sk_rcvtimeo;
440 	int			sk_rcvlowat;
441 	__cacheline_group_end(sock_read_rx);
442 
443 	__cacheline_group_begin(sock_read_rxtx);
444 	int			sk_err;
445 	struct socket		*sk_socket;
446 #ifdef CONFIG_MEMCG
447 	struct mem_cgroup	*sk_memcg;
448 #endif
449 #ifdef CONFIG_XFRM
450 	struct xfrm_policy __rcu *sk_policy[2];
451 #endif
452 	__cacheline_group_end(sock_read_rxtx);
453 
454 	__cacheline_group_begin(sock_write_rxtx);
455 	socket_lock_t		sk_lock;
456 	u32			sk_reserved_mem;
457 	int			sk_forward_alloc;
458 	u32			sk_tsflags;
459 	__cacheline_group_end(sock_write_rxtx);
460 
461 	__cacheline_group_begin(sock_write_tx);
462 	int			sk_write_pending;
463 	atomic_t		sk_omem_alloc;
464 	int			sk_sndbuf;
465 
466 	int			sk_wmem_queued;
467 	refcount_t		sk_wmem_alloc;
468 	unsigned long		sk_tsq_flags;
469 	union {
470 		struct sk_buff	*sk_send_head;
471 		struct rb_root	tcp_rtx_queue;
472 	};
473 	struct sk_buff_head	sk_write_queue;
474 	u32			sk_dst_pending_confirm;
475 	u32			sk_pacing_status; /* see enum sk_pacing */
476 	struct page_frag	sk_frag;
477 	struct timer_list	sk_timer;
478 
479 	unsigned long		sk_pacing_rate; /* bytes per second */
480 	atomic_t		sk_zckey;
481 	atomic_t		sk_tskey;
482 	__cacheline_group_end(sock_write_tx);
483 
484 	__cacheline_group_begin(sock_read_tx);
485 	unsigned long		sk_max_pacing_rate;
486 	long			sk_sndtimeo;
487 	u32			sk_priority;
488 	u32			sk_mark;
489 	struct dst_entry __rcu	*sk_dst_cache;
490 	netdev_features_t	sk_route_caps;
491 #ifdef CONFIG_SOCK_VALIDATE_XMIT
492 	struct sk_buff*		(*sk_validate_xmit_skb)(struct sock *sk,
493 							struct net_device *dev,
494 							struct sk_buff *skb);
495 #endif
496 	u16			sk_gso_type;
497 	u16			sk_gso_max_segs;
498 	unsigned int		sk_gso_max_size;
499 	gfp_t			sk_allocation;
500 	u32			sk_txhash;
501 	u8			sk_pacing_shift;
502 	bool			sk_use_task_frag;
503 	__cacheline_group_end(sock_read_tx);
504 
505 	/*
506 	 * Because of non atomicity rules, all
507 	 * changes are protected by socket lock.
508 	 */
509 	u8			sk_gso_disabled : 1,
510 				sk_kern_sock : 1,
511 				sk_no_check_tx : 1,
512 				sk_no_check_rx : 1;
513 	u8			sk_shutdown;
514 	u16			sk_type;
515 	u16			sk_protocol;
516 	unsigned long	        sk_lingertime;
517 	struct proto		*sk_prot_creator;
518 	rwlock_t		sk_callback_lock;
519 	int			sk_err_soft;
520 	u32			sk_ack_backlog;
521 	u32			sk_max_ack_backlog;
522 	kuid_t			sk_uid;
523 	spinlock_t		sk_peer_lock;
524 	int			sk_bind_phc;
525 	struct pid		*sk_peer_pid;
526 	const struct cred	*sk_peer_cred;
527 
528 	ktime_t			sk_stamp;
529 #if BITS_PER_LONG==32
530 	seqlock_t		sk_stamp_seq;
531 #endif
532 	int			sk_disconnects;
533 
534 	union {
535 		u8		sk_txrehash;
536 		u8		sk_scm_recv_flags;
537 		struct {
538 			u8	sk_scm_credentials : 1,
539 				sk_scm_security : 1,
540 				sk_scm_pidfd : 1,
541 				sk_scm_rights : 1,
542 				sk_scm_unused : 4;
543 		};
544 	};
545 	u8			sk_clockid;
546 	u8			sk_txtime_deadline_mode : 1,
547 				sk_txtime_report_errors : 1,
548 				sk_txtime_unused : 6;
549 #define SK_BPF_CB_FLAG_TEST(SK, FLAG) ((SK)->sk_bpf_cb_flags & (FLAG))
550 	u8			sk_bpf_cb_flags;
551 
552 	void			*sk_user_data;
553 #ifdef CONFIG_SECURITY
554 	void			*sk_security;
555 #endif
556 	struct sock_cgroup_data	sk_cgrp_data;
557 	void			(*sk_state_change)(struct sock *sk);
558 	void			(*sk_write_space)(struct sock *sk);
559 	void			(*sk_error_report)(struct sock *sk);
560 	int			(*sk_backlog_rcv)(struct sock *sk,
561 						  struct sk_buff *skb);
562 	void                    (*sk_destruct)(struct sock *sk);
563 	struct sock_reuseport __rcu	*sk_reuseport_cb;
564 #ifdef CONFIG_BPF_SYSCALL
565 	struct bpf_local_storage __rcu	*sk_bpf_storage;
566 #endif
567 	struct rcu_head		sk_rcu;
568 	netns_tracker		ns_tracker;
569 	struct xarray		sk_user_frags;
570 
571 #if IS_ENABLED(CONFIG_PROVE_LOCKING) && IS_ENABLED(CONFIG_MODULES)
572 	struct module		*sk_owner;
573 #endif
574 };
575 
576 struct sock_bh_locked {
577 	struct sock *sock;
578 	local_lock_t bh_lock;
579 };
580 
581 enum sk_pacing {
582 	SK_PACING_NONE		= 0,
583 	SK_PACING_NEEDED	= 1,
584 	SK_PACING_FQ		= 2,
585 };
586 
587 /* flag bits in sk_user_data
588  *
589  * - SK_USER_DATA_NOCOPY:      Pointer stored in sk_user_data might
590  *   not be suitable for copying when cloning the socket. For instance,
591  *   it can point to a reference counted object. sk_user_data bottom
592  *   bit is set if pointer must not be copied.
593  *
594  * - SK_USER_DATA_BPF:         Mark whether sk_user_data field is
595  *   managed/owned by a BPF reuseport array. This bit should be set
596  *   when sk_user_data's sk is added to the bpf's reuseport_array.
597  *
598  * - SK_USER_DATA_PSOCK:       Mark whether pointer stored in
599  *   sk_user_data points to psock type. This bit should be set
600  *   when sk_user_data is assigned to a psock object.
601  */
602 #define SK_USER_DATA_NOCOPY	1UL
603 #define SK_USER_DATA_BPF	2UL
604 #define SK_USER_DATA_PSOCK	4UL
605 #define SK_USER_DATA_PTRMASK	~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF |\
606 				  SK_USER_DATA_PSOCK)
607 
608 /**
609  * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
610  * @sk: socket
611  */
612 static inline bool sk_user_data_is_nocopy(const struct sock *sk)
613 {
614 	return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
615 }
616 
617 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
618 
619 /**
620  * __locked_read_sk_user_data_with_flags - return the pointer
621  * only if argument flags all has been set in sk_user_data. Otherwise
622  * return NULL
623  *
624  * @sk: socket
625  * @flags: flag bits
626  *
627  * The caller must be holding sk->sk_callback_lock.
628  */
629 static inline void *
630 __locked_read_sk_user_data_with_flags(const struct sock *sk,
631 				      uintptr_t flags)
632 {
633 	uintptr_t sk_user_data =
634 		(uintptr_t)rcu_dereference_check(__sk_user_data(sk),
635 						 lockdep_is_held(&sk->sk_callback_lock));
636 
637 	WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
638 
639 	if ((sk_user_data & flags) == flags)
640 		return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
641 	return NULL;
642 }
643 
644 /**
645  * __rcu_dereference_sk_user_data_with_flags - return the pointer
646  * only if argument flags all has been set in sk_user_data. Otherwise
647  * return NULL
648  *
649  * @sk: socket
650  * @flags: flag bits
651  */
652 static inline void *
653 __rcu_dereference_sk_user_data_with_flags(const struct sock *sk,
654 					  uintptr_t flags)
655 {
656 	uintptr_t sk_user_data = (uintptr_t)rcu_dereference(__sk_user_data(sk));
657 
658 	WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
659 
660 	if ((sk_user_data & flags) == flags)
661 		return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
662 	return NULL;
663 }
664 
665 #define rcu_dereference_sk_user_data(sk)				\
666 	__rcu_dereference_sk_user_data_with_flags(sk, 0)
667 #define __rcu_assign_sk_user_data_with_flags(sk, ptr, flags)		\
668 ({									\
669 	uintptr_t __tmp1 = (uintptr_t)(ptr),				\
670 		  __tmp2 = (uintptr_t)(flags);				\
671 	WARN_ON_ONCE(__tmp1 & ~SK_USER_DATA_PTRMASK);			\
672 	WARN_ON_ONCE(__tmp2 & SK_USER_DATA_PTRMASK);			\
673 	rcu_assign_pointer(__sk_user_data((sk)),			\
674 			   __tmp1 | __tmp2);				\
675 })
676 #define rcu_assign_sk_user_data(sk, ptr)				\
677 	__rcu_assign_sk_user_data_with_flags(sk, ptr, 0)
678 
679 static inline
680 struct net *sock_net(const struct sock *sk)
681 {
682 	return read_pnet(&sk->sk_net);
683 }
684 
685 static inline
686 void sock_net_set(struct sock *sk, struct net *net)
687 {
688 	write_pnet(&sk->sk_net, net);
689 }
690 
691 /*
692  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
693  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
694  * on a socket means that the socket will reuse everybody else's port
695  * without looking at the other's sk_reuse value.
696  */
697 
698 #define SK_NO_REUSE	0
699 #define SK_CAN_REUSE	1
700 #define SK_FORCE_REUSE	2
701 
702 int sk_set_peek_off(struct sock *sk, int val);
703 
704 static inline int sk_peek_offset(const struct sock *sk, int flags)
705 {
706 	if (unlikely(flags & MSG_PEEK)) {
707 		return READ_ONCE(sk->sk_peek_off);
708 	}
709 
710 	return 0;
711 }
712 
713 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
714 {
715 	s32 off = READ_ONCE(sk->sk_peek_off);
716 
717 	if (unlikely(off >= 0)) {
718 		off = max_t(s32, off - val, 0);
719 		WRITE_ONCE(sk->sk_peek_off, off);
720 	}
721 }
722 
723 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
724 {
725 	sk_peek_offset_bwd(sk, -val);
726 }
727 
728 /*
729  * Hashed lists helper routines
730  */
731 static inline struct sock *sk_entry(const struct hlist_node *node)
732 {
733 	return hlist_entry(node, struct sock, sk_node);
734 }
735 
736 static inline struct sock *__sk_head(const struct hlist_head *head)
737 {
738 	return hlist_entry(head->first, struct sock, sk_node);
739 }
740 
741 static inline struct sock *sk_head(const struct hlist_head *head)
742 {
743 	return hlist_empty(head) ? NULL : __sk_head(head);
744 }
745 
746 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
747 {
748 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
749 }
750 
751 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
752 {
753 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
754 }
755 
756 static inline struct sock *sk_next(const struct sock *sk)
757 {
758 	return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
759 }
760 
761 static inline struct sock *sk_nulls_next(const struct sock *sk)
762 {
763 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
764 		hlist_nulls_entry(sk->sk_nulls_node.next,
765 				  struct sock, sk_nulls_node) :
766 		NULL;
767 }
768 
769 static inline bool sk_unhashed(const struct sock *sk)
770 {
771 	return hlist_unhashed(&sk->sk_node);
772 }
773 
774 static inline bool sk_hashed(const struct sock *sk)
775 {
776 	return !sk_unhashed(sk);
777 }
778 
779 static inline void sk_node_init(struct hlist_node *node)
780 {
781 	node->pprev = NULL;
782 }
783 
784 static inline void __sk_del_node(struct sock *sk)
785 {
786 	__hlist_del(&sk->sk_node);
787 }
788 
789 /* NB: equivalent to hlist_del_init_rcu */
790 static inline bool __sk_del_node_init(struct sock *sk)
791 {
792 	if (sk_hashed(sk)) {
793 		__sk_del_node(sk);
794 		sk_node_init(&sk->sk_node);
795 		return true;
796 	}
797 	return false;
798 }
799 
800 /* Grab socket reference count. This operation is valid only
801    when sk is ALREADY grabbed f.e. it is found in hash table
802    or a list and the lookup is made under lock preventing hash table
803    modifications.
804  */
805 
806 static __always_inline void sock_hold(struct sock *sk)
807 {
808 	refcount_inc(&sk->sk_refcnt);
809 }
810 
811 /* Ungrab socket in the context, which assumes that socket refcnt
812    cannot hit zero, f.e. it is true in context of any socketcall.
813  */
814 static __always_inline void __sock_put(struct sock *sk)
815 {
816 	refcount_dec(&sk->sk_refcnt);
817 }
818 
819 static inline bool sk_del_node_init(struct sock *sk)
820 {
821 	bool rc = __sk_del_node_init(sk);
822 
823 	if (rc) {
824 		/* paranoid for a while -acme */
825 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
826 		__sock_put(sk);
827 	}
828 	return rc;
829 }
830 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
831 
832 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
833 {
834 	if (sk_hashed(sk)) {
835 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
836 		return true;
837 	}
838 	return false;
839 }
840 
841 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
842 {
843 	bool rc = __sk_nulls_del_node_init_rcu(sk);
844 
845 	if (rc) {
846 		/* paranoid for a while -acme */
847 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
848 		__sock_put(sk);
849 	}
850 	return rc;
851 }
852 
853 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
854 {
855 	hlist_add_head(&sk->sk_node, list);
856 }
857 
858 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
859 {
860 	sock_hold(sk);
861 	__sk_add_node(sk, list);
862 }
863 
864 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
865 {
866 	sock_hold(sk);
867 	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
868 	    sk->sk_family == AF_INET6)
869 		hlist_add_tail_rcu(&sk->sk_node, list);
870 	else
871 		hlist_add_head_rcu(&sk->sk_node, list);
872 }
873 
874 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
875 {
876 	sock_hold(sk);
877 	hlist_add_tail_rcu(&sk->sk_node, list);
878 }
879 
880 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
881 {
882 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
883 }
884 
885 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
886 {
887 	hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
888 }
889 
890 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
891 {
892 	sock_hold(sk);
893 	__sk_nulls_add_node_rcu(sk, list);
894 }
895 
896 static inline void __sk_del_bind_node(struct sock *sk)
897 {
898 	__hlist_del(&sk->sk_bind_node);
899 }
900 
901 static inline void sk_add_bind_node(struct sock *sk,
902 					struct hlist_head *list)
903 {
904 	hlist_add_head(&sk->sk_bind_node, list);
905 }
906 
907 #define sk_for_each(__sk, list) \
908 	hlist_for_each_entry(__sk, list, sk_node)
909 #define sk_for_each_rcu(__sk, list) \
910 	hlist_for_each_entry_rcu(__sk, list, sk_node)
911 #define sk_nulls_for_each(__sk, node, list) \
912 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
913 #define sk_nulls_for_each_rcu(__sk, node, list) \
914 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
915 #define sk_for_each_from(__sk) \
916 	hlist_for_each_entry_from(__sk, sk_node)
917 #define sk_nulls_for_each_from(__sk, node) \
918 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
919 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
920 #define sk_for_each_safe(__sk, tmp, list) \
921 	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
922 #define sk_for_each_bound(__sk, list) \
923 	hlist_for_each_entry(__sk, list, sk_bind_node)
924 #define sk_for_each_bound_safe(__sk, tmp, list) \
925 	hlist_for_each_entry_safe(__sk, tmp, list, sk_bind_node)
926 
927 /**
928  * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
929  * @tpos:	the type * to use as a loop cursor.
930  * @pos:	the &struct hlist_node to use as a loop cursor.
931  * @head:	the head for your list.
932  * @offset:	offset of hlist_node within the struct.
933  *
934  */
935 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \
936 	for (pos = rcu_dereference(hlist_first_rcu(head));		       \
937 	     pos != NULL &&						       \
938 		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
939 	     pos = rcu_dereference(hlist_next_rcu(pos)))
940 
941 static inline struct user_namespace *sk_user_ns(const struct sock *sk)
942 {
943 	/* Careful only use this in a context where these parameters
944 	 * can not change and must all be valid, such as recvmsg from
945 	 * userspace.
946 	 */
947 	return sk->sk_socket->file->f_cred->user_ns;
948 }
949 
950 /* Sock flags */
951 enum sock_flags {
952 	SOCK_DEAD,
953 	SOCK_DONE,
954 	SOCK_URGINLINE,
955 	SOCK_KEEPOPEN,
956 	SOCK_LINGER,
957 	SOCK_DESTROY,
958 	SOCK_BROADCAST,
959 	SOCK_TIMESTAMP,
960 	SOCK_ZAPPED,
961 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
962 	SOCK_DBG, /* %SO_DEBUG setting */
963 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
964 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
965 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
966 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
967 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
968 	SOCK_FASYNC, /* fasync() active */
969 	SOCK_RXQ_OVFL,
970 	SOCK_ZEROCOPY, /* buffers from userspace */
971 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
972 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
973 		     * Will use last 4 bytes of packet sent from
974 		     * user-space instead.
975 		     */
976 	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
977 	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
978 	SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
979 	SOCK_TXTIME,
980 	SOCK_XDP, /* XDP is attached */
981 	SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
982 	SOCK_RCVMARK, /* Receive SO_MARK  ancillary data with packet */
983 	SOCK_RCVPRIORITY, /* Receive SO_PRIORITY ancillary data with packet */
984 	SOCK_TIMESTAMPING_ANY, /* Copy of sk_tsflags & TSFLAGS_ANY */
985 };
986 
987 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
988 /*
989  * The highest bit of sk_tsflags is reserved for kernel-internal
990  * SOCKCM_FLAG_TS_OPT_ID. There is a check in core/sock.c to control that
991  * SOF_TIMESTAMPING* values do not reach this reserved area
992  */
993 #define SOCKCM_FLAG_TS_OPT_ID	BIT(31)
994 
995 static inline void sock_copy_flags(struct sock *nsk, const struct sock *osk)
996 {
997 	nsk->sk_flags = osk->sk_flags;
998 }
999 
1000 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
1001 {
1002 	__set_bit(flag, &sk->sk_flags);
1003 }
1004 
1005 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
1006 {
1007 	__clear_bit(flag, &sk->sk_flags);
1008 }
1009 
1010 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
1011 				     int valbool)
1012 {
1013 	if (valbool)
1014 		sock_set_flag(sk, bit);
1015 	else
1016 		sock_reset_flag(sk, bit);
1017 }
1018 
1019 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
1020 {
1021 	return test_bit(flag, &sk->sk_flags);
1022 }
1023 
1024 #ifdef CONFIG_NET
1025 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
1026 static inline int sk_memalloc_socks(void)
1027 {
1028 	return static_branch_unlikely(&memalloc_socks_key);
1029 }
1030 
1031 void __receive_sock(struct file *file);
1032 #else
1033 
1034 static inline int sk_memalloc_socks(void)
1035 {
1036 	return 0;
1037 }
1038 
1039 static inline void __receive_sock(struct file *file)
1040 { }
1041 #endif
1042 
1043 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
1044 {
1045 	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
1046 }
1047 
1048 static inline void sk_acceptq_removed(struct sock *sk)
1049 {
1050 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
1051 }
1052 
1053 static inline void sk_acceptq_added(struct sock *sk)
1054 {
1055 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
1056 }
1057 
1058 /* Note: If you think the test should be:
1059  *	return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog);
1060  * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.")
1061  */
1062 static inline bool sk_acceptq_is_full(const struct sock *sk)
1063 {
1064 	return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
1065 }
1066 
1067 /*
1068  * Compute minimal free write space needed to queue new packets.
1069  */
1070 static inline int sk_stream_min_wspace(const struct sock *sk)
1071 {
1072 	return READ_ONCE(sk->sk_wmem_queued) >> 1;
1073 }
1074 
1075 static inline int sk_stream_wspace(const struct sock *sk)
1076 {
1077 	return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
1078 }
1079 
1080 static inline void sk_wmem_queued_add(struct sock *sk, int val)
1081 {
1082 	WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
1083 }
1084 
1085 static inline void sk_forward_alloc_add(struct sock *sk, int val)
1086 {
1087 	/* Paired with lockless reads of sk->sk_forward_alloc */
1088 	WRITE_ONCE(sk->sk_forward_alloc, sk->sk_forward_alloc + val);
1089 }
1090 
1091 void sk_stream_write_space(struct sock *sk);
1092 
1093 /* OOB backlog add */
1094 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
1095 {
1096 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
1097 	skb_dst_force(skb);
1098 
1099 	if (!sk->sk_backlog.tail)
1100 		WRITE_ONCE(sk->sk_backlog.head, skb);
1101 	else
1102 		sk->sk_backlog.tail->next = skb;
1103 
1104 	WRITE_ONCE(sk->sk_backlog.tail, skb);
1105 	skb->next = NULL;
1106 }
1107 
1108 /*
1109  * Take into account size of receive queue and backlog queue
1110  * Do not take into account this skb truesize,
1111  * to allow even a single big packet to come.
1112  */
1113 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
1114 {
1115 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
1116 
1117 	return qsize > limit;
1118 }
1119 
1120 /* The per-socket spinlock must be held here. */
1121 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
1122 					      unsigned int limit)
1123 {
1124 	if (sk_rcvqueues_full(sk, limit))
1125 		return -ENOBUFS;
1126 
1127 	/*
1128 	 * If the skb was allocated from pfmemalloc reserves, only
1129 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
1130 	 * helping free memory
1131 	 */
1132 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
1133 		return -ENOMEM;
1134 
1135 	__sk_add_backlog(sk, skb);
1136 	sk->sk_backlog.len += skb->truesize;
1137 	return 0;
1138 }
1139 
1140 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1141 
1142 INDIRECT_CALLABLE_DECLARE(int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb));
1143 INDIRECT_CALLABLE_DECLARE(int tcp_v6_do_rcv(struct sock *sk, struct sk_buff *skb));
1144 
1145 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1146 {
1147 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1148 		return __sk_backlog_rcv(sk, skb);
1149 
1150 	return INDIRECT_CALL_INET(sk->sk_backlog_rcv,
1151 				  tcp_v6_do_rcv,
1152 				  tcp_v4_do_rcv,
1153 				  sk, skb);
1154 }
1155 
1156 static inline void sk_incoming_cpu_update(struct sock *sk)
1157 {
1158 	int cpu = raw_smp_processor_id();
1159 
1160 	if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1161 		WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1162 }
1163 
1164 
1165 static inline void sock_rps_save_rxhash(struct sock *sk,
1166 					const struct sk_buff *skb)
1167 {
1168 #ifdef CONFIG_RPS
1169 	/* The following WRITE_ONCE() is paired with the READ_ONCE()
1170 	 * here, and another one in sock_rps_record_flow().
1171 	 */
1172 	if (unlikely(READ_ONCE(sk->sk_rxhash) != skb->hash))
1173 		WRITE_ONCE(sk->sk_rxhash, skb->hash);
1174 #endif
1175 }
1176 
1177 static inline void sock_rps_reset_rxhash(struct sock *sk)
1178 {
1179 #ifdef CONFIG_RPS
1180 	/* Paired with READ_ONCE() in sock_rps_record_flow() */
1181 	WRITE_ONCE(sk->sk_rxhash, 0);
1182 #endif
1183 }
1184 
1185 #define sk_wait_event(__sk, __timeo, __condition, __wait)		\
1186 	({	int __rc, __dis = __sk->sk_disconnects;			\
1187 		release_sock(__sk);					\
1188 		__rc = __condition;					\
1189 		if (!__rc) {						\
1190 			*(__timeo) = wait_woken(__wait,			\
1191 						TASK_INTERRUPTIBLE,	\
1192 						*(__timeo));		\
1193 		}							\
1194 		sched_annotate_sleep();					\
1195 		lock_sock(__sk);					\
1196 		__rc = __dis == __sk->sk_disconnects ? __condition : -EPIPE; \
1197 		__rc;							\
1198 	})
1199 
1200 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1201 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1202 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1203 int sk_stream_error(struct sock *sk, int flags, int err);
1204 void sk_stream_kill_queues(struct sock *sk);
1205 void sk_set_memalloc(struct sock *sk);
1206 void sk_clear_memalloc(struct sock *sk);
1207 
1208 void __sk_flush_backlog(struct sock *sk);
1209 
1210 static inline bool sk_flush_backlog(struct sock *sk)
1211 {
1212 	if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1213 		__sk_flush_backlog(sk);
1214 		return true;
1215 	}
1216 	return false;
1217 }
1218 
1219 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1220 
1221 struct request_sock_ops;
1222 struct timewait_sock_ops;
1223 struct inet_hashinfo;
1224 struct raw_hashinfo;
1225 struct smc_hashinfo;
1226 struct module;
1227 struct sk_psock;
1228 
1229 /*
1230  * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1231  * un-modified. Special care is taken when initializing object to zero.
1232  */
1233 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1234 {
1235 	if (offsetof(struct sock, sk_node.next) != 0)
1236 		memset(sk, 0, offsetof(struct sock, sk_node.next));
1237 	memset(&sk->sk_node.pprev, 0,
1238 	       size - offsetof(struct sock, sk_node.pprev));
1239 }
1240 
1241 struct proto_accept_arg {
1242 	int flags;
1243 	int err;
1244 	int is_empty;
1245 	bool kern;
1246 };
1247 
1248 /* Networking protocol blocks we attach to sockets.
1249  * socket layer -> transport layer interface
1250  */
1251 struct proto {
1252 	void			(*close)(struct sock *sk,
1253 					long timeout);
1254 	int			(*pre_connect)(struct sock *sk,
1255 					struct sockaddr *uaddr,
1256 					int addr_len);
1257 	int			(*connect)(struct sock *sk,
1258 					struct sockaddr *uaddr,
1259 					int addr_len);
1260 	int			(*disconnect)(struct sock *sk, int flags);
1261 
1262 	struct sock *		(*accept)(struct sock *sk,
1263 					  struct proto_accept_arg *arg);
1264 
1265 	int			(*ioctl)(struct sock *sk, int cmd,
1266 					 int *karg);
1267 	int			(*init)(struct sock *sk);
1268 	void			(*destroy)(struct sock *sk);
1269 	void			(*shutdown)(struct sock *sk, int how);
1270 	int			(*setsockopt)(struct sock *sk, int level,
1271 					int optname, sockptr_t optval,
1272 					unsigned int optlen);
1273 	int			(*getsockopt)(struct sock *sk, int level,
1274 					int optname, char __user *optval,
1275 					int __user *option);
1276 	void			(*keepalive)(struct sock *sk, int valbool);
1277 #ifdef CONFIG_COMPAT
1278 	int			(*compat_ioctl)(struct sock *sk,
1279 					unsigned int cmd, unsigned long arg);
1280 #endif
1281 	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
1282 					   size_t len);
1283 	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
1284 					   size_t len, int flags, int *addr_len);
1285 	void			(*splice_eof)(struct socket *sock);
1286 	int			(*bind)(struct sock *sk,
1287 					struct sockaddr *addr, int addr_len);
1288 	int			(*bind_add)(struct sock *sk,
1289 					struct sockaddr *addr, int addr_len);
1290 
1291 	int			(*backlog_rcv) (struct sock *sk,
1292 						struct sk_buff *skb);
1293 	bool			(*bpf_bypass_getsockopt)(int level,
1294 							 int optname);
1295 
1296 	void		(*release_cb)(struct sock *sk);
1297 
1298 	/* Keeping track of sk's, looking them up, and port selection methods. */
1299 	int			(*hash)(struct sock *sk);
1300 	void			(*unhash)(struct sock *sk);
1301 	void			(*rehash)(struct sock *sk);
1302 	int			(*get_port)(struct sock *sk, unsigned short snum);
1303 	void			(*put_port)(struct sock *sk);
1304 #ifdef CONFIG_BPF_SYSCALL
1305 	int			(*psock_update_sk_prot)(struct sock *sk,
1306 							struct sk_psock *psock,
1307 							bool restore);
1308 #endif
1309 
1310 	/* Keeping track of sockets in use */
1311 #ifdef CONFIG_PROC_FS
1312 	unsigned int		inuse_idx;
1313 #endif
1314 
1315 	bool			(*stream_memory_free)(const struct sock *sk, int wake);
1316 	bool			(*sock_is_readable)(struct sock *sk);
1317 	/* Memory pressure */
1318 	void			(*enter_memory_pressure)(struct sock *sk);
1319 	void			(*leave_memory_pressure)(struct sock *sk);
1320 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1321 	int  __percpu		*per_cpu_fw_alloc;
1322 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1323 
1324 	/*
1325 	 * Pressure flag: try to collapse.
1326 	 * Technical note: it is used by multiple contexts non atomically.
1327 	 * Make sure to use READ_ONCE()/WRITE_ONCE() for all reads/writes.
1328 	 * All the __sk_mem_schedule() is of this nature: accounting
1329 	 * is strict, actions are advisory and have some latency.
1330 	 */
1331 	unsigned long		*memory_pressure;
1332 	long			*sysctl_mem;
1333 
1334 	int			*sysctl_wmem;
1335 	int			*sysctl_rmem;
1336 	u32			sysctl_wmem_offset;
1337 	u32			sysctl_rmem_offset;
1338 
1339 	int			max_header;
1340 	bool			no_autobind;
1341 
1342 	struct kmem_cache	*slab;
1343 	unsigned int		obj_size;
1344 	unsigned int		ipv6_pinfo_offset;
1345 	slab_flags_t		slab_flags;
1346 	unsigned int		useroffset;	/* Usercopy region offset */
1347 	unsigned int		usersize;	/* Usercopy region size */
1348 
1349 	unsigned int __percpu	*orphan_count;
1350 
1351 	struct request_sock_ops	*rsk_prot;
1352 	struct timewait_sock_ops *twsk_prot;
1353 
1354 	union {
1355 		struct inet_hashinfo	*hashinfo;
1356 		struct udp_table	*udp_table;
1357 		struct raw_hashinfo	*raw_hash;
1358 		struct smc_hashinfo	*smc_hash;
1359 	} h;
1360 
1361 	struct module		*owner;
1362 
1363 	char			name[32];
1364 
1365 	struct list_head	node;
1366 	int			(*diag_destroy)(struct sock *sk, int err);
1367 } __randomize_layout;
1368 
1369 int proto_register(struct proto *prot, int alloc_slab);
1370 void proto_unregister(struct proto *prot);
1371 int sock_load_diag_module(int family, int protocol);
1372 
1373 INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake));
1374 
1375 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1376 {
1377 	if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1378 		return false;
1379 
1380 	return sk->sk_prot->stream_memory_free ?
1381 		INDIRECT_CALL_INET_1(sk->sk_prot->stream_memory_free,
1382 				     tcp_stream_memory_free, sk, wake) : true;
1383 }
1384 
1385 static inline bool sk_stream_memory_free(const struct sock *sk)
1386 {
1387 	return __sk_stream_memory_free(sk, 0);
1388 }
1389 
1390 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1391 {
1392 	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1393 	       __sk_stream_memory_free(sk, wake);
1394 }
1395 
1396 static inline bool sk_stream_is_writeable(const struct sock *sk)
1397 {
1398 	return __sk_stream_is_writeable(sk, 0);
1399 }
1400 
1401 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1402 					    struct cgroup *ancestor)
1403 {
1404 #ifdef CONFIG_SOCK_CGROUP_DATA
1405 	return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1406 				    ancestor);
1407 #else
1408 	return -ENOTSUPP;
1409 #endif
1410 }
1411 
1412 #define SK_ALLOC_PERCPU_COUNTER_BATCH 16
1413 
1414 static inline void sk_sockets_allocated_dec(struct sock *sk)
1415 {
1416 	percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1,
1417 				 SK_ALLOC_PERCPU_COUNTER_BATCH);
1418 }
1419 
1420 static inline void sk_sockets_allocated_inc(struct sock *sk)
1421 {
1422 	percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1,
1423 				 SK_ALLOC_PERCPU_COUNTER_BATCH);
1424 }
1425 
1426 static inline u64
1427 sk_sockets_allocated_read_positive(struct sock *sk)
1428 {
1429 	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1430 }
1431 
1432 static inline int
1433 proto_sockets_allocated_sum_positive(struct proto *prot)
1434 {
1435 	return percpu_counter_sum_positive(prot->sockets_allocated);
1436 }
1437 
1438 #ifdef CONFIG_PROC_FS
1439 #define PROTO_INUSE_NR	64	/* should be enough for the first time */
1440 struct prot_inuse {
1441 	int all;
1442 	int val[PROTO_INUSE_NR];
1443 };
1444 
1445 static inline void sock_prot_inuse_add(const struct net *net,
1446 				       const struct proto *prot, int val)
1447 {
1448 	this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
1449 }
1450 
1451 static inline void sock_inuse_add(const struct net *net, int val)
1452 {
1453 	this_cpu_add(net->core.prot_inuse->all, val);
1454 }
1455 
1456 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1457 int sock_inuse_get(struct net *net);
1458 #else
1459 static inline void sock_prot_inuse_add(const struct net *net,
1460 				       const struct proto *prot, int val)
1461 {
1462 }
1463 
1464 static inline void sock_inuse_add(const struct net *net, int val)
1465 {
1466 }
1467 #endif
1468 
1469 
1470 /* With per-bucket locks this operation is not-atomic, so that
1471  * this version is not worse.
1472  */
1473 static inline int __sk_prot_rehash(struct sock *sk)
1474 {
1475 	sk->sk_prot->unhash(sk);
1476 	return sk->sk_prot->hash(sk);
1477 }
1478 
1479 /* About 10 seconds */
1480 #define SOCK_DESTROY_TIME (10*HZ)
1481 
1482 /* Sockets 0-1023 can't be bound to unless you are superuser */
1483 #define PROT_SOCK	1024
1484 
1485 #define SHUTDOWN_MASK	3
1486 #define RCV_SHUTDOWN	1
1487 #define SEND_SHUTDOWN	2
1488 
1489 #define SOCK_BINDADDR_LOCK	4
1490 #define SOCK_BINDPORT_LOCK	8
1491 
1492 struct socket_alloc {
1493 	struct socket socket;
1494 	struct inode vfs_inode;
1495 };
1496 
1497 static inline struct socket *SOCKET_I(struct inode *inode)
1498 {
1499 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1500 }
1501 
1502 static inline struct inode *SOCK_INODE(struct socket *socket)
1503 {
1504 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1505 }
1506 
1507 /*
1508  * Functions for memory accounting
1509  */
1510 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1511 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1512 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1513 void __sk_mem_reclaim(struct sock *sk, int amount);
1514 
1515 #define SK_MEM_SEND	0
1516 #define SK_MEM_RECV	1
1517 
1518 /* sysctl_mem values are in pages */
1519 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1520 {
1521 	return READ_ONCE(sk->sk_prot->sysctl_mem[index]);
1522 }
1523 
1524 static inline int sk_mem_pages(int amt)
1525 {
1526 	return (amt + PAGE_SIZE - 1) >> PAGE_SHIFT;
1527 }
1528 
1529 static inline bool sk_has_account(struct sock *sk)
1530 {
1531 	/* return true if protocol supports memory accounting */
1532 	return !!sk->sk_prot->memory_allocated;
1533 }
1534 
1535 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1536 {
1537 	int delta;
1538 
1539 	if (!sk_has_account(sk))
1540 		return true;
1541 	delta = size - sk->sk_forward_alloc;
1542 	return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_SEND);
1543 }
1544 
1545 static inline bool
1546 __sk_rmem_schedule(struct sock *sk, int size, bool pfmemalloc)
1547 {
1548 	int delta;
1549 
1550 	if (!sk_has_account(sk))
1551 		return true;
1552 	delta = size - sk->sk_forward_alloc;
1553 	return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_RECV) ||
1554 	       pfmemalloc;
1555 }
1556 
1557 static inline bool
1558 sk_rmem_schedule(struct sock *sk, const struct sk_buff *skb, int size)
1559 {
1560 	return __sk_rmem_schedule(sk, size, skb_pfmemalloc(skb));
1561 }
1562 
1563 static inline int sk_unused_reserved_mem(const struct sock *sk)
1564 {
1565 	int unused_mem;
1566 
1567 	if (likely(!sk->sk_reserved_mem))
1568 		return 0;
1569 
1570 	unused_mem = sk->sk_reserved_mem - sk->sk_wmem_queued -
1571 			atomic_read(&sk->sk_rmem_alloc);
1572 
1573 	return unused_mem > 0 ? unused_mem : 0;
1574 }
1575 
1576 static inline void sk_mem_reclaim(struct sock *sk)
1577 {
1578 	int reclaimable;
1579 
1580 	if (!sk_has_account(sk))
1581 		return;
1582 
1583 	reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1584 
1585 	if (reclaimable >= (int)PAGE_SIZE)
1586 		__sk_mem_reclaim(sk, reclaimable);
1587 }
1588 
1589 static inline void sk_mem_reclaim_final(struct sock *sk)
1590 {
1591 	sk->sk_reserved_mem = 0;
1592 	sk_mem_reclaim(sk);
1593 }
1594 
1595 static inline void sk_mem_charge(struct sock *sk, int size)
1596 {
1597 	if (!sk_has_account(sk))
1598 		return;
1599 	sk_forward_alloc_add(sk, -size);
1600 }
1601 
1602 static inline void sk_mem_uncharge(struct sock *sk, int size)
1603 {
1604 	if (!sk_has_account(sk))
1605 		return;
1606 	sk_forward_alloc_add(sk, size);
1607 	sk_mem_reclaim(sk);
1608 }
1609 
1610 #if IS_ENABLED(CONFIG_PROVE_LOCKING) && IS_ENABLED(CONFIG_MODULES)
1611 static inline void sk_owner_set(struct sock *sk, struct module *owner)
1612 {
1613 	__module_get(owner);
1614 	sk->sk_owner = owner;
1615 }
1616 
1617 static inline void sk_owner_clear(struct sock *sk)
1618 {
1619 	sk->sk_owner = NULL;
1620 }
1621 
1622 static inline void sk_owner_put(struct sock *sk)
1623 {
1624 	module_put(sk->sk_owner);
1625 }
1626 #else
1627 static inline void sk_owner_set(struct sock *sk, struct module *owner)
1628 {
1629 }
1630 
1631 static inline void sk_owner_clear(struct sock *sk)
1632 {
1633 }
1634 
1635 static inline void sk_owner_put(struct sock *sk)
1636 {
1637 }
1638 #endif
1639 /*
1640  * Macro so as to not evaluate some arguments when
1641  * lockdep is not enabled.
1642  *
1643  * Mark both the sk_lock and the sk_lock.slock as a
1644  * per-address-family lock class.
1645  */
1646 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1647 do {									\
1648 	sk_owner_set(sk, THIS_MODULE);					\
1649 	sk->sk_lock.owned = 0;						\
1650 	init_waitqueue_head(&sk->sk_lock.wq);				\
1651 	spin_lock_init(&(sk)->sk_lock.slock);				\
1652 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1653 				   sizeof((sk)->sk_lock));		\
1654 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1655 				   (skey), (sname));			\
1656 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1657 } while (0)
1658 
1659 static inline bool lockdep_sock_is_held(const struct sock *sk)
1660 {
1661 	return lockdep_is_held(&sk->sk_lock) ||
1662 	       lockdep_is_held(&sk->sk_lock.slock);
1663 }
1664 
1665 void lock_sock_nested(struct sock *sk, int subclass);
1666 
1667 static inline void lock_sock(struct sock *sk)
1668 {
1669 	lock_sock_nested(sk, 0);
1670 }
1671 
1672 void __lock_sock(struct sock *sk);
1673 void __release_sock(struct sock *sk);
1674 void release_sock(struct sock *sk);
1675 
1676 /* BH context may only use the following locking interface. */
1677 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1678 #define bh_lock_sock_nested(__sk) \
1679 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1680 				SINGLE_DEPTH_NESTING)
1681 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1682 
1683 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock);
1684 
1685 /**
1686  * lock_sock_fast - fast version of lock_sock
1687  * @sk: socket
1688  *
1689  * This version should be used for very small section, where process won't block
1690  * return false if fast path is taken:
1691  *
1692  *   sk_lock.slock locked, owned = 0, BH disabled
1693  *
1694  * return true if slow path is taken:
1695  *
1696  *   sk_lock.slock unlocked, owned = 1, BH enabled
1697  */
1698 static inline bool lock_sock_fast(struct sock *sk)
1699 {
1700 	/* The sk_lock has mutex_lock() semantics here. */
1701 	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
1702 
1703 	return __lock_sock_fast(sk);
1704 }
1705 
1706 /* fast socket lock variant for caller already holding a [different] socket lock */
1707 static inline bool lock_sock_fast_nested(struct sock *sk)
1708 {
1709 	mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_);
1710 
1711 	return __lock_sock_fast(sk);
1712 }
1713 
1714 /**
1715  * unlock_sock_fast - complement of lock_sock_fast
1716  * @sk: socket
1717  * @slow: slow mode
1718  *
1719  * fast unlock socket for user context.
1720  * If slow mode is on, we call regular release_sock()
1721  */
1722 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1723 	__releases(&sk->sk_lock.slock)
1724 {
1725 	if (slow) {
1726 		release_sock(sk);
1727 		__release(&sk->sk_lock.slock);
1728 	} else {
1729 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1730 		spin_unlock_bh(&sk->sk_lock.slock);
1731 	}
1732 }
1733 
1734 void sockopt_lock_sock(struct sock *sk);
1735 void sockopt_release_sock(struct sock *sk);
1736 bool sockopt_ns_capable(struct user_namespace *ns, int cap);
1737 bool sockopt_capable(int cap);
1738 
1739 /* Used by processes to "lock" a socket state, so that
1740  * interrupts and bottom half handlers won't change it
1741  * from under us. It essentially blocks any incoming
1742  * packets, so that we won't get any new data or any
1743  * packets that change the state of the socket.
1744  *
1745  * While locked, BH processing will add new packets to
1746  * the backlog queue.  This queue is processed by the
1747  * owner of the socket lock right before it is released.
1748  *
1749  * Since ~2.3.5 it is also exclusive sleep lock serializing
1750  * accesses from user process context.
1751  */
1752 
1753 static inline void sock_owned_by_me(const struct sock *sk)
1754 {
1755 #ifdef CONFIG_LOCKDEP
1756 	WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1757 #endif
1758 }
1759 
1760 static inline void sock_not_owned_by_me(const struct sock *sk)
1761 {
1762 #ifdef CONFIG_LOCKDEP
1763 	WARN_ON_ONCE(lockdep_sock_is_held(sk) && debug_locks);
1764 #endif
1765 }
1766 
1767 static inline bool sock_owned_by_user(const struct sock *sk)
1768 {
1769 	sock_owned_by_me(sk);
1770 	return sk->sk_lock.owned;
1771 }
1772 
1773 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1774 {
1775 	return sk->sk_lock.owned;
1776 }
1777 
1778 static inline void sock_release_ownership(struct sock *sk)
1779 {
1780 	DEBUG_NET_WARN_ON_ONCE(!sock_owned_by_user_nocheck(sk));
1781 	sk->sk_lock.owned = 0;
1782 
1783 	/* The sk_lock has mutex_unlock() semantics: */
1784 	mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1785 }
1786 
1787 /* no reclassification while locks are held */
1788 static inline bool sock_allow_reclassification(const struct sock *csk)
1789 {
1790 	struct sock *sk = (struct sock *)csk;
1791 
1792 	return !sock_owned_by_user_nocheck(sk) &&
1793 		!spin_is_locked(&sk->sk_lock.slock);
1794 }
1795 
1796 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1797 		      struct proto *prot, int kern);
1798 void sk_free(struct sock *sk);
1799 void sk_net_refcnt_upgrade(struct sock *sk);
1800 void sk_destruct(struct sock *sk);
1801 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1802 
1803 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1804 			     gfp_t priority);
1805 void __sock_wfree(struct sk_buff *skb);
1806 void sock_wfree(struct sk_buff *skb);
1807 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1808 			     gfp_t priority);
1809 void skb_orphan_partial(struct sk_buff *skb);
1810 void sock_rfree(struct sk_buff *skb);
1811 void sock_efree(struct sk_buff *skb);
1812 #ifdef CONFIG_INET
1813 void sock_edemux(struct sk_buff *skb);
1814 void sock_pfree(struct sk_buff *skb);
1815 
1816 static inline void skb_set_owner_edemux(struct sk_buff *skb, struct sock *sk)
1817 {
1818 	skb_orphan(skb);
1819 	if (refcount_inc_not_zero(&sk->sk_refcnt)) {
1820 		skb->sk = sk;
1821 		skb->destructor = sock_edemux;
1822 	}
1823 }
1824 #else
1825 #define sock_edemux sock_efree
1826 #endif
1827 
1828 int sk_setsockopt(struct sock *sk, int level, int optname,
1829 		  sockptr_t optval, unsigned int optlen);
1830 int sock_setsockopt(struct socket *sock, int level, int op,
1831 		    sockptr_t optval, unsigned int optlen);
1832 int do_sock_setsockopt(struct socket *sock, bool compat, int level,
1833 		       int optname, sockptr_t optval, int optlen);
1834 int do_sock_getsockopt(struct socket *sock, bool compat, int level,
1835 		       int optname, sockptr_t optval, sockptr_t optlen);
1836 
1837 int sk_getsockopt(struct sock *sk, int level, int optname,
1838 		  sockptr_t optval, sockptr_t optlen);
1839 int sock_gettstamp(struct socket *sock, void __user *userstamp,
1840 		   bool timeval, bool time32);
1841 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1842 				     unsigned long data_len, int noblock,
1843 				     int *errcode, int max_page_order);
1844 
1845 static inline struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1846 						  unsigned long size,
1847 						  int noblock, int *errcode)
1848 {
1849 	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1850 }
1851 
1852 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1853 void *sock_kmemdup(struct sock *sk, const void *src,
1854 		   int size, gfp_t priority);
1855 void sock_kfree_s(struct sock *sk, void *mem, int size);
1856 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1857 void sk_send_sigurg(struct sock *sk);
1858 
1859 static inline void sock_replace_proto(struct sock *sk, struct proto *proto)
1860 {
1861 	if (sk->sk_socket)
1862 		clear_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1863 	WRITE_ONCE(sk->sk_prot, proto);
1864 }
1865 
1866 struct sockcm_cookie {
1867 	u64 transmit_time;
1868 	u32 mark;
1869 	u32 tsflags;
1870 	u32 ts_opt_id;
1871 	u32 priority;
1872 	u32 dmabuf_id;
1873 };
1874 
1875 static inline void sockcm_init(struct sockcm_cookie *sockc,
1876 			       const struct sock *sk)
1877 {
1878 	*sockc = (struct sockcm_cookie) {
1879 		.mark = READ_ONCE(sk->sk_mark),
1880 		.tsflags = READ_ONCE(sk->sk_tsflags),
1881 		.priority = READ_ONCE(sk->sk_priority),
1882 	};
1883 }
1884 
1885 int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg,
1886 		     struct sockcm_cookie *sockc);
1887 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1888 		   struct sockcm_cookie *sockc);
1889 
1890 /*
1891  * Functions to fill in entries in struct proto_ops when a protocol
1892  * does not implement a particular function.
1893  */
1894 int sock_no_bind(struct socket *, struct sockaddr *, int);
1895 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1896 int sock_no_socketpair(struct socket *, struct socket *);
1897 int sock_no_accept(struct socket *, struct socket *, struct proto_accept_arg *);
1898 int sock_no_getname(struct socket *, struct sockaddr *, int);
1899 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1900 int sock_no_listen(struct socket *, int);
1901 int sock_no_shutdown(struct socket *, int);
1902 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1903 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1904 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1905 int sock_no_mmap(struct file *file, struct socket *sock,
1906 		 struct vm_area_struct *vma);
1907 
1908 /*
1909  * Functions to fill in entries in struct proto_ops when a protocol
1910  * uses the inet style.
1911  */
1912 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1913 				  char __user *optval, int __user *optlen);
1914 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1915 			int flags);
1916 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1917 			   sockptr_t optval, unsigned int optlen);
1918 
1919 void sk_common_release(struct sock *sk);
1920 
1921 /*
1922  *	Default socket callbacks and setup code
1923  */
1924 
1925 /* Initialise core socket variables using an explicit uid. */
1926 void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid);
1927 
1928 /* Initialise core socket variables.
1929  * Assumes struct socket *sock is embedded in a struct socket_alloc.
1930  */
1931 void sock_init_data(struct socket *sock, struct sock *sk);
1932 
1933 /*
1934  * Socket reference counting postulates.
1935  *
1936  * * Each user of socket SHOULD hold a reference count.
1937  * * Each access point to socket (an hash table bucket, reference from a list,
1938  *   running timer, skb in flight MUST hold a reference count.
1939  * * When reference count hits 0, it means it will never increase back.
1940  * * When reference count hits 0, it means that no references from
1941  *   outside exist to this socket and current process on current CPU
1942  *   is last user and may/should destroy this socket.
1943  * * sk_free is called from any context: process, BH, IRQ. When
1944  *   it is called, socket has no references from outside -> sk_free
1945  *   may release descendant resources allocated by the socket, but
1946  *   to the time when it is called, socket is NOT referenced by any
1947  *   hash tables, lists etc.
1948  * * Packets, delivered from outside (from network or from another process)
1949  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1950  *   when they sit in queue. Otherwise, packets will leak to hole, when
1951  *   socket is looked up by one cpu and unhasing is made by another CPU.
1952  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1953  *   (leak to backlog). Packet socket does all the processing inside
1954  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1955  *   use separate SMP lock, so that they are prone too.
1956  */
1957 
1958 /* Ungrab socket and destroy it, if it was the last reference. */
1959 static inline void sock_put(struct sock *sk)
1960 {
1961 	if (refcount_dec_and_test(&sk->sk_refcnt))
1962 		sk_free(sk);
1963 }
1964 /* Generic version of sock_put(), dealing with all sockets
1965  * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1966  */
1967 void sock_gen_put(struct sock *sk);
1968 
1969 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1970 		     unsigned int trim_cap, bool refcounted);
1971 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1972 				 const int nested)
1973 {
1974 	return __sk_receive_skb(sk, skb, nested, 1, true);
1975 }
1976 
1977 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1978 {
1979 	/* sk_tx_queue_mapping accept only upto a 16-bit value */
1980 	if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1981 		return;
1982 	/* Paired with READ_ONCE() in sk_tx_queue_get() and
1983 	 * other WRITE_ONCE() because socket lock might be not held.
1984 	 */
1985 	WRITE_ONCE(sk->sk_tx_queue_mapping, tx_queue);
1986 }
1987 
1988 #define NO_QUEUE_MAPPING	USHRT_MAX
1989 
1990 static inline void sk_tx_queue_clear(struct sock *sk)
1991 {
1992 	/* Paired with READ_ONCE() in sk_tx_queue_get() and
1993 	 * other WRITE_ONCE() because socket lock might be not held.
1994 	 */
1995 	WRITE_ONCE(sk->sk_tx_queue_mapping, NO_QUEUE_MAPPING);
1996 }
1997 
1998 static inline int sk_tx_queue_get(const struct sock *sk)
1999 {
2000 	if (sk) {
2001 		/* Paired with WRITE_ONCE() in sk_tx_queue_clear()
2002 		 * and sk_tx_queue_set().
2003 		 */
2004 		int val = READ_ONCE(sk->sk_tx_queue_mapping);
2005 
2006 		if (val != NO_QUEUE_MAPPING)
2007 			return val;
2008 	}
2009 	return -1;
2010 }
2011 
2012 static inline void __sk_rx_queue_set(struct sock *sk,
2013 				     const struct sk_buff *skb,
2014 				     bool force_set)
2015 {
2016 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2017 	if (skb_rx_queue_recorded(skb)) {
2018 		u16 rx_queue = skb_get_rx_queue(skb);
2019 
2020 		if (force_set ||
2021 		    unlikely(READ_ONCE(sk->sk_rx_queue_mapping) != rx_queue))
2022 			WRITE_ONCE(sk->sk_rx_queue_mapping, rx_queue);
2023 	}
2024 #endif
2025 }
2026 
2027 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
2028 {
2029 	__sk_rx_queue_set(sk, skb, true);
2030 }
2031 
2032 static inline void sk_rx_queue_update(struct sock *sk, const struct sk_buff *skb)
2033 {
2034 	__sk_rx_queue_set(sk, skb, false);
2035 }
2036 
2037 static inline void sk_rx_queue_clear(struct sock *sk)
2038 {
2039 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2040 	WRITE_ONCE(sk->sk_rx_queue_mapping, NO_QUEUE_MAPPING);
2041 #endif
2042 }
2043 
2044 static inline int sk_rx_queue_get(const struct sock *sk)
2045 {
2046 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2047 	if (sk) {
2048 		int res = READ_ONCE(sk->sk_rx_queue_mapping);
2049 
2050 		if (res != NO_QUEUE_MAPPING)
2051 			return res;
2052 	}
2053 #endif
2054 
2055 	return -1;
2056 }
2057 
2058 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
2059 {
2060 	sk->sk_socket = sock;
2061 }
2062 
2063 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
2064 {
2065 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
2066 	return &rcu_dereference_raw(sk->sk_wq)->wait;
2067 }
2068 /* Detach socket from process context.
2069  * Announce socket dead, detach it from wait queue and inode.
2070  * Note that parent inode held reference count on this struct sock,
2071  * we do not release it in this function, because protocol
2072  * probably wants some additional cleanups or even continuing
2073  * to work with this socket (TCP).
2074  */
2075 static inline void sock_orphan(struct sock *sk)
2076 {
2077 	write_lock_bh(&sk->sk_callback_lock);
2078 	sock_set_flag(sk, SOCK_DEAD);
2079 	sk_set_socket(sk, NULL);
2080 	sk->sk_wq  = NULL;
2081 	/* Note: sk_uid is unchanged. */
2082 	write_unlock_bh(&sk->sk_callback_lock);
2083 }
2084 
2085 static inline void sock_graft(struct sock *sk, struct socket *parent)
2086 {
2087 	WARN_ON(parent->sk);
2088 	write_lock_bh(&sk->sk_callback_lock);
2089 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
2090 	parent->sk = sk;
2091 	sk_set_socket(sk, parent);
2092 	WRITE_ONCE(sk->sk_uid, SOCK_INODE(parent)->i_uid);
2093 	security_sock_graft(sk, parent);
2094 	write_unlock_bh(&sk->sk_callback_lock);
2095 }
2096 
2097 static inline kuid_t sk_uid(const struct sock *sk)
2098 {
2099 	/* Paired with WRITE_ONCE() in sockfs_setattr() */
2100 	return READ_ONCE(sk->sk_uid);
2101 }
2102 
2103 unsigned long __sock_i_ino(struct sock *sk);
2104 unsigned long sock_i_ino(struct sock *sk);
2105 
2106 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
2107 {
2108 	return sk ? sk_uid(sk) : make_kuid(net->user_ns, 0);
2109 }
2110 
2111 static inline u32 net_tx_rndhash(void)
2112 {
2113 	u32 v = get_random_u32();
2114 
2115 	return v ?: 1;
2116 }
2117 
2118 static inline void sk_set_txhash(struct sock *sk)
2119 {
2120 	/* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
2121 	WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
2122 }
2123 
2124 static inline bool sk_rethink_txhash(struct sock *sk)
2125 {
2126 	if (sk->sk_txhash && sk->sk_txrehash == SOCK_TXREHASH_ENABLED) {
2127 		sk_set_txhash(sk);
2128 		return true;
2129 	}
2130 	return false;
2131 }
2132 
2133 static inline struct dst_entry *
2134 __sk_dst_get(const struct sock *sk)
2135 {
2136 	return rcu_dereference_check(sk->sk_dst_cache,
2137 				     lockdep_sock_is_held(sk));
2138 }
2139 
2140 static inline struct dst_entry *
2141 sk_dst_get(const struct sock *sk)
2142 {
2143 	struct dst_entry *dst;
2144 
2145 	rcu_read_lock();
2146 	dst = rcu_dereference(sk->sk_dst_cache);
2147 	if (dst && !rcuref_get(&dst->__rcuref))
2148 		dst = NULL;
2149 	rcu_read_unlock();
2150 	return dst;
2151 }
2152 
2153 static inline void __dst_negative_advice(struct sock *sk)
2154 {
2155 	struct dst_entry *dst = __sk_dst_get(sk);
2156 
2157 	if (dst && dst->ops->negative_advice)
2158 		dst->ops->negative_advice(sk, dst);
2159 }
2160 
2161 static inline void dst_negative_advice(struct sock *sk)
2162 {
2163 	sk_rethink_txhash(sk);
2164 	__dst_negative_advice(sk);
2165 }
2166 
2167 static inline void
2168 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
2169 {
2170 	struct dst_entry *old_dst;
2171 
2172 	sk_tx_queue_clear(sk);
2173 	WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2174 	old_dst = rcu_dereference_protected(sk->sk_dst_cache,
2175 					    lockdep_sock_is_held(sk));
2176 	rcu_assign_pointer(sk->sk_dst_cache, dst);
2177 	dst_release(old_dst);
2178 }
2179 
2180 static inline void
2181 sk_dst_set(struct sock *sk, struct dst_entry *dst)
2182 {
2183 	struct dst_entry *old_dst;
2184 
2185 	sk_tx_queue_clear(sk);
2186 	WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2187 	old_dst = unrcu_pointer(xchg(&sk->sk_dst_cache, RCU_INITIALIZER(dst)));
2188 	dst_release(old_dst);
2189 }
2190 
2191 static inline void
2192 __sk_dst_reset(struct sock *sk)
2193 {
2194 	__sk_dst_set(sk, NULL);
2195 }
2196 
2197 static inline void
2198 sk_dst_reset(struct sock *sk)
2199 {
2200 	sk_dst_set(sk, NULL);
2201 }
2202 
2203 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
2204 
2205 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
2206 
2207 static inline void sk_dst_confirm(struct sock *sk)
2208 {
2209 	if (!READ_ONCE(sk->sk_dst_pending_confirm))
2210 		WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2211 }
2212 
2213 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2214 {
2215 	if (skb_get_dst_pending_confirm(skb)) {
2216 		struct sock *sk = skb->sk;
2217 
2218 		if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2219 			WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2220 		neigh_confirm(n);
2221 	}
2222 }
2223 
2224 bool sk_mc_loop(const struct sock *sk);
2225 
2226 static inline bool sk_can_gso(const struct sock *sk)
2227 {
2228 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2229 }
2230 
2231 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2232 
2233 static inline void sk_gso_disable(struct sock *sk)
2234 {
2235 	sk->sk_gso_disabled = 1;
2236 	sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2237 }
2238 
2239 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2240 					   struct iov_iter *from, char *to,
2241 					   int copy, int offset)
2242 {
2243 	if (skb->ip_summed == CHECKSUM_NONE) {
2244 		__wsum csum = 0;
2245 		if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2246 			return -EFAULT;
2247 		skb->csum = csum_block_add(skb->csum, csum, offset);
2248 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2249 		if (!copy_from_iter_full_nocache(to, copy, from))
2250 			return -EFAULT;
2251 	} else if (!copy_from_iter_full(to, copy, from))
2252 		return -EFAULT;
2253 
2254 	return 0;
2255 }
2256 
2257 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2258 				       struct iov_iter *from, int copy)
2259 {
2260 	int err, offset = skb->len;
2261 
2262 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2263 				       copy, offset);
2264 	if (err)
2265 		__skb_trim(skb, offset);
2266 
2267 	return err;
2268 }
2269 
2270 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2271 					   struct sk_buff *skb,
2272 					   struct page *page,
2273 					   int off, int copy)
2274 {
2275 	int err;
2276 
2277 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2278 				       copy, skb->len);
2279 	if (err)
2280 		return err;
2281 
2282 	skb_len_add(skb, copy);
2283 	sk_wmem_queued_add(sk, copy);
2284 	sk_mem_charge(sk, copy);
2285 	return 0;
2286 }
2287 
2288 /**
2289  * sk_wmem_alloc_get - returns write allocations
2290  * @sk: socket
2291  *
2292  * Return: sk_wmem_alloc minus initial offset of one
2293  */
2294 static inline int sk_wmem_alloc_get(const struct sock *sk)
2295 {
2296 	return refcount_read(&sk->sk_wmem_alloc) - 1;
2297 }
2298 
2299 /**
2300  * sk_rmem_alloc_get - returns read allocations
2301  * @sk: socket
2302  *
2303  * Return: sk_rmem_alloc
2304  */
2305 static inline int sk_rmem_alloc_get(const struct sock *sk)
2306 {
2307 	return atomic_read(&sk->sk_rmem_alloc);
2308 }
2309 
2310 /**
2311  * sk_has_allocations - check if allocations are outstanding
2312  * @sk: socket
2313  *
2314  * Return: true if socket has write or read allocations
2315  */
2316 static inline bool sk_has_allocations(const struct sock *sk)
2317 {
2318 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2319 }
2320 
2321 /**
2322  * skwq_has_sleeper - check if there are any waiting processes
2323  * @wq: struct socket_wq
2324  *
2325  * Return: true if socket_wq has waiting processes
2326  *
2327  * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2328  * barrier call. They were added due to the race found within the tcp code.
2329  *
2330  * Consider following tcp code paths::
2331  *
2332  *   CPU1                CPU2
2333  *   sys_select          receive packet
2334  *   ...                 ...
2335  *   __add_wait_queue    update tp->rcv_nxt
2336  *   ...                 ...
2337  *   tp->rcv_nxt check   sock_def_readable
2338  *   ...                 {
2339  *   schedule               rcu_read_lock();
2340  *                          wq = rcu_dereference(sk->sk_wq);
2341  *                          if (wq && waitqueue_active(&wq->wait))
2342  *                              wake_up_interruptible(&wq->wait)
2343  *                          ...
2344  *                       }
2345  *
2346  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2347  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
2348  * could then endup calling schedule and sleep forever if there are no more
2349  * data on the socket.
2350  *
2351  */
2352 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2353 {
2354 	return wq && wq_has_sleeper(&wq->wait);
2355 }
2356 
2357 /**
2358  * sock_poll_wait - wrapper for the poll_wait call.
2359  * @filp:           file
2360  * @sock:           socket to wait on
2361  * @p:              poll_table
2362  *
2363  * See the comments in the wq_has_sleeper function.
2364  */
2365 static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2366 				  poll_table *p)
2367 {
2368 	/* Provides a barrier we need to be sure we are in sync
2369 	 * with the socket flags modification.
2370 	 *
2371 	 * This memory barrier is paired in the wq_has_sleeper.
2372 	 */
2373 	poll_wait(filp, &sock->wq.wait, p);
2374 }
2375 
2376 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2377 {
2378 	/* This pairs with WRITE_ONCE() in sk_set_txhash() */
2379 	u32 txhash = READ_ONCE(sk->sk_txhash);
2380 
2381 	if (txhash) {
2382 		skb->l4_hash = 1;
2383 		skb->hash = txhash;
2384 	}
2385 }
2386 
2387 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2388 
2389 /*
2390  *	Queue a received datagram if it will fit. Stream and sequenced
2391  *	protocols can't normally use this as they need to fit buffers in
2392  *	and play with them.
2393  *
2394  *	Inlined as it's very short and called for pretty much every
2395  *	packet ever received.
2396  */
2397 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2398 {
2399 	skb_orphan(skb);
2400 	skb->sk = sk;
2401 	skb->destructor = sock_rfree;
2402 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2403 	sk_mem_charge(sk, skb->truesize);
2404 }
2405 
2406 static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
2407 {
2408 	if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
2409 		skb_orphan(skb);
2410 		skb->destructor = sock_efree;
2411 		skb->sk = sk;
2412 		return true;
2413 	}
2414 	return false;
2415 }
2416 
2417 static inline struct sk_buff *skb_clone_and_charge_r(struct sk_buff *skb, struct sock *sk)
2418 {
2419 	skb = skb_clone(skb, sk_gfp_mask(sk, GFP_ATOMIC));
2420 	if (skb) {
2421 		if (sk_rmem_schedule(sk, skb, skb->truesize)) {
2422 			skb_set_owner_r(skb, sk);
2423 			return skb;
2424 		}
2425 		__kfree_skb(skb);
2426 	}
2427 	return NULL;
2428 }
2429 
2430 static inline void skb_prepare_for_gro(struct sk_buff *skb)
2431 {
2432 	if (skb->destructor != sock_wfree) {
2433 		skb_orphan(skb);
2434 		return;
2435 	}
2436 	skb->slow_gro = 1;
2437 }
2438 
2439 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2440 		    unsigned long expires);
2441 
2442 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2443 
2444 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2445 
2446 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2447 			struct sk_buff *skb, unsigned int flags,
2448 			void (*destructor)(struct sock *sk,
2449 					   struct sk_buff *skb));
2450 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2451 
2452 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
2453 			      enum skb_drop_reason *reason);
2454 
2455 static inline int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2456 {
2457 	return sock_queue_rcv_skb_reason(sk, skb, NULL);
2458 }
2459 
2460 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2461 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2462 
2463 /*
2464  *	Recover an error report and clear atomically
2465  */
2466 
2467 static inline int sock_error(struct sock *sk)
2468 {
2469 	int err;
2470 
2471 	/* Avoid an atomic operation for the common case.
2472 	 * This is racy since another cpu/thread can change sk_err under us.
2473 	 */
2474 	if (likely(data_race(!sk->sk_err)))
2475 		return 0;
2476 
2477 	err = xchg(&sk->sk_err, 0);
2478 	return -err;
2479 }
2480 
2481 void sk_error_report(struct sock *sk);
2482 
2483 static inline unsigned long sock_wspace(struct sock *sk)
2484 {
2485 	int amt = 0;
2486 
2487 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2488 		amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2489 		if (amt < 0)
2490 			amt = 0;
2491 	}
2492 	return amt;
2493 }
2494 
2495 /* Note:
2496  *  We use sk->sk_wq_raw, from contexts knowing this
2497  *  pointer is not NULL and cannot disappear/change.
2498  */
2499 static inline void sk_set_bit(int nr, struct sock *sk)
2500 {
2501 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2502 	    !sock_flag(sk, SOCK_FASYNC))
2503 		return;
2504 
2505 	set_bit(nr, &sk->sk_wq_raw->flags);
2506 }
2507 
2508 static inline void sk_clear_bit(int nr, struct sock *sk)
2509 {
2510 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2511 	    !sock_flag(sk, SOCK_FASYNC))
2512 		return;
2513 
2514 	clear_bit(nr, &sk->sk_wq_raw->flags);
2515 }
2516 
2517 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2518 {
2519 	if (sock_flag(sk, SOCK_FASYNC)) {
2520 		rcu_read_lock();
2521 		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2522 		rcu_read_unlock();
2523 	}
2524 }
2525 
2526 static inline void sk_wake_async_rcu(const struct sock *sk, int how, int band)
2527 {
2528 	if (unlikely(sock_flag(sk, SOCK_FASYNC)))
2529 		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2530 }
2531 
2532 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2533  * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2534  * Note: for send buffers, TCP works better if we can build two skbs at
2535  * minimum.
2536  */
2537 #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2538 
2539 #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2540 #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2541 
2542 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2543 {
2544 	u32 val;
2545 
2546 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2547 		return;
2548 
2549 	val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2550 	val = max_t(u32, val, sk_unused_reserved_mem(sk));
2551 
2552 	WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2553 }
2554 
2555 /**
2556  * sk_page_frag - return an appropriate page_frag
2557  * @sk: socket
2558  *
2559  * Use the per task page_frag instead of the per socket one for
2560  * optimization when we know that we're in process context and own
2561  * everything that's associated with %current.
2562  *
2563  * Both direct reclaim and page faults can nest inside other
2564  * socket operations and end up recursing into sk_page_frag()
2565  * while it's already in use: explicitly avoid task page_frag
2566  * when users disable sk_use_task_frag.
2567  *
2568  * Return: a per task page_frag if context allows that,
2569  * otherwise a per socket one.
2570  */
2571 static inline struct page_frag *sk_page_frag(struct sock *sk)
2572 {
2573 	if (sk->sk_use_task_frag)
2574 		return &current->task_frag;
2575 
2576 	return &sk->sk_frag;
2577 }
2578 
2579 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2580 
2581 /*
2582  *	Default write policy as shown to user space via poll/select/SIGIO
2583  */
2584 static inline bool sock_writeable(const struct sock *sk)
2585 {
2586 	return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2587 }
2588 
2589 static inline gfp_t gfp_any(void)
2590 {
2591 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2592 }
2593 
2594 static inline gfp_t gfp_memcg_charge(void)
2595 {
2596 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2597 }
2598 
2599 #ifdef CONFIG_MEMCG
2600 static inline struct mem_cgroup *mem_cgroup_from_sk(const struct sock *sk)
2601 {
2602 	return sk->sk_memcg;
2603 }
2604 
2605 static inline bool mem_cgroup_sk_enabled(const struct sock *sk)
2606 {
2607 	return mem_cgroup_sockets_enabled && mem_cgroup_from_sk(sk);
2608 }
2609 
2610 static inline bool mem_cgroup_sk_under_memory_pressure(const struct sock *sk)
2611 {
2612 	struct mem_cgroup *memcg = mem_cgroup_from_sk(sk);
2613 
2614 #ifdef CONFIG_MEMCG_V1
2615 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2616 		return !!memcg->tcpmem_pressure;
2617 #endif /* CONFIG_MEMCG_V1 */
2618 
2619 	do {
2620 		if (time_before64(get_jiffies_64(), mem_cgroup_get_socket_pressure(memcg)))
2621 			return true;
2622 	} while ((memcg = parent_mem_cgroup(memcg)));
2623 
2624 	return false;
2625 }
2626 #else
2627 static inline struct mem_cgroup *mem_cgroup_from_sk(const struct sock *sk)
2628 {
2629 	return NULL;
2630 }
2631 
2632 static inline bool mem_cgroup_sk_enabled(const struct sock *sk)
2633 {
2634 	return false;
2635 }
2636 
2637 static inline bool mem_cgroup_sk_under_memory_pressure(const struct sock *sk)
2638 {
2639 	return false;
2640 }
2641 #endif
2642 
2643 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2644 {
2645 	return noblock ? 0 : READ_ONCE(sk->sk_rcvtimeo);
2646 }
2647 
2648 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2649 {
2650 	return noblock ? 0 : READ_ONCE(sk->sk_sndtimeo);
2651 }
2652 
2653 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2654 {
2655 	int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2656 
2657 	return v ?: 1;
2658 }
2659 
2660 /* Alas, with timeout socket operations are not restartable.
2661  * Compare this to poll().
2662  */
2663 static inline int sock_intr_errno(long timeo)
2664 {
2665 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2666 }
2667 
2668 struct sock_skb_cb {
2669 	u32 dropcount;
2670 };
2671 
2672 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2673  * using skb->cb[] would keep using it directly and utilize its
2674  * alignment guarantee.
2675  */
2676 #define SOCK_SKB_CB_OFFSET (sizeof_field(struct sk_buff, cb) - \
2677 			    sizeof(struct sock_skb_cb))
2678 
2679 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2680 			    SOCK_SKB_CB_OFFSET))
2681 
2682 #define sock_skb_cb_check_size(size) \
2683 	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2684 
2685 static inline void
2686 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2687 {
2688 	SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2689 						atomic_read(&sk->sk_drops) : 0;
2690 }
2691 
2692 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2693 {
2694 	int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2695 
2696 	atomic_add(segs, &sk->sk_drops);
2697 }
2698 
2699 static inline ktime_t sock_read_timestamp(struct sock *sk)
2700 {
2701 #if BITS_PER_LONG==32
2702 	unsigned int seq;
2703 	ktime_t kt;
2704 
2705 	do {
2706 		seq = read_seqbegin(&sk->sk_stamp_seq);
2707 		kt = sk->sk_stamp;
2708 	} while (read_seqretry(&sk->sk_stamp_seq, seq));
2709 
2710 	return kt;
2711 #else
2712 	return READ_ONCE(sk->sk_stamp);
2713 #endif
2714 }
2715 
2716 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2717 {
2718 #if BITS_PER_LONG==32
2719 	write_seqlock(&sk->sk_stamp_seq);
2720 	sk->sk_stamp = kt;
2721 	write_sequnlock(&sk->sk_stamp_seq);
2722 #else
2723 	WRITE_ONCE(sk->sk_stamp, kt);
2724 #endif
2725 }
2726 
2727 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2728 			   struct sk_buff *skb);
2729 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2730 			     struct sk_buff *skb);
2731 
2732 bool skb_has_tx_timestamp(struct sk_buff *skb, const struct sock *sk);
2733 int skb_get_tx_timestamp(struct sk_buff *skb, struct sock *sk,
2734 			 struct timespec64 *ts);
2735 
2736 static inline void
2737 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2738 {
2739 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2740 	u32 tsflags = READ_ONCE(sk->sk_tsflags);
2741 	ktime_t kt = skb->tstamp;
2742 	/*
2743 	 * generate control messages if
2744 	 * - receive time stamping in software requested
2745 	 * - software time stamp available and wanted
2746 	 * - hardware time stamps available and wanted
2747 	 */
2748 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2749 	    (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2750 	    (kt && tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2751 	    (hwtstamps->hwtstamp &&
2752 	     (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2753 		__sock_recv_timestamp(msg, sk, skb);
2754 	else
2755 		sock_write_timestamp(sk, kt);
2756 
2757 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb_wifi_acked_valid(skb))
2758 		__sock_recv_wifi_status(msg, sk, skb);
2759 }
2760 
2761 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2762 		       struct sk_buff *skb);
2763 
2764 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2765 static inline void sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2766 				   struct sk_buff *skb)
2767 {
2768 #define FLAGS_RECV_CMSGS ((1UL << SOCK_RXQ_OVFL)			| \
2769 			   (1UL << SOCK_RCVTSTAMP)			| \
2770 			   (1UL << SOCK_RCVMARK)			| \
2771 			   (1UL << SOCK_RCVPRIORITY)			| \
2772 			   (1UL << SOCK_TIMESTAMPING_ANY))
2773 #define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2774 			   SOF_TIMESTAMPING_RAW_HARDWARE)
2775 
2776 	if (READ_ONCE(sk->sk_flags) & FLAGS_RECV_CMSGS)
2777 		__sock_recv_cmsgs(msg, sk, skb);
2778 	else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2779 		sock_write_timestamp(sk, skb->tstamp);
2780 	else if (unlikely(sock_read_timestamp(sk) == SK_DEFAULT_STAMP))
2781 		sock_write_timestamp(sk, 0);
2782 }
2783 
2784 void __sock_tx_timestamp(__u32 tsflags, __u8 *tx_flags);
2785 
2786 /**
2787  * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2788  * @sk:		socket sending this packet
2789  * @sockc:	pointer to socket cmsg cookie to get timestamping info
2790  * @tx_flags:	completed with instructions for time stamping
2791  * @tskey:      filled in with next sk_tskey (not for TCP, which uses seqno)
2792  *
2793  * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2794  */
2795 static inline void _sock_tx_timestamp(struct sock *sk,
2796 				      const struct sockcm_cookie *sockc,
2797 				      __u8 *tx_flags, __u32 *tskey)
2798 {
2799 	__u32 tsflags = sockc->tsflags;
2800 
2801 	if (unlikely(tsflags)) {
2802 		__sock_tx_timestamp(tsflags, tx_flags);
2803 		if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2804 		    tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) {
2805 			if (tsflags & SOCKCM_FLAG_TS_OPT_ID)
2806 				*tskey = sockc->ts_opt_id;
2807 			else
2808 				*tskey = atomic_inc_return(&sk->sk_tskey) - 1;
2809 		}
2810 	}
2811 }
2812 
2813 static inline void sock_tx_timestamp(struct sock *sk,
2814 				     const struct sockcm_cookie *sockc,
2815 				     __u8 *tx_flags)
2816 {
2817 	_sock_tx_timestamp(sk, sockc, tx_flags, NULL);
2818 }
2819 
2820 static inline void skb_setup_tx_timestamp(struct sk_buff *skb,
2821 					  const struct sockcm_cookie *sockc)
2822 {
2823 	_sock_tx_timestamp(skb->sk, sockc, &skb_shinfo(skb)->tx_flags,
2824 			   &skb_shinfo(skb)->tskey);
2825 }
2826 
2827 static inline bool sk_is_inet(const struct sock *sk)
2828 {
2829 	int family = READ_ONCE(sk->sk_family);
2830 
2831 	return family == AF_INET || family == AF_INET6;
2832 }
2833 
2834 static inline bool sk_is_tcp(const struct sock *sk)
2835 {
2836 	return sk_is_inet(sk) &&
2837 	       sk->sk_type == SOCK_STREAM &&
2838 	       sk->sk_protocol == IPPROTO_TCP;
2839 }
2840 
2841 static inline bool sk_is_udp(const struct sock *sk)
2842 {
2843 	return sk_is_inet(sk) &&
2844 	       sk->sk_type == SOCK_DGRAM &&
2845 	       sk->sk_protocol == IPPROTO_UDP;
2846 }
2847 
2848 static inline bool sk_is_unix(const struct sock *sk)
2849 {
2850 	return sk->sk_family == AF_UNIX;
2851 }
2852 
2853 static inline bool sk_is_stream_unix(const struct sock *sk)
2854 {
2855 	return sk_is_unix(sk) && sk->sk_type == SOCK_STREAM;
2856 }
2857 
2858 static inline bool sk_is_vsock(const struct sock *sk)
2859 {
2860 	return sk->sk_family == AF_VSOCK;
2861 }
2862 
2863 static inline bool sk_may_scm_recv(const struct sock *sk)
2864 {
2865 	return (IS_ENABLED(CONFIG_UNIX) && sk->sk_family == AF_UNIX) ||
2866 		sk->sk_family == AF_NETLINK ||
2867 		(IS_ENABLED(CONFIG_BT) && sk->sk_family == AF_BLUETOOTH);
2868 }
2869 
2870 /**
2871  * sk_eat_skb - Release a skb if it is no longer needed
2872  * @sk: socket to eat this skb from
2873  * @skb: socket buffer to eat
2874  *
2875  * This routine must be called with interrupts disabled or with the socket
2876  * locked so that the sk_buff queue operation is ok.
2877 */
2878 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2879 {
2880 	__skb_unlink(skb, &sk->sk_receive_queue);
2881 	__kfree_skb(skb);
2882 }
2883 
2884 static inline bool
2885 skb_sk_is_prefetched(struct sk_buff *skb)
2886 {
2887 #ifdef CONFIG_INET
2888 	return skb->destructor == sock_pfree;
2889 #else
2890 	return false;
2891 #endif /* CONFIG_INET */
2892 }
2893 
2894 /* This helper checks if a socket is a full socket,
2895  * ie _not_ a timewait or request socket.
2896  */
2897 static inline bool sk_fullsock(const struct sock *sk)
2898 {
2899 	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2900 }
2901 
2902 static inline bool
2903 sk_is_refcounted(struct sock *sk)
2904 {
2905 	/* Only full sockets have sk->sk_flags. */
2906 	return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2907 }
2908 
2909 static inline bool
2910 sk_requests_wifi_status(struct sock *sk)
2911 {
2912 	return sk && sk_fullsock(sk) && sock_flag(sk, SOCK_WIFI_STATUS);
2913 }
2914 
2915 /* Checks if this SKB belongs to an HW offloaded socket
2916  * and whether any SW fallbacks are required based on dev.
2917  * Check decrypted mark in case skb_orphan() cleared socket.
2918  */
2919 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2920 						   struct net_device *dev)
2921 {
2922 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2923 	struct sock *sk = skb->sk;
2924 
2925 	if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2926 		skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2927 	} else if (unlikely(skb_is_decrypted(skb))) {
2928 		pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2929 		kfree_skb(skb);
2930 		skb = NULL;
2931 	}
2932 #endif
2933 
2934 	return skb;
2935 }
2936 
2937 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2938  * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2939  */
2940 static inline bool sk_listener(const struct sock *sk)
2941 {
2942 	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2943 }
2944 
2945 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV or TIME_WAIT
2946  * TCP SYNACK messages can be attached to LISTEN or NEW_SYN_RECV (depending on SYNCOOKIE)
2947  * TCP RST and ACK can be attached to TIME_WAIT.
2948  */
2949 static inline bool sk_listener_or_tw(const struct sock *sk)
2950 {
2951 	return (1 << READ_ONCE(sk->sk_state)) &
2952 	       (TCPF_LISTEN | TCPF_NEW_SYN_RECV | TCPF_TIME_WAIT);
2953 }
2954 
2955 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2956 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2957 		       int type);
2958 
2959 bool sk_ns_capable(const struct sock *sk,
2960 		   struct user_namespace *user_ns, int cap);
2961 bool sk_capable(const struct sock *sk, int cap);
2962 bool sk_net_capable(const struct sock *sk, int cap);
2963 
2964 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2965 
2966 /* Take into consideration the size of the struct sk_buff overhead in the
2967  * determination of these values, since that is non-constant across
2968  * platforms.  This makes socket queueing behavior and performance
2969  * not depend upon such differences.
2970  */
2971 #define _SK_MEM_PACKETS		256
2972 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
2973 #define SK_WMEM_DEFAULT		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2974 #define SK_RMEM_DEFAULT		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2975 
2976 extern __u32 sysctl_wmem_max;
2977 extern __u32 sysctl_rmem_max;
2978 
2979 extern __u32 sysctl_wmem_default;
2980 extern __u32 sysctl_rmem_default;
2981 
2982 #define SKB_FRAG_PAGE_ORDER	get_order(32768)
2983 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2984 
2985 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2986 {
2987 	/* Does this proto have per netns sysctl_wmem ? */
2988 	if (proto->sysctl_wmem_offset)
2989 		return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset));
2990 
2991 	return READ_ONCE(*proto->sysctl_wmem);
2992 }
2993 
2994 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2995 {
2996 	/* Does this proto have per netns sysctl_rmem ? */
2997 	if (proto->sysctl_rmem_offset)
2998 		return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset));
2999 
3000 	return READ_ONCE(*proto->sysctl_rmem);
3001 }
3002 
3003 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
3004  * Some wifi drivers need to tweak it to get more chunks.
3005  * They can use this helper from their ndo_start_xmit()
3006  */
3007 static inline void sk_pacing_shift_update(struct sock *sk, int val)
3008 {
3009 	if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
3010 		return;
3011 	WRITE_ONCE(sk->sk_pacing_shift, val);
3012 }
3013 
3014 /* if a socket is bound to a device, check that the given device
3015  * index is either the same or that the socket is bound to an L3
3016  * master device and the given device index is also enslaved to
3017  * that L3 master
3018  */
3019 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
3020 {
3021 	int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
3022 	int mdif;
3023 
3024 	if (!bound_dev_if || bound_dev_if == dif)
3025 		return true;
3026 
3027 	mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
3028 	if (mdif && mdif == bound_dev_if)
3029 		return true;
3030 
3031 	return false;
3032 }
3033 
3034 void sock_def_readable(struct sock *sk);
3035 
3036 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
3037 void sock_set_timestamp(struct sock *sk, int optname, bool valbool);
3038 int sock_set_timestamping(struct sock *sk, int optname,
3039 			  struct so_timestamping timestamping);
3040 
3041 #if defined(CONFIG_CGROUP_BPF)
3042 void bpf_skops_tx_timestamping(struct sock *sk, struct sk_buff *skb, int op);
3043 #else
3044 static inline void bpf_skops_tx_timestamping(struct sock *sk, struct sk_buff *skb, int op)
3045 {
3046 }
3047 #endif
3048 void sock_no_linger(struct sock *sk);
3049 void sock_set_keepalive(struct sock *sk);
3050 void sock_set_priority(struct sock *sk, u32 priority);
3051 void sock_set_rcvbuf(struct sock *sk, int val);
3052 void sock_set_mark(struct sock *sk, u32 val);
3053 void sock_set_reuseaddr(struct sock *sk);
3054 void sock_set_reuseport(struct sock *sk);
3055 void sock_set_sndtimeo(struct sock *sk, s64 secs);
3056 
3057 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
3058 
3059 int sock_get_timeout(long timeo, void *optval, bool old_timeval);
3060 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
3061 			   sockptr_t optval, int optlen, bool old_timeval);
3062 
3063 int sock_ioctl_inout(struct sock *sk, unsigned int cmd,
3064 		     void __user *arg, void *karg, size_t size);
3065 int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg);
3066 static inline bool sk_is_readable(struct sock *sk)
3067 {
3068 	const struct proto *prot = READ_ONCE(sk->sk_prot);
3069 
3070 	if (prot->sock_is_readable)
3071 		return prot->sock_is_readable(sk);
3072 
3073 	return false;
3074 }
3075 #endif	/* _SOCK_H */
3076