xref: /linux/include/net/sock.h (revision 4eb7ae7a301d3586c3351e81d5c3cfe2304a1a6a)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the AF_INET socket handler.
8  *
9  * Version:	@(#)sock.h	1.0.4	05/13/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Florian La Roche <flla@stud.uni-sb.de>
15  *
16  * Fixes:
17  *		Alan Cox	:	Volatiles in skbuff pointers. See
18  *					skbuff comments. May be overdone,
19  *					better to prove they can be removed
20  *					than the reverse.
21  *		Alan Cox	:	Added a zapped field for tcp to note
22  *					a socket is reset and must stay shut up
23  *		Alan Cox	:	New fields for options
24  *	Pauline Middelink	:	identd support
25  *		Alan Cox	:	Eliminate low level recv/recvfrom
26  *		David S. Miller	:	New socket lookup architecture.
27  *              Steve Whitehouse:       Default routines for sock_ops
28  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
29  *              			protinfo be just a void pointer, as the
30  *              			protocol specific parts were moved to
31  *              			respective headers and ipv4/v6, etc now
32  *              			use private slabcaches for its socks
33  *              Pedro Hortas	:	New flags field for socket options
34  */
35 #ifndef _SOCK_H
36 #define _SOCK_H
37 
38 #include <linux/hardirq.h>
39 #include <linux/kernel.h>
40 #include <linux/list.h>
41 #include <linux/list_nulls.h>
42 #include <linux/timer.h>
43 #include <linux/cache.h>
44 #include <linux/bitops.h>
45 #include <linux/lockdep.h>
46 #include <linux/netdevice.h>
47 #include <linux/skbuff.h>	/* struct sk_buff */
48 #include <linux/mm.h>
49 #include <linux/security.h>
50 #include <linux/slab.h>
51 #include <linux/uaccess.h>
52 #include <linux/page_counter.h>
53 #include <linux/memcontrol.h>
54 #include <linux/static_key.h>
55 #include <linux/sched.h>
56 #include <linux/wait.h>
57 #include <linux/cgroup-defs.h>
58 #include <linux/rbtree.h>
59 #include <linux/filter.h>
60 #include <linux/rculist_nulls.h>
61 #include <linux/poll.h>
62 
63 #include <linux/atomic.h>
64 #include <linux/refcount.h>
65 #include <net/dst.h>
66 #include <net/checksum.h>
67 #include <net/tcp_states.h>
68 #include <linux/net_tstamp.h>
69 #include <net/l3mdev.h>
70 
71 /*
72  * This structure really needs to be cleaned up.
73  * Most of it is for TCP, and not used by any of
74  * the other protocols.
75  */
76 
77 /* Define this to get the SOCK_DBG debugging facility. */
78 #define SOCK_DEBUGGING
79 #ifdef SOCK_DEBUGGING
80 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
81 					printk(KERN_DEBUG msg); } while (0)
82 #else
83 /* Validate arguments and do nothing */
84 static inline __printf(2, 3)
85 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
86 {
87 }
88 #endif
89 
90 /* This is the per-socket lock.  The spinlock provides a synchronization
91  * between user contexts and software interrupt processing, whereas the
92  * mini-semaphore synchronizes multiple users amongst themselves.
93  */
94 typedef struct {
95 	spinlock_t		slock;
96 	int			owned;
97 	wait_queue_head_t	wq;
98 	/*
99 	 * We express the mutex-alike socket_lock semantics
100 	 * to the lock validator by explicitly managing
101 	 * the slock as a lock variant (in addition to
102 	 * the slock itself):
103 	 */
104 #ifdef CONFIG_DEBUG_LOCK_ALLOC
105 	struct lockdep_map dep_map;
106 #endif
107 } socket_lock_t;
108 
109 struct sock;
110 struct proto;
111 struct net;
112 
113 typedef __u32 __bitwise __portpair;
114 typedef __u64 __bitwise __addrpair;
115 
116 /**
117  *	struct sock_common - minimal network layer representation of sockets
118  *	@skc_daddr: Foreign IPv4 addr
119  *	@skc_rcv_saddr: Bound local IPv4 addr
120  *	@skc_hash: hash value used with various protocol lookup tables
121  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
122  *	@skc_dport: placeholder for inet_dport/tw_dport
123  *	@skc_num: placeholder for inet_num/tw_num
124  *	@skc_family: network address family
125  *	@skc_state: Connection state
126  *	@skc_reuse: %SO_REUSEADDR setting
127  *	@skc_reuseport: %SO_REUSEPORT setting
128  *	@skc_bound_dev_if: bound device index if != 0
129  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
130  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
131  *	@skc_prot: protocol handlers inside a network family
132  *	@skc_net: reference to the network namespace of this socket
133  *	@skc_node: main hash linkage for various protocol lookup tables
134  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
135  *	@skc_tx_queue_mapping: tx queue number for this connection
136  *	@skc_rx_queue_mapping: rx queue number for this connection
137  *	@skc_flags: place holder for sk_flags
138  *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
139  *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
140  *	@skc_incoming_cpu: record/match cpu processing incoming packets
141  *	@skc_refcnt: reference count
142  *
143  *	This is the minimal network layer representation of sockets, the header
144  *	for struct sock and struct inet_timewait_sock.
145  */
146 struct sock_common {
147 	/* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
148 	 * address on 64bit arches : cf INET_MATCH()
149 	 */
150 	union {
151 		__addrpair	skc_addrpair;
152 		struct {
153 			__be32	skc_daddr;
154 			__be32	skc_rcv_saddr;
155 		};
156 	};
157 	union  {
158 		unsigned int	skc_hash;
159 		__u16		skc_u16hashes[2];
160 	};
161 	/* skc_dport && skc_num must be grouped as well */
162 	union {
163 		__portpair	skc_portpair;
164 		struct {
165 			__be16	skc_dport;
166 			__u16	skc_num;
167 		};
168 	};
169 
170 	unsigned short		skc_family;
171 	volatile unsigned char	skc_state;
172 	unsigned char		skc_reuse:4;
173 	unsigned char		skc_reuseport:1;
174 	unsigned char		skc_ipv6only:1;
175 	unsigned char		skc_net_refcnt:1;
176 	int			skc_bound_dev_if;
177 	union {
178 		struct hlist_node	skc_bind_node;
179 		struct hlist_node	skc_portaddr_node;
180 	};
181 	struct proto		*skc_prot;
182 	possible_net_t		skc_net;
183 
184 #if IS_ENABLED(CONFIG_IPV6)
185 	struct in6_addr		skc_v6_daddr;
186 	struct in6_addr		skc_v6_rcv_saddr;
187 #endif
188 
189 	atomic64_t		skc_cookie;
190 
191 	/* following fields are padding to force
192 	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
193 	 * assuming IPV6 is enabled. We use this padding differently
194 	 * for different kind of 'sockets'
195 	 */
196 	union {
197 		unsigned long	skc_flags;
198 		struct sock	*skc_listener; /* request_sock */
199 		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
200 	};
201 	/*
202 	 * fields between dontcopy_begin/dontcopy_end
203 	 * are not copied in sock_copy()
204 	 */
205 	/* private: */
206 	int			skc_dontcopy_begin[0];
207 	/* public: */
208 	union {
209 		struct hlist_node	skc_node;
210 		struct hlist_nulls_node skc_nulls_node;
211 	};
212 	unsigned short		skc_tx_queue_mapping;
213 #ifdef CONFIG_XPS
214 	unsigned short		skc_rx_queue_mapping;
215 #endif
216 	union {
217 		int		skc_incoming_cpu;
218 		u32		skc_rcv_wnd;
219 		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
220 	};
221 
222 	refcount_t		skc_refcnt;
223 	/* private: */
224 	int                     skc_dontcopy_end[0];
225 	union {
226 		u32		skc_rxhash;
227 		u32		skc_window_clamp;
228 		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
229 	};
230 	/* public: */
231 };
232 
233 struct bpf_sk_storage;
234 
235 /**
236   *	struct sock - network layer representation of sockets
237   *	@__sk_common: shared layout with inet_timewait_sock
238   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
239   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
240   *	@sk_lock:	synchronizer
241   *	@sk_kern_sock: True if sock is using kernel lock classes
242   *	@sk_rcvbuf: size of receive buffer in bytes
243   *	@sk_wq: sock wait queue and async head
244   *	@sk_rx_dst: receive input route used by early demux
245   *	@sk_dst_cache: destination cache
246   *	@sk_dst_pending_confirm: need to confirm neighbour
247   *	@sk_policy: flow policy
248   *	@sk_receive_queue: incoming packets
249   *	@sk_wmem_alloc: transmit queue bytes committed
250   *	@sk_tsq_flags: TCP Small Queues flags
251   *	@sk_write_queue: Packet sending queue
252   *	@sk_omem_alloc: "o" is "option" or "other"
253   *	@sk_wmem_queued: persistent queue size
254   *	@sk_forward_alloc: space allocated forward
255   *	@sk_napi_id: id of the last napi context to receive data for sk
256   *	@sk_ll_usec: usecs to busypoll when there is no data
257   *	@sk_allocation: allocation mode
258   *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
259   *	@sk_pacing_status: Pacing status (requested, handled by sch_fq)
260   *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
261   *	@sk_sndbuf: size of send buffer in bytes
262   *	@__sk_flags_offset: empty field used to determine location of bitfield
263   *	@sk_padding: unused element for alignment
264   *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
265   *	@sk_no_check_rx: allow zero checksum in RX packets
266   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
267   *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
268   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
269   *	@sk_gso_max_size: Maximum GSO segment size to build
270   *	@sk_gso_max_segs: Maximum number of GSO segments
271   *	@sk_pacing_shift: scaling factor for TCP Small Queues
272   *	@sk_lingertime: %SO_LINGER l_linger setting
273   *	@sk_backlog: always used with the per-socket spinlock held
274   *	@sk_callback_lock: used with the callbacks in the end of this struct
275   *	@sk_error_queue: rarely used
276   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
277   *			  IPV6_ADDRFORM for instance)
278   *	@sk_err: last error
279   *	@sk_err_soft: errors that don't cause failure but are the cause of a
280   *		      persistent failure not just 'timed out'
281   *	@sk_drops: raw/udp drops counter
282   *	@sk_ack_backlog: current listen backlog
283   *	@sk_max_ack_backlog: listen backlog set in listen()
284   *	@sk_uid: user id of owner
285   *	@sk_priority: %SO_PRIORITY setting
286   *	@sk_type: socket type (%SOCK_STREAM, etc)
287   *	@sk_protocol: which protocol this socket belongs in this network family
288   *	@sk_peer_pid: &struct pid for this socket's peer
289   *	@sk_peer_cred: %SO_PEERCRED setting
290   *	@sk_rcvlowat: %SO_RCVLOWAT setting
291   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
292   *	@sk_sndtimeo: %SO_SNDTIMEO setting
293   *	@sk_txhash: computed flow hash for use on transmit
294   *	@sk_filter: socket filtering instructions
295   *	@sk_timer: sock cleanup timer
296   *	@sk_stamp: time stamp of last packet received
297   *	@sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
298   *	@sk_tsflags: SO_TIMESTAMPING socket options
299   *	@sk_tskey: counter to disambiguate concurrent tstamp requests
300   *	@sk_zckey: counter to order MSG_ZEROCOPY notifications
301   *	@sk_socket: Identd and reporting IO signals
302   *	@sk_user_data: RPC layer private data
303   *	@sk_frag: cached page frag
304   *	@sk_peek_off: current peek_offset value
305   *	@sk_send_head: front of stuff to transmit
306   *	@sk_security: used by security modules
307   *	@sk_mark: generic packet mark
308   *	@sk_cgrp_data: cgroup data for this cgroup
309   *	@sk_memcg: this socket's memory cgroup association
310   *	@sk_write_pending: a write to stream socket waits to start
311   *	@sk_state_change: callback to indicate change in the state of the sock
312   *	@sk_data_ready: callback to indicate there is data to be processed
313   *	@sk_write_space: callback to indicate there is bf sending space available
314   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
315   *	@sk_backlog_rcv: callback to process the backlog
316   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
317   *	@sk_reuseport_cb: reuseport group container
318   *	@sk_rcu: used during RCU grace period
319   *	@sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
320   *	@sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
321   *	@sk_txtime_unused: unused txtime flags
322   */
323 struct sock {
324 	/*
325 	 * Now struct inet_timewait_sock also uses sock_common, so please just
326 	 * don't add nothing before this first member (__sk_common) --acme
327 	 */
328 	struct sock_common	__sk_common;
329 #define sk_node			__sk_common.skc_node
330 #define sk_nulls_node		__sk_common.skc_nulls_node
331 #define sk_refcnt		__sk_common.skc_refcnt
332 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
333 #ifdef CONFIG_XPS
334 #define sk_rx_queue_mapping	__sk_common.skc_rx_queue_mapping
335 #endif
336 
337 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
338 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
339 #define sk_hash			__sk_common.skc_hash
340 #define sk_portpair		__sk_common.skc_portpair
341 #define sk_num			__sk_common.skc_num
342 #define sk_dport		__sk_common.skc_dport
343 #define sk_addrpair		__sk_common.skc_addrpair
344 #define sk_daddr		__sk_common.skc_daddr
345 #define sk_rcv_saddr		__sk_common.skc_rcv_saddr
346 #define sk_family		__sk_common.skc_family
347 #define sk_state		__sk_common.skc_state
348 #define sk_reuse		__sk_common.skc_reuse
349 #define sk_reuseport		__sk_common.skc_reuseport
350 #define sk_ipv6only		__sk_common.skc_ipv6only
351 #define sk_net_refcnt		__sk_common.skc_net_refcnt
352 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
353 #define sk_bind_node		__sk_common.skc_bind_node
354 #define sk_prot			__sk_common.skc_prot
355 #define sk_net			__sk_common.skc_net
356 #define sk_v6_daddr		__sk_common.skc_v6_daddr
357 #define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
358 #define sk_cookie		__sk_common.skc_cookie
359 #define sk_incoming_cpu		__sk_common.skc_incoming_cpu
360 #define sk_flags		__sk_common.skc_flags
361 #define sk_rxhash		__sk_common.skc_rxhash
362 
363 	socket_lock_t		sk_lock;
364 	atomic_t		sk_drops;
365 	int			sk_rcvlowat;
366 	struct sk_buff_head	sk_error_queue;
367 	struct sk_buff		*sk_rx_skb_cache;
368 	struct sk_buff_head	sk_receive_queue;
369 	/*
370 	 * The backlog queue is special, it is always used with
371 	 * the per-socket spinlock held and requires low latency
372 	 * access. Therefore we special case it's implementation.
373 	 * Note : rmem_alloc is in this structure to fill a hole
374 	 * on 64bit arches, not because its logically part of
375 	 * backlog.
376 	 */
377 	struct {
378 		atomic_t	rmem_alloc;
379 		int		len;
380 		struct sk_buff	*head;
381 		struct sk_buff	*tail;
382 	} sk_backlog;
383 #define sk_rmem_alloc sk_backlog.rmem_alloc
384 
385 	int			sk_forward_alloc;
386 #ifdef CONFIG_NET_RX_BUSY_POLL
387 	unsigned int		sk_ll_usec;
388 	/* ===== mostly read cache line ===== */
389 	unsigned int		sk_napi_id;
390 #endif
391 	int			sk_rcvbuf;
392 
393 	struct sk_filter __rcu	*sk_filter;
394 	union {
395 		struct socket_wq __rcu	*sk_wq;
396 		struct socket_wq	*sk_wq_raw;
397 	};
398 #ifdef CONFIG_XFRM
399 	struct xfrm_policy __rcu *sk_policy[2];
400 #endif
401 	struct dst_entry	*sk_rx_dst;
402 	struct dst_entry __rcu	*sk_dst_cache;
403 	atomic_t		sk_omem_alloc;
404 	int			sk_sndbuf;
405 
406 	/* ===== cache line for TX ===== */
407 	int			sk_wmem_queued;
408 	refcount_t		sk_wmem_alloc;
409 	unsigned long		sk_tsq_flags;
410 	union {
411 		struct sk_buff	*sk_send_head;
412 		struct rb_root	tcp_rtx_queue;
413 	};
414 	struct sk_buff		*sk_tx_skb_cache;
415 	struct sk_buff_head	sk_write_queue;
416 	__s32			sk_peek_off;
417 	int			sk_write_pending;
418 	__u32			sk_dst_pending_confirm;
419 	u32			sk_pacing_status; /* see enum sk_pacing */
420 	long			sk_sndtimeo;
421 	struct timer_list	sk_timer;
422 	__u32			sk_priority;
423 	__u32			sk_mark;
424 	unsigned long		sk_pacing_rate; /* bytes per second */
425 	unsigned long		sk_max_pacing_rate;
426 	struct page_frag	sk_frag;
427 	netdev_features_t	sk_route_caps;
428 	netdev_features_t	sk_route_nocaps;
429 	netdev_features_t	sk_route_forced_caps;
430 	int			sk_gso_type;
431 	unsigned int		sk_gso_max_size;
432 	gfp_t			sk_allocation;
433 	__u32			sk_txhash;
434 
435 	/*
436 	 * Because of non atomicity rules, all
437 	 * changes are protected by socket lock.
438 	 */
439 	unsigned int		__sk_flags_offset[0];
440 #ifdef __BIG_ENDIAN_BITFIELD
441 #define SK_FL_PROTO_SHIFT  16
442 #define SK_FL_PROTO_MASK   0x00ff0000
443 
444 #define SK_FL_TYPE_SHIFT   0
445 #define SK_FL_TYPE_MASK    0x0000ffff
446 #else
447 #define SK_FL_PROTO_SHIFT  8
448 #define SK_FL_PROTO_MASK   0x0000ff00
449 
450 #define SK_FL_TYPE_SHIFT   16
451 #define SK_FL_TYPE_MASK    0xffff0000
452 #endif
453 
454 	unsigned int		sk_padding : 1,
455 				sk_kern_sock : 1,
456 				sk_no_check_tx : 1,
457 				sk_no_check_rx : 1,
458 				sk_userlocks : 4,
459 				sk_protocol  : 8,
460 				sk_type      : 16;
461 #define SK_PROTOCOL_MAX U8_MAX
462 	u16			sk_gso_max_segs;
463 	u8			sk_pacing_shift;
464 	unsigned long	        sk_lingertime;
465 	struct proto		*sk_prot_creator;
466 	rwlock_t		sk_callback_lock;
467 	int			sk_err,
468 				sk_err_soft;
469 	u32			sk_ack_backlog;
470 	u32			sk_max_ack_backlog;
471 	kuid_t			sk_uid;
472 	struct pid		*sk_peer_pid;
473 	const struct cred	*sk_peer_cred;
474 	long			sk_rcvtimeo;
475 	ktime_t			sk_stamp;
476 #if BITS_PER_LONG==32
477 	seqlock_t		sk_stamp_seq;
478 #endif
479 	u16			sk_tsflags;
480 	u8			sk_shutdown;
481 	u32			sk_tskey;
482 	atomic_t		sk_zckey;
483 
484 	u8			sk_clockid;
485 	u8			sk_txtime_deadline_mode : 1,
486 				sk_txtime_report_errors : 1,
487 				sk_txtime_unused : 6;
488 
489 	struct socket		*sk_socket;
490 	void			*sk_user_data;
491 #ifdef CONFIG_SECURITY
492 	void			*sk_security;
493 #endif
494 	struct sock_cgroup_data	sk_cgrp_data;
495 	struct mem_cgroup	*sk_memcg;
496 	void			(*sk_state_change)(struct sock *sk);
497 	void			(*sk_data_ready)(struct sock *sk);
498 	void			(*sk_write_space)(struct sock *sk);
499 	void			(*sk_error_report)(struct sock *sk);
500 	int			(*sk_backlog_rcv)(struct sock *sk,
501 						  struct sk_buff *skb);
502 #ifdef CONFIG_SOCK_VALIDATE_XMIT
503 	struct sk_buff*		(*sk_validate_xmit_skb)(struct sock *sk,
504 							struct net_device *dev,
505 							struct sk_buff *skb);
506 #endif
507 	void                    (*sk_destruct)(struct sock *sk);
508 	struct sock_reuseport __rcu	*sk_reuseport_cb;
509 #ifdef CONFIG_BPF_SYSCALL
510 	struct bpf_sk_storage __rcu	*sk_bpf_storage;
511 #endif
512 	struct rcu_head		sk_rcu;
513 };
514 
515 enum sk_pacing {
516 	SK_PACING_NONE		= 0,
517 	SK_PACING_NEEDED	= 1,
518 	SK_PACING_FQ		= 2,
519 };
520 
521 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
522 
523 #define rcu_dereference_sk_user_data(sk)	rcu_dereference(__sk_user_data((sk)))
524 #define rcu_assign_sk_user_data(sk, ptr)	rcu_assign_pointer(__sk_user_data((sk)), ptr)
525 
526 /*
527  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
528  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
529  * on a socket means that the socket will reuse everybody else's port
530  * without looking at the other's sk_reuse value.
531  */
532 
533 #define SK_NO_REUSE	0
534 #define SK_CAN_REUSE	1
535 #define SK_FORCE_REUSE	2
536 
537 int sk_set_peek_off(struct sock *sk, int val);
538 
539 static inline int sk_peek_offset(struct sock *sk, int flags)
540 {
541 	if (unlikely(flags & MSG_PEEK)) {
542 		return READ_ONCE(sk->sk_peek_off);
543 	}
544 
545 	return 0;
546 }
547 
548 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
549 {
550 	s32 off = READ_ONCE(sk->sk_peek_off);
551 
552 	if (unlikely(off >= 0)) {
553 		off = max_t(s32, off - val, 0);
554 		WRITE_ONCE(sk->sk_peek_off, off);
555 	}
556 }
557 
558 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
559 {
560 	sk_peek_offset_bwd(sk, -val);
561 }
562 
563 /*
564  * Hashed lists helper routines
565  */
566 static inline struct sock *sk_entry(const struct hlist_node *node)
567 {
568 	return hlist_entry(node, struct sock, sk_node);
569 }
570 
571 static inline struct sock *__sk_head(const struct hlist_head *head)
572 {
573 	return hlist_entry(head->first, struct sock, sk_node);
574 }
575 
576 static inline struct sock *sk_head(const struct hlist_head *head)
577 {
578 	return hlist_empty(head) ? NULL : __sk_head(head);
579 }
580 
581 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
582 {
583 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
584 }
585 
586 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
587 {
588 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
589 }
590 
591 static inline struct sock *sk_next(const struct sock *sk)
592 {
593 	return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
594 }
595 
596 static inline struct sock *sk_nulls_next(const struct sock *sk)
597 {
598 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
599 		hlist_nulls_entry(sk->sk_nulls_node.next,
600 				  struct sock, sk_nulls_node) :
601 		NULL;
602 }
603 
604 static inline bool sk_unhashed(const struct sock *sk)
605 {
606 	return hlist_unhashed(&sk->sk_node);
607 }
608 
609 static inline bool sk_hashed(const struct sock *sk)
610 {
611 	return !sk_unhashed(sk);
612 }
613 
614 static inline void sk_node_init(struct hlist_node *node)
615 {
616 	node->pprev = NULL;
617 }
618 
619 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
620 {
621 	node->pprev = NULL;
622 }
623 
624 static inline void __sk_del_node(struct sock *sk)
625 {
626 	__hlist_del(&sk->sk_node);
627 }
628 
629 /* NB: equivalent to hlist_del_init_rcu */
630 static inline bool __sk_del_node_init(struct sock *sk)
631 {
632 	if (sk_hashed(sk)) {
633 		__sk_del_node(sk);
634 		sk_node_init(&sk->sk_node);
635 		return true;
636 	}
637 	return false;
638 }
639 
640 /* Grab socket reference count. This operation is valid only
641    when sk is ALREADY grabbed f.e. it is found in hash table
642    or a list and the lookup is made under lock preventing hash table
643    modifications.
644  */
645 
646 static __always_inline void sock_hold(struct sock *sk)
647 {
648 	refcount_inc(&sk->sk_refcnt);
649 }
650 
651 /* Ungrab socket in the context, which assumes that socket refcnt
652    cannot hit zero, f.e. it is true in context of any socketcall.
653  */
654 static __always_inline void __sock_put(struct sock *sk)
655 {
656 	refcount_dec(&sk->sk_refcnt);
657 }
658 
659 static inline bool sk_del_node_init(struct sock *sk)
660 {
661 	bool rc = __sk_del_node_init(sk);
662 
663 	if (rc) {
664 		/* paranoid for a while -acme */
665 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
666 		__sock_put(sk);
667 	}
668 	return rc;
669 }
670 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
671 
672 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
673 {
674 	if (sk_hashed(sk)) {
675 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
676 		return true;
677 	}
678 	return false;
679 }
680 
681 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
682 {
683 	bool rc = __sk_nulls_del_node_init_rcu(sk);
684 
685 	if (rc) {
686 		/* paranoid for a while -acme */
687 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
688 		__sock_put(sk);
689 	}
690 	return rc;
691 }
692 
693 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
694 {
695 	hlist_add_head(&sk->sk_node, list);
696 }
697 
698 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
699 {
700 	sock_hold(sk);
701 	__sk_add_node(sk, list);
702 }
703 
704 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
705 {
706 	sock_hold(sk);
707 	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
708 	    sk->sk_family == AF_INET6)
709 		hlist_add_tail_rcu(&sk->sk_node, list);
710 	else
711 		hlist_add_head_rcu(&sk->sk_node, list);
712 }
713 
714 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
715 {
716 	sock_hold(sk);
717 	hlist_add_tail_rcu(&sk->sk_node, list);
718 }
719 
720 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
721 {
722 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
723 }
724 
725 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
726 {
727 	sock_hold(sk);
728 	__sk_nulls_add_node_rcu(sk, list);
729 }
730 
731 static inline void __sk_del_bind_node(struct sock *sk)
732 {
733 	__hlist_del(&sk->sk_bind_node);
734 }
735 
736 static inline void sk_add_bind_node(struct sock *sk,
737 					struct hlist_head *list)
738 {
739 	hlist_add_head(&sk->sk_bind_node, list);
740 }
741 
742 #define sk_for_each(__sk, list) \
743 	hlist_for_each_entry(__sk, list, sk_node)
744 #define sk_for_each_rcu(__sk, list) \
745 	hlist_for_each_entry_rcu(__sk, list, sk_node)
746 #define sk_nulls_for_each(__sk, node, list) \
747 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
748 #define sk_nulls_for_each_rcu(__sk, node, list) \
749 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
750 #define sk_for_each_from(__sk) \
751 	hlist_for_each_entry_from(__sk, sk_node)
752 #define sk_nulls_for_each_from(__sk, node) \
753 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
754 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
755 #define sk_for_each_safe(__sk, tmp, list) \
756 	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
757 #define sk_for_each_bound(__sk, list) \
758 	hlist_for_each_entry(__sk, list, sk_bind_node)
759 
760 /**
761  * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
762  * @tpos:	the type * to use as a loop cursor.
763  * @pos:	the &struct hlist_node to use as a loop cursor.
764  * @head:	the head for your list.
765  * @offset:	offset of hlist_node within the struct.
766  *
767  */
768 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \
769 	for (pos = rcu_dereference(hlist_first_rcu(head));		       \
770 	     pos != NULL &&						       \
771 		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
772 	     pos = rcu_dereference(hlist_next_rcu(pos)))
773 
774 static inline struct user_namespace *sk_user_ns(struct sock *sk)
775 {
776 	/* Careful only use this in a context where these parameters
777 	 * can not change and must all be valid, such as recvmsg from
778 	 * userspace.
779 	 */
780 	return sk->sk_socket->file->f_cred->user_ns;
781 }
782 
783 /* Sock flags */
784 enum sock_flags {
785 	SOCK_DEAD,
786 	SOCK_DONE,
787 	SOCK_URGINLINE,
788 	SOCK_KEEPOPEN,
789 	SOCK_LINGER,
790 	SOCK_DESTROY,
791 	SOCK_BROADCAST,
792 	SOCK_TIMESTAMP,
793 	SOCK_ZAPPED,
794 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
795 	SOCK_DBG, /* %SO_DEBUG setting */
796 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
797 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
798 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
799 	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
800 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
801 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
802 	SOCK_FASYNC, /* fasync() active */
803 	SOCK_RXQ_OVFL,
804 	SOCK_ZEROCOPY, /* buffers from userspace */
805 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
806 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
807 		     * Will use last 4 bytes of packet sent from
808 		     * user-space instead.
809 		     */
810 	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
811 	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
812 	SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
813 	SOCK_TXTIME,
814 	SOCK_XDP, /* XDP is attached */
815 	SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
816 };
817 
818 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
819 
820 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
821 {
822 	nsk->sk_flags = osk->sk_flags;
823 }
824 
825 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
826 {
827 	__set_bit(flag, &sk->sk_flags);
828 }
829 
830 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
831 {
832 	__clear_bit(flag, &sk->sk_flags);
833 }
834 
835 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
836 {
837 	return test_bit(flag, &sk->sk_flags);
838 }
839 
840 #ifdef CONFIG_NET
841 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
842 static inline int sk_memalloc_socks(void)
843 {
844 	return static_branch_unlikely(&memalloc_socks_key);
845 }
846 #else
847 
848 static inline int sk_memalloc_socks(void)
849 {
850 	return 0;
851 }
852 
853 #endif
854 
855 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
856 {
857 	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
858 }
859 
860 static inline void sk_acceptq_removed(struct sock *sk)
861 {
862 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
863 }
864 
865 static inline void sk_acceptq_added(struct sock *sk)
866 {
867 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
868 }
869 
870 static inline bool sk_acceptq_is_full(const struct sock *sk)
871 {
872 	return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
873 }
874 
875 /*
876  * Compute minimal free write space needed to queue new packets.
877  */
878 static inline int sk_stream_min_wspace(const struct sock *sk)
879 {
880 	return READ_ONCE(sk->sk_wmem_queued) >> 1;
881 }
882 
883 static inline int sk_stream_wspace(const struct sock *sk)
884 {
885 	return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
886 }
887 
888 static inline void sk_wmem_queued_add(struct sock *sk, int val)
889 {
890 	WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
891 }
892 
893 void sk_stream_write_space(struct sock *sk);
894 
895 /* OOB backlog add */
896 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
897 {
898 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
899 	skb_dst_force(skb);
900 
901 	if (!sk->sk_backlog.tail)
902 		WRITE_ONCE(sk->sk_backlog.head, skb);
903 	else
904 		sk->sk_backlog.tail->next = skb;
905 
906 	WRITE_ONCE(sk->sk_backlog.tail, skb);
907 	skb->next = NULL;
908 }
909 
910 /*
911  * Take into account size of receive queue and backlog queue
912  * Do not take into account this skb truesize,
913  * to allow even a single big packet to come.
914  */
915 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
916 {
917 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
918 
919 	return qsize > limit;
920 }
921 
922 /* The per-socket spinlock must be held here. */
923 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
924 					      unsigned int limit)
925 {
926 	if (sk_rcvqueues_full(sk, limit))
927 		return -ENOBUFS;
928 
929 	/*
930 	 * If the skb was allocated from pfmemalloc reserves, only
931 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
932 	 * helping free memory
933 	 */
934 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
935 		return -ENOMEM;
936 
937 	__sk_add_backlog(sk, skb);
938 	sk->sk_backlog.len += skb->truesize;
939 	return 0;
940 }
941 
942 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
943 
944 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
945 {
946 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
947 		return __sk_backlog_rcv(sk, skb);
948 
949 	return sk->sk_backlog_rcv(sk, skb);
950 }
951 
952 static inline void sk_incoming_cpu_update(struct sock *sk)
953 {
954 	int cpu = raw_smp_processor_id();
955 
956 	if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
957 		WRITE_ONCE(sk->sk_incoming_cpu, cpu);
958 }
959 
960 static inline void sock_rps_record_flow_hash(__u32 hash)
961 {
962 #ifdef CONFIG_RPS
963 	struct rps_sock_flow_table *sock_flow_table;
964 
965 	rcu_read_lock();
966 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
967 	rps_record_sock_flow(sock_flow_table, hash);
968 	rcu_read_unlock();
969 #endif
970 }
971 
972 static inline void sock_rps_record_flow(const struct sock *sk)
973 {
974 #ifdef CONFIG_RPS
975 	if (static_branch_unlikely(&rfs_needed)) {
976 		/* Reading sk->sk_rxhash might incur an expensive cache line
977 		 * miss.
978 		 *
979 		 * TCP_ESTABLISHED does cover almost all states where RFS
980 		 * might be useful, and is cheaper [1] than testing :
981 		 *	IPv4: inet_sk(sk)->inet_daddr
982 		 * 	IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
983 		 * OR	an additional socket flag
984 		 * [1] : sk_state and sk_prot are in the same cache line.
985 		 */
986 		if (sk->sk_state == TCP_ESTABLISHED)
987 			sock_rps_record_flow_hash(sk->sk_rxhash);
988 	}
989 #endif
990 }
991 
992 static inline void sock_rps_save_rxhash(struct sock *sk,
993 					const struct sk_buff *skb)
994 {
995 #ifdef CONFIG_RPS
996 	if (unlikely(sk->sk_rxhash != skb->hash))
997 		sk->sk_rxhash = skb->hash;
998 #endif
999 }
1000 
1001 static inline void sock_rps_reset_rxhash(struct sock *sk)
1002 {
1003 #ifdef CONFIG_RPS
1004 	sk->sk_rxhash = 0;
1005 #endif
1006 }
1007 
1008 #define sk_wait_event(__sk, __timeo, __condition, __wait)		\
1009 	({	int __rc;						\
1010 		release_sock(__sk);					\
1011 		__rc = __condition;					\
1012 		if (!__rc) {						\
1013 			*(__timeo) = wait_woken(__wait,			\
1014 						TASK_INTERRUPTIBLE,	\
1015 						*(__timeo));		\
1016 		}							\
1017 		sched_annotate_sleep();					\
1018 		lock_sock(__sk);					\
1019 		__rc = __condition;					\
1020 		__rc;							\
1021 	})
1022 
1023 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1024 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1025 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1026 int sk_stream_error(struct sock *sk, int flags, int err);
1027 void sk_stream_kill_queues(struct sock *sk);
1028 void sk_set_memalloc(struct sock *sk);
1029 void sk_clear_memalloc(struct sock *sk);
1030 
1031 void __sk_flush_backlog(struct sock *sk);
1032 
1033 static inline bool sk_flush_backlog(struct sock *sk)
1034 {
1035 	if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1036 		__sk_flush_backlog(sk);
1037 		return true;
1038 	}
1039 	return false;
1040 }
1041 
1042 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1043 
1044 struct request_sock_ops;
1045 struct timewait_sock_ops;
1046 struct inet_hashinfo;
1047 struct raw_hashinfo;
1048 struct smc_hashinfo;
1049 struct module;
1050 
1051 /*
1052  * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1053  * un-modified. Special care is taken when initializing object to zero.
1054  */
1055 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1056 {
1057 	if (offsetof(struct sock, sk_node.next) != 0)
1058 		memset(sk, 0, offsetof(struct sock, sk_node.next));
1059 	memset(&sk->sk_node.pprev, 0,
1060 	       size - offsetof(struct sock, sk_node.pprev));
1061 }
1062 
1063 /* Networking protocol blocks we attach to sockets.
1064  * socket layer -> transport layer interface
1065  */
1066 struct proto {
1067 	void			(*close)(struct sock *sk,
1068 					long timeout);
1069 	int			(*pre_connect)(struct sock *sk,
1070 					struct sockaddr *uaddr,
1071 					int addr_len);
1072 	int			(*connect)(struct sock *sk,
1073 					struct sockaddr *uaddr,
1074 					int addr_len);
1075 	int			(*disconnect)(struct sock *sk, int flags);
1076 
1077 	struct sock *		(*accept)(struct sock *sk, int flags, int *err,
1078 					  bool kern);
1079 
1080 	int			(*ioctl)(struct sock *sk, int cmd,
1081 					 unsigned long arg);
1082 	int			(*init)(struct sock *sk);
1083 	void			(*destroy)(struct sock *sk);
1084 	void			(*shutdown)(struct sock *sk, int how);
1085 	int			(*setsockopt)(struct sock *sk, int level,
1086 					int optname, char __user *optval,
1087 					unsigned int optlen);
1088 	int			(*getsockopt)(struct sock *sk, int level,
1089 					int optname, char __user *optval,
1090 					int __user *option);
1091 	void			(*keepalive)(struct sock *sk, int valbool);
1092 #ifdef CONFIG_COMPAT
1093 	int			(*compat_setsockopt)(struct sock *sk,
1094 					int level,
1095 					int optname, char __user *optval,
1096 					unsigned int optlen);
1097 	int			(*compat_getsockopt)(struct sock *sk,
1098 					int level,
1099 					int optname, char __user *optval,
1100 					int __user *option);
1101 	int			(*compat_ioctl)(struct sock *sk,
1102 					unsigned int cmd, unsigned long arg);
1103 #endif
1104 	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
1105 					   size_t len);
1106 	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
1107 					   size_t len, int noblock, int flags,
1108 					   int *addr_len);
1109 	int			(*sendpage)(struct sock *sk, struct page *page,
1110 					int offset, size_t size, int flags);
1111 	int			(*bind)(struct sock *sk,
1112 					struct sockaddr *uaddr, int addr_len);
1113 
1114 	int			(*backlog_rcv) (struct sock *sk,
1115 						struct sk_buff *skb);
1116 
1117 	void		(*release_cb)(struct sock *sk);
1118 
1119 	/* Keeping track of sk's, looking them up, and port selection methods. */
1120 	int			(*hash)(struct sock *sk);
1121 	void			(*unhash)(struct sock *sk);
1122 	void			(*rehash)(struct sock *sk);
1123 	int			(*get_port)(struct sock *sk, unsigned short snum);
1124 
1125 	/* Keeping track of sockets in use */
1126 #ifdef CONFIG_PROC_FS
1127 	unsigned int		inuse_idx;
1128 #endif
1129 
1130 	bool			(*stream_memory_free)(const struct sock *sk, int wake);
1131 	bool			(*stream_memory_read)(const struct sock *sk);
1132 	/* Memory pressure */
1133 	void			(*enter_memory_pressure)(struct sock *sk);
1134 	void			(*leave_memory_pressure)(struct sock *sk);
1135 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1136 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1137 	/*
1138 	 * Pressure flag: try to collapse.
1139 	 * Technical note: it is used by multiple contexts non atomically.
1140 	 * All the __sk_mem_schedule() is of this nature: accounting
1141 	 * is strict, actions are advisory and have some latency.
1142 	 */
1143 	unsigned long		*memory_pressure;
1144 	long			*sysctl_mem;
1145 
1146 	int			*sysctl_wmem;
1147 	int			*sysctl_rmem;
1148 	u32			sysctl_wmem_offset;
1149 	u32			sysctl_rmem_offset;
1150 
1151 	int			max_header;
1152 	bool			no_autobind;
1153 
1154 	struct kmem_cache	*slab;
1155 	unsigned int		obj_size;
1156 	slab_flags_t		slab_flags;
1157 	unsigned int		useroffset;	/* Usercopy region offset */
1158 	unsigned int		usersize;	/* Usercopy region size */
1159 
1160 	struct percpu_counter	*orphan_count;
1161 
1162 	struct request_sock_ops	*rsk_prot;
1163 	struct timewait_sock_ops *twsk_prot;
1164 
1165 	union {
1166 		struct inet_hashinfo	*hashinfo;
1167 		struct udp_table	*udp_table;
1168 		struct raw_hashinfo	*raw_hash;
1169 		struct smc_hashinfo	*smc_hash;
1170 	} h;
1171 
1172 	struct module		*owner;
1173 
1174 	char			name[32];
1175 
1176 	struct list_head	node;
1177 #ifdef SOCK_REFCNT_DEBUG
1178 	atomic_t		socks;
1179 #endif
1180 	int			(*diag_destroy)(struct sock *sk, int err);
1181 } __randomize_layout;
1182 
1183 int proto_register(struct proto *prot, int alloc_slab);
1184 void proto_unregister(struct proto *prot);
1185 int sock_load_diag_module(int family, int protocol);
1186 
1187 #ifdef SOCK_REFCNT_DEBUG
1188 static inline void sk_refcnt_debug_inc(struct sock *sk)
1189 {
1190 	atomic_inc(&sk->sk_prot->socks);
1191 }
1192 
1193 static inline void sk_refcnt_debug_dec(struct sock *sk)
1194 {
1195 	atomic_dec(&sk->sk_prot->socks);
1196 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1197 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1198 }
1199 
1200 static inline void sk_refcnt_debug_release(const struct sock *sk)
1201 {
1202 	if (refcount_read(&sk->sk_refcnt) != 1)
1203 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1204 		       sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1205 }
1206 #else /* SOCK_REFCNT_DEBUG */
1207 #define sk_refcnt_debug_inc(sk) do { } while (0)
1208 #define sk_refcnt_debug_dec(sk) do { } while (0)
1209 #define sk_refcnt_debug_release(sk) do { } while (0)
1210 #endif /* SOCK_REFCNT_DEBUG */
1211 
1212 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1213 {
1214 	if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1215 		return false;
1216 
1217 	return sk->sk_prot->stream_memory_free ?
1218 		sk->sk_prot->stream_memory_free(sk, wake) : true;
1219 }
1220 
1221 static inline bool sk_stream_memory_free(const struct sock *sk)
1222 {
1223 	return __sk_stream_memory_free(sk, 0);
1224 }
1225 
1226 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1227 {
1228 	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1229 	       __sk_stream_memory_free(sk, wake);
1230 }
1231 
1232 static inline bool sk_stream_is_writeable(const struct sock *sk)
1233 {
1234 	return __sk_stream_is_writeable(sk, 0);
1235 }
1236 
1237 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1238 					    struct cgroup *ancestor)
1239 {
1240 #ifdef CONFIG_SOCK_CGROUP_DATA
1241 	return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1242 				    ancestor);
1243 #else
1244 	return -ENOTSUPP;
1245 #endif
1246 }
1247 
1248 static inline bool sk_has_memory_pressure(const struct sock *sk)
1249 {
1250 	return sk->sk_prot->memory_pressure != NULL;
1251 }
1252 
1253 static inline bool sk_under_memory_pressure(const struct sock *sk)
1254 {
1255 	if (!sk->sk_prot->memory_pressure)
1256 		return false;
1257 
1258 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1259 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
1260 		return true;
1261 
1262 	return !!*sk->sk_prot->memory_pressure;
1263 }
1264 
1265 static inline long
1266 sk_memory_allocated(const struct sock *sk)
1267 {
1268 	return atomic_long_read(sk->sk_prot->memory_allocated);
1269 }
1270 
1271 static inline long
1272 sk_memory_allocated_add(struct sock *sk, int amt)
1273 {
1274 	return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1275 }
1276 
1277 static inline void
1278 sk_memory_allocated_sub(struct sock *sk, int amt)
1279 {
1280 	atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1281 }
1282 
1283 static inline void sk_sockets_allocated_dec(struct sock *sk)
1284 {
1285 	percpu_counter_dec(sk->sk_prot->sockets_allocated);
1286 }
1287 
1288 static inline void sk_sockets_allocated_inc(struct sock *sk)
1289 {
1290 	percpu_counter_inc(sk->sk_prot->sockets_allocated);
1291 }
1292 
1293 static inline u64
1294 sk_sockets_allocated_read_positive(struct sock *sk)
1295 {
1296 	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1297 }
1298 
1299 static inline int
1300 proto_sockets_allocated_sum_positive(struct proto *prot)
1301 {
1302 	return percpu_counter_sum_positive(prot->sockets_allocated);
1303 }
1304 
1305 static inline long
1306 proto_memory_allocated(struct proto *prot)
1307 {
1308 	return atomic_long_read(prot->memory_allocated);
1309 }
1310 
1311 static inline bool
1312 proto_memory_pressure(struct proto *prot)
1313 {
1314 	if (!prot->memory_pressure)
1315 		return false;
1316 	return !!*prot->memory_pressure;
1317 }
1318 
1319 
1320 #ifdef CONFIG_PROC_FS
1321 /* Called with local bh disabled */
1322 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1323 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1324 int sock_inuse_get(struct net *net);
1325 #else
1326 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1327 		int inc)
1328 {
1329 }
1330 #endif
1331 
1332 
1333 /* With per-bucket locks this operation is not-atomic, so that
1334  * this version is not worse.
1335  */
1336 static inline int __sk_prot_rehash(struct sock *sk)
1337 {
1338 	sk->sk_prot->unhash(sk);
1339 	return sk->sk_prot->hash(sk);
1340 }
1341 
1342 /* About 10 seconds */
1343 #define SOCK_DESTROY_TIME (10*HZ)
1344 
1345 /* Sockets 0-1023 can't be bound to unless you are superuser */
1346 #define PROT_SOCK	1024
1347 
1348 #define SHUTDOWN_MASK	3
1349 #define RCV_SHUTDOWN	1
1350 #define SEND_SHUTDOWN	2
1351 
1352 #define SOCK_SNDBUF_LOCK	1
1353 #define SOCK_RCVBUF_LOCK	2
1354 #define SOCK_BINDADDR_LOCK	4
1355 #define SOCK_BINDPORT_LOCK	8
1356 
1357 struct socket_alloc {
1358 	struct socket socket;
1359 	struct inode vfs_inode;
1360 };
1361 
1362 static inline struct socket *SOCKET_I(struct inode *inode)
1363 {
1364 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1365 }
1366 
1367 static inline struct inode *SOCK_INODE(struct socket *socket)
1368 {
1369 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1370 }
1371 
1372 /*
1373  * Functions for memory accounting
1374  */
1375 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1376 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1377 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1378 void __sk_mem_reclaim(struct sock *sk, int amount);
1379 
1380 /* We used to have PAGE_SIZE here, but systems with 64KB pages
1381  * do not necessarily have 16x time more memory than 4KB ones.
1382  */
1383 #define SK_MEM_QUANTUM 4096
1384 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1385 #define SK_MEM_SEND	0
1386 #define SK_MEM_RECV	1
1387 
1388 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1389 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1390 {
1391 	long val = sk->sk_prot->sysctl_mem[index];
1392 
1393 #if PAGE_SIZE > SK_MEM_QUANTUM
1394 	val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1395 #elif PAGE_SIZE < SK_MEM_QUANTUM
1396 	val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1397 #endif
1398 	return val;
1399 }
1400 
1401 static inline int sk_mem_pages(int amt)
1402 {
1403 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1404 }
1405 
1406 static inline bool sk_has_account(struct sock *sk)
1407 {
1408 	/* return true if protocol supports memory accounting */
1409 	return !!sk->sk_prot->memory_allocated;
1410 }
1411 
1412 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1413 {
1414 	if (!sk_has_account(sk))
1415 		return true;
1416 	return size <= sk->sk_forward_alloc ||
1417 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1418 }
1419 
1420 static inline bool
1421 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1422 {
1423 	if (!sk_has_account(sk))
1424 		return true;
1425 	return size<= sk->sk_forward_alloc ||
1426 		__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1427 		skb_pfmemalloc(skb);
1428 }
1429 
1430 static inline void sk_mem_reclaim(struct sock *sk)
1431 {
1432 	if (!sk_has_account(sk))
1433 		return;
1434 	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1435 		__sk_mem_reclaim(sk, sk->sk_forward_alloc);
1436 }
1437 
1438 static inline void sk_mem_reclaim_partial(struct sock *sk)
1439 {
1440 	if (!sk_has_account(sk))
1441 		return;
1442 	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1443 		__sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1444 }
1445 
1446 static inline void sk_mem_charge(struct sock *sk, int size)
1447 {
1448 	if (!sk_has_account(sk))
1449 		return;
1450 	sk->sk_forward_alloc -= size;
1451 }
1452 
1453 static inline void sk_mem_uncharge(struct sock *sk, int size)
1454 {
1455 	if (!sk_has_account(sk))
1456 		return;
1457 	sk->sk_forward_alloc += size;
1458 
1459 	/* Avoid a possible overflow.
1460 	 * TCP send queues can make this happen, if sk_mem_reclaim()
1461 	 * is not called and more than 2 GBytes are released at once.
1462 	 *
1463 	 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1464 	 * no need to hold that much forward allocation anyway.
1465 	 */
1466 	if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1467 		__sk_mem_reclaim(sk, 1 << 20);
1468 }
1469 
1470 DECLARE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
1471 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1472 {
1473 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1474 	sk_wmem_queued_add(sk, -skb->truesize);
1475 	sk_mem_uncharge(sk, skb->truesize);
1476 	if (static_branch_unlikely(&tcp_tx_skb_cache_key) &&
1477 	    !sk->sk_tx_skb_cache && !skb_cloned(skb)) {
1478 		skb_zcopy_clear(skb, true);
1479 		sk->sk_tx_skb_cache = skb;
1480 		return;
1481 	}
1482 	__kfree_skb(skb);
1483 }
1484 
1485 static inline void sock_release_ownership(struct sock *sk)
1486 {
1487 	if (sk->sk_lock.owned) {
1488 		sk->sk_lock.owned = 0;
1489 
1490 		/* The sk_lock has mutex_unlock() semantics: */
1491 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1492 	}
1493 }
1494 
1495 /*
1496  * Macro so as to not evaluate some arguments when
1497  * lockdep is not enabled.
1498  *
1499  * Mark both the sk_lock and the sk_lock.slock as a
1500  * per-address-family lock class.
1501  */
1502 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1503 do {									\
1504 	sk->sk_lock.owned = 0;						\
1505 	init_waitqueue_head(&sk->sk_lock.wq);				\
1506 	spin_lock_init(&(sk)->sk_lock.slock);				\
1507 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1508 			sizeof((sk)->sk_lock));				\
1509 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1510 				(skey), (sname));				\
1511 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1512 } while (0)
1513 
1514 #ifdef CONFIG_LOCKDEP
1515 static inline bool lockdep_sock_is_held(const struct sock *sk)
1516 {
1517 	return lockdep_is_held(&sk->sk_lock) ||
1518 	       lockdep_is_held(&sk->sk_lock.slock);
1519 }
1520 #endif
1521 
1522 void lock_sock_nested(struct sock *sk, int subclass);
1523 
1524 static inline void lock_sock(struct sock *sk)
1525 {
1526 	lock_sock_nested(sk, 0);
1527 }
1528 
1529 void __release_sock(struct sock *sk);
1530 void release_sock(struct sock *sk);
1531 
1532 /* BH context may only use the following locking interface. */
1533 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1534 #define bh_lock_sock_nested(__sk) \
1535 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1536 				SINGLE_DEPTH_NESTING)
1537 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1538 
1539 bool lock_sock_fast(struct sock *sk);
1540 /**
1541  * unlock_sock_fast - complement of lock_sock_fast
1542  * @sk: socket
1543  * @slow: slow mode
1544  *
1545  * fast unlock socket for user context.
1546  * If slow mode is on, we call regular release_sock()
1547  */
1548 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1549 {
1550 	if (slow)
1551 		release_sock(sk);
1552 	else
1553 		spin_unlock_bh(&sk->sk_lock.slock);
1554 }
1555 
1556 /* Used by processes to "lock" a socket state, so that
1557  * interrupts and bottom half handlers won't change it
1558  * from under us. It essentially blocks any incoming
1559  * packets, so that we won't get any new data or any
1560  * packets that change the state of the socket.
1561  *
1562  * While locked, BH processing will add new packets to
1563  * the backlog queue.  This queue is processed by the
1564  * owner of the socket lock right before it is released.
1565  *
1566  * Since ~2.3.5 it is also exclusive sleep lock serializing
1567  * accesses from user process context.
1568  */
1569 
1570 static inline void sock_owned_by_me(const struct sock *sk)
1571 {
1572 #ifdef CONFIG_LOCKDEP
1573 	WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1574 #endif
1575 }
1576 
1577 static inline bool sock_owned_by_user(const struct sock *sk)
1578 {
1579 	sock_owned_by_me(sk);
1580 	return sk->sk_lock.owned;
1581 }
1582 
1583 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1584 {
1585 	return sk->sk_lock.owned;
1586 }
1587 
1588 /* no reclassification while locks are held */
1589 static inline bool sock_allow_reclassification(const struct sock *csk)
1590 {
1591 	struct sock *sk = (struct sock *)csk;
1592 
1593 	return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1594 }
1595 
1596 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1597 		      struct proto *prot, int kern);
1598 void sk_free(struct sock *sk);
1599 void sk_destruct(struct sock *sk);
1600 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1601 void sk_free_unlock_clone(struct sock *sk);
1602 
1603 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1604 			     gfp_t priority);
1605 void __sock_wfree(struct sk_buff *skb);
1606 void sock_wfree(struct sk_buff *skb);
1607 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1608 			     gfp_t priority);
1609 void skb_orphan_partial(struct sk_buff *skb);
1610 void sock_rfree(struct sk_buff *skb);
1611 void sock_efree(struct sk_buff *skb);
1612 #ifdef CONFIG_INET
1613 void sock_edemux(struct sk_buff *skb);
1614 #else
1615 #define sock_edemux sock_efree
1616 #endif
1617 
1618 int sock_setsockopt(struct socket *sock, int level, int op,
1619 		    char __user *optval, unsigned int optlen);
1620 
1621 int sock_getsockopt(struct socket *sock, int level, int op,
1622 		    char __user *optval, int __user *optlen);
1623 int sock_gettstamp(struct socket *sock, void __user *userstamp,
1624 		   bool timeval, bool time32);
1625 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1626 				    int noblock, int *errcode);
1627 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1628 				     unsigned long data_len, int noblock,
1629 				     int *errcode, int max_page_order);
1630 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1631 void sock_kfree_s(struct sock *sk, void *mem, int size);
1632 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1633 void sk_send_sigurg(struct sock *sk);
1634 
1635 struct sockcm_cookie {
1636 	u64 transmit_time;
1637 	u32 mark;
1638 	u16 tsflags;
1639 };
1640 
1641 static inline void sockcm_init(struct sockcm_cookie *sockc,
1642 			       const struct sock *sk)
1643 {
1644 	*sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1645 }
1646 
1647 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1648 		     struct sockcm_cookie *sockc);
1649 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1650 		   struct sockcm_cookie *sockc);
1651 
1652 /*
1653  * Functions to fill in entries in struct proto_ops when a protocol
1654  * does not implement a particular function.
1655  */
1656 int sock_no_bind(struct socket *, struct sockaddr *, int);
1657 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1658 int sock_no_socketpair(struct socket *, struct socket *);
1659 int sock_no_accept(struct socket *, struct socket *, int, bool);
1660 int sock_no_getname(struct socket *, struct sockaddr *, int);
1661 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1662 int sock_no_listen(struct socket *, int);
1663 int sock_no_shutdown(struct socket *, int);
1664 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1665 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1666 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1667 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1668 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1669 int sock_no_mmap(struct file *file, struct socket *sock,
1670 		 struct vm_area_struct *vma);
1671 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1672 			 size_t size, int flags);
1673 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1674 				int offset, size_t size, int flags);
1675 
1676 /*
1677  * Functions to fill in entries in struct proto_ops when a protocol
1678  * uses the inet style.
1679  */
1680 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1681 				  char __user *optval, int __user *optlen);
1682 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1683 			int flags);
1684 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1685 				  char __user *optval, unsigned int optlen);
1686 int compat_sock_common_getsockopt(struct socket *sock, int level,
1687 		int optname, char __user *optval, int __user *optlen);
1688 int compat_sock_common_setsockopt(struct socket *sock, int level,
1689 		int optname, char __user *optval, unsigned int optlen);
1690 
1691 void sk_common_release(struct sock *sk);
1692 
1693 /*
1694  *	Default socket callbacks and setup code
1695  */
1696 
1697 /* Initialise core socket variables */
1698 void sock_init_data(struct socket *sock, struct sock *sk);
1699 
1700 /*
1701  * Socket reference counting postulates.
1702  *
1703  * * Each user of socket SHOULD hold a reference count.
1704  * * Each access point to socket (an hash table bucket, reference from a list,
1705  *   running timer, skb in flight MUST hold a reference count.
1706  * * When reference count hits 0, it means it will never increase back.
1707  * * When reference count hits 0, it means that no references from
1708  *   outside exist to this socket and current process on current CPU
1709  *   is last user and may/should destroy this socket.
1710  * * sk_free is called from any context: process, BH, IRQ. When
1711  *   it is called, socket has no references from outside -> sk_free
1712  *   may release descendant resources allocated by the socket, but
1713  *   to the time when it is called, socket is NOT referenced by any
1714  *   hash tables, lists etc.
1715  * * Packets, delivered from outside (from network or from another process)
1716  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1717  *   when they sit in queue. Otherwise, packets will leak to hole, when
1718  *   socket is looked up by one cpu and unhasing is made by another CPU.
1719  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1720  *   (leak to backlog). Packet socket does all the processing inside
1721  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1722  *   use separate SMP lock, so that they are prone too.
1723  */
1724 
1725 /* Ungrab socket and destroy it, if it was the last reference. */
1726 static inline void sock_put(struct sock *sk)
1727 {
1728 	if (refcount_dec_and_test(&sk->sk_refcnt))
1729 		sk_free(sk);
1730 }
1731 /* Generic version of sock_put(), dealing with all sockets
1732  * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1733  */
1734 void sock_gen_put(struct sock *sk);
1735 
1736 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1737 		     unsigned int trim_cap, bool refcounted);
1738 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1739 				 const int nested)
1740 {
1741 	return __sk_receive_skb(sk, skb, nested, 1, true);
1742 }
1743 
1744 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1745 {
1746 	/* sk_tx_queue_mapping accept only upto a 16-bit value */
1747 	if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1748 		return;
1749 	sk->sk_tx_queue_mapping = tx_queue;
1750 }
1751 
1752 #define NO_QUEUE_MAPPING	USHRT_MAX
1753 
1754 static inline void sk_tx_queue_clear(struct sock *sk)
1755 {
1756 	sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
1757 }
1758 
1759 static inline int sk_tx_queue_get(const struct sock *sk)
1760 {
1761 	if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
1762 		return sk->sk_tx_queue_mapping;
1763 
1764 	return -1;
1765 }
1766 
1767 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1768 {
1769 #ifdef CONFIG_XPS
1770 	if (skb_rx_queue_recorded(skb)) {
1771 		u16 rx_queue = skb_get_rx_queue(skb);
1772 
1773 		if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING))
1774 			return;
1775 
1776 		sk->sk_rx_queue_mapping = rx_queue;
1777 	}
1778 #endif
1779 }
1780 
1781 static inline void sk_rx_queue_clear(struct sock *sk)
1782 {
1783 #ifdef CONFIG_XPS
1784 	sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING;
1785 #endif
1786 }
1787 
1788 #ifdef CONFIG_XPS
1789 static inline int sk_rx_queue_get(const struct sock *sk)
1790 {
1791 	if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING)
1792 		return sk->sk_rx_queue_mapping;
1793 
1794 	return -1;
1795 }
1796 #endif
1797 
1798 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1799 {
1800 	sk_tx_queue_clear(sk);
1801 	sk->sk_socket = sock;
1802 }
1803 
1804 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1805 {
1806 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1807 	return &rcu_dereference_raw(sk->sk_wq)->wait;
1808 }
1809 /* Detach socket from process context.
1810  * Announce socket dead, detach it from wait queue and inode.
1811  * Note that parent inode held reference count on this struct sock,
1812  * we do not release it in this function, because protocol
1813  * probably wants some additional cleanups or even continuing
1814  * to work with this socket (TCP).
1815  */
1816 static inline void sock_orphan(struct sock *sk)
1817 {
1818 	write_lock_bh(&sk->sk_callback_lock);
1819 	sock_set_flag(sk, SOCK_DEAD);
1820 	sk_set_socket(sk, NULL);
1821 	sk->sk_wq  = NULL;
1822 	write_unlock_bh(&sk->sk_callback_lock);
1823 }
1824 
1825 static inline void sock_graft(struct sock *sk, struct socket *parent)
1826 {
1827 	WARN_ON(parent->sk);
1828 	write_lock_bh(&sk->sk_callback_lock);
1829 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
1830 	parent->sk = sk;
1831 	sk_set_socket(sk, parent);
1832 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
1833 	security_sock_graft(sk, parent);
1834 	write_unlock_bh(&sk->sk_callback_lock);
1835 }
1836 
1837 kuid_t sock_i_uid(struct sock *sk);
1838 unsigned long sock_i_ino(struct sock *sk);
1839 
1840 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1841 {
1842 	return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1843 }
1844 
1845 static inline u32 net_tx_rndhash(void)
1846 {
1847 	u32 v = prandom_u32();
1848 
1849 	return v ?: 1;
1850 }
1851 
1852 static inline void sk_set_txhash(struct sock *sk)
1853 {
1854 	sk->sk_txhash = net_tx_rndhash();
1855 }
1856 
1857 static inline void sk_rethink_txhash(struct sock *sk)
1858 {
1859 	if (sk->sk_txhash)
1860 		sk_set_txhash(sk);
1861 }
1862 
1863 static inline struct dst_entry *
1864 __sk_dst_get(struct sock *sk)
1865 {
1866 	return rcu_dereference_check(sk->sk_dst_cache,
1867 				     lockdep_sock_is_held(sk));
1868 }
1869 
1870 static inline struct dst_entry *
1871 sk_dst_get(struct sock *sk)
1872 {
1873 	struct dst_entry *dst;
1874 
1875 	rcu_read_lock();
1876 	dst = rcu_dereference(sk->sk_dst_cache);
1877 	if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1878 		dst = NULL;
1879 	rcu_read_unlock();
1880 	return dst;
1881 }
1882 
1883 static inline void dst_negative_advice(struct sock *sk)
1884 {
1885 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1886 
1887 	sk_rethink_txhash(sk);
1888 
1889 	if (dst && dst->ops->negative_advice) {
1890 		ndst = dst->ops->negative_advice(dst);
1891 
1892 		if (ndst != dst) {
1893 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
1894 			sk_tx_queue_clear(sk);
1895 			sk->sk_dst_pending_confirm = 0;
1896 		}
1897 	}
1898 }
1899 
1900 static inline void
1901 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1902 {
1903 	struct dst_entry *old_dst;
1904 
1905 	sk_tx_queue_clear(sk);
1906 	sk->sk_dst_pending_confirm = 0;
1907 	old_dst = rcu_dereference_protected(sk->sk_dst_cache,
1908 					    lockdep_sock_is_held(sk));
1909 	rcu_assign_pointer(sk->sk_dst_cache, dst);
1910 	dst_release(old_dst);
1911 }
1912 
1913 static inline void
1914 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1915 {
1916 	struct dst_entry *old_dst;
1917 
1918 	sk_tx_queue_clear(sk);
1919 	sk->sk_dst_pending_confirm = 0;
1920 	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1921 	dst_release(old_dst);
1922 }
1923 
1924 static inline void
1925 __sk_dst_reset(struct sock *sk)
1926 {
1927 	__sk_dst_set(sk, NULL);
1928 }
1929 
1930 static inline void
1931 sk_dst_reset(struct sock *sk)
1932 {
1933 	sk_dst_set(sk, NULL);
1934 }
1935 
1936 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1937 
1938 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1939 
1940 static inline void sk_dst_confirm(struct sock *sk)
1941 {
1942 	if (!READ_ONCE(sk->sk_dst_pending_confirm))
1943 		WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
1944 }
1945 
1946 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
1947 {
1948 	if (skb_get_dst_pending_confirm(skb)) {
1949 		struct sock *sk = skb->sk;
1950 		unsigned long now = jiffies;
1951 
1952 		/* avoid dirtying neighbour */
1953 		if (READ_ONCE(n->confirmed) != now)
1954 			WRITE_ONCE(n->confirmed, now);
1955 		if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
1956 			WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
1957 	}
1958 }
1959 
1960 bool sk_mc_loop(struct sock *sk);
1961 
1962 static inline bool sk_can_gso(const struct sock *sk)
1963 {
1964 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1965 }
1966 
1967 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1968 
1969 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1970 {
1971 	sk->sk_route_nocaps |= flags;
1972 	sk->sk_route_caps &= ~flags;
1973 }
1974 
1975 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1976 					   struct iov_iter *from, char *to,
1977 					   int copy, int offset)
1978 {
1979 	if (skb->ip_summed == CHECKSUM_NONE) {
1980 		__wsum csum = 0;
1981 		if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
1982 			return -EFAULT;
1983 		skb->csum = csum_block_add(skb->csum, csum, offset);
1984 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1985 		if (!copy_from_iter_full_nocache(to, copy, from))
1986 			return -EFAULT;
1987 	} else if (!copy_from_iter_full(to, copy, from))
1988 		return -EFAULT;
1989 
1990 	return 0;
1991 }
1992 
1993 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1994 				       struct iov_iter *from, int copy)
1995 {
1996 	int err, offset = skb->len;
1997 
1998 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1999 				       copy, offset);
2000 	if (err)
2001 		__skb_trim(skb, offset);
2002 
2003 	return err;
2004 }
2005 
2006 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2007 					   struct sk_buff *skb,
2008 					   struct page *page,
2009 					   int off, int copy)
2010 {
2011 	int err;
2012 
2013 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2014 				       copy, skb->len);
2015 	if (err)
2016 		return err;
2017 
2018 	skb->len	     += copy;
2019 	skb->data_len	     += copy;
2020 	skb->truesize	     += copy;
2021 	sk_wmem_queued_add(sk, copy);
2022 	sk_mem_charge(sk, copy);
2023 	return 0;
2024 }
2025 
2026 /**
2027  * sk_wmem_alloc_get - returns write allocations
2028  * @sk: socket
2029  *
2030  * Returns sk_wmem_alloc minus initial offset of one
2031  */
2032 static inline int sk_wmem_alloc_get(const struct sock *sk)
2033 {
2034 	return refcount_read(&sk->sk_wmem_alloc) - 1;
2035 }
2036 
2037 /**
2038  * sk_rmem_alloc_get - returns read allocations
2039  * @sk: socket
2040  *
2041  * Returns sk_rmem_alloc
2042  */
2043 static inline int sk_rmem_alloc_get(const struct sock *sk)
2044 {
2045 	return atomic_read(&sk->sk_rmem_alloc);
2046 }
2047 
2048 /**
2049  * sk_has_allocations - check if allocations are outstanding
2050  * @sk: socket
2051  *
2052  * Returns true if socket has write or read allocations
2053  */
2054 static inline bool sk_has_allocations(const struct sock *sk)
2055 {
2056 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2057 }
2058 
2059 /**
2060  * skwq_has_sleeper - check if there are any waiting processes
2061  * @wq: struct socket_wq
2062  *
2063  * Returns true if socket_wq has waiting processes
2064  *
2065  * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2066  * barrier call. They were added due to the race found within the tcp code.
2067  *
2068  * Consider following tcp code paths::
2069  *
2070  *   CPU1                CPU2
2071  *   sys_select          receive packet
2072  *   ...                 ...
2073  *   __add_wait_queue    update tp->rcv_nxt
2074  *   ...                 ...
2075  *   tp->rcv_nxt check   sock_def_readable
2076  *   ...                 {
2077  *   schedule               rcu_read_lock();
2078  *                          wq = rcu_dereference(sk->sk_wq);
2079  *                          if (wq && waitqueue_active(&wq->wait))
2080  *                              wake_up_interruptible(&wq->wait)
2081  *                          ...
2082  *                       }
2083  *
2084  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2085  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
2086  * could then endup calling schedule and sleep forever if there are no more
2087  * data on the socket.
2088  *
2089  */
2090 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2091 {
2092 	return wq && wq_has_sleeper(&wq->wait);
2093 }
2094 
2095 /**
2096  * sock_poll_wait - place memory barrier behind the poll_wait call.
2097  * @filp:           file
2098  * @sock:           socket to wait on
2099  * @p:              poll_table
2100  *
2101  * See the comments in the wq_has_sleeper function.
2102  */
2103 static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2104 				  poll_table *p)
2105 {
2106 	if (!poll_does_not_wait(p)) {
2107 		poll_wait(filp, &sock->wq.wait, p);
2108 		/* We need to be sure we are in sync with the
2109 		 * socket flags modification.
2110 		 *
2111 		 * This memory barrier is paired in the wq_has_sleeper.
2112 		 */
2113 		smp_mb();
2114 	}
2115 }
2116 
2117 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2118 {
2119 	if (sk->sk_txhash) {
2120 		skb->l4_hash = 1;
2121 		skb->hash = sk->sk_txhash;
2122 	}
2123 }
2124 
2125 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2126 
2127 /*
2128  *	Queue a received datagram if it will fit. Stream and sequenced
2129  *	protocols can't normally use this as they need to fit buffers in
2130  *	and play with them.
2131  *
2132  *	Inlined as it's very short and called for pretty much every
2133  *	packet ever received.
2134  */
2135 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2136 {
2137 	skb_orphan(skb);
2138 	skb->sk = sk;
2139 	skb->destructor = sock_rfree;
2140 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2141 	sk_mem_charge(sk, skb->truesize);
2142 }
2143 
2144 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2145 		    unsigned long expires);
2146 
2147 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2148 
2149 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2150 			struct sk_buff *skb, unsigned int flags,
2151 			void (*destructor)(struct sock *sk,
2152 					   struct sk_buff *skb));
2153 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2154 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2155 
2156 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2157 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2158 
2159 /*
2160  *	Recover an error report and clear atomically
2161  */
2162 
2163 static inline int sock_error(struct sock *sk)
2164 {
2165 	int err;
2166 	if (likely(!sk->sk_err))
2167 		return 0;
2168 	err = xchg(&sk->sk_err, 0);
2169 	return -err;
2170 }
2171 
2172 static inline unsigned long sock_wspace(struct sock *sk)
2173 {
2174 	int amt = 0;
2175 
2176 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2177 		amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2178 		if (amt < 0)
2179 			amt = 0;
2180 	}
2181 	return amt;
2182 }
2183 
2184 /* Note:
2185  *  We use sk->sk_wq_raw, from contexts knowing this
2186  *  pointer is not NULL and cannot disappear/change.
2187  */
2188 static inline void sk_set_bit(int nr, struct sock *sk)
2189 {
2190 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2191 	    !sock_flag(sk, SOCK_FASYNC))
2192 		return;
2193 
2194 	set_bit(nr, &sk->sk_wq_raw->flags);
2195 }
2196 
2197 static inline void sk_clear_bit(int nr, struct sock *sk)
2198 {
2199 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2200 	    !sock_flag(sk, SOCK_FASYNC))
2201 		return;
2202 
2203 	clear_bit(nr, &sk->sk_wq_raw->flags);
2204 }
2205 
2206 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2207 {
2208 	if (sock_flag(sk, SOCK_FASYNC)) {
2209 		rcu_read_lock();
2210 		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2211 		rcu_read_unlock();
2212 	}
2213 }
2214 
2215 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2216  * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2217  * Note: for send buffers, TCP works better if we can build two skbs at
2218  * minimum.
2219  */
2220 #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2221 
2222 #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2223 #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2224 
2225 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2226 {
2227 	u32 val;
2228 
2229 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2230 		return;
2231 
2232 	val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2233 
2234 	WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2235 }
2236 
2237 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2238 				    bool force_schedule);
2239 
2240 /**
2241  * sk_page_frag - return an appropriate page_frag
2242  * @sk: socket
2243  *
2244  * Use the per task page_frag instead of the per socket one for
2245  * optimization when we know that we're in the normal context and owns
2246  * everything that's associated with %current.
2247  *
2248  * gfpflags_allow_blocking() isn't enough here as direct reclaim may nest
2249  * inside other socket operations and end up recursing into sk_page_frag()
2250  * while it's already in use.
2251  */
2252 static inline struct page_frag *sk_page_frag(struct sock *sk)
2253 {
2254 	if (gfpflags_normal_context(sk->sk_allocation))
2255 		return &current->task_frag;
2256 
2257 	return &sk->sk_frag;
2258 }
2259 
2260 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2261 
2262 /*
2263  *	Default write policy as shown to user space via poll/select/SIGIO
2264  */
2265 static inline bool sock_writeable(const struct sock *sk)
2266 {
2267 	return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2268 }
2269 
2270 static inline gfp_t gfp_any(void)
2271 {
2272 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2273 }
2274 
2275 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2276 {
2277 	return noblock ? 0 : sk->sk_rcvtimeo;
2278 }
2279 
2280 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2281 {
2282 	return noblock ? 0 : sk->sk_sndtimeo;
2283 }
2284 
2285 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2286 {
2287 	int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2288 
2289 	return v ?: 1;
2290 }
2291 
2292 /* Alas, with timeout socket operations are not restartable.
2293  * Compare this to poll().
2294  */
2295 static inline int sock_intr_errno(long timeo)
2296 {
2297 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2298 }
2299 
2300 struct sock_skb_cb {
2301 	u32 dropcount;
2302 };
2303 
2304 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2305  * using skb->cb[] would keep using it directly and utilize its
2306  * alignement guarantee.
2307  */
2308 #define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2309 			    sizeof(struct sock_skb_cb)))
2310 
2311 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2312 			    SOCK_SKB_CB_OFFSET))
2313 
2314 #define sock_skb_cb_check_size(size) \
2315 	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2316 
2317 static inline void
2318 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2319 {
2320 	SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2321 						atomic_read(&sk->sk_drops) : 0;
2322 }
2323 
2324 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2325 {
2326 	int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2327 
2328 	atomic_add(segs, &sk->sk_drops);
2329 }
2330 
2331 static inline ktime_t sock_read_timestamp(struct sock *sk)
2332 {
2333 #if BITS_PER_LONG==32
2334 	unsigned int seq;
2335 	ktime_t kt;
2336 
2337 	do {
2338 		seq = read_seqbegin(&sk->sk_stamp_seq);
2339 		kt = sk->sk_stamp;
2340 	} while (read_seqretry(&sk->sk_stamp_seq, seq));
2341 
2342 	return kt;
2343 #else
2344 	return READ_ONCE(sk->sk_stamp);
2345 #endif
2346 }
2347 
2348 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2349 {
2350 #if BITS_PER_LONG==32
2351 	write_seqlock(&sk->sk_stamp_seq);
2352 	sk->sk_stamp = kt;
2353 	write_sequnlock(&sk->sk_stamp_seq);
2354 #else
2355 	WRITE_ONCE(sk->sk_stamp, kt);
2356 #endif
2357 }
2358 
2359 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2360 			   struct sk_buff *skb);
2361 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2362 			     struct sk_buff *skb);
2363 
2364 static inline void
2365 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2366 {
2367 	ktime_t kt = skb->tstamp;
2368 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2369 
2370 	/*
2371 	 * generate control messages if
2372 	 * - receive time stamping in software requested
2373 	 * - software time stamp available and wanted
2374 	 * - hardware time stamps available and wanted
2375 	 */
2376 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2377 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2378 	    (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2379 	    (hwtstamps->hwtstamp &&
2380 	     (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2381 		__sock_recv_timestamp(msg, sk, skb);
2382 	else
2383 		sock_write_timestamp(sk, kt);
2384 
2385 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2386 		__sock_recv_wifi_status(msg, sk, skb);
2387 }
2388 
2389 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2390 			      struct sk_buff *skb);
2391 
2392 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2393 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2394 					  struct sk_buff *skb)
2395 {
2396 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2397 			   (1UL << SOCK_RCVTSTAMP))
2398 #define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2399 			   SOF_TIMESTAMPING_RAW_HARDWARE)
2400 
2401 	if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2402 		__sock_recv_ts_and_drops(msg, sk, skb);
2403 	else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2404 		sock_write_timestamp(sk, skb->tstamp);
2405 	else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2406 		sock_write_timestamp(sk, 0);
2407 }
2408 
2409 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2410 
2411 /**
2412  * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2413  * @sk:		socket sending this packet
2414  * @tsflags:	timestamping flags to use
2415  * @tx_flags:	completed with instructions for time stamping
2416  * @tskey:      filled in with next sk_tskey (not for TCP, which uses seqno)
2417  *
2418  * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2419  */
2420 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2421 				      __u8 *tx_flags, __u32 *tskey)
2422 {
2423 	if (unlikely(tsflags)) {
2424 		__sock_tx_timestamp(tsflags, tx_flags);
2425 		if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2426 		    tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2427 			*tskey = sk->sk_tskey++;
2428 	}
2429 	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2430 		*tx_flags |= SKBTX_WIFI_STATUS;
2431 }
2432 
2433 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2434 				     __u8 *tx_flags)
2435 {
2436 	_sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2437 }
2438 
2439 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2440 {
2441 	_sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2442 			   &skb_shinfo(skb)->tskey);
2443 }
2444 
2445 /**
2446  * sk_eat_skb - Release a skb if it is no longer needed
2447  * @sk: socket to eat this skb from
2448  * @skb: socket buffer to eat
2449  *
2450  * This routine must be called with interrupts disabled or with the socket
2451  * locked so that the sk_buff queue operation is ok.
2452 */
2453 DECLARE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
2454 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2455 {
2456 	__skb_unlink(skb, &sk->sk_receive_queue);
2457 	if (static_branch_unlikely(&tcp_rx_skb_cache_key) &&
2458 	    !sk->sk_rx_skb_cache) {
2459 		sk->sk_rx_skb_cache = skb;
2460 		skb_orphan(skb);
2461 		return;
2462 	}
2463 	__kfree_skb(skb);
2464 }
2465 
2466 static inline
2467 struct net *sock_net(const struct sock *sk)
2468 {
2469 	return read_pnet(&sk->sk_net);
2470 }
2471 
2472 static inline
2473 void sock_net_set(struct sock *sk, struct net *net)
2474 {
2475 	write_pnet(&sk->sk_net, net);
2476 }
2477 
2478 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2479 {
2480 	if (skb->sk) {
2481 		struct sock *sk = skb->sk;
2482 
2483 		skb->destructor = NULL;
2484 		skb->sk = NULL;
2485 		return sk;
2486 	}
2487 	return NULL;
2488 }
2489 
2490 /* This helper checks if a socket is a full socket,
2491  * ie _not_ a timewait or request socket.
2492  */
2493 static inline bool sk_fullsock(const struct sock *sk)
2494 {
2495 	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2496 }
2497 
2498 /* Checks if this SKB belongs to an HW offloaded socket
2499  * and whether any SW fallbacks are required based on dev.
2500  * Check decrypted mark in case skb_orphan() cleared socket.
2501  */
2502 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2503 						   struct net_device *dev)
2504 {
2505 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2506 	struct sock *sk = skb->sk;
2507 
2508 	if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2509 		skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2510 #ifdef CONFIG_TLS_DEVICE
2511 	} else if (unlikely(skb->decrypted)) {
2512 		pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2513 		kfree_skb(skb);
2514 		skb = NULL;
2515 #endif
2516 	}
2517 #endif
2518 
2519 	return skb;
2520 }
2521 
2522 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2523  * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2524  */
2525 static inline bool sk_listener(const struct sock *sk)
2526 {
2527 	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2528 }
2529 
2530 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2531 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2532 		       int type);
2533 
2534 bool sk_ns_capable(const struct sock *sk,
2535 		   struct user_namespace *user_ns, int cap);
2536 bool sk_capable(const struct sock *sk, int cap);
2537 bool sk_net_capable(const struct sock *sk, int cap);
2538 
2539 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2540 
2541 /* Take into consideration the size of the struct sk_buff overhead in the
2542  * determination of these values, since that is non-constant across
2543  * platforms.  This makes socket queueing behavior and performance
2544  * not depend upon such differences.
2545  */
2546 #define _SK_MEM_PACKETS		256
2547 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
2548 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2549 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2550 
2551 extern __u32 sysctl_wmem_max;
2552 extern __u32 sysctl_rmem_max;
2553 
2554 extern int sysctl_tstamp_allow_data;
2555 extern int sysctl_optmem_max;
2556 
2557 extern __u32 sysctl_wmem_default;
2558 extern __u32 sysctl_rmem_default;
2559 
2560 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2561 
2562 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2563 {
2564 	/* Does this proto have per netns sysctl_wmem ? */
2565 	if (proto->sysctl_wmem_offset)
2566 		return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset);
2567 
2568 	return *proto->sysctl_wmem;
2569 }
2570 
2571 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2572 {
2573 	/* Does this proto have per netns sysctl_rmem ? */
2574 	if (proto->sysctl_rmem_offset)
2575 		return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset);
2576 
2577 	return *proto->sysctl_rmem;
2578 }
2579 
2580 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2581  * Some wifi drivers need to tweak it to get more chunks.
2582  * They can use this helper from their ndo_start_xmit()
2583  */
2584 static inline void sk_pacing_shift_update(struct sock *sk, int val)
2585 {
2586 	if (!sk || !sk_fullsock(sk) || sk->sk_pacing_shift == val)
2587 		return;
2588 	sk->sk_pacing_shift = val;
2589 }
2590 
2591 /* if a socket is bound to a device, check that the given device
2592  * index is either the same or that the socket is bound to an L3
2593  * master device and the given device index is also enslaved to
2594  * that L3 master
2595  */
2596 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2597 {
2598 	int mdif;
2599 
2600 	if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif)
2601 		return true;
2602 
2603 	mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2604 	if (mdif && mdif == sk->sk_bound_dev_if)
2605 		return true;
2606 
2607 	return false;
2608 }
2609 
2610 #endif	/* _SOCK_H */
2611