1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the AF_INET socket handler. 8 * 9 * Version: @(#)sock.h 1.0.4 05/13/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Florian La Roche <flla@stud.uni-sb.de> 15 * 16 * Fixes: 17 * Alan Cox : Volatiles in skbuff pointers. See 18 * skbuff comments. May be overdone, 19 * better to prove they can be removed 20 * than the reverse. 21 * Alan Cox : Added a zapped field for tcp to note 22 * a socket is reset and must stay shut up 23 * Alan Cox : New fields for options 24 * Pauline Middelink : identd support 25 * Alan Cox : Eliminate low level recv/recvfrom 26 * David S. Miller : New socket lookup architecture. 27 * Steve Whitehouse: Default routines for sock_ops 28 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made 29 * protinfo be just a void pointer, as the 30 * protocol specific parts were moved to 31 * respective headers and ipv4/v6, etc now 32 * use private slabcaches for its socks 33 * Pedro Hortas : New flags field for socket options 34 */ 35 #ifndef _SOCK_H 36 #define _SOCK_H 37 38 #include <linux/hardirq.h> 39 #include <linux/kernel.h> 40 #include <linux/list.h> 41 #include <linux/list_nulls.h> 42 #include <linux/timer.h> 43 #include <linux/cache.h> 44 #include <linux/bitops.h> 45 #include <linux/lockdep.h> 46 #include <linux/netdevice.h> 47 #include <linux/skbuff.h> /* struct sk_buff */ 48 #include <linux/mm.h> 49 #include <linux/security.h> 50 #include <linux/slab.h> 51 #include <linux/uaccess.h> 52 #include <linux/page_counter.h> 53 #include <linux/memcontrol.h> 54 #include <linux/static_key.h> 55 #include <linux/sched.h> 56 #include <linux/wait.h> 57 #include <linux/cgroup-defs.h> 58 #include <linux/rbtree.h> 59 #include <linux/rculist_nulls.h> 60 #include <linux/poll.h> 61 #include <linux/sockptr.h> 62 #include <linux/indirect_call_wrapper.h> 63 #include <linux/atomic.h> 64 #include <linux/refcount.h> 65 #include <linux/llist.h> 66 #include <net/dst.h> 67 #include <net/checksum.h> 68 #include <net/tcp_states.h> 69 #include <linux/net_tstamp.h> 70 #include <net/l3mdev.h> 71 #include <uapi/linux/socket.h> 72 73 /* 74 * This structure really needs to be cleaned up. 75 * Most of it is for TCP, and not used by any of 76 * the other protocols. 77 */ 78 79 /* This is the per-socket lock. The spinlock provides a synchronization 80 * between user contexts and software interrupt processing, whereas the 81 * mini-semaphore synchronizes multiple users amongst themselves. 82 */ 83 typedef struct { 84 spinlock_t slock; 85 int owned; 86 wait_queue_head_t wq; 87 /* 88 * We express the mutex-alike socket_lock semantics 89 * to the lock validator by explicitly managing 90 * the slock as a lock variant (in addition to 91 * the slock itself): 92 */ 93 #ifdef CONFIG_DEBUG_LOCK_ALLOC 94 struct lockdep_map dep_map; 95 #endif 96 } socket_lock_t; 97 98 struct sock; 99 struct proto; 100 struct net; 101 102 typedef __u32 __bitwise __portpair; 103 typedef __u64 __bitwise __addrpair; 104 105 /** 106 * struct sock_common - minimal network layer representation of sockets 107 * @skc_daddr: Foreign IPv4 addr 108 * @skc_rcv_saddr: Bound local IPv4 addr 109 * @skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr 110 * @skc_hash: hash value used with various protocol lookup tables 111 * @skc_u16hashes: two u16 hash values used by UDP lookup tables 112 * @skc_dport: placeholder for inet_dport/tw_dport 113 * @skc_num: placeholder for inet_num/tw_num 114 * @skc_portpair: __u32 union of @skc_dport & @skc_num 115 * @skc_family: network address family 116 * @skc_state: Connection state 117 * @skc_reuse: %SO_REUSEADDR setting 118 * @skc_reuseport: %SO_REUSEPORT setting 119 * @skc_ipv6only: socket is IPV6 only 120 * @skc_net_refcnt: socket is using net ref counting 121 * @skc_bound_dev_if: bound device index if != 0 122 * @skc_bind_node: bind hash linkage for various protocol lookup tables 123 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol 124 * @skc_prot: protocol handlers inside a network family 125 * @skc_net: reference to the network namespace of this socket 126 * @skc_v6_daddr: IPV6 destination address 127 * @skc_v6_rcv_saddr: IPV6 source address 128 * @skc_cookie: socket's cookie value 129 * @skc_node: main hash linkage for various protocol lookup tables 130 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol 131 * @skc_tx_queue_mapping: tx queue number for this connection 132 * @skc_rx_queue_mapping: rx queue number for this connection 133 * @skc_flags: place holder for sk_flags 134 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, 135 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings 136 * @skc_listener: connection request listener socket (aka rsk_listener) 137 * [union with @skc_flags] 138 * @skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row 139 * [union with @skc_flags] 140 * @skc_incoming_cpu: record/match cpu processing incoming packets 141 * @skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled) 142 * [union with @skc_incoming_cpu] 143 * @skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number 144 * [union with @skc_incoming_cpu] 145 * @skc_refcnt: reference count 146 * 147 * This is the minimal network layer representation of sockets, the header 148 * for struct sock and struct inet_timewait_sock. 149 */ 150 struct sock_common { 151 union { 152 __addrpair skc_addrpair; 153 struct { 154 __be32 skc_daddr; 155 __be32 skc_rcv_saddr; 156 }; 157 }; 158 union { 159 unsigned int skc_hash; 160 __u16 skc_u16hashes[2]; 161 }; 162 /* skc_dport && skc_num must be grouped as well */ 163 union { 164 __portpair skc_portpair; 165 struct { 166 __be16 skc_dport; 167 __u16 skc_num; 168 }; 169 }; 170 171 unsigned short skc_family; 172 volatile unsigned char skc_state; 173 unsigned char skc_reuse:4; 174 unsigned char skc_reuseport:1; 175 unsigned char skc_ipv6only:1; 176 unsigned char skc_net_refcnt:1; 177 int skc_bound_dev_if; 178 union { 179 struct hlist_node skc_bind_node; 180 struct hlist_node skc_portaddr_node; 181 }; 182 struct proto *skc_prot; 183 possible_net_t skc_net; 184 185 #if IS_ENABLED(CONFIG_IPV6) 186 struct in6_addr skc_v6_daddr; 187 struct in6_addr skc_v6_rcv_saddr; 188 #endif 189 190 atomic64_t skc_cookie; 191 192 /* following fields are padding to force 193 * offset(struct sock, sk_refcnt) == 128 on 64bit arches 194 * assuming IPV6 is enabled. We use this padding differently 195 * for different kind of 'sockets' 196 */ 197 union { 198 unsigned long skc_flags; 199 struct sock *skc_listener; /* request_sock */ 200 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */ 201 }; 202 /* 203 * fields between dontcopy_begin/dontcopy_end 204 * are not copied in sock_copy() 205 */ 206 /* private: */ 207 int skc_dontcopy_begin[0]; 208 /* public: */ 209 union { 210 struct hlist_node skc_node; 211 struct hlist_nulls_node skc_nulls_node; 212 }; 213 unsigned short skc_tx_queue_mapping; 214 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 215 unsigned short skc_rx_queue_mapping; 216 #endif 217 union { 218 int skc_incoming_cpu; 219 u32 skc_rcv_wnd; 220 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */ 221 }; 222 223 refcount_t skc_refcnt; 224 /* private: */ 225 int skc_dontcopy_end[0]; 226 union { 227 u32 skc_rxhash; 228 u32 skc_window_clamp; 229 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */ 230 }; 231 /* public: */ 232 }; 233 234 struct bpf_local_storage; 235 struct sk_filter; 236 237 /** 238 * struct sock - network layer representation of sockets 239 * @__sk_common: shared layout with inet_timewait_sock 240 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN 241 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings 242 * @sk_lock: synchronizer 243 * @sk_kern_sock: True if sock is using kernel lock classes 244 * @sk_rcvbuf: size of receive buffer in bytes 245 * @sk_wq: sock wait queue and async head 246 * @sk_rx_dst: receive input route used by early demux 247 * @sk_rx_dst_ifindex: ifindex for @sk_rx_dst 248 * @sk_rx_dst_cookie: cookie for @sk_rx_dst 249 * @sk_dst_cache: destination cache 250 * @sk_dst_pending_confirm: need to confirm neighbour 251 * @sk_policy: flow policy 252 * @sk_receive_queue: incoming packets 253 * @sk_wmem_alloc: transmit queue bytes committed 254 * @sk_tsq_flags: TCP Small Queues flags 255 * @sk_write_queue: Packet sending queue 256 * @sk_omem_alloc: "o" is "option" or "other" 257 * @sk_wmem_queued: persistent queue size 258 * @sk_forward_alloc: space allocated forward 259 * @sk_reserved_mem: space reserved and non-reclaimable for the socket 260 * @sk_napi_id: id of the last napi context to receive data for sk 261 * @sk_ll_usec: usecs to busypoll when there is no data 262 * @sk_allocation: allocation mode 263 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler) 264 * @sk_pacing_status: Pacing status (requested, handled by sch_fq) 265 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE) 266 * @sk_sndbuf: size of send buffer in bytes 267 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets 268 * @sk_no_check_rx: allow zero checksum in RX packets 269 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) 270 * @sk_gso_disabled: if set, NETIF_F_GSO_MASK is forbidden. 271 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4) 272 * @sk_gso_max_size: Maximum GSO segment size to build 273 * @sk_gso_max_segs: Maximum number of GSO segments 274 * @sk_pacing_shift: scaling factor for TCP Small Queues 275 * @sk_lingertime: %SO_LINGER l_linger setting 276 * @sk_backlog: always used with the per-socket spinlock held 277 * @sk_callback_lock: used with the callbacks in the end of this struct 278 * @sk_error_queue: rarely used 279 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, 280 * IPV6_ADDRFORM for instance) 281 * @sk_err: last error 282 * @sk_err_soft: errors that don't cause failure but are the cause of a 283 * persistent failure not just 'timed out' 284 * @sk_drops: raw/udp drops counter 285 * @sk_drop_counters: optional pointer to numa_drop_counters 286 * @sk_ack_backlog: current listen backlog 287 * @sk_max_ack_backlog: listen backlog set in listen() 288 * @sk_uid: user id of owner 289 * @sk_ino: inode number (zero if orphaned) 290 * @sk_prefer_busy_poll: prefer busypolling over softirq processing 291 * @sk_busy_poll_budget: napi processing budget when busypolling 292 * @sk_priority: %SO_PRIORITY setting 293 * @sk_type: socket type (%SOCK_STREAM, etc) 294 * @sk_protocol: which protocol this socket belongs in this network family 295 * @sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred 296 * @sk_peer_pid: &struct pid for this socket's peer 297 * @sk_peer_cred: %SO_PEERCRED setting 298 * @sk_rcvlowat: %SO_RCVLOWAT setting 299 * @sk_rcvtimeo: %SO_RCVTIMEO setting 300 * @sk_sndtimeo: %SO_SNDTIMEO setting 301 * @sk_txhash: computed flow hash for use on transmit 302 * @sk_txrehash: enable TX hash rethink 303 * @sk_filter: socket filtering instructions 304 * @sk_timer: sock cleanup timer 305 * @sk_stamp: time stamp of last packet received 306 * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only 307 * @sk_tsflags: SO_TIMESTAMPING flags 308 * @sk_bpf_cb_flags: used in bpf_setsockopt() 309 * @sk_use_task_frag: allow sk_page_frag() to use current->task_frag. 310 * Sockets that can be used under memory reclaim should 311 * set this to false. 312 * @sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock 313 * for timestamping 314 * @sk_tskey: counter to disambiguate concurrent tstamp requests 315 * @sk_zckey: counter to order MSG_ZEROCOPY notifications 316 * @sk_socket: Identd and reporting IO signals 317 * @sk_user_data: RPC layer private data. Write-protected by @sk_callback_lock. 318 * @sk_frag: cached page frag 319 * @sk_peek_off: current peek_offset value 320 * @sk_send_head: front of stuff to transmit 321 * @tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head] 322 * @sk_security: used by security modules 323 * @sk_mark: generic packet mark 324 * @sk_cgrp_data: cgroup data for this cgroup 325 * @sk_memcg: this socket's memory cgroup association 326 * @sk_write_pending: a write to stream socket waits to start 327 * @sk_disconnects: number of disconnect operations performed on this sock 328 * @sk_state_change: callback to indicate change in the state of the sock 329 * @sk_data_ready: callback to indicate there is data to be processed 330 * @sk_write_space: callback to indicate there is bf sending space available 331 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) 332 * @sk_backlog_rcv: callback to process the backlog 333 * @sk_validate_xmit_skb: ptr to an optional validate function 334 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 335 * @sk_reuseport_cb: reuseport group container 336 * @sk_bpf_storage: ptr to cache and control for bpf_sk_storage 337 * @sk_rcu: used during RCU grace period 338 * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME) 339 * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME 340 * @sk_txtime_report_errors: set report errors mode for SO_TXTIME 341 * @sk_txtime_unused: unused txtime flags 342 * @sk_scm_recv_flags: all flags used by scm_recv() 343 * @sk_scm_credentials: flagged by SO_PASSCRED to recv SCM_CREDENTIALS 344 * @sk_scm_security: flagged by SO_PASSSEC to recv SCM_SECURITY 345 * @sk_scm_pidfd: flagged by SO_PASSPIDFD to recv SCM_PIDFD 346 * @sk_scm_rights: flagged by SO_PASSRIGHTS to recv SCM_RIGHTS 347 * @sk_scm_unused: unused flags for scm_recv() 348 * @ns_tracker: tracker for netns reference 349 * @sk_user_frags: xarray of pages the user is holding a reference on. 350 * @sk_owner: reference to the real owner of the socket that calls 351 * sock_lock_init_class_and_name(). 352 */ 353 struct sock { 354 /* 355 * Now struct inet_timewait_sock also uses sock_common, so please just 356 * don't add nothing before this first member (__sk_common) --acme 357 */ 358 struct sock_common __sk_common; 359 #define sk_node __sk_common.skc_node 360 #define sk_nulls_node __sk_common.skc_nulls_node 361 #define sk_refcnt __sk_common.skc_refcnt 362 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping 363 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 364 #define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping 365 #endif 366 367 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin 368 #define sk_dontcopy_end __sk_common.skc_dontcopy_end 369 #define sk_hash __sk_common.skc_hash 370 #define sk_portpair __sk_common.skc_portpair 371 #define sk_num __sk_common.skc_num 372 #define sk_dport __sk_common.skc_dport 373 #define sk_addrpair __sk_common.skc_addrpair 374 #define sk_daddr __sk_common.skc_daddr 375 #define sk_rcv_saddr __sk_common.skc_rcv_saddr 376 #define sk_family __sk_common.skc_family 377 #define sk_state __sk_common.skc_state 378 #define sk_reuse __sk_common.skc_reuse 379 #define sk_reuseport __sk_common.skc_reuseport 380 #define sk_ipv6only __sk_common.skc_ipv6only 381 #define sk_net_refcnt __sk_common.skc_net_refcnt 382 #define sk_bound_dev_if __sk_common.skc_bound_dev_if 383 #define sk_bind_node __sk_common.skc_bind_node 384 #define sk_prot __sk_common.skc_prot 385 #define sk_net __sk_common.skc_net 386 #define sk_v6_daddr __sk_common.skc_v6_daddr 387 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr 388 #define sk_cookie __sk_common.skc_cookie 389 #define sk_incoming_cpu __sk_common.skc_incoming_cpu 390 #define sk_flags __sk_common.skc_flags 391 #define sk_rxhash __sk_common.skc_rxhash 392 393 __cacheline_group_begin(sock_write_rx); 394 395 atomic_t sk_drops; 396 __s32 sk_peek_off; 397 struct sk_buff_head sk_error_queue; 398 struct sk_buff_head sk_receive_queue; 399 /* 400 * The backlog queue is special, it is always used with 401 * the per-socket spinlock held and requires low latency 402 * access. Therefore we special case it's implementation. 403 * Note : rmem_alloc is in this structure to fill a hole 404 * on 64bit arches, not because its logically part of 405 * backlog. 406 */ 407 struct { 408 atomic_t rmem_alloc; 409 int len; 410 struct sk_buff *head; 411 struct sk_buff *tail; 412 } sk_backlog; 413 #define sk_rmem_alloc sk_backlog.rmem_alloc 414 415 __cacheline_group_end(sock_write_rx); 416 417 __cacheline_group_begin(sock_read_rx); 418 /* early demux fields */ 419 struct dst_entry __rcu *sk_rx_dst; 420 int sk_rx_dst_ifindex; 421 u32 sk_rx_dst_cookie; 422 423 #ifdef CONFIG_NET_RX_BUSY_POLL 424 unsigned int sk_ll_usec; 425 unsigned int sk_napi_id; 426 u16 sk_busy_poll_budget; 427 u8 sk_prefer_busy_poll; 428 #endif 429 u8 sk_userlocks; 430 int sk_rcvbuf; 431 432 struct sk_filter __rcu *sk_filter; 433 union { 434 struct socket_wq __rcu *sk_wq; 435 /* private: */ 436 struct socket_wq *sk_wq_raw; 437 /* public: */ 438 }; 439 440 void (*sk_data_ready)(struct sock *sk); 441 long sk_rcvtimeo; 442 int sk_rcvlowat; 443 __cacheline_group_end(sock_read_rx); 444 445 __cacheline_group_begin(sock_read_rxtx); 446 int sk_err; 447 struct socket *sk_socket; 448 #ifdef CONFIG_MEMCG 449 struct mem_cgroup *sk_memcg; 450 #endif 451 #ifdef CONFIG_XFRM 452 struct xfrm_policy __rcu *sk_policy[2]; 453 #endif 454 struct numa_drop_counters *sk_drop_counters; 455 __cacheline_group_end(sock_read_rxtx); 456 457 __cacheline_group_begin(sock_write_rxtx); 458 socket_lock_t sk_lock; 459 u32 sk_reserved_mem; 460 int sk_forward_alloc; 461 u32 sk_tsflags; 462 __cacheline_group_end(sock_write_rxtx); 463 464 __cacheline_group_begin(sock_write_tx); 465 int sk_write_pending; 466 atomic_t sk_omem_alloc; 467 int sk_sndbuf; 468 469 int sk_wmem_queued; 470 refcount_t sk_wmem_alloc; 471 unsigned long sk_tsq_flags; 472 union { 473 struct sk_buff *sk_send_head; 474 struct rb_root tcp_rtx_queue; 475 }; 476 struct sk_buff_head sk_write_queue; 477 u32 sk_dst_pending_confirm; 478 u32 sk_pacing_status; /* see enum sk_pacing */ 479 struct page_frag sk_frag; 480 struct timer_list sk_timer; 481 482 unsigned long sk_pacing_rate; /* bytes per second */ 483 atomic_t sk_zckey; 484 atomic_t sk_tskey; 485 __cacheline_group_end(sock_write_tx); 486 487 __cacheline_group_begin(sock_read_tx); 488 unsigned long sk_max_pacing_rate; 489 long sk_sndtimeo; 490 u32 sk_priority; 491 u32 sk_mark; 492 struct dst_entry __rcu *sk_dst_cache; 493 netdev_features_t sk_route_caps; 494 #ifdef CONFIG_SOCK_VALIDATE_XMIT 495 struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk, 496 struct net_device *dev, 497 struct sk_buff *skb); 498 #endif 499 u16 sk_gso_type; 500 u16 sk_gso_max_segs; 501 unsigned int sk_gso_max_size; 502 gfp_t sk_allocation; 503 u32 sk_txhash; 504 u8 sk_pacing_shift; 505 bool sk_use_task_frag; 506 __cacheline_group_end(sock_read_tx); 507 508 /* 509 * Because of non atomicity rules, all 510 * changes are protected by socket lock. 511 */ 512 u8 sk_gso_disabled : 1, 513 sk_kern_sock : 1, 514 sk_no_check_tx : 1, 515 sk_no_check_rx : 1; 516 u8 sk_shutdown; 517 u16 sk_type; 518 u16 sk_protocol; 519 unsigned long sk_lingertime; 520 struct proto *sk_prot_creator; 521 rwlock_t sk_callback_lock; 522 int sk_err_soft; 523 u32 sk_ack_backlog; 524 u32 sk_max_ack_backlog; 525 kuid_t sk_uid; 526 unsigned long sk_ino; 527 spinlock_t sk_peer_lock; 528 int sk_bind_phc; 529 struct pid *sk_peer_pid; 530 const struct cred *sk_peer_cred; 531 532 ktime_t sk_stamp; 533 #if BITS_PER_LONG==32 534 seqlock_t sk_stamp_seq; 535 #endif 536 int sk_disconnects; 537 538 union { 539 u8 sk_txrehash; 540 u8 sk_scm_recv_flags; 541 struct { 542 u8 sk_scm_credentials : 1, 543 sk_scm_security : 1, 544 sk_scm_pidfd : 1, 545 sk_scm_rights : 1, 546 sk_scm_unused : 4; 547 }; 548 }; 549 u8 sk_clockid; 550 u8 sk_txtime_deadline_mode : 1, 551 sk_txtime_report_errors : 1, 552 sk_txtime_unused : 6; 553 #define SK_BPF_CB_FLAG_TEST(SK, FLAG) ((SK)->sk_bpf_cb_flags & (FLAG)) 554 u8 sk_bpf_cb_flags; 555 556 void *sk_user_data; 557 #ifdef CONFIG_SECURITY 558 void *sk_security; 559 #endif 560 struct sock_cgroup_data sk_cgrp_data; 561 void (*sk_state_change)(struct sock *sk); 562 void (*sk_write_space)(struct sock *sk); 563 void (*sk_error_report)(struct sock *sk); 564 int (*sk_backlog_rcv)(struct sock *sk, 565 struct sk_buff *skb); 566 void (*sk_destruct)(struct sock *sk); 567 struct sock_reuseport __rcu *sk_reuseport_cb; 568 #ifdef CONFIG_BPF_SYSCALL 569 struct bpf_local_storage __rcu *sk_bpf_storage; 570 #endif 571 struct rcu_head sk_rcu; 572 netns_tracker ns_tracker; 573 struct xarray sk_user_frags; 574 575 #if IS_ENABLED(CONFIG_PROVE_LOCKING) && IS_ENABLED(CONFIG_MODULES) 576 struct module *sk_owner; 577 #endif 578 }; 579 580 struct sock_bh_locked { 581 struct sock *sock; 582 local_lock_t bh_lock; 583 }; 584 585 enum sk_pacing { 586 SK_PACING_NONE = 0, 587 SK_PACING_NEEDED = 1, 588 SK_PACING_FQ = 2, 589 }; 590 591 /* flag bits in sk_user_data 592 * 593 * - SK_USER_DATA_NOCOPY: Pointer stored in sk_user_data might 594 * not be suitable for copying when cloning the socket. For instance, 595 * it can point to a reference counted object. sk_user_data bottom 596 * bit is set if pointer must not be copied. 597 * 598 * - SK_USER_DATA_BPF: Mark whether sk_user_data field is 599 * managed/owned by a BPF reuseport array. This bit should be set 600 * when sk_user_data's sk is added to the bpf's reuseport_array. 601 * 602 * - SK_USER_DATA_PSOCK: Mark whether pointer stored in 603 * sk_user_data points to psock type. This bit should be set 604 * when sk_user_data is assigned to a psock object. 605 */ 606 #define SK_USER_DATA_NOCOPY 1UL 607 #define SK_USER_DATA_BPF 2UL 608 #define SK_USER_DATA_PSOCK 4UL 609 #define SK_USER_DATA_PTRMASK ~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF |\ 610 SK_USER_DATA_PSOCK) 611 612 /** 613 * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied 614 * @sk: socket 615 */ 616 static inline bool sk_user_data_is_nocopy(const struct sock *sk) 617 { 618 return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY); 619 } 620 621 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data))) 622 623 /** 624 * __locked_read_sk_user_data_with_flags - return the pointer 625 * only if argument flags all has been set in sk_user_data. Otherwise 626 * return NULL 627 * 628 * @sk: socket 629 * @flags: flag bits 630 * 631 * The caller must be holding sk->sk_callback_lock. 632 */ 633 static inline void * 634 __locked_read_sk_user_data_with_flags(const struct sock *sk, 635 uintptr_t flags) 636 { 637 uintptr_t sk_user_data = 638 (uintptr_t)rcu_dereference_check(__sk_user_data(sk), 639 lockdep_is_held(&sk->sk_callback_lock)); 640 641 WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK); 642 643 if ((sk_user_data & flags) == flags) 644 return (void *)(sk_user_data & SK_USER_DATA_PTRMASK); 645 return NULL; 646 } 647 648 /** 649 * __rcu_dereference_sk_user_data_with_flags - return the pointer 650 * only if argument flags all has been set in sk_user_data. Otherwise 651 * return NULL 652 * 653 * @sk: socket 654 * @flags: flag bits 655 */ 656 static inline void * 657 __rcu_dereference_sk_user_data_with_flags(const struct sock *sk, 658 uintptr_t flags) 659 { 660 uintptr_t sk_user_data = (uintptr_t)rcu_dereference(__sk_user_data(sk)); 661 662 WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK); 663 664 if ((sk_user_data & flags) == flags) 665 return (void *)(sk_user_data & SK_USER_DATA_PTRMASK); 666 return NULL; 667 } 668 669 #define rcu_dereference_sk_user_data(sk) \ 670 __rcu_dereference_sk_user_data_with_flags(sk, 0) 671 #define __rcu_assign_sk_user_data_with_flags(sk, ptr, flags) \ 672 ({ \ 673 uintptr_t __tmp1 = (uintptr_t)(ptr), \ 674 __tmp2 = (uintptr_t)(flags); \ 675 WARN_ON_ONCE(__tmp1 & ~SK_USER_DATA_PTRMASK); \ 676 WARN_ON_ONCE(__tmp2 & SK_USER_DATA_PTRMASK); \ 677 rcu_assign_pointer(__sk_user_data((sk)), \ 678 __tmp1 | __tmp2); \ 679 }) 680 #define rcu_assign_sk_user_data(sk, ptr) \ 681 __rcu_assign_sk_user_data_with_flags(sk, ptr, 0) 682 683 static inline 684 struct net *sock_net(const struct sock *sk) 685 { 686 return read_pnet(&sk->sk_net); 687 } 688 689 static inline 690 void sock_net_set(struct sock *sk, struct net *net) 691 { 692 write_pnet(&sk->sk_net, net); 693 } 694 695 /* 696 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK 697 * or not whether his port will be reused by someone else. SK_FORCE_REUSE 698 * on a socket means that the socket will reuse everybody else's port 699 * without looking at the other's sk_reuse value. 700 */ 701 702 #define SK_NO_REUSE 0 703 #define SK_CAN_REUSE 1 704 #define SK_FORCE_REUSE 2 705 706 int sk_set_peek_off(struct sock *sk, int val); 707 708 static inline int sk_peek_offset(const struct sock *sk, int flags) 709 { 710 if (unlikely(flags & MSG_PEEK)) { 711 return READ_ONCE(sk->sk_peek_off); 712 } 713 714 return 0; 715 } 716 717 static inline void sk_peek_offset_bwd(struct sock *sk, int val) 718 { 719 s32 off = READ_ONCE(sk->sk_peek_off); 720 721 if (unlikely(off >= 0)) { 722 off = max_t(s32, off - val, 0); 723 WRITE_ONCE(sk->sk_peek_off, off); 724 } 725 } 726 727 static inline void sk_peek_offset_fwd(struct sock *sk, int val) 728 { 729 sk_peek_offset_bwd(sk, -val); 730 } 731 732 /* 733 * Hashed lists helper routines 734 */ 735 static inline struct sock *sk_entry(const struct hlist_node *node) 736 { 737 return hlist_entry(node, struct sock, sk_node); 738 } 739 740 static inline struct sock *__sk_head(const struct hlist_head *head) 741 { 742 return hlist_entry(head->first, struct sock, sk_node); 743 } 744 745 static inline struct sock *sk_head(const struct hlist_head *head) 746 { 747 return hlist_empty(head) ? NULL : __sk_head(head); 748 } 749 750 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head) 751 { 752 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node); 753 } 754 755 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head) 756 { 757 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head); 758 } 759 760 static inline struct sock *sk_next(const struct sock *sk) 761 { 762 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node); 763 } 764 765 static inline struct sock *sk_nulls_next(const struct sock *sk) 766 { 767 return (!is_a_nulls(sk->sk_nulls_node.next)) ? 768 hlist_nulls_entry(sk->sk_nulls_node.next, 769 struct sock, sk_nulls_node) : 770 NULL; 771 } 772 773 static inline bool sk_unhashed(const struct sock *sk) 774 { 775 return hlist_unhashed(&sk->sk_node); 776 } 777 778 static inline bool sk_hashed(const struct sock *sk) 779 { 780 return !sk_unhashed(sk); 781 } 782 783 static inline void sk_node_init(struct hlist_node *node) 784 { 785 node->pprev = NULL; 786 } 787 788 static inline void __sk_del_node(struct sock *sk) 789 { 790 __hlist_del(&sk->sk_node); 791 } 792 793 /* NB: equivalent to hlist_del_init_rcu */ 794 static inline bool __sk_del_node_init(struct sock *sk) 795 { 796 if (sk_hashed(sk)) { 797 __sk_del_node(sk); 798 sk_node_init(&sk->sk_node); 799 return true; 800 } 801 return false; 802 } 803 804 /* Grab socket reference count. This operation is valid only 805 when sk is ALREADY grabbed f.e. it is found in hash table 806 or a list and the lookup is made under lock preventing hash table 807 modifications. 808 */ 809 810 static __always_inline void sock_hold(struct sock *sk) 811 { 812 refcount_inc(&sk->sk_refcnt); 813 } 814 815 /* Ungrab socket in the context, which assumes that socket refcnt 816 cannot hit zero, f.e. it is true in context of any socketcall. 817 */ 818 static __always_inline void __sock_put(struct sock *sk) 819 { 820 refcount_dec(&sk->sk_refcnt); 821 } 822 823 static inline bool sk_del_node_init(struct sock *sk) 824 { 825 bool rc = __sk_del_node_init(sk); 826 827 if (rc) { 828 /* paranoid for a while -acme */ 829 WARN_ON(refcount_read(&sk->sk_refcnt) == 1); 830 __sock_put(sk); 831 } 832 return rc; 833 } 834 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk) 835 836 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk) 837 { 838 if (sk_hashed(sk)) { 839 hlist_nulls_del_init_rcu(&sk->sk_nulls_node); 840 return true; 841 } 842 return false; 843 } 844 845 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk) 846 { 847 bool rc = __sk_nulls_del_node_init_rcu(sk); 848 849 if (rc) { 850 /* paranoid for a while -acme */ 851 WARN_ON(refcount_read(&sk->sk_refcnt) == 1); 852 __sock_put(sk); 853 } 854 return rc; 855 } 856 857 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list) 858 { 859 hlist_add_head(&sk->sk_node, list); 860 } 861 862 static inline void sk_add_node(struct sock *sk, struct hlist_head *list) 863 { 864 sock_hold(sk); 865 __sk_add_node(sk, list); 866 } 867 868 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list) 869 { 870 sock_hold(sk); 871 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 872 sk->sk_family == AF_INET6) 873 hlist_add_tail_rcu(&sk->sk_node, list); 874 else 875 hlist_add_head_rcu(&sk->sk_node, list); 876 } 877 878 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list) 879 { 880 sock_hold(sk); 881 hlist_add_tail_rcu(&sk->sk_node, list); 882 } 883 884 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 885 { 886 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list); 887 } 888 889 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list) 890 { 891 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list); 892 } 893 894 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 895 { 896 sock_hold(sk); 897 __sk_nulls_add_node_rcu(sk, list); 898 } 899 900 static inline void __sk_del_bind_node(struct sock *sk) 901 { 902 __hlist_del(&sk->sk_bind_node); 903 } 904 905 static inline void sk_add_bind_node(struct sock *sk, 906 struct hlist_head *list) 907 { 908 hlist_add_head(&sk->sk_bind_node, list); 909 } 910 911 #define sk_for_each(__sk, list) \ 912 hlist_for_each_entry(__sk, list, sk_node) 913 #define sk_for_each_rcu(__sk, list) \ 914 hlist_for_each_entry_rcu(__sk, list, sk_node) 915 #define sk_nulls_for_each(__sk, node, list) \ 916 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node) 917 #define sk_nulls_for_each_rcu(__sk, node, list) \ 918 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node) 919 #define sk_for_each_from(__sk) \ 920 hlist_for_each_entry_from(__sk, sk_node) 921 #define sk_nulls_for_each_from(__sk, node) \ 922 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \ 923 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node) 924 #define sk_for_each_safe(__sk, tmp, list) \ 925 hlist_for_each_entry_safe(__sk, tmp, list, sk_node) 926 #define sk_for_each_bound(__sk, list) \ 927 hlist_for_each_entry(__sk, list, sk_bind_node) 928 #define sk_for_each_bound_safe(__sk, tmp, list) \ 929 hlist_for_each_entry_safe(__sk, tmp, list, sk_bind_node) 930 931 /** 932 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset 933 * @tpos: the type * to use as a loop cursor. 934 * @pos: the &struct hlist_node to use as a loop cursor. 935 * @head: the head for your list. 936 * @offset: offset of hlist_node within the struct. 937 * 938 */ 939 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \ 940 for (pos = rcu_dereference(hlist_first_rcu(head)); \ 941 pos != NULL && \ 942 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \ 943 pos = rcu_dereference(hlist_next_rcu(pos))) 944 945 static inline struct user_namespace *sk_user_ns(const struct sock *sk) 946 { 947 /* Careful only use this in a context where these parameters 948 * can not change and must all be valid, such as recvmsg from 949 * userspace. 950 */ 951 return sk->sk_socket->file->f_cred->user_ns; 952 } 953 954 /* Sock flags */ 955 enum sock_flags { 956 SOCK_DEAD, 957 SOCK_DONE, 958 SOCK_URGINLINE, 959 SOCK_KEEPOPEN, 960 SOCK_LINGER, 961 SOCK_DESTROY, 962 SOCK_BROADCAST, 963 SOCK_TIMESTAMP, 964 SOCK_ZAPPED, 965 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ 966 SOCK_DBG, /* %SO_DEBUG setting */ 967 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ 968 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */ 969 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ 970 SOCK_MEMALLOC, /* VM depends on this socket for swapping */ 971 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */ 972 SOCK_FASYNC, /* fasync() active */ 973 SOCK_RXQ_OVFL, 974 SOCK_ZEROCOPY, /* buffers from userspace */ 975 SOCK_WIFI_STATUS, /* push wifi status to userspace */ 976 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS. 977 * Will use last 4 bytes of packet sent from 978 * user-space instead. 979 */ 980 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */ 981 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */ 982 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */ 983 SOCK_TXTIME, 984 SOCK_XDP, /* XDP is attached */ 985 SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */ 986 SOCK_RCVMARK, /* Receive SO_MARK ancillary data with packet */ 987 SOCK_RCVPRIORITY, /* Receive SO_PRIORITY ancillary data with packet */ 988 SOCK_TIMESTAMPING_ANY, /* Copy of sk_tsflags & TSFLAGS_ANY */ 989 }; 990 991 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)) 992 /* 993 * The highest bit of sk_tsflags is reserved for kernel-internal 994 * SOCKCM_FLAG_TS_OPT_ID. There is a check in core/sock.c to control that 995 * SOF_TIMESTAMPING* values do not reach this reserved area 996 */ 997 #define SOCKCM_FLAG_TS_OPT_ID BIT(31) 998 999 static inline void sock_copy_flags(struct sock *nsk, const struct sock *osk) 1000 { 1001 nsk->sk_flags = osk->sk_flags; 1002 } 1003 1004 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) 1005 { 1006 __set_bit(flag, &sk->sk_flags); 1007 } 1008 1009 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) 1010 { 1011 __clear_bit(flag, &sk->sk_flags); 1012 } 1013 1014 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit, 1015 int valbool) 1016 { 1017 if (valbool) 1018 sock_set_flag(sk, bit); 1019 else 1020 sock_reset_flag(sk, bit); 1021 } 1022 1023 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag) 1024 { 1025 return test_bit(flag, &sk->sk_flags); 1026 } 1027 1028 #ifdef CONFIG_NET 1029 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key); 1030 static inline int sk_memalloc_socks(void) 1031 { 1032 return static_branch_unlikely(&memalloc_socks_key); 1033 } 1034 1035 void __receive_sock(struct file *file); 1036 #else 1037 1038 static inline int sk_memalloc_socks(void) 1039 { 1040 return 0; 1041 } 1042 1043 static inline void __receive_sock(struct file *file) 1044 { } 1045 #endif 1046 1047 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask) 1048 { 1049 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC); 1050 } 1051 1052 static inline void sk_acceptq_removed(struct sock *sk) 1053 { 1054 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1); 1055 } 1056 1057 static inline void sk_acceptq_added(struct sock *sk) 1058 { 1059 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1); 1060 } 1061 1062 /* Note: If you think the test should be: 1063 * return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog); 1064 * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.") 1065 */ 1066 static inline bool sk_acceptq_is_full(const struct sock *sk) 1067 { 1068 return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog); 1069 } 1070 1071 /* 1072 * Compute minimal free write space needed to queue new packets. 1073 */ 1074 static inline int sk_stream_min_wspace(const struct sock *sk) 1075 { 1076 return READ_ONCE(sk->sk_wmem_queued) >> 1; 1077 } 1078 1079 static inline int sk_stream_wspace(const struct sock *sk) 1080 { 1081 return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued); 1082 } 1083 1084 static inline void sk_wmem_queued_add(struct sock *sk, int val) 1085 { 1086 WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val); 1087 } 1088 1089 static inline void sk_forward_alloc_add(struct sock *sk, int val) 1090 { 1091 /* Paired with lockless reads of sk->sk_forward_alloc */ 1092 WRITE_ONCE(sk->sk_forward_alloc, sk->sk_forward_alloc + val); 1093 } 1094 1095 void sk_stream_write_space(struct sock *sk); 1096 1097 /* OOB backlog add */ 1098 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb) 1099 { 1100 /* dont let skb dst not refcounted, we are going to leave rcu lock */ 1101 skb_dst_force(skb); 1102 1103 if (!sk->sk_backlog.tail) 1104 WRITE_ONCE(sk->sk_backlog.head, skb); 1105 else 1106 sk->sk_backlog.tail->next = skb; 1107 1108 WRITE_ONCE(sk->sk_backlog.tail, skb); 1109 skb->next = NULL; 1110 } 1111 1112 /* 1113 * Take into account size of receive queue and backlog queue 1114 * Do not take into account this skb truesize, 1115 * to allow even a single big packet to come. 1116 */ 1117 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit) 1118 { 1119 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc); 1120 1121 return qsize > limit; 1122 } 1123 1124 /* The per-socket spinlock must be held here. */ 1125 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb, 1126 unsigned int limit) 1127 { 1128 if (sk_rcvqueues_full(sk, limit)) 1129 return -ENOBUFS; 1130 1131 /* 1132 * If the skb was allocated from pfmemalloc reserves, only 1133 * allow SOCK_MEMALLOC sockets to use it as this socket is 1134 * helping free memory 1135 */ 1136 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) 1137 return -ENOMEM; 1138 1139 __sk_add_backlog(sk, skb); 1140 sk->sk_backlog.len += skb->truesize; 1141 return 0; 1142 } 1143 1144 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb); 1145 1146 INDIRECT_CALLABLE_DECLARE(int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)); 1147 INDIRECT_CALLABLE_DECLARE(int tcp_v6_do_rcv(struct sock *sk, struct sk_buff *skb)); 1148 1149 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 1150 { 1151 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) 1152 return __sk_backlog_rcv(sk, skb); 1153 1154 return INDIRECT_CALL_INET(sk->sk_backlog_rcv, 1155 tcp_v6_do_rcv, 1156 tcp_v4_do_rcv, 1157 sk, skb); 1158 } 1159 1160 static inline void sk_incoming_cpu_update(struct sock *sk) 1161 { 1162 int cpu = raw_smp_processor_id(); 1163 1164 if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu)) 1165 WRITE_ONCE(sk->sk_incoming_cpu, cpu); 1166 } 1167 1168 1169 static inline void sock_rps_save_rxhash(struct sock *sk, 1170 const struct sk_buff *skb) 1171 { 1172 #ifdef CONFIG_RPS 1173 /* The following WRITE_ONCE() is paired with the READ_ONCE() 1174 * here, and another one in sock_rps_record_flow(). 1175 */ 1176 if (unlikely(READ_ONCE(sk->sk_rxhash) != skb->hash)) 1177 WRITE_ONCE(sk->sk_rxhash, skb->hash); 1178 #endif 1179 } 1180 1181 static inline void sock_rps_reset_rxhash(struct sock *sk) 1182 { 1183 #ifdef CONFIG_RPS 1184 /* Paired with READ_ONCE() in sock_rps_record_flow() */ 1185 WRITE_ONCE(sk->sk_rxhash, 0); 1186 #endif 1187 } 1188 1189 #define sk_wait_event(__sk, __timeo, __condition, __wait) \ 1190 ({ int __rc, __dis = __sk->sk_disconnects; \ 1191 release_sock(__sk); \ 1192 __rc = __condition; \ 1193 if (!__rc) { \ 1194 *(__timeo) = wait_woken(__wait, \ 1195 TASK_INTERRUPTIBLE, \ 1196 *(__timeo)); \ 1197 } \ 1198 sched_annotate_sleep(); \ 1199 lock_sock(__sk); \ 1200 __rc = __dis == __sk->sk_disconnects ? __condition : -EPIPE; \ 1201 __rc; \ 1202 }) 1203 1204 int sk_stream_wait_connect(struct sock *sk, long *timeo_p); 1205 int sk_stream_wait_memory(struct sock *sk, long *timeo_p); 1206 void sk_stream_wait_close(struct sock *sk, long timeo_p); 1207 int sk_stream_error(struct sock *sk, int flags, int err); 1208 void sk_stream_kill_queues(struct sock *sk); 1209 void sk_set_memalloc(struct sock *sk); 1210 void sk_clear_memalloc(struct sock *sk); 1211 1212 void __sk_flush_backlog(struct sock *sk); 1213 1214 static inline bool sk_flush_backlog(struct sock *sk) 1215 { 1216 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) { 1217 __sk_flush_backlog(sk); 1218 return true; 1219 } 1220 return false; 1221 } 1222 1223 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb); 1224 1225 struct request_sock_ops; 1226 struct timewait_sock_ops; 1227 struct inet_hashinfo; 1228 struct raw_hashinfo; 1229 struct smc_hashinfo; 1230 struct module; 1231 struct sk_psock; 1232 1233 /* 1234 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes 1235 * un-modified. Special care is taken when initializing object to zero. 1236 */ 1237 static inline void sk_prot_clear_nulls(struct sock *sk, int size) 1238 { 1239 if (offsetof(struct sock, sk_node.next) != 0) 1240 memset(sk, 0, offsetof(struct sock, sk_node.next)); 1241 memset(&sk->sk_node.pprev, 0, 1242 size - offsetof(struct sock, sk_node.pprev)); 1243 } 1244 1245 struct proto_accept_arg { 1246 int flags; 1247 int err; 1248 int is_empty; 1249 bool kern; 1250 }; 1251 1252 /* Networking protocol blocks we attach to sockets. 1253 * socket layer -> transport layer interface 1254 */ 1255 struct proto { 1256 void (*close)(struct sock *sk, 1257 long timeout); 1258 int (*pre_connect)(struct sock *sk, 1259 struct sockaddr *uaddr, 1260 int addr_len); 1261 int (*connect)(struct sock *sk, 1262 struct sockaddr *uaddr, 1263 int addr_len); 1264 int (*disconnect)(struct sock *sk, int flags); 1265 1266 struct sock * (*accept)(struct sock *sk, 1267 struct proto_accept_arg *arg); 1268 1269 int (*ioctl)(struct sock *sk, int cmd, 1270 int *karg); 1271 int (*init)(struct sock *sk); 1272 void (*destroy)(struct sock *sk); 1273 void (*shutdown)(struct sock *sk, int how); 1274 int (*setsockopt)(struct sock *sk, int level, 1275 int optname, sockptr_t optval, 1276 unsigned int optlen); 1277 int (*getsockopt)(struct sock *sk, int level, 1278 int optname, char __user *optval, 1279 int __user *option); 1280 void (*keepalive)(struct sock *sk, int valbool); 1281 #ifdef CONFIG_COMPAT 1282 int (*compat_ioctl)(struct sock *sk, 1283 unsigned int cmd, unsigned long arg); 1284 #endif 1285 int (*sendmsg)(struct sock *sk, struct msghdr *msg, 1286 size_t len); 1287 int (*recvmsg)(struct sock *sk, struct msghdr *msg, 1288 size_t len, int flags, int *addr_len); 1289 void (*splice_eof)(struct socket *sock); 1290 int (*bind)(struct sock *sk, 1291 struct sockaddr *addr, int addr_len); 1292 int (*bind_add)(struct sock *sk, 1293 struct sockaddr *addr, int addr_len); 1294 1295 int (*backlog_rcv) (struct sock *sk, 1296 struct sk_buff *skb); 1297 bool (*bpf_bypass_getsockopt)(int level, 1298 int optname); 1299 1300 void (*release_cb)(struct sock *sk); 1301 1302 /* Keeping track of sk's, looking them up, and port selection methods. */ 1303 int (*hash)(struct sock *sk); 1304 void (*unhash)(struct sock *sk); 1305 void (*rehash)(struct sock *sk); 1306 int (*get_port)(struct sock *sk, unsigned short snum); 1307 void (*put_port)(struct sock *sk); 1308 #ifdef CONFIG_BPF_SYSCALL 1309 int (*psock_update_sk_prot)(struct sock *sk, 1310 struct sk_psock *psock, 1311 bool restore); 1312 #endif 1313 1314 /* Keeping track of sockets in use */ 1315 #ifdef CONFIG_PROC_FS 1316 unsigned int inuse_idx; 1317 #endif 1318 1319 bool (*stream_memory_free)(const struct sock *sk, int wake); 1320 bool (*sock_is_readable)(struct sock *sk); 1321 /* Memory pressure */ 1322 void (*enter_memory_pressure)(struct sock *sk); 1323 void (*leave_memory_pressure)(struct sock *sk); 1324 atomic_long_t *memory_allocated; /* Current allocated memory. */ 1325 int __percpu *per_cpu_fw_alloc; 1326 struct percpu_counter *sockets_allocated; /* Current number of sockets. */ 1327 1328 /* 1329 * Pressure flag: try to collapse. 1330 * Technical note: it is used by multiple contexts non atomically. 1331 * Make sure to use READ_ONCE()/WRITE_ONCE() for all reads/writes. 1332 * All the __sk_mem_schedule() is of this nature: accounting 1333 * is strict, actions are advisory and have some latency. 1334 */ 1335 unsigned long *memory_pressure; 1336 long *sysctl_mem; 1337 1338 int *sysctl_wmem; 1339 int *sysctl_rmem; 1340 u32 sysctl_wmem_offset; 1341 u32 sysctl_rmem_offset; 1342 1343 int max_header; 1344 bool no_autobind; 1345 1346 struct kmem_cache *slab; 1347 unsigned int obj_size; 1348 unsigned int ipv6_pinfo_offset; 1349 slab_flags_t slab_flags; 1350 unsigned int useroffset; /* Usercopy region offset */ 1351 unsigned int usersize; /* Usercopy region size */ 1352 1353 struct request_sock_ops *rsk_prot; 1354 struct timewait_sock_ops *twsk_prot; 1355 1356 union { 1357 struct inet_hashinfo *hashinfo; 1358 struct udp_table *udp_table; 1359 struct raw_hashinfo *raw_hash; 1360 struct smc_hashinfo *smc_hash; 1361 } h; 1362 1363 struct module *owner; 1364 1365 char name[32]; 1366 1367 struct list_head node; 1368 int (*diag_destroy)(struct sock *sk, int err); 1369 } __randomize_layout; 1370 1371 int proto_register(struct proto *prot, int alloc_slab); 1372 void proto_unregister(struct proto *prot); 1373 int sock_load_diag_module(int family, int protocol); 1374 1375 INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake)); 1376 1377 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake) 1378 { 1379 if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf)) 1380 return false; 1381 1382 return sk->sk_prot->stream_memory_free ? 1383 INDIRECT_CALL_INET_1(sk->sk_prot->stream_memory_free, 1384 tcp_stream_memory_free, sk, wake) : true; 1385 } 1386 1387 static inline bool sk_stream_memory_free(const struct sock *sk) 1388 { 1389 return __sk_stream_memory_free(sk, 0); 1390 } 1391 1392 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake) 1393 { 1394 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) && 1395 __sk_stream_memory_free(sk, wake); 1396 } 1397 1398 static inline bool sk_stream_is_writeable(const struct sock *sk) 1399 { 1400 return __sk_stream_is_writeable(sk, 0); 1401 } 1402 1403 static inline int sk_under_cgroup_hierarchy(struct sock *sk, 1404 struct cgroup *ancestor) 1405 { 1406 #ifdef CONFIG_SOCK_CGROUP_DATA 1407 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data), 1408 ancestor); 1409 #else 1410 return -ENOTSUPP; 1411 #endif 1412 } 1413 1414 #define SK_ALLOC_PERCPU_COUNTER_BATCH 16 1415 1416 static inline void sk_sockets_allocated_dec(struct sock *sk) 1417 { 1418 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1, 1419 SK_ALLOC_PERCPU_COUNTER_BATCH); 1420 } 1421 1422 static inline void sk_sockets_allocated_inc(struct sock *sk) 1423 { 1424 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1, 1425 SK_ALLOC_PERCPU_COUNTER_BATCH); 1426 } 1427 1428 static inline u64 1429 sk_sockets_allocated_read_positive(struct sock *sk) 1430 { 1431 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated); 1432 } 1433 1434 static inline int 1435 proto_sockets_allocated_sum_positive(struct proto *prot) 1436 { 1437 return percpu_counter_sum_positive(prot->sockets_allocated); 1438 } 1439 1440 #ifdef CONFIG_PROC_FS 1441 #define PROTO_INUSE_NR 64 /* should be enough for the first time */ 1442 struct prot_inuse { 1443 int all; 1444 int val[PROTO_INUSE_NR]; 1445 }; 1446 1447 static inline void sock_prot_inuse_add(const struct net *net, 1448 const struct proto *prot, int val) 1449 { 1450 this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val); 1451 } 1452 1453 static inline void sock_inuse_add(const struct net *net, int val) 1454 { 1455 this_cpu_add(net->core.prot_inuse->all, val); 1456 } 1457 1458 int sock_prot_inuse_get(struct net *net, struct proto *proto); 1459 int sock_inuse_get(struct net *net); 1460 #else 1461 static inline void sock_prot_inuse_add(const struct net *net, 1462 const struct proto *prot, int val) 1463 { 1464 } 1465 1466 static inline void sock_inuse_add(const struct net *net, int val) 1467 { 1468 } 1469 #endif 1470 1471 1472 /* With per-bucket locks this operation is not-atomic, so that 1473 * this version is not worse. 1474 */ 1475 static inline int __sk_prot_rehash(struct sock *sk) 1476 { 1477 sk->sk_prot->unhash(sk); 1478 return sk->sk_prot->hash(sk); 1479 } 1480 1481 /* About 10 seconds */ 1482 #define SOCK_DESTROY_TIME (10*HZ) 1483 1484 /* Sockets 0-1023 can't be bound to unless you are superuser */ 1485 #define PROT_SOCK 1024 1486 1487 #define SHUTDOWN_MASK 3 1488 #define RCV_SHUTDOWN 1 1489 #define SEND_SHUTDOWN 2 1490 1491 #define SOCK_BINDADDR_LOCK 4 1492 #define SOCK_BINDPORT_LOCK 8 1493 1494 struct socket_alloc { 1495 struct socket socket; 1496 struct inode vfs_inode; 1497 }; 1498 1499 static inline struct socket *SOCKET_I(struct inode *inode) 1500 { 1501 return &container_of(inode, struct socket_alloc, vfs_inode)->socket; 1502 } 1503 1504 static inline struct inode *SOCK_INODE(struct socket *socket) 1505 { 1506 return &container_of(socket, struct socket_alloc, socket)->vfs_inode; 1507 } 1508 1509 /* 1510 * Functions for memory accounting 1511 */ 1512 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind); 1513 int __sk_mem_schedule(struct sock *sk, int size, int kind); 1514 void __sk_mem_reduce_allocated(struct sock *sk, int amount); 1515 void __sk_mem_reclaim(struct sock *sk, int amount); 1516 1517 #define SK_MEM_SEND 0 1518 #define SK_MEM_RECV 1 1519 1520 /* sysctl_mem values are in pages */ 1521 static inline long sk_prot_mem_limits(const struct sock *sk, int index) 1522 { 1523 return READ_ONCE(sk->sk_prot->sysctl_mem[index]); 1524 } 1525 1526 static inline int sk_mem_pages(int amt) 1527 { 1528 return (amt + PAGE_SIZE - 1) >> PAGE_SHIFT; 1529 } 1530 1531 static inline bool sk_has_account(struct sock *sk) 1532 { 1533 /* return true if protocol supports memory accounting */ 1534 return !!sk->sk_prot->memory_allocated; 1535 } 1536 1537 static inline bool sk_wmem_schedule(struct sock *sk, int size) 1538 { 1539 int delta; 1540 1541 if (!sk_has_account(sk)) 1542 return true; 1543 delta = size - sk->sk_forward_alloc; 1544 return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_SEND); 1545 } 1546 1547 static inline bool 1548 __sk_rmem_schedule(struct sock *sk, int size, bool pfmemalloc) 1549 { 1550 int delta; 1551 1552 if (!sk_has_account(sk)) 1553 return true; 1554 delta = size - sk->sk_forward_alloc; 1555 return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_RECV) || 1556 pfmemalloc; 1557 } 1558 1559 static inline bool 1560 sk_rmem_schedule(struct sock *sk, const struct sk_buff *skb, int size) 1561 { 1562 return __sk_rmem_schedule(sk, size, skb_pfmemalloc(skb)); 1563 } 1564 1565 static inline int sk_unused_reserved_mem(const struct sock *sk) 1566 { 1567 int unused_mem; 1568 1569 if (likely(!sk->sk_reserved_mem)) 1570 return 0; 1571 1572 unused_mem = sk->sk_reserved_mem - sk->sk_wmem_queued - 1573 atomic_read(&sk->sk_rmem_alloc); 1574 1575 return unused_mem > 0 ? unused_mem : 0; 1576 } 1577 1578 static inline void sk_mem_reclaim(struct sock *sk) 1579 { 1580 int reclaimable; 1581 1582 if (!sk_has_account(sk)) 1583 return; 1584 1585 reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk); 1586 1587 if (reclaimable >= (int)PAGE_SIZE) 1588 __sk_mem_reclaim(sk, reclaimable); 1589 } 1590 1591 static inline void sk_mem_reclaim_final(struct sock *sk) 1592 { 1593 sk->sk_reserved_mem = 0; 1594 sk_mem_reclaim(sk); 1595 } 1596 1597 static inline void sk_mem_charge(struct sock *sk, int size) 1598 { 1599 if (!sk_has_account(sk)) 1600 return; 1601 sk_forward_alloc_add(sk, -size); 1602 } 1603 1604 static inline void sk_mem_uncharge(struct sock *sk, int size) 1605 { 1606 if (!sk_has_account(sk)) 1607 return; 1608 sk_forward_alloc_add(sk, size); 1609 sk_mem_reclaim(sk); 1610 } 1611 1612 #if IS_ENABLED(CONFIG_PROVE_LOCKING) && IS_ENABLED(CONFIG_MODULES) 1613 static inline void sk_owner_set(struct sock *sk, struct module *owner) 1614 { 1615 __module_get(owner); 1616 sk->sk_owner = owner; 1617 } 1618 1619 static inline void sk_owner_clear(struct sock *sk) 1620 { 1621 sk->sk_owner = NULL; 1622 } 1623 1624 static inline void sk_owner_put(struct sock *sk) 1625 { 1626 module_put(sk->sk_owner); 1627 } 1628 #else 1629 static inline void sk_owner_set(struct sock *sk, struct module *owner) 1630 { 1631 } 1632 1633 static inline void sk_owner_clear(struct sock *sk) 1634 { 1635 } 1636 1637 static inline void sk_owner_put(struct sock *sk) 1638 { 1639 } 1640 #endif 1641 /* 1642 * Macro so as to not evaluate some arguments when 1643 * lockdep is not enabled. 1644 * 1645 * Mark both the sk_lock and the sk_lock.slock as a 1646 * per-address-family lock class. 1647 */ 1648 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \ 1649 do { \ 1650 sk_owner_set(sk, THIS_MODULE); \ 1651 sk->sk_lock.owned = 0; \ 1652 init_waitqueue_head(&sk->sk_lock.wq); \ 1653 spin_lock_init(&(sk)->sk_lock.slock); \ 1654 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \ 1655 sizeof((sk)->sk_lock)); \ 1656 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \ 1657 (skey), (sname)); \ 1658 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \ 1659 } while (0) 1660 1661 static inline bool lockdep_sock_is_held(const struct sock *sk) 1662 { 1663 return lockdep_is_held(&sk->sk_lock) || 1664 lockdep_is_held(&sk->sk_lock.slock); 1665 } 1666 1667 void lock_sock_nested(struct sock *sk, int subclass); 1668 1669 static inline void lock_sock(struct sock *sk) 1670 { 1671 lock_sock_nested(sk, 0); 1672 } 1673 1674 void __lock_sock(struct sock *sk); 1675 void __release_sock(struct sock *sk); 1676 void release_sock(struct sock *sk); 1677 1678 /* BH context may only use the following locking interface. */ 1679 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) 1680 #define bh_lock_sock_nested(__sk) \ 1681 spin_lock_nested(&((__sk)->sk_lock.slock), \ 1682 SINGLE_DEPTH_NESTING) 1683 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) 1684 1685 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock); 1686 1687 /** 1688 * lock_sock_fast - fast version of lock_sock 1689 * @sk: socket 1690 * 1691 * This version should be used for very small section, where process won't block 1692 * return false if fast path is taken: 1693 * 1694 * sk_lock.slock locked, owned = 0, BH disabled 1695 * 1696 * return true if slow path is taken: 1697 * 1698 * sk_lock.slock unlocked, owned = 1, BH enabled 1699 */ 1700 static inline bool lock_sock_fast(struct sock *sk) 1701 { 1702 /* The sk_lock has mutex_lock() semantics here. */ 1703 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_); 1704 1705 return __lock_sock_fast(sk); 1706 } 1707 1708 /* fast socket lock variant for caller already holding a [different] socket lock */ 1709 static inline bool lock_sock_fast_nested(struct sock *sk) 1710 { 1711 mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_); 1712 1713 return __lock_sock_fast(sk); 1714 } 1715 1716 /** 1717 * unlock_sock_fast - complement of lock_sock_fast 1718 * @sk: socket 1719 * @slow: slow mode 1720 * 1721 * fast unlock socket for user context. 1722 * If slow mode is on, we call regular release_sock() 1723 */ 1724 static inline void unlock_sock_fast(struct sock *sk, bool slow) 1725 __releases(&sk->sk_lock.slock) 1726 { 1727 if (slow) { 1728 release_sock(sk); 1729 __release(&sk->sk_lock.slock); 1730 } else { 1731 mutex_release(&sk->sk_lock.dep_map, _RET_IP_); 1732 spin_unlock_bh(&sk->sk_lock.slock); 1733 } 1734 } 1735 1736 void sockopt_lock_sock(struct sock *sk); 1737 void sockopt_release_sock(struct sock *sk); 1738 bool sockopt_ns_capable(struct user_namespace *ns, int cap); 1739 bool sockopt_capable(int cap); 1740 1741 /* Used by processes to "lock" a socket state, so that 1742 * interrupts and bottom half handlers won't change it 1743 * from under us. It essentially blocks any incoming 1744 * packets, so that we won't get any new data or any 1745 * packets that change the state of the socket. 1746 * 1747 * While locked, BH processing will add new packets to 1748 * the backlog queue. This queue is processed by the 1749 * owner of the socket lock right before it is released. 1750 * 1751 * Since ~2.3.5 it is also exclusive sleep lock serializing 1752 * accesses from user process context. 1753 */ 1754 1755 static inline void sock_owned_by_me(const struct sock *sk) 1756 { 1757 #ifdef CONFIG_LOCKDEP 1758 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks); 1759 #endif 1760 } 1761 1762 static inline void sock_not_owned_by_me(const struct sock *sk) 1763 { 1764 #ifdef CONFIG_LOCKDEP 1765 WARN_ON_ONCE(lockdep_sock_is_held(sk) && debug_locks); 1766 #endif 1767 } 1768 1769 static inline bool sock_owned_by_user(const struct sock *sk) 1770 { 1771 sock_owned_by_me(sk); 1772 return sk->sk_lock.owned; 1773 } 1774 1775 static inline bool sock_owned_by_user_nocheck(const struct sock *sk) 1776 { 1777 return sk->sk_lock.owned; 1778 } 1779 1780 static inline void sock_release_ownership(struct sock *sk) 1781 { 1782 DEBUG_NET_WARN_ON_ONCE(!sock_owned_by_user_nocheck(sk)); 1783 sk->sk_lock.owned = 0; 1784 1785 /* The sk_lock has mutex_unlock() semantics: */ 1786 mutex_release(&sk->sk_lock.dep_map, _RET_IP_); 1787 } 1788 1789 /* no reclassification while locks are held */ 1790 static inline bool sock_allow_reclassification(const struct sock *csk) 1791 { 1792 struct sock *sk = (struct sock *)csk; 1793 1794 return !sock_owned_by_user_nocheck(sk) && 1795 !spin_is_locked(&sk->sk_lock.slock); 1796 } 1797 1798 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1799 struct proto *prot, int kern); 1800 void sk_free(struct sock *sk); 1801 void sk_net_refcnt_upgrade(struct sock *sk); 1802 void sk_destruct(struct sock *sk); 1803 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority); 1804 1805 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 1806 gfp_t priority); 1807 void __sock_wfree(struct sk_buff *skb); 1808 void sock_wfree(struct sk_buff *skb); 1809 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, 1810 gfp_t priority); 1811 void skb_orphan_partial(struct sk_buff *skb); 1812 void sock_rfree(struct sk_buff *skb); 1813 void sock_efree(struct sk_buff *skb); 1814 #ifdef CONFIG_INET 1815 void sock_edemux(struct sk_buff *skb); 1816 void sock_pfree(struct sk_buff *skb); 1817 1818 static inline void skb_set_owner_edemux(struct sk_buff *skb, struct sock *sk) 1819 { 1820 skb_orphan(skb); 1821 if (refcount_inc_not_zero(&sk->sk_refcnt)) { 1822 skb->sk = sk; 1823 skb->destructor = sock_edemux; 1824 } 1825 } 1826 #else 1827 #define sock_edemux sock_efree 1828 #endif 1829 1830 int sk_setsockopt(struct sock *sk, int level, int optname, 1831 sockptr_t optval, unsigned int optlen); 1832 int sock_setsockopt(struct socket *sock, int level, int op, 1833 sockptr_t optval, unsigned int optlen); 1834 int do_sock_setsockopt(struct socket *sock, bool compat, int level, 1835 int optname, sockptr_t optval, int optlen); 1836 int do_sock_getsockopt(struct socket *sock, bool compat, int level, 1837 int optname, sockptr_t optval, sockptr_t optlen); 1838 1839 int sk_getsockopt(struct sock *sk, int level, int optname, 1840 sockptr_t optval, sockptr_t optlen); 1841 int sock_gettstamp(struct socket *sock, void __user *userstamp, 1842 bool timeval, bool time32); 1843 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 1844 unsigned long data_len, int noblock, 1845 int *errcode, int max_page_order); 1846 1847 static inline struct sk_buff *sock_alloc_send_skb(struct sock *sk, 1848 unsigned long size, 1849 int noblock, int *errcode) 1850 { 1851 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0); 1852 } 1853 1854 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority); 1855 void *sock_kmemdup(struct sock *sk, const void *src, 1856 int size, gfp_t priority); 1857 void sock_kfree_s(struct sock *sk, void *mem, int size); 1858 void sock_kzfree_s(struct sock *sk, void *mem, int size); 1859 void sk_send_sigurg(struct sock *sk); 1860 1861 static inline void sock_replace_proto(struct sock *sk, struct proto *proto) 1862 { 1863 if (sk->sk_socket) 1864 clear_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 1865 WRITE_ONCE(sk->sk_prot, proto); 1866 } 1867 1868 struct sockcm_cookie { 1869 u64 transmit_time; 1870 u32 mark; 1871 u32 tsflags; 1872 u32 ts_opt_id; 1873 u32 priority; 1874 u32 dmabuf_id; 1875 }; 1876 1877 static inline void sockcm_init(struct sockcm_cookie *sockc, 1878 const struct sock *sk) 1879 { 1880 *sockc = (struct sockcm_cookie) { 1881 .mark = READ_ONCE(sk->sk_mark), 1882 .tsflags = READ_ONCE(sk->sk_tsflags), 1883 .priority = READ_ONCE(sk->sk_priority), 1884 }; 1885 } 1886 1887 int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg, 1888 struct sockcm_cookie *sockc); 1889 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 1890 struct sockcm_cookie *sockc); 1891 1892 /* 1893 * Functions to fill in entries in struct proto_ops when a protocol 1894 * does not implement a particular function. 1895 */ 1896 int sock_no_bind(struct socket *, struct sockaddr *, int); 1897 int sock_no_connect(struct socket *, struct sockaddr *, int, int); 1898 int sock_no_socketpair(struct socket *, struct socket *); 1899 int sock_no_accept(struct socket *, struct socket *, struct proto_accept_arg *); 1900 int sock_no_getname(struct socket *, struct sockaddr *, int); 1901 int sock_no_ioctl(struct socket *, unsigned int, unsigned long); 1902 int sock_no_listen(struct socket *, int); 1903 int sock_no_shutdown(struct socket *, int); 1904 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t); 1905 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len); 1906 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int); 1907 int sock_no_mmap(struct file *file, struct socket *sock, 1908 struct vm_area_struct *vma); 1909 1910 /* 1911 * Functions to fill in entries in struct proto_ops when a protocol 1912 * uses the inet style. 1913 */ 1914 int sock_common_getsockopt(struct socket *sock, int level, int optname, 1915 char __user *optval, int __user *optlen); 1916 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 1917 int flags); 1918 int sock_common_setsockopt(struct socket *sock, int level, int optname, 1919 sockptr_t optval, unsigned int optlen); 1920 1921 void sk_common_release(struct sock *sk); 1922 1923 /* 1924 * Default socket callbacks and setup code 1925 */ 1926 1927 /* Initialise core socket variables using an explicit uid. */ 1928 void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid); 1929 1930 /* Initialise core socket variables. 1931 * Assumes struct socket *sock is embedded in a struct socket_alloc. 1932 */ 1933 void sock_init_data(struct socket *sock, struct sock *sk); 1934 1935 /* 1936 * Socket reference counting postulates. 1937 * 1938 * * Each user of socket SHOULD hold a reference count. 1939 * * Each access point to socket (an hash table bucket, reference from a list, 1940 * running timer, skb in flight MUST hold a reference count. 1941 * * When reference count hits 0, it means it will never increase back. 1942 * * When reference count hits 0, it means that no references from 1943 * outside exist to this socket and current process on current CPU 1944 * is last user and may/should destroy this socket. 1945 * * sk_free is called from any context: process, BH, IRQ. When 1946 * it is called, socket has no references from outside -> sk_free 1947 * may release descendant resources allocated by the socket, but 1948 * to the time when it is called, socket is NOT referenced by any 1949 * hash tables, lists etc. 1950 * * Packets, delivered from outside (from network or from another process) 1951 * and enqueued on receive/error queues SHOULD NOT grab reference count, 1952 * when they sit in queue. Otherwise, packets will leak to hole, when 1953 * socket is looked up by one cpu and unhasing is made by another CPU. 1954 * It is true for udp/raw, netlink (leak to receive and error queues), tcp 1955 * (leak to backlog). Packet socket does all the processing inside 1956 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets 1957 * use separate SMP lock, so that they are prone too. 1958 */ 1959 1960 /* Ungrab socket and destroy it, if it was the last reference. */ 1961 static inline void sock_put(struct sock *sk) 1962 { 1963 if (refcount_dec_and_test(&sk->sk_refcnt)) 1964 sk_free(sk); 1965 } 1966 /* Generic version of sock_put(), dealing with all sockets 1967 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...) 1968 */ 1969 void sock_gen_put(struct sock *sk); 1970 1971 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested, 1972 unsigned int trim_cap, bool refcounted); 1973 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb, 1974 const int nested) 1975 { 1976 return __sk_receive_skb(sk, skb, nested, 1, true); 1977 } 1978 1979 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue) 1980 { 1981 /* sk_tx_queue_mapping accept only upto a 16-bit value */ 1982 if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX)) 1983 return; 1984 /* Paired with READ_ONCE() in sk_tx_queue_get() and 1985 * other WRITE_ONCE() because socket lock might be not held. 1986 */ 1987 WRITE_ONCE(sk->sk_tx_queue_mapping, tx_queue); 1988 } 1989 1990 #define NO_QUEUE_MAPPING USHRT_MAX 1991 1992 static inline void sk_tx_queue_clear(struct sock *sk) 1993 { 1994 /* Paired with READ_ONCE() in sk_tx_queue_get() and 1995 * other WRITE_ONCE() because socket lock might be not held. 1996 */ 1997 WRITE_ONCE(sk->sk_tx_queue_mapping, NO_QUEUE_MAPPING); 1998 } 1999 2000 static inline int sk_tx_queue_get(const struct sock *sk) 2001 { 2002 if (sk) { 2003 /* Paired with WRITE_ONCE() in sk_tx_queue_clear() 2004 * and sk_tx_queue_set(). 2005 */ 2006 int val = READ_ONCE(sk->sk_tx_queue_mapping); 2007 2008 if (val != NO_QUEUE_MAPPING) 2009 return val; 2010 } 2011 return -1; 2012 } 2013 2014 static inline void __sk_rx_queue_set(struct sock *sk, 2015 const struct sk_buff *skb, 2016 bool force_set) 2017 { 2018 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 2019 if (skb_rx_queue_recorded(skb)) { 2020 u16 rx_queue = skb_get_rx_queue(skb); 2021 2022 if (force_set || 2023 unlikely(READ_ONCE(sk->sk_rx_queue_mapping) != rx_queue)) 2024 WRITE_ONCE(sk->sk_rx_queue_mapping, rx_queue); 2025 } 2026 #endif 2027 } 2028 2029 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb) 2030 { 2031 __sk_rx_queue_set(sk, skb, true); 2032 } 2033 2034 static inline void sk_rx_queue_update(struct sock *sk, const struct sk_buff *skb) 2035 { 2036 __sk_rx_queue_set(sk, skb, false); 2037 } 2038 2039 static inline void sk_rx_queue_clear(struct sock *sk) 2040 { 2041 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 2042 WRITE_ONCE(sk->sk_rx_queue_mapping, NO_QUEUE_MAPPING); 2043 #endif 2044 } 2045 2046 static inline int sk_rx_queue_get(const struct sock *sk) 2047 { 2048 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 2049 if (sk) { 2050 int res = READ_ONCE(sk->sk_rx_queue_mapping); 2051 2052 if (res != NO_QUEUE_MAPPING) 2053 return res; 2054 } 2055 #endif 2056 2057 return -1; 2058 } 2059 2060 static inline void sk_set_socket(struct sock *sk, struct socket *sock) 2061 { 2062 sk->sk_socket = sock; 2063 if (sock) { 2064 WRITE_ONCE(sk->sk_uid, SOCK_INODE(sock)->i_uid); 2065 WRITE_ONCE(sk->sk_ino, SOCK_INODE(sock)->i_ino); 2066 } 2067 } 2068 2069 static inline wait_queue_head_t *sk_sleep(struct sock *sk) 2070 { 2071 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0); 2072 return &rcu_dereference_raw(sk->sk_wq)->wait; 2073 } 2074 /* Detach socket from process context. 2075 * Announce socket dead, detach it from wait queue and inode. 2076 * Note that parent inode held reference count on this struct sock, 2077 * we do not release it in this function, because protocol 2078 * probably wants some additional cleanups or even continuing 2079 * to work with this socket (TCP). 2080 */ 2081 static inline void sock_orphan(struct sock *sk) 2082 { 2083 write_lock_bh(&sk->sk_callback_lock); 2084 sock_set_flag(sk, SOCK_DEAD); 2085 sk_set_socket(sk, NULL); 2086 sk->sk_wq = NULL; 2087 /* Note: sk_uid is unchanged. */ 2088 WRITE_ONCE(sk->sk_ino, 0); 2089 write_unlock_bh(&sk->sk_callback_lock); 2090 } 2091 2092 static inline void sock_graft(struct sock *sk, struct socket *parent) 2093 { 2094 WARN_ON(parent->sk); 2095 write_lock_bh(&sk->sk_callback_lock); 2096 rcu_assign_pointer(sk->sk_wq, &parent->wq); 2097 parent->sk = sk; 2098 sk_set_socket(sk, parent); 2099 security_sock_graft(sk, parent); 2100 write_unlock_bh(&sk->sk_callback_lock); 2101 } 2102 2103 static inline unsigned long sock_i_ino(const struct sock *sk) 2104 { 2105 /* Paired with WRITE_ONCE() in sock_graft() and sock_orphan() */ 2106 return READ_ONCE(sk->sk_ino); 2107 } 2108 2109 static inline kuid_t sk_uid(const struct sock *sk) 2110 { 2111 /* Paired with WRITE_ONCE() in sockfs_setattr() */ 2112 return READ_ONCE(sk->sk_uid); 2113 } 2114 2115 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk) 2116 { 2117 return sk ? sk_uid(sk) : make_kuid(net->user_ns, 0); 2118 } 2119 2120 static inline u32 net_tx_rndhash(void) 2121 { 2122 u32 v = get_random_u32(); 2123 2124 return v ?: 1; 2125 } 2126 2127 static inline void sk_set_txhash(struct sock *sk) 2128 { 2129 /* This pairs with READ_ONCE() in skb_set_hash_from_sk() */ 2130 WRITE_ONCE(sk->sk_txhash, net_tx_rndhash()); 2131 } 2132 2133 static inline bool sk_rethink_txhash(struct sock *sk) 2134 { 2135 if (sk->sk_txhash && sk->sk_txrehash == SOCK_TXREHASH_ENABLED) { 2136 sk_set_txhash(sk); 2137 return true; 2138 } 2139 return false; 2140 } 2141 2142 static inline struct dst_entry * 2143 __sk_dst_get(const struct sock *sk) 2144 { 2145 return rcu_dereference_check(sk->sk_dst_cache, 2146 lockdep_sock_is_held(sk)); 2147 } 2148 2149 static inline struct dst_entry * 2150 sk_dst_get(const struct sock *sk) 2151 { 2152 struct dst_entry *dst; 2153 2154 rcu_read_lock(); 2155 dst = rcu_dereference(sk->sk_dst_cache); 2156 if (dst && !rcuref_get(&dst->__rcuref)) 2157 dst = NULL; 2158 rcu_read_unlock(); 2159 return dst; 2160 } 2161 2162 static inline void __dst_negative_advice(struct sock *sk) 2163 { 2164 struct dst_entry *dst = __sk_dst_get(sk); 2165 2166 if (dst && dst->ops->negative_advice) 2167 dst->ops->negative_advice(sk, dst); 2168 } 2169 2170 static inline void dst_negative_advice(struct sock *sk) 2171 { 2172 sk_rethink_txhash(sk); 2173 __dst_negative_advice(sk); 2174 } 2175 2176 static inline void 2177 __sk_dst_set(struct sock *sk, struct dst_entry *dst) 2178 { 2179 struct dst_entry *old_dst; 2180 2181 sk_tx_queue_clear(sk); 2182 WRITE_ONCE(sk->sk_dst_pending_confirm, 0); 2183 old_dst = rcu_dereference_protected(sk->sk_dst_cache, 2184 lockdep_sock_is_held(sk)); 2185 rcu_assign_pointer(sk->sk_dst_cache, dst); 2186 dst_release(old_dst); 2187 } 2188 2189 static inline void 2190 sk_dst_set(struct sock *sk, struct dst_entry *dst) 2191 { 2192 struct dst_entry *old_dst; 2193 2194 sk_tx_queue_clear(sk); 2195 WRITE_ONCE(sk->sk_dst_pending_confirm, 0); 2196 old_dst = unrcu_pointer(xchg(&sk->sk_dst_cache, RCU_INITIALIZER(dst))); 2197 dst_release(old_dst); 2198 } 2199 2200 static inline void 2201 __sk_dst_reset(struct sock *sk) 2202 { 2203 __sk_dst_set(sk, NULL); 2204 } 2205 2206 static inline void 2207 sk_dst_reset(struct sock *sk) 2208 { 2209 sk_dst_set(sk, NULL); 2210 } 2211 2212 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); 2213 2214 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); 2215 2216 static inline void sk_dst_confirm(struct sock *sk) 2217 { 2218 if (!READ_ONCE(sk->sk_dst_pending_confirm)) 2219 WRITE_ONCE(sk->sk_dst_pending_confirm, 1); 2220 } 2221 2222 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n) 2223 { 2224 if (skb_get_dst_pending_confirm(skb)) { 2225 struct sock *sk = skb->sk; 2226 2227 if (sk && READ_ONCE(sk->sk_dst_pending_confirm)) 2228 WRITE_ONCE(sk->sk_dst_pending_confirm, 0); 2229 neigh_confirm(n); 2230 } 2231 } 2232 2233 bool sk_mc_loop(const struct sock *sk); 2234 2235 static inline bool sk_can_gso(const struct sock *sk) 2236 { 2237 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type); 2238 } 2239 2240 void sk_setup_caps(struct sock *sk, struct dst_entry *dst); 2241 2242 static inline void sk_gso_disable(struct sock *sk) 2243 { 2244 sk->sk_gso_disabled = 1; 2245 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 2246 } 2247 2248 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb, 2249 struct iov_iter *from, char *to, 2250 int copy, int offset) 2251 { 2252 if (skb->ip_summed == CHECKSUM_NONE) { 2253 __wsum csum = 0; 2254 if (!csum_and_copy_from_iter_full(to, copy, &csum, from)) 2255 return -EFAULT; 2256 skb->csum = csum_block_add(skb->csum, csum, offset); 2257 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 2258 if (!copy_from_iter_full_nocache(to, copy, from)) 2259 return -EFAULT; 2260 } else if (!copy_from_iter_full(to, copy, from)) 2261 return -EFAULT; 2262 2263 return 0; 2264 } 2265 2266 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb, 2267 struct iov_iter *from, int copy) 2268 { 2269 int err, offset = skb->len; 2270 2271 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy), 2272 copy, offset); 2273 if (err) 2274 __skb_trim(skb, offset); 2275 2276 return err; 2277 } 2278 2279 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from, 2280 struct sk_buff *skb, 2281 struct page *page, 2282 int off, int copy) 2283 { 2284 int err; 2285 2286 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off, 2287 copy, skb->len); 2288 if (err) 2289 return err; 2290 2291 skb_len_add(skb, copy); 2292 sk_wmem_queued_add(sk, copy); 2293 sk_mem_charge(sk, copy); 2294 return 0; 2295 } 2296 2297 /** 2298 * sk_wmem_alloc_get - returns write allocations 2299 * @sk: socket 2300 * 2301 * Return: sk_wmem_alloc minus initial offset of one 2302 */ 2303 static inline int sk_wmem_alloc_get(const struct sock *sk) 2304 { 2305 return refcount_read(&sk->sk_wmem_alloc) - 1; 2306 } 2307 2308 /** 2309 * sk_rmem_alloc_get - returns read allocations 2310 * @sk: socket 2311 * 2312 * Return: sk_rmem_alloc 2313 */ 2314 static inline int sk_rmem_alloc_get(const struct sock *sk) 2315 { 2316 return atomic_read(&sk->sk_rmem_alloc); 2317 } 2318 2319 /** 2320 * sk_has_allocations - check if allocations are outstanding 2321 * @sk: socket 2322 * 2323 * Return: true if socket has write or read allocations 2324 */ 2325 static inline bool sk_has_allocations(const struct sock *sk) 2326 { 2327 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk); 2328 } 2329 2330 /** 2331 * skwq_has_sleeper - check if there are any waiting processes 2332 * @wq: struct socket_wq 2333 * 2334 * Return: true if socket_wq has waiting processes 2335 * 2336 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory 2337 * barrier call. They were added due to the race found within the tcp code. 2338 * 2339 * Consider following tcp code paths:: 2340 * 2341 * CPU1 CPU2 2342 * sys_select receive packet 2343 * ... ... 2344 * __add_wait_queue update tp->rcv_nxt 2345 * ... ... 2346 * tp->rcv_nxt check sock_def_readable 2347 * ... { 2348 * schedule rcu_read_lock(); 2349 * wq = rcu_dereference(sk->sk_wq); 2350 * if (wq && waitqueue_active(&wq->wait)) 2351 * wake_up_interruptible(&wq->wait) 2352 * ... 2353 * } 2354 * 2355 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay 2356 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1 2357 * could then endup calling schedule and sleep forever if there are no more 2358 * data on the socket. 2359 * 2360 */ 2361 static inline bool skwq_has_sleeper(struct socket_wq *wq) 2362 { 2363 return wq && wq_has_sleeper(&wq->wait); 2364 } 2365 2366 /** 2367 * sock_poll_wait - wrapper for the poll_wait call. 2368 * @filp: file 2369 * @sock: socket to wait on 2370 * @p: poll_table 2371 * 2372 * See the comments in the wq_has_sleeper function. 2373 */ 2374 static inline void sock_poll_wait(struct file *filp, struct socket *sock, 2375 poll_table *p) 2376 { 2377 /* Provides a barrier we need to be sure we are in sync 2378 * with the socket flags modification. 2379 * 2380 * This memory barrier is paired in the wq_has_sleeper. 2381 */ 2382 poll_wait(filp, &sock->wq.wait, p); 2383 } 2384 2385 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk) 2386 { 2387 /* This pairs with WRITE_ONCE() in sk_set_txhash() */ 2388 u32 txhash = READ_ONCE(sk->sk_txhash); 2389 2390 if (txhash) { 2391 skb->l4_hash = 1; 2392 skb->hash = txhash; 2393 } 2394 } 2395 2396 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk); 2397 2398 /* 2399 * Queue a received datagram if it will fit. Stream and sequenced 2400 * protocols can't normally use this as they need to fit buffers in 2401 * and play with them. 2402 * 2403 * Inlined as it's very short and called for pretty much every 2404 * packet ever received. 2405 */ 2406 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 2407 { 2408 skb_orphan(skb); 2409 skb->sk = sk; 2410 skb->destructor = sock_rfree; 2411 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 2412 sk_mem_charge(sk, skb->truesize); 2413 } 2414 2415 static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk) 2416 { 2417 if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) { 2418 skb_orphan(skb); 2419 skb->destructor = sock_efree; 2420 skb->sk = sk; 2421 return true; 2422 } 2423 return false; 2424 } 2425 2426 static inline struct sk_buff *skb_clone_and_charge_r(struct sk_buff *skb, struct sock *sk) 2427 { 2428 skb = skb_clone(skb, sk_gfp_mask(sk, GFP_ATOMIC)); 2429 if (skb) { 2430 if (sk_rmem_schedule(sk, skb, skb->truesize)) { 2431 skb_set_owner_r(skb, sk); 2432 return skb; 2433 } 2434 __kfree_skb(skb); 2435 } 2436 return NULL; 2437 } 2438 2439 static inline void skb_prepare_for_gro(struct sk_buff *skb) 2440 { 2441 if (skb->destructor != sock_wfree) { 2442 skb_orphan(skb); 2443 return; 2444 } 2445 skb->slow_gro = 1; 2446 } 2447 2448 void sk_reset_timer(struct sock *sk, struct timer_list *timer, 2449 unsigned long expires); 2450 2451 void sk_stop_timer(struct sock *sk, struct timer_list *timer); 2452 2453 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer); 2454 2455 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue, 2456 struct sk_buff *skb, unsigned int flags, 2457 void (*destructor)(struct sock *sk, 2458 struct sk_buff *skb)); 2459 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 2460 2461 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb, 2462 enum skb_drop_reason *reason); 2463 2464 static inline int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 2465 { 2466 return sock_queue_rcv_skb_reason(sk, skb, NULL); 2467 } 2468 2469 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb); 2470 struct sk_buff *sock_dequeue_err_skb(struct sock *sk); 2471 2472 /* 2473 * Recover an error report and clear atomically 2474 */ 2475 2476 static inline int sock_error(struct sock *sk) 2477 { 2478 int err; 2479 2480 /* Avoid an atomic operation for the common case. 2481 * This is racy since another cpu/thread can change sk_err under us. 2482 */ 2483 if (likely(data_race(!sk->sk_err))) 2484 return 0; 2485 2486 err = xchg(&sk->sk_err, 0); 2487 return -err; 2488 } 2489 2490 void sk_error_report(struct sock *sk); 2491 2492 static inline unsigned long sock_wspace(struct sock *sk) 2493 { 2494 int amt = 0; 2495 2496 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 2497 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc); 2498 if (amt < 0) 2499 amt = 0; 2500 } 2501 return amt; 2502 } 2503 2504 /* Note: 2505 * We use sk->sk_wq_raw, from contexts knowing this 2506 * pointer is not NULL and cannot disappear/change. 2507 */ 2508 static inline void sk_set_bit(int nr, struct sock *sk) 2509 { 2510 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && 2511 !sock_flag(sk, SOCK_FASYNC)) 2512 return; 2513 2514 set_bit(nr, &sk->sk_wq_raw->flags); 2515 } 2516 2517 static inline void sk_clear_bit(int nr, struct sock *sk) 2518 { 2519 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && 2520 !sock_flag(sk, SOCK_FASYNC)) 2521 return; 2522 2523 clear_bit(nr, &sk->sk_wq_raw->flags); 2524 } 2525 2526 static inline void sk_wake_async(const struct sock *sk, int how, int band) 2527 { 2528 if (sock_flag(sk, SOCK_FASYNC)) { 2529 rcu_read_lock(); 2530 sock_wake_async(rcu_dereference(sk->sk_wq), how, band); 2531 rcu_read_unlock(); 2532 } 2533 } 2534 2535 static inline void sk_wake_async_rcu(const struct sock *sk, int how, int band) 2536 { 2537 if (unlikely(sock_flag(sk, SOCK_FASYNC))) 2538 sock_wake_async(rcu_dereference(sk->sk_wq), how, band); 2539 } 2540 2541 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might 2542 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak. 2543 * Note: for send buffers, TCP works better if we can build two skbs at 2544 * minimum. 2545 */ 2546 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff))) 2547 2548 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2) 2549 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE 2550 2551 static inline void sk_stream_moderate_sndbuf(struct sock *sk) 2552 { 2553 u32 val; 2554 2555 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 2556 return; 2557 2558 val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1); 2559 val = max_t(u32, val, sk_unused_reserved_mem(sk)); 2560 2561 WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF)); 2562 } 2563 2564 /** 2565 * sk_page_frag - return an appropriate page_frag 2566 * @sk: socket 2567 * 2568 * Use the per task page_frag instead of the per socket one for 2569 * optimization when we know that we're in process context and own 2570 * everything that's associated with %current. 2571 * 2572 * Both direct reclaim and page faults can nest inside other 2573 * socket operations and end up recursing into sk_page_frag() 2574 * while it's already in use: explicitly avoid task page_frag 2575 * when users disable sk_use_task_frag. 2576 * 2577 * Return: a per task page_frag if context allows that, 2578 * otherwise a per socket one. 2579 */ 2580 static inline struct page_frag *sk_page_frag(struct sock *sk) 2581 { 2582 if (sk->sk_use_task_frag) 2583 return ¤t->task_frag; 2584 2585 return &sk->sk_frag; 2586 } 2587 2588 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag); 2589 2590 /* 2591 * Default write policy as shown to user space via poll/select/SIGIO 2592 */ 2593 static inline bool sock_writeable(const struct sock *sk) 2594 { 2595 return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1); 2596 } 2597 2598 static inline gfp_t gfp_any(void) 2599 { 2600 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; 2601 } 2602 2603 static inline gfp_t gfp_memcg_charge(void) 2604 { 2605 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; 2606 } 2607 2608 #ifdef CONFIG_MEMCG 2609 static inline struct mem_cgroup *mem_cgroup_from_sk(const struct sock *sk) 2610 { 2611 return sk->sk_memcg; 2612 } 2613 2614 static inline bool mem_cgroup_sk_enabled(const struct sock *sk) 2615 { 2616 return mem_cgroup_sockets_enabled && mem_cgroup_from_sk(sk); 2617 } 2618 2619 static inline bool mem_cgroup_sk_under_memory_pressure(const struct sock *sk) 2620 { 2621 struct mem_cgroup *memcg = mem_cgroup_from_sk(sk); 2622 2623 #ifdef CONFIG_MEMCG_V1 2624 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2625 return !!memcg->tcpmem_pressure; 2626 #endif /* CONFIG_MEMCG_V1 */ 2627 2628 do { 2629 if (time_before64(get_jiffies_64(), mem_cgroup_get_socket_pressure(memcg))) 2630 return true; 2631 } while ((memcg = parent_mem_cgroup(memcg))); 2632 2633 return false; 2634 } 2635 #else 2636 static inline struct mem_cgroup *mem_cgroup_from_sk(const struct sock *sk) 2637 { 2638 return NULL; 2639 } 2640 2641 static inline bool mem_cgroup_sk_enabled(const struct sock *sk) 2642 { 2643 return false; 2644 } 2645 2646 static inline bool mem_cgroup_sk_under_memory_pressure(const struct sock *sk) 2647 { 2648 return false; 2649 } 2650 #endif 2651 2652 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock) 2653 { 2654 return noblock ? 0 : READ_ONCE(sk->sk_rcvtimeo); 2655 } 2656 2657 static inline long sock_sndtimeo(const struct sock *sk, bool noblock) 2658 { 2659 return noblock ? 0 : READ_ONCE(sk->sk_sndtimeo); 2660 } 2661 2662 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) 2663 { 2664 int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len); 2665 2666 return v ?: 1; 2667 } 2668 2669 /* Alas, with timeout socket operations are not restartable. 2670 * Compare this to poll(). 2671 */ 2672 static inline int sock_intr_errno(long timeo) 2673 { 2674 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; 2675 } 2676 2677 struct sock_skb_cb { 2678 u32 dropcount; 2679 }; 2680 2681 /* Store sock_skb_cb at the end of skb->cb[] so protocol families 2682 * using skb->cb[] would keep using it directly and utilize its 2683 * alignment guarantee. 2684 */ 2685 #define SOCK_SKB_CB_OFFSET (sizeof_field(struct sk_buff, cb) - \ 2686 sizeof(struct sock_skb_cb)) 2687 2688 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \ 2689 SOCK_SKB_CB_OFFSET)) 2690 2691 #define sock_skb_cb_check_size(size) \ 2692 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET) 2693 2694 static inline void sk_drops_add(struct sock *sk, int segs) 2695 { 2696 struct numa_drop_counters *ndc = sk->sk_drop_counters; 2697 2698 if (ndc) 2699 numa_drop_add(ndc, segs); 2700 else 2701 atomic_add(segs, &sk->sk_drops); 2702 } 2703 2704 static inline void sk_drops_inc(struct sock *sk) 2705 { 2706 sk_drops_add(sk, 1); 2707 } 2708 2709 static inline int sk_drops_read(const struct sock *sk) 2710 { 2711 const struct numa_drop_counters *ndc = sk->sk_drop_counters; 2712 2713 if (ndc) { 2714 DEBUG_NET_WARN_ON_ONCE(atomic_read(&sk->sk_drops)); 2715 return numa_drop_read(ndc); 2716 } 2717 return atomic_read(&sk->sk_drops); 2718 } 2719 2720 static inline void sk_drops_reset(struct sock *sk) 2721 { 2722 struct numa_drop_counters *ndc = sk->sk_drop_counters; 2723 2724 if (ndc) 2725 numa_drop_reset(ndc); 2726 atomic_set(&sk->sk_drops, 0); 2727 } 2728 2729 static inline void 2730 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb) 2731 { 2732 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ? 2733 sk_drops_read(sk) : 0; 2734 } 2735 2736 static inline void sk_drops_skbadd(struct sock *sk, const struct sk_buff *skb) 2737 { 2738 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 2739 2740 sk_drops_add(sk, segs); 2741 } 2742 2743 static inline ktime_t sock_read_timestamp(struct sock *sk) 2744 { 2745 #if BITS_PER_LONG==32 2746 unsigned int seq; 2747 ktime_t kt; 2748 2749 do { 2750 seq = read_seqbegin(&sk->sk_stamp_seq); 2751 kt = sk->sk_stamp; 2752 } while (read_seqretry(&sk->sk_stamp_seq, seq)); 2753 2754 return kt; 2755 #else 2756 return READ_ONCE(sk->sk_stamp); 2757 #endif 2758 } 2759 2760 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt) 2761 { 2762 #if BITS_PER_LONG==32 2763 write_seqlock(&sk->sk_stamp_seq); 2764 sk->sk_stamp = kt; 2765 write_sequnlock(&sk->sk_stamp_seq); 2766 #else 2767 WRITE_ONCE(sk->sk_stamp, kt); 2768 #endif 2769 } 2770 2771 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 2772 struct sk_buff *skb); 2773 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 2774 struct sk_buff *skb); 2775 2776 bool skb_has_tx_timestamp(struct sk_buff *skb, const struct sock *sk); 2777 int skb_get_tx_timestamp(struct sk_buff *skb, struct sock *sk, 2778 struct timespec64 *ts); 2779 2780 static inline void 2781 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) 2782 { 2783 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); 2784 u32 tsflags = READ_ONCE(sk->sk_tsflags); 2785 ktime_t kt = skb->tstamp; 2786 /* 2787 * generate control messages if 2788 * - receive time stamping in software requested 2789 * - software time stamp available and wanted 2790 * - hardware time stamps available and wanted 2791 */ 2792 if (sock_flag(sk, SOCK_RCVTSTAMP) || 2793 (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) || 2794 (kt && tsflags & SOF_TIMESTAMPING_SOFTWARE) || 2795 (hwtstamps->hwtstamp && 2796 (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE))) 2797 __sock_recv_timestamp(msg, sk, skb); 2798 else 2799 sock_write_timestamp(sk, kt); 2800 2801 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb_wifi_acked_valid(skb)) 2802 __sock_recv_wifi_status(msg, sk, skb); 2803 } 2804 2805 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk, 2806 struct sk_buff *skb); 2807 2808 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC) 2809 static inline void sock_recv_cmsgs(struct msghdr *msg, struct sock *sk, 2810 struct sk_buff *skb) 2811 { 2812 #define FLAGS_RECV_CMSGS ((1UL << SOCK_RXQ_OVFL) | \ 2813 (1UL << SOCK_RCVTSTAMP) | \ 2814 (1UL << SOCK_RCVMARK) | \ 2815 (1UL << SOCK_RCVPRIORITY) | \ 2816 (1UL << SOCK_TIMESTAMPING_ANY)) 2817 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \ 2818 SOF_TIMESTAMPING_RAW_HARDWARE) 2819 2820 if (READ_ONCE(sk->sk_flags) & FLAGS_RECV_CMSGS) 2821 __sock_recv_cmsgs(msg, sk, skb); 2822 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP))) 2823 sock_write_timestamp(sk, skb->tstamp); 2824 else if (unlikely(sock_read_timestamp(sk) == SK_DEFAULT_STAMP)) 2825 sock_write_timestamp(sk, 0); 2826 } 2827 2828 void __sock_tx_timestamp(__u32 tsflags, __u8 *tx_flags); 2829 2830 /** 2831 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped 2832 * @sk: socket sending this packet 2833 * @sockc: pointer to socket cmsg cookie to get timestamping info 2834 * @tx_flags: completed with instructions for time stamping 2835 * @tskey: filled in with next sk_tskey (not for TCP, which uses seqno) 2836 * 2837 * Note: callers should take care of initial ``*tx_flags`` value (usually 0) 2838 */ 2839 static inline void _sock_tx_timestamp(struct sock *sk, 2840 const struct sockcm_cookie *sockc, 2841 __u8 *tx_flags, __u32 *tskey) 2842 { 2843 __u32 tsflags = sockc->tsflags; 2844 2845 if (unlikely(tsflags)) { 2846 __sock_tx_timestamp(tsflags, tx_flags); 2847 if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey && 2848 tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) { 2849 if (tsflags & SOCKCM_FLAG_TS_OPT_ID) 2850 *tskey = sockc->ts_opt_id; 2851 else 2852 *tskey = atomic_inc_return(&sk->sk_tskey) - 1; 2853 } 2854 } 2855 } 2856 2857 static inline void sock_tx_timestamp(struct sock *sk, 2858 const struct sockcm_cookie *sockc, 2859 __u8 *tx_flags) 2860 { 2861 _sock_tx_timestamp(sk, sockc, tx_flags, NULL); 2862 } 2863 2864 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, 2865 const struct sockcm_cookie *sockc) 2866 { 2867 _sock_tx_timestamp(skb->sk, sockc, &skb_shinfo(skb)->tx_flags, 2868 &skb_shinfo(skb)->tskey); 2869 } 2870 2871 static inline bool sk_is_inet(const struct sock *sk) 2872 { 2873 int family = READ_ONCE(sk->sk_family); 2874 2875 return family == AF_INET || family == AF_INET6; 2876 } 2877 2878 static inline bool sk_is_tcp(const struct sock *sk) 2879 { 2880 return sk_is_inet(sk) && 2881 sk->sk_type == SOCK_STREAM && 2882 sk->sk_protocol == IPPROTO_TCP; 2883 } 2884 2885 static inline bool sk_is_udp(const struct sock *sk) 2886 { 2887 return sk_is_inet(sk) && 2888 sk->sk_type == SOCK_DGRAM && 2889 sk->sk_protocol == IPPROTO_UDP; 2890 } 2891 2892 static inline bool sk_is_unix(const struct sock *sk) 2893 { 2894 return sk->sk_family == AF_UNIX; 2895 } 2896 2897 static inline bool sk_is_stream_unix(const struct sock *sk) 2898 { 2899 return sk_is_unix(sk) && sk->sk_type == SOCK_STREAM; 2900 } 2901 2902 static inline bool sk_is_vsock(const struct sock *sk) 2903 { 2904 return sk->sk_family == AF_VSOCK; 2905 } 2906 2907 static inline bool sk_may_scm_recv(const struct sock *sk) 2908 { 2909 return (IS_ENABLED(CONFIG_UNIX) && sk->sk_family == AF_UNIX) || 2910 sk->sk_family == AF_NETLINK || 2911 (IS_ENABLED(CONFIG_BT) && sk->sk_family == AF_BLUETOOTH); 2912 } 2913 2914 /** 2915 * sk_eat_skb - Release a skb if it is no longer needed 2916 * @sk: socket to eat this skb from 2917 * @skb: socket buffer to eat 2918 * 2919 * This routine must be called with interrupts disabled or with the socket 2920 * locked so that the sk_buff queue operation is ok. 2921 */ 2922 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb) 2923 { 2924 __skb_unlink(skb, &sk->sk_receive_queue); 2925 __kfree_skb(skb); 2926 } 2927 2928 static inline bool 2929 skb_sk_is_prefetched(struct sk_buff *skb) 2930 { 2931 #ifdef CONFIG_INET 2932 return skb->destructor == sock_pfree; 2933 #else 2934 return false; 2935 #endif /* CONFIG_INET */ 2936 } 2937 2938 /* This helper checks if a socket is a full socket, 2939 * ie _not_ a timewait or request socket. 2940 */ 2941 static inline bool sk_fullsock(const struct sock *sk) 2942 { 2943 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV); 2944 } 2945 2946 static inline bool 2947 sk_is_refcounted(struct sock *sk) 2948 { 2949 /* Only full sockets have sk->sk_flags. */ 2950 return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE); 2951 } 2952 2953 static inline bool 2954 sk_requests_wifi_status(struct sock *sk) 2955 { 2956 return sk && sk_fullsock(sk) && sock_flag(sk, SOCK_WIFI_STATUS); 2957 } 2958 2959 /* Checks if this SKB belongs to an HW offloaded socket 2960 * and whether any SW fallbacks are required based on dev. 2961 * Check decrypted mark in case skb_orphan() cleared socket. 2962 */ 2963 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb, 2964 struct net_device *dev) 2965 { 2966 #ifdef CONFIG_SOCK_VALIDATE_XMIT 2967 struct sock *sk = skb->sk; 2968 2969 if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) { 2970 skb = sk->sk_validate_xmit_skb(sk, dev, skb); 2971 } else if (unlikely(skb_is_decrypted(skb))) { 2972 pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n"); 2973 kfree_skb(skb); 2974 skb = NULL; 2975 } 2976 #endif 2977 2978 return skb; 2979 } 2980 2981 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV 2982 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE) 2983 */ 2984 static inline bool sk_listener(const struct sock *sk) 2985 { 2986 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV); 2987 } 2988 2989 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV or TIME_WAIT 2990 * TCP SYNACK messages can be attached to LISTEN or NEW_SYN_RECV (depending on SYNCOOKIE) 2991 * TCP RST and ACK can be attached to TIME_WAIT. 2992 */ 2993 static inline bool sk_listener_or_tw(const struct sock *sk) 2994 { 2995 return (1 << READ_ONCE(sk->sk_state)) & 2996 (TCPF_LISTEN | TCPF_NEW_SYN_RECV | TCPF_TIME_WAIT); 2997 } 2998 2999 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag); 3000 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level, 3001 int type); 3002 3003 bool sk_ns_capable(const struct sock *sk, 3004 struct user_namespace *user_ns, int cap); 3005 bool sk_capable(const struct sock *sk, int cap); 3006 bool sk_net_capable(const struct sock *sk, int cap); 3007 3008 void sk_get_meminfo(const struct sock *sk, u32 *meminfo); 3009 3010 /* Take into consideration the size of the struct sk_buff overhead in the 3011 * determination of these values, since that is non-constant across 3012 * platforms. This makes socket queueing behavior and performance 3013 * not depend upon such differences. 3014 */ 3015 #define _SK_MEM_PACKETS 256 3016 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256) 3017 #define SK_WMEM_DEFAULT (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 3018 #define SK_RMEM_DEFAULT (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 3019 3020 extern __u32 sysctl_wmem_max; 3021 extern __u32 sysctl_rmem_max; 3022 3023 extern __u32 sysctl_wmem_default; 3024 extern __u32 sysctl_rmem_default; 3025 3026 #define SKB_FRAG_PAGE_ORDER get_order(32768) 3027 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key); 3028 3029 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto) 3030 { 3031 /* Does this proto have per netns sysctl_wmem ? */ 3032 if (proto->sysctl_wmem_offset) 3033 return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset)); 3034 3035 return READ_ONCE(*proto->sysctl_wmem); 3036 } 3037 3038 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto) 3039 { 3040 /* Does this proto have per netns sysctl_rmem ? */ 3041 if (proto->sysctl_rmem_offset) 3042 return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset)); 3043 3044 return READ_ONCE(*proto->sysctl_rmem); 3045 } 3046 3047 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10) 3048 * Some wifi drivers need to tweak it to get more chunks. 3049 * They can use this helper from their ndo_start_xmit() 3050 */ 3051 static inline void sk_pacing_shift_update(struct sock *sk, int val) 3052 { 3053 if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val) 3054 return; 3055 WRITE_ONCE(sk->sk_pacing_shift, val); 3056 } 3057 3058 /* if a socket is bound to a device, check that the given device 3059 * index is either the same or that the socket is bound to an L3 3060 * master device and the given device index is also enslaved to 3061 * that L3 master 3062 */ 3063 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif) 3064 { 3065 int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if); 3066 int mdif; 3067 3068 if (!bound_dev_if || bound_dev_if == dif) 3069 return true; 3070 3071 mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif); 3072 if (mdif && mdif == bound_dev_if) 3073 return true; 3074 3075 return false; 3076 } 3077 3078 void sock_def_readable(struct sock *sk); 3079 3080 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk); 3081 void sock_set_timestamp(struct sock *sk, int optname, bool valbool); 3082 int sock_set_timestamping(struct sock *sk, int optname, 3083 struct so_timestamping timestamping); 3084 3085 #if defined(CONFIG_CGROUP_BPF) 3086 void bpf_skops_tx_timestamping(struct sock *sk, struct sk_buff *skb, int op); 3087 #else 3088 static inline void bpf_skops_tx_timestamping(struct sock *sk, struct sk_buff *skb, int op) 3089 { 3090 } 3091 #endif 3092 void sock_no_linger(struct sock *sk); 3093 void sock_set_keepalive(struct sock *sk); 3094 void sock_set_priority(struct sock *sk, u32 priority); 3095 void sock_set_rcvbuf(struct sock *sk, int val); 3096 void sock_set_mark(struct sock *sk, u32 val); 3097 void sock_set_reuseaddr(struct sock *sk); 3098 void sock_set_reuseport(struct sock *sk); 3099 void sock_set_sndtimeo(struct sock *sk, s64 secs); 3100 3101 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len); 3102 3103 int sock_get_timeout(long timeo, void *optval, bool old_timeval); 3104 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv, 3105 sockptr_t optval, int optlen, bool old_timeval); 3106 3107 int sock_ioctl_inout(struct sock *sk, unsigned int cmd, 3108 void __user *arg, void *karg, size_t size); 3109 int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg); 3110 static inline bool sk_is_readable(struct sock *sk) 3111 { 3112 const struct proto *prot = READ_ONCE(sk->sk_prot); 3113 3114 if (prot->sock_is_readable) 3115 return prot->sock_is_readable(sk); 3116 3117 return false; 3118 } 3119 #endif /* _SOCK_H */ 3120