1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the AF_INET socket handler. 8 * 9 * Version: @(#)sock.h 1.0.4 05/13/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Florian La Roche <flla@stud.uni-sb.de> 15 * 16 * Fixes: 17 * Alan Cox : Volatiles in skbuff pointers. See 18 * skbuff comments. May be overdone, 19 * better to prove they can be removed 20 * than the reverse. 21 * Alan Cox : Added a zapped field for tcp to note 22 * a socket is reset and must stay shut up 23 * Alan Cox : New fields for options 24 * Pauline Middelink : identd support 25 * Alan Cox : Eliminate low level recv/recvfrom 26 * David S. Miller : New socket lookup architecture. 27 * Steve Whitehouse: Default routines for sock_ops 28 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made 29 * protinfo be just a void pointer, as the 30 * protocol specific parts were moved to 31 * respective headers and ipv4/v6, etc now 32 * use private slabcaches for its socks 33 * Pedro Hortas : New flags field for socket options 34 */ 35 #ifndef _SOCK_H 36 #define _SOCK_H 37 38 #include <linux/hardirq.h> 39 #include <linux/kernel.h> 40 #include <linux/list.h> 41 #include <linux/list_nulls.h> 42 #include <linux/timer.h> 43 #include <linux/cache.h> 44 #include <linux/bitops.h> 45 #include <linux/lockdep.h> 46 #include <linux/netdevice.h> 47 #include <linux/skbuff.h> /* struct sk_buff */ 48 #include <linux/mm.h> 49 #include <linux/security.h> 50 #include <linux/slab.h> 51 #include <linux/uaccess.h> 52 #include <linux/page_counter.h> 53 #include <linux/memcontrol.h> 54 #include <linux/static_key.h> 55 #include <linux/sched.h> 56 #include <linux/wait.h> 57 #include <linux/cgroup-defs.h> 58 #include <linux/rbtree.h> 59 #include <linux/filter.h> 60 #include <linux/rculist_nulls.h> 61 #include <linux/poll.h> 62 63 #include <linux/atomic.h> 64 #include <linux/refcount.h> 65 #include <net/dst.h> 66 #include <net/checksum.h> 67 #include <net/tcp_states.h> 68 #include <linux/net_tstamp.h> 69 #include <net/l3mdev.h> 70 71 /* 72 * This structure really needs to be cleaned up. 73 * Most of it is for TCP, and not used by any of 74 * the other protocols. 75 */ 76 77 /* Define this to get the SOCK_DBG debugging facility. */ 78 #define SOCK_DEBUGGING 79 #ifdef SOCK_DEBUGGING 80 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \ 81 printk(KERN_DEBUG msg); } while (0) 82 #else 83 /* Validate arguments and do nothing */ 84 static inline __printf(2, 3) 85 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...) 86 { 87 } 88 #endif 89 90 /* This is the per-socket lock. The spinlock provides a synchronization 91 * between user contexts and software interrupt processing, whereas the 92 * mini-semaphore synchronizes multiple users amongst themselves. 93 */ 94 typedef struct { 95 spinlock_t slock; 96 int owned; 97 wait_queue_head_t wq; 98 /* 99 * We express the mutex-alike socket_lock semantics 100 * to the lock validator by explicitly managing 101 * the slock as a lock variant (in addition to 102 * the slock itself): 103 */ 104 #ifdef CONFIG_DEBUG_LOCK_ALLOC 105 struct lockdep_map dep_map; 106 #endif 107 } socket_lock_t; 108 109 struct sock; 110 struct proto; 111 struct net; 112 113 typedef __u32 __bitwise __portpair; 114 typedef __u64 __bitwise __addrpair; 115 116 /** 117 * struct sock_common - minimal network layer representation of sockets 118 * @skc_daddr: Foreign IPv4 addr 119 * @skc_rcv_saddr: Bound local IPv4 addr 120 * @skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr 121 * @skc_hash: hash value used with various protocol lookup tables 122 * @skc_u16hashes: two u16 hash values used by UDP lookup tables 123 * @skc_dport: placeholder for inet_dport/tw_dport 124 * @skc_num: placeholder for inet_num/tw_num 125 * @skc_portpair: __u32 union of @skc_dport & @skc_num 126 * @skc_family: network address family 127 * @skc_state: Connection state 128 * @skc_reuse: %SO_REUSEADDR setting 129 * @skc_reuseport: %SO_REUSEPORT setting 130 * @skc_ipv6only: socket is IPV6 only 131 * @skc_net_refcnt: socket is using net ref counting 132 * @skc_bound_dev_if: bound device index if != 0 133 * @skc_bind_node: bind hash linkage for various protocol lookup tables 134 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol 135 * @skc_prot: protocol handlers inside a network family 136 * @skc_net: reference to the network namespace of this socket 137 * @skc_v6_daddr: IPV6 destination address 138 * @skc_v6_rcv_saddr: IPV6 source address 139 * @skc_cookie: socket's cookie value 140 * @skc_node: main hash linkage for various protocol lookup tables 141 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol 142 * @skc_tx_queue_mapping: tx queue number for this connection 143 * @skc_rx_queue_mapping: rx queue number for this connection 144 * @skc_flags: place holder for sk_flags 145 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, 146 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings 147 * @skc_listener: connection request listener socket (aka rsk_listener) 148 * [union with @skc_flags] 149 * @skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row 150 * [union with @skc_flags] 151 * @skc_incoming_cpu: record/match cpu processing incoming packets 152 * @skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled) 153 * [union with @skc_incoming_cpu] 154 * @skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number 155 * [union with @skc_incoming_cpu] 156 * @skc_refcnt: reference count 157 * 158 * This is the minimal network layer representation of sockets, the header 159 * for struct sock and struct inet_timewait_sock. 160 */ 161 struct sock_common { 162 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned 163 * address on 64bit arches : cf INET_MATCH() 164 */ 165 union { 166 __addrpair skc_addrpair; 167 struct { 168 __be32 skc_daddr; 169 __be32 skc_rcv_saddr; 170 }; 171 }; 172 union { 173 unsigned int skc_hash; 174 __u16 skc_u16hashes[2]; 175 }; 176 /* skc_dport && skc_num must be grouped as well */ 177 union { 178 __portpair skc_portpair; 179 struct { 180 __be16 skc_dport; 181 __u16 skc_num; 182 }; 183 }; 184 185 unsigned short skc_family; 186 volatile unsigned char skc_state; 187 unsigned char skc_reuse:4; 188 unsigned char skc_reuseport:1; 189 unsigned char skc_ipv6only:1; 190 unsigned char skc_net_refcnt:1; 191 int skc_bound_dev_if; 192 union { 193 struct hlist_node skc_bind_node; 194 struct hlist_node skc_portaddr_node; 195 }; 196 struct proto *skc_prot; 197 possible_net_t skc_net; 198 199 #if IS_ENABLED(CONFIG_IPV6) 200 struct in6_addr skc_v6_daddr; 201 struct in6_addr skc_v6_rcv_saddr; 202 #endif 203 204 atomic64_t skc_cookie; 205 206 /* following fields are padding to force 207 * offset(struct sock, sk_refcnt) == 128 on 64bit arches 208 * assuming IPV6 is enabled. We use this padding differently 209 * for different kind of 'sockets' 210 */ 211 union { 212 unsigned long skc_flags; 213 struct sock *skc_listener; /* request_sock */ 214 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */ 215 }; 216 /* 217 * fields between dontcopy_begin/dontcopy_end 218 * are not copied in sock_copy() 219 */ 220 /* private: */ 221 int skc_dontcopy_begin[0]; 222 /* public: */ 223 union { 224 struct hlist_node skc_node; 225 struct hlist_nulls_node skc_nulls_node; 226 }; 227 unsigned short skc_tx_queue_mapping; 228 #ifdef CONFIG_XPS 229 unsigned short skc_rx_queue_mapping; 230 #endif 231 union { 232 int skc_incoming_cpu; 233 u32 skc_rcv_wnd; 234 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */ 235 }; 236 237 refcount_t skc_refcnt; 238 /* private: */ 239 int skc_dontcopy_end[0]; 240 union { 241 u32 skc_rxhash; 242 u32 skc_window_clamp; 243 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */ 244 }; 245 /* public: */ 246 }; 247 248 struct bpf_sk_storage; 249 250 /** 251 * struct sock - network layer representation of sockets 252 * @__sk_common: shared layout with inet_timewait_sock 253 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN 254 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings 255 * @sk_lock: synchronizer 256 * @sk_kern_sock: True if sock is using kernel lock classes 257 * @sk_rcvbuf: size of receive buffer in bytes 258 * @sk_wq: sock wait queue and async head 259 * @sk_rx_dst: receive input route used by early demux 260 * @sk_dst_cache: destination cache 261 * @sk_dst_pending_confirm: need to confirm neighbour 262 * @sk_policy: flow policy 263 * @sk_rx_skb_cache: cache copy of recently accessed RX skb 264 * @sk_receive_queue: incoming packets 265 * @sk_wmem_alloc: transmit queue bytes committed 266 * @sk_tsq_flags: TCP Small Queues flags 267 * @sk_write_queue: Packet sending queue 268 * @sk_omem_alloc: "o" is "option" or "other" 269 * @sk_wmem_queued: persistent queue size 270 * @sk_forward_alloc: space allocated forward 271 * @sk_napi_id: id of the last napi context to receive data for sk 272 * @sk_ll_usec: usecs to busypoll when there is no data 273 * @sk_allocation: allocation mode 274 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler) 275 * @sk_pacing_status: Pacing status (requested, handled by sch_fq) 276 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE) 277 * @sk_sndbuf: size of send buffer in bytes 278 * @__sk_flags_offset: empty field used to determine location of bitfield 279 * @sk_padding: unused element for alignment 280 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets 281 * @sk_no_check_rx: allow zero checksum in RX packets 282 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) 283 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK) 284 * @sk_route_forced_caps: static, forced route capabilities 285 * (set in tcp_init_sock()) 286 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4) 287 * @sk_gso_max_size: Maximum GSO segment size to build 288 * @sk_gso_max_segs: Maximum number of GSO segments 289 * @sk_pacing_shift: scaling factor for TCP Small Queues 290 * @sk_lingertime: %SO_LINGER l_linger setting 291 * @sk_backlog: always used with the per-socket spinlock held 292 * @sk_callback_lock: used with the callbacks in the end of this struct 293 * @sk_error_queue: rarely used 294 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, 295 * IPV6_ADDRFORM for instance) 296 * @sk_err: last error 297 * @sk_err_soft: errors that don't cause failure but are the cause of a 298 * persistent failure not just 'timed out' 299 * @sk_drops: raw/udp drops counter 300 * @sk_ack_backlog: current listen backlog 301 * @sk_max_ack_backlog: listen backlog set in listen() 302 * @sk_uid: user id of owner 303 * @sk_priority: %SO_PRIORITY setting 304 * @sk_type: socket type (%SOCK_STREAM, etc) 305 * @sk_protocol: which protocol this socket belongs in this network family 306 * @sk_peer_pid: &struct pid for this socket's peer 307 * @sk_peer_cred: %SO_PEERCRED setting 308 * @sk_rcvlowat: %SO_RCVLOWAT setting 309 * @sk_rcvtimeo: %SO_RCVTIMEO setting 310 * @sk_sndtimeo: %SO_SNDTIMEO setting 311 * @sk_txhash: computed flow hash for use on transmit 312 * @sk_filter: socket filtering instructions 313 * @sk_timer: sock cleanup timer 314 * @sk_stamp: time stamp of last packet received 315 * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only 316 * @sk_tsflags: SO_TIMESTAMPING socket options 317 * @sk_tskey: counter to disambiguate concurrent tstamp requests 318 * @sk_zckey: counter to order MSG_ZEROCOPY notifications 319 * @sk_socket: Identd and reporting IO signals 320 * @sk_user_data: RPC layer private data 321 * @sk_frag: cached page frag 322 * @sk_peek_off: current peek_offset value 323 * @sk_send_head: front of stuff to transmit 324 * @tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head] 325 * @sk_tx_skb_cache: cache copy of recently accessed TX skb 326 * @sk_security: used by security modules 327 * @sk_mark: generic packet mark 328 * @sk_cgrp_data: cgroup data for this cgroup 329 * @sk_memcg: this socket's memory cgroup association 330 * @sk_write_pending: a write to stream socket waits to start 331 * @sk_state_change: callback to indicate change in the state of the sock 332 * @sk_data_ready: callback to indicate there is data to be processed 333 * @sk_write_space: callback to indicate there is bf sending space available 334 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) 335 * @sk_backlog_rcv: callback to process the backlog 336 * @sk_validate_xmit_skb: ptr to an optional validate function 337 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 338 * @sk_reuseport_cb: reuseport group container 339 * @sk_bpf_storage: ptr to cache and control for bpf_sk_storage 340 * @sk_rcu: used during RCU grace period 341 * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME) 342 * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME 343 * @sk_txtime_report_errors: set report errors mode for SO_TXTIME 344 * @sk_txtime_unused: unused txtime flags 345 */ 346 struct sock { 347 /* 348 * Now struct inet_timewait_sock also uses sock_common, so please just 349 * don't add nothing before this first member (__sk_common) --acme 350 */ 351 struct sock_common __sk_common; 352 #define sk_node __sk_common.skc_node 353 #define sk_nulls_node __sk_common.skc_nulls_node 354 #define sk_refcnt __sk_common.skc_refcnt 355 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping 356 #ifdef CONFIG_XPS 357 #define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping 358 #endif 359 360 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin 361 #define sk_dontcopy_end __sk_common.skc_dontcopy_end 362 #define sk_hash __sk_common.skc_hash 363 #define sk_portpair __sk_common.skc_portpair 364 #define sk_num __sk_common.skc_num 365 #define sk_dport __sk_common.skc_dport 366 #define sk_addrpair __sk_common.skc_addrpair 367 #define sk_daddr __sk_common.skc_daddr 368 #define sk_rcv_saddr __sk_common.skc_rcv_saddr 369 #define sk_family __sk_common.skc_family 370 #define sk_state __sk_common.skc_state 371 #define sk_reuse __sk_common.skc_reuse 372 #define sk_reuseport __sk_common.skc_reuseport 373 #define sk_ipv6only __sk_common.skc_ipv6only 374 #define sk_net_refcnt __sk_common.skc_net_refcnt 375 #define sk_bound_dev_if __sk_common.skc_bound_dev_if 376 #define sk_bind_node __sk_common.skc_bind_node 377 #define sk_prot __sk_common.skc_prot 378 #define sk_net __sk_common.skc_net 379 #define sk_v6_daddr __sk_common.skc_v6_daddr 380 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr 381 #define sk_cookie __sk_common.skc_cookie 382 #define sk_incoming_cpu __sk_common.skc_incoming_cpu 383 #define sk_flags __sk_common.skc_flags 384 #define sk_rxhash __sk_common.skc_rxhash 385 386 socket_lock_t sk_lock; 387 atomic_t sk_drops; 388 int sk_rcvlowat; 389 struct sk_buff_head sk_error_queue; 390 struct sk_buff *sk_rx_skb_cache; 391 struct sk_buff_head sk_receive_queue; 392 /* 393 * The backlog queue is special, it is always used with 394 * the per-socket spinlock held and requires low latency 395 * access. Therefore we special case it's implementation. 396 * Note : rmem_alloc is in this structure to fill a hole 397 * on 64bit arches, not because its logically part of 398 * backlog. 399 */ 400 struct { 401 atomic_t rmem_alloc; 402 int len; 403 struct sk_buff *head; 404 struct sk_buff *tail; 405 } sk_backlog; 406 #define sk_rmem_alloc sk_backlog.rmem_alloc 407 408 int sk_forward_alloc; 409 #ifdef CONFIG_NET_RX_BUSY_POLL 410 unsigned int sk_ll_usec; 411 /* ===== mostly read cache line ===== */ 412 unsigned int sk_napi_id; 413 #endif 414 int sk_rcvbuf; 415 416 struct sk_filter __rcu *sk_filter; 417 union { 418 struct socket_wq __rcu *sk_wq; 419 /* private: */ 420 struct socket_wq *sk_wq_raw; 421 /* public: */ 422 }; 423 #ifdef CONFIG_XFRM 424 struct xfrm_policy __rcu *sk_policy[2]; 425 #endif 426 struct dst_entry *sk_rx_dst; 427 struct dst_entry __rcu *sk_dst_cache; 428 atomic_t sk_omem_alloc; 429 int sk_sndbuf; 430 431 /* ===== cache line for TX ===== */ 432 int sk_wmem_queued; 433 refcount_t sk_wmem_alloc; 434 unsigned long sk_tsq_flags; 435 union { 436 struct sk_buff *sk_send_head; 437 struct rb_root tcp_rtx_queue; 438 }; 439 struct sk_buff *sk_tx_skb_cache; 440 struct sk_buff_head sk_write_queue; 441 __s32 sk_peek_off; 442 int sk_write_pending; 443 __u32 sk_dst_pending_confirm; 444 u32 sk_pacing_status; /* see enum sk_pacing */ 445 long sk_sndtimeo; 446 struct timer_list sk_timer; 447 __u32 sk_priority; 448 __u32 sk_mark; 449 unsigned long sk_pacing_rate; /* bytes per second */ 450 unsigned long sk_max_pacing_rate; 451 struct page_frag sk_frag; 452 netdev_features_t sk_route_caps; 453 netdev_features_t sk_route_nocaps; 454 netdev_features_t sk_route_forced_caps; 455 int sk_gso_type; 456 unsigned int sk_gso_max_size; 457 gfp_t sk_allocation; 458 __u32 sk_txhash; 459 460 /* 461 * Because of non atomicity rules, all 462 * changes are protected by socket lock. 463 */ 464 u8 sk_padding : 1, 465 sk_kern_sock : 1, 466 sk_no_check_tx : 1, 467 sk_no_check_rx : 1, 468 sk_userlocks : 4; 469 u8 sk_pacing_shift; 470 u16 sk_type; 471 u16 sk_protocol; 472 u16 sk_gso_max_segs; 473 unsigned long sk_lingertime; 474 struct proto *sk_prot_creator; 475 rwlock_t sk_callback_lock; 476 int sk_err, 477 sk_err_soft; 478 u32 sk_ack_backlog; 479 u32 sk_max_ack_backlog; 480 kuid_t sk_uid; 481 struct pid *sk_peer_pid; 482 const struct cred *sk_peer_cred; 483 long sk_rcvtimeo; 484 ktime_t sk_stamp; 485 #if BITS_PER_LONG==32 486 seqlock_t sk_stamp_seq; 487 #endif 488 u16 sk_tsflags; 489 u8 sk_shutdown; 490 u32 sk_tskey; 491 atomic_t sk_zckey; 492 493 u8 sk_clockid; 494 u8 sk_txtime_deadline_mode : 1, 495 sk_txtime_report_errors : 1, 496 sk_txtime_unused : 6; 497 498 struct socket *sk_socket; 499 void *sk_user_data; 500 #ifdef CONFIG_SECURITY 501 void *sk_security; 502 #endif 503 struct sock_cgroup_data sk_cgrp_data; 504 struct mem_cgroup *sk_memcg; 505 void (*sk_state_change)(struct sock *sk); 506 void (*sk_data_ready)(struct sock *sk); 507 void (*sk_write_space)(struct sock *sk); 508 void (*sk_error_report)(struct sock *sk); 509 int (*sk_backlog_rcv)(struct sock *sk, 510 struct sk_buff *skb); 511 #ifdef CONFIG_SOCK_VALIDATE_XMIT 512 struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk, 513 struct net_device *dev, 514 struct sk_buff *skb); 515 #endif 516 void (*sk_destruct)(struct sock *sk); 517 struct sock_reuseport __rcu *sk_reuseport_cb; 518 #ifdef CONFIG_BPF_SYSCALL 519 struct bpf_sk_storage __rcu *sk_bpf_storage; 520 #endif 521 struct rcu_head sk_rcu; 522 }; 523 524 enum sk_pacing { 525 SK_PACING_NONE = 0, 526 SK_PACING_NEEDED = 1, 527 SK_PACING_FQ = 2, 528 }; 529 530 /* Pointer stored in sk_user_data might not be suitable for copying 531 * when cloning the socket. For instance, it can point to a reference 532 * counted object. sk_user_data bottom bit is set if pointer must not 533 * be copied. 534 */ 535 #define SK_USER_DATA_NOCOPY 1UL 536 #define SK_USER_DATA_BPF 2UL /* Managed by BPF */ 537 #define SK_USER_DATA_PTRMASK ~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF) 538 539 /** 540 * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied 541 * @sk: socket 542 */ 543 static inline bool sk_user_data_is_nocopy(const struct sock *sk) 544 { 545 return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY); 546 } 547 548 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data))) 549 550 #define rcu_dereference_sk_user_data(sk) \ 551 ({ \ 552 void *__tmp = rcu_dereference(__sk_user_data((sk))); \ 553 (void *)((uintptr_t)__tmp & SK_USER_DATA_PTRMASK); \ 554 }) 555 #define rcu_assign_sk_user_data(sk, ptr) \ 556 ({ \ 557 uintptr_t __tmp = (uintptr_t)(ptr); \ 558 WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK); \ 559 rcu_assign_pointer(__sk_user_data((sk)), __tmp); \ 560 }) 561 #define rcu_assign_sk_user_data_nocopy(sk, ptr) \ 562 ({ \ 563 uintptr_t __tmp = (uintptr_t)(ptr); \ 564 WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK); \ 565 rcu_assign_pointer(__sk_user_data((sk)), \ 566 __tmp | SK_USER_DATA_NOCOPY); \ 567 }) 568 569 /* 570 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK 571 * or not whether his port will be reused by someone else. SK_FORCE_REUSE 572 * on a socket means that the socket will reuse everybody else's port 573 * without looking at the other's sk_reuse value. 574 */ 575 576 #define SK_NO_REUSE 0 577 #define SK_CAN_REUSE 1 578 #define SK_FORCE_REUSE 2 579 580 int sk_set_peek_off(struct sock *sk, int val); 581 582 static inline int sk_peek_offset(struct sock *sk, int flags) 583 { 584 if (unlikely(flags & MSG_PEEK)) { 585 return READ_ONCE(sk->sk_peek_off); 586 } 587 588 return 0; 589 } 590 591 static inline void sk_peek_offset_bwd(struct sock *sk, int val) 592 { 593 s32 off = READ_ONCE(sk->sk_peek_off); 594 595 if (unlikely(off >= 0)) { 596 off = max_t(s32, off - val, 0); 597 WRITE_ONCE(sk->sk_peek_off, off); 598 } 599 } 600 601 static inline void sk_peek_offset_fwd(struct sock *sk, int val) 602 { 603 sk_peek_offset_bwd(sk, -val); 604 } 605 606 /* 607 * Hashed lists helper routines 608 */ 609 static inline struct sock *sk_entry(const struct hlist_node *node) 610 { 611 return hlist_entry(node, struct sock, sk_node); 612 } 613 614 static inline struct sock *__sk_head(const struct hlist_head *head) 615 { 616 return hlist_entry(head->first, struct sock, sk_node); 617 } 618 619 static inline struct sock *sk_head(const struct hlist_head *head) 620 { 621 return hlist_empty(head) ? NULL : __sk_head(head); 622 } 623 624 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head) 625 { 626 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node); 627 } 628 629 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head) 630 { 631 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head); 632 } 633 634 static inline struct sock *sk_next(const struct sock *sk) 635 { 636 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node); 637 } 638 639 static inline struct sock *sk_nulls_next(const struct sock *sk) 640 { 641 return (!is_a_nulls(sk->sk_nulls_node.next)) ? 642 hlist_nulls_entry(sk->sk_nulls_node.next, 643 struct sock, sk_nulls_node) : 644 NULL; 645 } 646 647 static inline bool sk_unhashed(const struct sock *sk) 648 { 649 return hlist_unhashed(&sk->sk_node); 650 } 651 652 static inline bool sk_hashed(const struct sock *sk) 653 { 654 return !sk_unhashed(sk); 655 } 656 657 static inline void sk_node_init(struct hlist_node *node) 658 { 659 node->pprev = NULL; 660 } 661 662 static inline void sk_nulls_node_init(struct hlist_nulls_node *node) 663 { 664 node->pprev = NULL; 665 } 666 667 static inline void __sk_del_node(struct sock *sk) 668 { 669 __hlist_del(&sk->sk_node); 670 } 671 672 /* NB: equivalent to hlist_del_init_rcu */ 673 static inline bool __sk_del_node_init(struct sock *sk) 674 { 675 if (sk_hashed(sk)) { 676 __sk_del_node(sk); 677 sk_node_init(&sk->sk_node); 678 return true; 679 } 680 return false; 681 } 682 683 /* Grab socket reference count. This operation is valid only 684 when sk is ALREADY grabbed f.e. it is found in hash table 685 or a list and the lookup is made under lock preventing hash table 686 modifications. 687 */ 688 689 static __always_inline void sock_hold(struct sock *sk) 690 { 691 refcount_inc(&sk->sk_refcnt); 692 } 693 694 /* Ungrab socket in the context, which assumes that socket refcnt 695 cannot hit zero, f.e. it is true in context of any socketcall. 696 */ 697 static __always_inline void __sock_put(struct sock *sk) 698 { 699 refcount_dec(&sk->sk_refcnt); 700 } 701 702 static inline bool sk_del_node_init(struct sock *sk) 703 { 704 bool rc = __sk_del_node_init(sk); 705 706 if (rc) { 707 /* paranoid for a while -acme */ 708 WARN_ON(refcount_read(&sk->sk_refcnt) == 1); 709 __sock_put(sk); 710 } 711 return rc; 712 } 713 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk) 714 715 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk) 716 { 717 if (sk_hashed(sk)) { 718 hlist_nulls_del_init_rcu(&sk->sk_nulls_node); 719 return true; 720 } 721 return false; 722 } 723 724 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk) 725 { 726 bool rc = __sk_nulls_del_node_init_rcu(sk); 727 728 if (rc) { 729 /* paranoid for a while -acme */ 730 WARN_ON(refcount_read(&sk->sk_refcnt) == 1); 731 __sock_put(sk); 732 } 733 return rc; 734 } 735 736 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list) 737 { 738 hlist_add_head(&sk->sk_node, list); 739 } 740 741 static inline void sk_add_node(struct sock *sk, struct hlist_head *list) 742 { 743 sock_hold(sk); 744 __sk_add_node(sk, list); 745 } 746 747 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list) 748 { 749 sock_hold(sk); 750 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 751 sk->sk_family == AF_INET6) 752 hlist_add_tail_rcu(&sk->sk_node, list); 753 else 754 hlist_add_head_rcu(&sk->sk_node, list); 755 } 756 757 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list) 758 { 759 sock_hold(sk); 760 hlist_add_tail_rcu(&sk->sk_node, list); 761 } 762 763 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 764 { 765 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list); 766 } 767 768 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list) 769 { 770 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list); 771 } 772 773 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 774 { 775 sock_hold(sk); 776 __sk_nulls_add_node_rcu(sk, list); 777 } 778 779 static inline void __sk_del_bind_node(struct sock *sk) 780 { 781 __hlist_del(&sk->sk_bind_node); 782 } 783 784 static inline void sk_add_bind_node(struct sock *sk, 785 struct hlist_head *list) 786 { 787 hlist_add_head(&sk->sk_bind_node, list); 788 } 789 790 #define sk_for_each(__sk, list) \ 791 hlist_for_each_entry(__sk, list, sk_node) 792 #define sk_for_each_rcu(__sk, list) \ 793 hlist_for_each_entry_rcu(__sk, list, sk_node) 794 #define sk_nulls_for_each(__sk, node, list) \ 795 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node) 796 #define sk_nulls_for_each_rcu(__sk, node, list) \ 797 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node) 798 #define sk_for_each_from(__sk) \ 799 hlist_for_each_entry_from(__sk, sk_node) 800 #define sk_nulls_for_each_from(__sk, node) \ 801 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \ 802 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node) 803 #define sk_for_each_safe(__sk, tmp, list) \ 804 hlist_for_each_entry_safe(__sk, tmp, list, sk_node) 805 #define sk_for_each_bound(__sk, list) \ 806 hlist_for_each_entry(__sk, list, sk_bind_node) 807 808 /** 809 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset 810 * @tpos: the type * to use as a loop cursor. 811 * @pos: the &struct hlist_node to use as a loop cursor. 812 * @head: the head for your list. 813 * @offset: offset of hlist_node within the struct. 814 * 815 */ 816 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \ 817 for (pos = rcu_dereference(hlist_first_rcu(head)); \ 818 pos != NULL && \ 819 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \ 820 pos = rcu_dereference(hlist_next_rcu(pos))) 821 822 static inline struct user_namespace *sk_user_ns(struct sock *sk) 823 { 824 /* Careful only use this in a context where these parameters 825 * can not change and must all be valid, such as recvmsg from 826 * userspace. 827 */ 828 return sk->sk_socket->file->f_cred->user_ns; 829 } 830 831 /* Sock flags */ 832 enum sock_flags { 833 SOCK_DEAD, 834 SOCK_DONE, 835 SOCK_URGINLINE, 836 SOCK_KEEPOPEN, 837 SOCK_LINGER, 838 SOCK_DESTROY, 839 SOCK_BROADCAST, 840 SOCK_TIMESTAMP, 841 SOCK_ZAPPED, 842 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ 843 SOCK_DBG, /* %SO_DEBUG setting */ 844 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ 845 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */ 846 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ 847 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */ 848 SOCK_MEMALLOC, /* VM depends on this socket for swapping */ 849 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */ 850 SOCK_FASYNC, /* fasync() active */ 851 SOCK_RXQ_OVFL, 852 SOCK_ZEROCOPY, /* buffers from userspace */ 853 SOCK_WIFI_STATUS, /* push wifi status to userspace */ 854 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS. 855 * Will use last 4 bytes of packet sent from 856 * user-space instead. 857 */ 858 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */ 859 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */ 860 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */ 861 SOCK_TXTIME, 862 SOCK_XDP, /* XDP is attached */ 863 SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */ 864 }; 865 866 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)) 867 868 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk) 869 { 870 nsk->sk_flags = osk->sk_flags; 871 } 872 873 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) 874 { 875 __set_bit(flag, &sk->sk_flags); 876 } 877 878 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) 879 { 880 __clear_bit(flag, &sk->sk_flags); 881 } 882 883 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag) 884 { 885 return test_bit(flag, &sk->sk_flags); 886 } 887 888 #ifdef CONFIG_NET 889 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key); 890 static inline int sk_memalloc_socks(void) 891 { 892 return static_branch_unlikely(&memalloc_socks_key); 893 } 894 895 void __receive_sock(struct file *file); 896 #else 897 898 static inline int sk_memalloc_socks(void) 899 { 900 return 0; 901 } 902 903 static inline void __receive_sock(struct file *file) 904 { } 905 #endif 906 907 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask) 908 { 909 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC); 910 } 911 912 static inline void sk_acceptq_removed(struct sock *sk) 913 { 914 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1); 915 } 916 917 static inline void sk_acceptq_added(struct sock *sk) 918 { 919 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1); 920 } 921 922 static inline bool sk_acceptq_is_full(const struct sock *sk) 923 { 924 return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog); 925 } 926 927 /* 928 * Compute minimal free write space needed to queue new packets. 929 */ 930 static inline int sk_stream_min_wspace(const struct sock *sk) 931 { 932 return READ_ONCE(sk->sk_wmem_queued) >> 1; 933 } 934 935 static inline int sk_stream_wspace(const struct sock *sk) 936 { 937 return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued); 938 } 939 940 static inline void sk_wmem_queued_add(struct sock *sk, int val) 941 { 942 WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val); 943 } 944 945 void sk_stream_write_space(struct sock *sk); 946 947 /* OOB backlog add */ 948 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb) 949 { 950 /* dont let skb dst not refcounted, we are going to leave rcu lock */ 951 skb_dst_force(skb); 952 953 if (!sk->sk_backlog.tail) 954 WRITE_ONCE(sk->sk_backlog.head, skb); 955 else 956 sk->sk_backlog.tail->next = skb; 957 958 WRITE_ONCE(sk->sk_backlog.tail, skb); 959 skb->next = NULL; 960 } 961 962 /* 963 * Take into account size of receive queue and backlog queue 964 * Do not take into account this skb truesize, 965 * to allow even a single big packet to come. 966 */ 967 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit) 968 { 969 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc); 970 971 return qsize > limit; 972 } 973 974 /* The per-socket spinlock must be held here. */ 975 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb, 976 unsigned int limit) 977 { 978 if (sk_rcvqueues_full(sk, limit)) 979 return -ENOBUFS; 980 981 /* 982 * If the skb was allocated from pfmemalloc reserves, only 983 * allow SOCK_MEMALLOC sockets to use it as this socket is 984 * helping free memory 985 */ 986 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) 987 return -ENOMEM; 988 989 __sk_add_backlog(sk, skb); 990 sk->sk_backlog.len += skb->truesize; 991 return 0; 992 } 993 994 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb); 995 996 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 997 { 998 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) 999 return __sk_backlog_rcv(sk, skb); 1000 1001 return sk->sk_backlog_rcv(sk, skb); 1002 } 1003 1004 static inline void sk_incoming_cpu_update(struct sock *sk) 1005 { 1006 int cpu = raw_smp_processor_id(); 1007 1008 if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu)) 1009 WRITE_ONCE(sk->sk_incoming_cpu, cpu); 1010 } 1011 1012 static inline void sock_rps_record_flow_hash(__u32 hash) 1013 { 1014 #ifdef CONFIG_RPS 1015 struct rps_sock_flow_table *sock_flow_table; 1016 1017 rcu_read_lock(); 1018 sock_flow_table = rcu_dereference(rps_sock_flow_table); 1019 rps_record_sock_flow(sock_flow_table, hash); 1020 rcu_read_unlock(); 1021 #endif 1022 } 1023 1024 static inline void sock_rps_record_flow(const struct sock *sk) 1025 { 1026 #ifdef CONFIG_RPS 1027 if (static_branch_unlikely(&rfs_needed)) { 1028 /* Reading sk->sk_rxhash might incur an expensive cache line 1029 * miss. 1030 * 1031 * TCP_ESTABLISHED does cover almost all states where RFS 1032 * might be useful, and is cheaper [1] than testing : 1033 * IPv4: inet_sk(sk)->inet_daddr 1034 * IPv6: ipv6_addr_any(&sk->sk_v6_daddr) 1035 * OR an additional socket flag 1036 * [1] : sk_state and sk_prot are in the same cache line. 1037 */ 1038 if (sk->sk_state == TCP_ESTABLISHED) 1039 sock_rps_record_flow_hash(sk->sk_rxhash); 1040 } 1041 #endif 1042 } 1043 1044 static inline void sock_rps_save_rxhash(struct sock *sk, 1045 const struct sk_buff *skb) 1046 { 1047 #ifdef CONFIG_RPS 1048 if (unlikely(sk->sk_rxhash != skb->hash)) 1049 sk->sk_rxhash = skb->hash; 1050 #endif 1051 } 1052 1053 static inline void sock_rps_reset_rxhash(struct sock *sk) 1054 { 1055 #ifdef CONFIG_RPS 1056 sk->sk_rxhash = 0; 1057 #endif 1058 } 1059 1060 #define sk_wait_event(__sk, __timeo, __condition, __wait) \ 1061 ({ int __rc; \ 1062 release_sock(__sk); \ 1063 __rc = __condition; \ 1064 if (!__rc) { \ 1065 *(__timeo) = wait_woken(__wait, \ 1066 TASK_INTERRUPTIBLE, \ 1067 *(__timeo)); \ 1068 } \ 1069 sched_annotate_sleep(); \ 1070 lock_sock(__sk); \ 1071 __rc = __condition; \ 1072 __rc; \ 1073 }) 1074 1075 int sk_stream_wait_connect(struct sock *sk, long *timeo_p); 1076 int sk_stream_wait_memory(struct sock *sk, long *timeo_p); 1077 void sk_stream_wait_close(struct sock *sk, long timeo_p); 1078 int sk_stream_error(struct sock *sk, int flags, int err); 1079 void sk_stream_kill_queues(struct sock *sk); 1080 void sk_set_memalloc(struct sock *sk); 1081 void sk_clear_memalloc(struct sock *sk); 1082 1083 void __sk_flush_backlog(struct sock *sk); 1084 1085 static inline bool sk_flush_backlog(struct sock *sk) 1086 { 1087 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) { 1088 __sk_flush_backlog(sk); 1089 return true; 1090 } 1091 return false; 1092 } 1093 1094 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb); 1095 1096 struct request_sock_ops; 1097 struct timewait_sock_ops; 1098 struct inet_hashinfo; 1099 struct raw_hashinfo; 1100 struct smc_hashinfo; 1101 struct module; 1102 1103 /* 1104 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes 1105 * un-modified. Special care is taken when initializing object to zero. 1106 */ 1107 static inline void sk_prot_clear_nulls(struct sock *sk, int size) 1108 { 1109 if (offsetof(struct sock, sk_node.next) != 0) 1110 memset(sk, 0, offsetof(struct sock, sk_node.next)); 1111 memset(&sk->sk_node.pprev, 0, 1112 size - offsetof(struct sock, sk_node.pprev)); 1113 } 1114 1115 /* Networking protocol blocks we attach to sockets. 1116 * socket layer -> transport layer interface 1117 */ 1118 struct proto { 1119 void (*close)(struct sock *sk, 1120 long timeout); 1121 int (*pre_connect)(struct sock *sk, 1122 struct sockaddr *uaddr, 1123 int addr_len); 1124 int (*connect)(struct sock *sk, 1125 struct sockaddr *uaddr, 1126 int addr_len); 1127 int (*disconnect)(struct sock *sk, int flags); 1128 1129 struct sock * (*accept)(struct sock *sk, int flags, int *err, 1130 bool kern); 1131 1132 int (*ioctl)(struct sock *sk, int cmd, 1133 unsigned long arg); 1134 int (*init)(struct sock *sk); 1135 void (*destroy)(struct sock *sk); 1136 void (*shutdown)(struct sock *sk, int how); 1137 int (*setsockopt)(struct sock *sk, int level, 1138 int optname, char __user *optval, 1139 unsigned int optlen); 1140 int (*getsockopt)(struct sock *sk, int level, 1141 int optname, char __user *optval, 1142 int __user *option); 1143 void (*keepalive)(struct sock *sk, int valbool); 1144 #ifdef CONFIG_COMPAT 1145 int (*compat_setsockopt)(struct sock *sk, 1146 int level, 1147 int optname, char __user *optval, 1148 unsigned int optlen); 1149 int (*compat_getsockopt)(struct sock *sk, 1150 int level, 1151 int optname, char __user *optval, 1152 int __user *option); 1153 int (*compat_ioctl)(struct sock *sk, 1154 unsigned int cmd, unsigned long arg); 1155 #endif 1156 int (*sendmsg)(struct sock *sk, struct msghdr *msg, 1157 size_t len); 1158 int (*recvmsg)(struct sock *sk, struct msghdr *msg, 1159 size_t len, int noblock, int flags, 1160 int *addr_len); 1161 int (*sendpage)(struct sock *sk, struct page *page, 1162 int offset, size_t size, int flags); 1163 int (*bind)(struct sock *sk, 1164 struct sockaddr *addr, int addr_len); 1165 int (*bind_add)(struct sock *sk, 1166 struct sockaddr *addr, int addr_len); 1167 1168 int (*backlog_rcv) (struct sock *sk, 1169 struct sk_buff *skb); 1170 1171 void (*release_cb)(struct sock *sk); 1172 1173 /* Keeping track of sk's, looking them up, and port selection methods. */ 1174 int (*hash)(struct sock *sk); 1175 void (*unhash)(struct sock *sk); 1176 void (*rehash)(struct sock *sk); 1177 int (*get_port)(struct sock *sk, unsigned short snum); 1178 1179 /* Keeping track of sockets in use */ 1180 #ifdef CONFIG_PROC_FS 1181 unsigned int inuse_idx; 1182 #endif 1183 1184 bool (*stream_memory_free)(const struct sock *sk, int wake); 1185 bool (*stream_memory_read)(const struct sock *sk); 1186 /* Memory pressure */ 1187 void (*enter_memory_pressure)(struct sock *sk); 1188 void (*leave_memory_pressure)(struct sock *sk); 1189 atomic_long_t *memory_allocated; /* Current allocated memory. */ 1190 struct percpu_counter *sockets_allocated; /* Current number of sockets. */ 1191 /* 1192 * Pressure flag: try to collapse. 1193 * Technical note: it is used by multiple contexts non atomically. 1194 * All the __sk_mem_schedule() is of this nature: accounting 1195 * is strict, actions are advisory and have some latency. 1196 */ 1197 unsigned long *memory_pressure; 1198 long *sysctl_mem; 1199 1200 int *sysctl_wmem; 1201 int *sysctl_rmem; 1202 u32 sysctl_wmem_offset; 1203 u32 sysctl_rmem_offset; 1204 1205 int max_header; 1206 bool no_autobind; 1207 1208 struct kmem_cache *slab; 1209 unsigned int obj_size; 1210 slab_flags_t slab_flags; 1211 unsigned int useroffset; /* Usercopy region offset */ 1212 unsigned int usersize; /* Usercopy region size */ 1213 1214 struct percpu_counter *orphan_count; 1215 1216 struct request_sock_ops *rsk_prot; 1217 struct timewait_sock_ops *twsk_prot; 1218 1219 union { 1220 struct inet_hashinfo *hashinfo; 1221 struct udp_table *udp_table; 1222 struct raw_hashinfo *raw_hash; 1223 struct smc_hashinfo *smc_hash; 1224 } h; 1225 1226 struct module *owner; 1227 1228 char name[32]; 1229 1230 struct list_head node; 1231 #ifdef SOCK_REFCNT_DEBUG 1232 atomic_t socks; 1233 #endif 1234 int (*diag_destroy)(struct sock *sk, int err); 1235 } __randomize_layout; 1236 1237 int proto_register(struct proto *prot, int alloc_slab); 1238 void proto_unregister(struct proto *prot); 1239 int sock_load_diag_module(int family, int protocol); 1240 1241 #ifdef SOCK_REFCNT_DEBUG 1242 static inline void sk_refcnt_debug_inc(struct sock *sk) 1243 { 1244 atomic_inc(&sk->sk_prot->socks); 1245 } 1246 1247 static inline void sk_refcnt_debug_dec(struct sock *sk) 1248 { 1249 atomic_dec(&sk->sk_prot->socks); 1250 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n", 1251 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks)); 1252 } 1253 1254 static inline void sk_refcnt_debug_release(const struct sock *sk) 1255 { 1256 if (refcount_read(&sk->sk_refcnt) != 1) 1257 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n", 1258 sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt)); 1259 } 1260 #else /* SOCK_REFCNT_DEBUG */ 1261 #define sk_refcnt_debug_inc(sk) do { } while (0) 1262 #define sk_refcnt_debug_dec(sk) do { } while (0) 1263 #define sk_refcnt_debug_release(sk) do { } while (0) 1264 #endif /* SOCK_REFCNT_DEBUG */ 1265 1266 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake) 1267 { 1268 if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf)) 1269 return false; 1270 1271 return sk->sk_prot->stream_memory_free ? 1272 sk->sk_prot->stream_memory_free(sk, wake) : true; 1273 } 1274 1275 static inline bool sk_stream_memory_free(const struct sock *sk) 1276 { 1277 return __sk_stream_memory_free(sk, 0); 1278 } 1279 1280 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake) 1281 { 1282 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) && 1283 __sk_stream_memory_free(sk, wake); 1284 } 1285 1286 static inline bool sk_stream_is_writeable(const struct sock *sk) 1287 { 1288 return __sk_stream_is_writeable(sk, 0); 1289 } 1290 1291 static inline int sk_under_cgroup_hierarchy(struct sock *sk, 1292 struct cgroup *ancestor) 1293 { 1294 #ifdef CONFIG_SOCK_CGROUP_DATA 1295 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data), 1296 ancestor); 1297 #else 1298 return -ENOTSUPP; 1299 #endif 1300 } 1301 1302 static inline bool sk_has_memory_pressure(const struct sock *sk) 1303 { 1304 return sk->sk_prot->memory_pressure != NULL; 1305 } 1306 1307 static inline bool sk_under_memory_pressure(const struct sock *sk) 1308 { 1309 if (!sk->sk_prot->memory_pressure) 1310 return false; 1311 1312 if (mem_cgroup_sockets_enabled && sk->sk_memcg && 1313 mem_cgroup_under_socket_pressure(sk->sk_memcg)) 1314 return true; 1315 1316 return !!*sk->sk_prot->memory_pressure; 1317 } 1318 1319 static inline long 1320 sk_memory_allocated(const struct sock *sk) 1321 { 1322 return atomic_long_read(sk->sk_prot->memory_allocated); 1323 } 1324 1325 static inline long 1326 sk_memory_allocated_add(struct sock *sk, int amt) 1327 { 1328 return atomic_long_add_return(amt, sk->sk_prot->memory_allocated); 1329 } 1330 1331 static inline void 1332 sk_memory_allocated_sub(struct sock *sk, int amt) 1333 { 1334 atomic_long_sub(amt, sk->sk_prot->memory_allocated); 1335 } 1336 1337 static inline void sk_sockets_allocated_dec(struct sock *sk) 1338 { 1339 percpu_counter_dec(sk->sk_prot->sockets_allocated); 1340 } 1341 1342 static inline void sk_sockets_allocated_inc(struct sock *sk) 1343 { 1344 percpu_counter_inc(sk->sk_prot->sockets_allocated); 1345 } 1346 1347 static inline u64 1348 sk_sockets_allocated_read_positive(struct sock *sk) 1349 { 1350 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated); 1351 } 1352 1353 static inline int 1354 proto_sockets_allocated_sum_positive(struct proto *prot) 1355 { 1356 return percpu_counter_sum_positive(prot->sockets_allocated); 1357 } 1358 1359 static inline long 1360 proto_memory_allocated(struct proto *prot) 1361 { 1362 return atomic_long_read(prot->memory_allocated); 1363 } 1364 1365 static inline bool 1366 proto_memory_pressure(struct proto *prot) 1367 { 1368 if (!prot->memory_pressure) 1369 return false; 1370 return !!*prot->memory_pressure; 1371 } 1372 1373 1374 #ifdef CONFIG_PROC_FS 1375 /* Called with local bh disabled */ 1376 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc); 1377 int sock_prot_inuse_get(struct net *net, struct proto *proto); 1378 int sock_inuse_get(struct net *net); 1379 #else 1380 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot, 1381 int inc) 1382 { 1383 } 1384 #endif 1385 1386 1387 /* With per-bucket locks this operation is not-atomic, so that 1388 * this version is not worse. 1389 */ 1390 static inline int __sk_prot_rehash(struct sock *sk) 1391 { 1392 sk->sk_prot->unhash(sk); 1393 return sk->sk_prot->hash(sk); 1394 } 1395 1396 /* About 10 seconds */ 1397 #define SOCK_DESTROY_TIME (10*HZ) 1398 1399 /* Sockets 0-1023 can't be bound to unless you are superuser */ 1400 #define PROT_SOCK 1024 1401 1402 #define SHUTDOWN_MASK 3 1403 #define RCV_SHUTDOWN 1 1404 #define SEND_SHUTDOWN 2 1405 1406 #define SOCK_SNDBUF_LOCK 1 1407 #define SOCK_RCVBUF_LOCK 2 1408 #define SOCK_BINDADDR_LOCK 4 1409 #define SOCK_BINDPORT_LOCK 8 1410 1411 struct socket_alloc { 1412 struct socket socket; 1413 struct inode vfs_inode; 1414 }; 1415 1416 static inline struct socket *SOCKET_I(struct inode *inode) 1417 { 1418 return &container_of(inode, struct socket_alloc, vfs_inode)->socket; 1419 } 1420 1421 static inline struct inode *SOCK_INODE(struct socket *socket) 1422 { 1423 return &container_of(socket, struct socket_alloc, socket)->vfs_inode; 1424 } 1425 1426 /* 1427 * Functions for memory accounting 1428 */ 1429 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind); 1430 int __sk_mem_schedule(struct sock *sk, int size, int kind); 1431 void __sk_mem_reduce_allocated(struct sock *sk, int amount); 1432 void __sk_mem_reclaim(struct sock *sk, int amount); 1433 1434 /* We used to have PAGE_SIZE here, but systems with 64KB pages 1435 * do not necessarily have 16x time more memory than 4KB ones. 1436 */ 1437 #define SK_MEM_QUANTUM 4096 1438 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM) 1439 #define SK_MEM_SEND 0 1440 #define SK_MEM_RECV 1 1441 1442 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */ 1443 static inline long sk_prot_mem_limits(const struct sock *sk, int index) 1444 { 1445 long val = sk->sk_prot->sysctl_mem[index]; 1446 1447 #if PAGE_SIZE > SK_MEM_QUANTUM 1448 val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT; 1449 #elif PAGE_SIZE < SK_MEM_QUANTUM 1450 val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT; 1451 #endif 1452 return val; 1453 } 1454 1455 static inline int sk_mem_pages(int amt) 1456 { 1457 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT; 1458 } 1459 1460 static inline bool sk_has_account(struct sock *sk) 1461 { 1462 /* return true if protocol supports memory accounting */ 1463 return !!sk->sk_prot->memory_allocated; 1464 } 1465 1466 static inline bool sk_wmem_schedule(struct sock *sk, int size) 1467 { 1468 if (!sk_has_account(sk)) 1469 return true; 1470 return size <= sk->sk_forward_alloc || 1471 __sk_mem_schedule(sk, size, SK_MEM_SEND); 1472 } 1473 1474 static inline bool 1475 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size) 1476 { 1477 if (!sk_has_account(sk)) 1478 return true; 1479 return size<= sk->sk_forward_alloc || 1480 __sk_mem_schedule(sk, size, SK_MEM_RECV) || 1481 skb_pfmemalloc(skb); 1482 } 1483 1484 static inline void sk_mem_reclaim(struct sock *sk) 1485 { 1486 if (!sk_has_account(sk)) 1487 return; 1488 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM) 1489 __sk_mem_reclaim(sk, sk->sk_forward_alloc); 1490 } 1491 1492 static inline void sk_mem_reclaim_partial(struct sock *sk) 1493 { 1494 if (!sk_has_account(sk)) 1495 return; 1496 if (sk->sk_forward_alloc > SK_MEM_QUANTUM) 1497 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1); 1498 } 1499 1500 static inline void sk_mem_charge(struct sock *sk, int size) 1501 { 1502 if (!sk_has_account(sk)) 1503 return; 1504 sk->sk_forward_alloc -= size; 1505 } 1506 1507 static inline void sk_mem_uncharge(struct sock *sk, int size) 1508 { 1509 if (!sk_has_account(sk)) 1510 return; 1511 sk->sk_forward_alloc += size; 1512 1513 /* Avoid a possible overflow. 1514 * TCP send queues can make this happen, if sk_mem_reclaim() 1515 * is not called and more than 2 GBytes are released at once. 1516 * 1517 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is 1518 * no need to hold that much forward allocation anyway. 1519 */ 1520 if (unlikely(sk->sk_forward_alloc >= 1 << 21)) 1521 __sk_mem_reclaim(sk, 1 << 20); 1522 } 1523 1524 DECLARE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key); 1525 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb) 1526 { 1527 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1528 sk_wmem_queued_add(sk, -skb->truesize); 1529 sk_mem_uncharge(sk, skb->truesize); 1530 if (static_branch_unlikely(&tcp_tx_skb_cache_key) && 1531 !sk->sk_tx_skb_cache && !skb_cloned(skb)) { 1532 skb_ext_reset(skb); 1533 skb_zcopy_clear(skb, true); 1534 sk->sk_tx_skb_cache = skb; 1535 return; 1536 } 1537 __kfree_skb(skb); 1538 } 1539 1540 static inline void sock_release_ownership(struct sock *sk) 1541 { 1542 if (sk->sk_lock.owned) { 1543 sk->sk_lock.owned = 0; 1544 1545 /* The sk_lock has mutex_unlock() semantics: */ 1546 mutex_release(&sk->sk_lock.dep_map, _RET_IP_); 1547 } 1548 } 1549 1550 /* 1551 * Macro so as to not evaluate some arguments when 1552 * lockdep is not enabled. 1553 * 1554 * Mark both the sk_lock and the sk_lock.slock as a 1555 * per-address-family lock class. 1556 */ 1557 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \ 1558 do { \ 1559 sk->sk_lock.owned = 0; \ 1560 init_waitqueue_head(&sk->sk_lock.wq); \ 1561 spin_lock_init(&(sk)->sk_lock.slock); \ 1562 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \ 1563 sizeof((sk)->sk_lock)); \ 1564 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \ 1565 (skey), (sname)); \ 1566 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \ 1567 } while (0) 1568 1569 #ifdef CONFIG_LOCKDEP 1570 static inline bool lockdep_sock_is_held(const struct sock *sk) 1571 { 1572 return lockdep_is_held(&sk->sk_lock) || 1573 lockdep_is_held(&sk->sk_lock.slock); 1574 } 1575 #endif 1576 1577 void lock_sock_nested(struct sock *sk, int subclass); 1578 1579 static inline void lock_sock(struct sock *sk) 1580 { 1581 lock_sock_nested(sk, 0); 1582 } 1583 1584 void __release_sock(struct sock *sk); 1585 void release_sock(struct sock *sk); 1586 1587 /* BH context may only use the following locking interface. */ 1588 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) 1589 #define bh_lock_sock_nested(__sk) \ 1590 spin_lock_nested(&((__sk)->sk_lock.slock), \ 1591 SINGLE_DEPTH_NESTING) 1592 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) 1593 1594 bool lock_sock_fast(struct sock *sk); 1595 /** 1596 * unlock_sock_fast - complement of lock_sock_fast 1597 * @sk: socket 1598 * @slow: slow mode 1599 * 1600 * fast unlock socket for user context. 1601 * If slow mode is on, we call regular release_sock() 1602 */ 1603 static inline void unlock_sock_fast(struct sock *sk, bool slow) 1604 { 1605 if (slow) 1606 release_sock(sk); 1607 else 1608 spin_unlock_bh(&sk->sk_lock.slock); 1609 } 1610 1611 /* Used by processes to "lock" a socket state, so that 1612 * interrupts and bottom half handlers won't change it 1613 * from under us. It essentially blocks any incoming 1614 * packets, so that we won't get any new data or any 1615 * packets that change the state of the socket. 1616 * 1617 * While locked, BH processing will add new packets to 1618 * the backlog queue. This queue is processed by the 1619 * owner of the socket lock right before it is released. 1620 * 1621 * Since ~2.3.5 it is also exclusive sleep lock serializing 1622 * accesses from user process context. 1623 */ 1624 1625 static inline void sock_owned_by_me(const struct sock *sk) 1626 { 1627 #ifdef CONFIG_LOCKDEP 1628 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks); 1629 #endif 1630 } 1631 1632 static inline bool sock_owned_by_user(const struct sock *sk) 1633 { 1634 sock_owned_by_me(sk); 1635 return sk->sk_lock.owned; 1636 } 1637 1638 static inline bool sock_owned_by_user_nocheck(const struct sock *sk) 1639 { 1640 return sk->sk_lock.owned; 1641 } 1642 1643 /* no reclassification while locks are held */ 1644 static inline bool sock_allow_reclassification(const struct sock *csk) 1645 { 1646 struct sock *sk = (struct sock *)csk; 1647 1648 return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock); 1649 } 1650 1651 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1652 struct proto *prot, int kern); 1653 void sk_free(struct sock *sk); 1654 void sk_destruct(struct sock *sk); 1655 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority); 1656 void sk_free_unlock_clone(struct sock *sk); 1657 1658 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 1659 gfp_t priority); 1660 void __sock_wfree(struct sk_buff *skb); 1661 void sock_wfree(struct sk_buff *skb); 1662 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, 1663 gfp_t priority); 1664 void skb_orphan_partial(struct sk_buff *skb); 1665 void sock_rfree(struct sk_buff *skb); 1666 void sock_efree(struct sk_buff *skb); 1667 #ifdef CONFIG_INET 1668 void sock_edemux(struct sk_buff *skb); 1669 void sock_pfree(struct sk_buff *skb); 1670 #else 1671 #define sock_edemux sock_efree 1672 #endif 1673 1674 int sock_setsockopt(struct socket *sock, int level, int op, 1675 char __user *optval, unsigned int optlen); 1676 1677 int sock_getsockopt(struct socket *sock, int level, int op, 1678 char __user *optval, int __user *optlen); 1679 int sock_gettstamp(struct socket *sock, void __user *userstamp, 1680 bool timeval, bool time32); 1681 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 1682 int noblock, int *errcode); 1683 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 1684 unsigned long data_len, int noblock, 1685 int *errcode, int max_page_order); 1686 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority); 1687 void sock_kfree_s(struct sock *sk, void *mem, int size); 1688 void sock_kzfree_s(struct sock *sk, void *mem, int size); 1689 void sk_send_sigurg(struct sock *sk); 1690 1691 struct sockcm_cookie { 1692 u64 transmit_time; 1693 u32 mark; 1694 u16 tsflags; 1695 }; 1696 1697 static inline void sockcm_init(struct sockcm_cookie *sockc, 1698 const struct sock *sk) 1699 { 1700 *sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags }; 1701 } 1702 1703 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg, 1704 struct sockcm_cookie *sockc); 1705 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 1706 struct sockcm_cookie *sockc); 1707 1708 /* 1709 * Functions to fill in entries in struct proto_ops when a protocol 1710 * does not implement a particular function. 1711 */ 1712 int sock_no_bind(struct socket *, struct sockaddr *, int); 1713 int sock_no_connect(struct socket *, struct sockaddr *, int, int); 1714 int sock_no_socketpair(struct socket *, struct socket *); 1715 int sock_no_accept(struct socket *, struct socket *, int, bool); 1716 int sock_no_getname(struct socket *, struct sockaddr *, int); 1717 int sock_no_ioctl(struct socket *, unsigned int, unsigned long); 1718 int sock_no_listen(struct socket *, int); 1719 int sock_no_shutdown(struct socket *, int); 1720 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *); 1721 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int); 1722 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t); 1723 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len); 1724 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int); 1725 int sock_no_mmap(struct file *file, struct socket *sock, 1726 struct vm_area_struct *vma); 1727 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, 1728 size_t size, int flags); 1729 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page, 1730 int offset, size_t size, int flags); 1731 1732 /* 1733 * Functions to fill in entries in struct proto_ops when a protocol 1734 * uses the inet style. 1735 */ 1736 int sock_common_getsockopt(struct socket *sock, int level, int optname, 1737 char __user *optval, int __user *optlen); 1738 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 1739 int flags); 1740 int sock_common_setsockopt(struct socket *sock, int level, int optname, 1741 char __user *optval, unsigned int optlen); 1742 int compat_sock_common_getsockopt(struct socket *sock, int level, 1743 int optname, char __user *optval, int __user *optlen); 1744 int compat_sock_common_setsockopt(struct socket *sock, int level, 1745 int optname, char __user *optval, unsigned int optlen); 1746 1747 void sk_common_release(struct sock *sk); 1748 1749 /* 1750 * Default socket callbacks and setup code 1751 */ 1752 1753 /* Initialise core socket variables */ 1754 void sock_init_data(struct socket *sock, struct sock *sk); 1755 1756 /* 1757 * Socket reference counting postulates. 1758 * 1759 * * Each user of socket SHOULD hold a reference count. 1760 * * Each access point to socket (an hash table bucket, reference from a list, 1761 * running timer, skb in flight MUST hold a reference count. 1762 * * When reference count hits 0, it means it will never increase back. 1763 * * When reference count hits 0, it means that no references from 1764 * outside exist to this socket and current process on current CPU 1765 * is last user and may/should destroy this socket. 1766 * * sk_free is called from any context: process, BH, IRQ. When 1767 * it is called, socket has no references from outside -> sk_free 1768 * may release descendant resources allocated by the socket, but 1769 * to the time when it is called, socket is NOT referenced by any 1770 * hash tables, lists etc. 1771 * * Packets, delivered from outside (from network or from another process) 1772 * and enqueued on receive/error queues SHOULD NOT grab reference count, 1773 * when they sit in queue. Otherwise, packets will leak to hole, when 1774 * socket is looked up by one cpu and unhasing is made by another CPU. 1775 * It is true for udp/raw, netlink (leak to receive and error queues), tcp 1776 * (leak to backlog). Packet socket does all the processing inside 1777 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets 1778 * use separate SMP lock, so that they are prone too. 1779 */ 1780 1781 /* Ungrab socket and destroy it, if it was the last reference. */ 1782 static inline void sock_put(struct sock *sk) 1783 { 1784 if (refcount_dec_and_test(&sk->sk_refcnt)) 1785 sk_free(sk); 1786 } 1787 /* Generic version of sock_put(), dealing with all sockets 1788 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...) 1789 */ 1790 void sock_gen_put(struct sock *sk); 1791 1792 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested, 1793 unsigned int trim_cap, bool refcounted); 1794 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb, 1795 const int nested) 1796 { 1797 return __sk_receive_skb(sk, skb, nested, 1, true); 1798 } 1799 1800 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue) 1801 { 1802 /* sk_tx_queue_mapping accept only upto a 16-bit value */ 1803 if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX)) 1804 return; 1805 sk->sk_tx_queue_mapping = tx_queue; 1806 } 1807 1808 #define NO_QUEUE_MAPPING USHRT_MAX 1809 1810 static inline void sk_tx_queue_clear(struct sock *sk) 1811 { 1812 sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING; 1813 } 1814 1815 static inline int sk_tx_queue_get(const struct sock *sk) 1816 { 1817 if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING) 1818 return sk->sk_tx_queue_mapping; 1819 1820 return -1; 1821 } 1822 1823 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb) 1824 { 1825 #ifdef CONFIG_XPS 1826 if (skb_rx_queue_recorded(skb)) { 1827 u16 rx_queue = skb_get_rx_queue(skb); 1828 1829 if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING)) 1830 return; 1831 1832 sk->sk_rx_queue_mapping = rx_queue; 1833 } 1834 #endif 1835 } 1836 1837 static inline void sk_rx_queue_clear(struct sock *sk) 1838 { 1839 #ifdef CONFIG_XPS 1840 sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING; 1841 #endif 1842 } 1843 1844 #ifdef CONFIG_XPS 1845 static inline int sk_rx_queue_get(const struct sock *sk) 1846 { 1847 if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING) 1848 return sk->sk_rx_queue_mapping; 1849 1850 return -1; 1851 } 1852 #endif 1853 1854 static inline void sk_set_socket(struct sock *sk, struct socket *sock) 1855 { 1856 sk->sk_socket = sock; 1857 } 1858 1859 static inline wait_queue_head_t *sk_sleep(struct sock *sk) 1860 { 1861 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0); 1862 return &rcu_dereference_raw(sk->sk_wq)->wait; 1863 } 1864 /* Detach socket from process context. 1865 * Announce socket dead, detach it from wait queue and inode. 1866 * Note that parent inode held reference count on this struct sock, 1867 * we do not release it in this function, because protocol 1868 * probably wants some additional cleanups or even continuing 1869 * to work with this socket (TCP). 1870 */ 1871 static inline void sock_orphan(struct sock *sk) 1872 { 1873 write_lock_bh(&sk->sk_callback_lock); 1874 sock_set_flag(sk, SOCK_DEAD); 1875 sk_set_socket(sk, NULL); 1876 sk->sk_wq = NULL; 1877 write_unlock_bh(&sk->sk_callback_lock); 1878 } 1879 1880 static inline void sock_graft(struct sock *sk, struct socket *parent) 1881 { 1882 WARN_ON(parent->sk); 1883 write_lock_bh(&sk->sk_callback_lock); 1884 rcu_assign_pointer(sk->sk_wq, &parent->wq); 1885 parent->sk = sk; 1886 sk_set_socket(sk, parent); 1887 sk->sk_uid = SOCK_INODE(parent)->i_uid; 1888 security_sock_graft(sk, parent); 1889 write_unlock_bh(&sk->sk_callback_lock); 1890 } 1891 1892 kuid_t sock_i_uid(struct sock *sk); 1893 unsigned long sock_i_ino(struct sock *sk); 1894 1895 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk) 1896 { 1897 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0); 1898 } 1899 1900 static inline u32 net_tx_rndhash(void) 1901 { 1902 u32 v = prandom_u32(); 1903 1904 return v ?: 1; 1905 } 1906 1907 static inline void sk_set_txhash(struct sock *sk) 1908 { 1909 sk->sk_txhash = net_tx_rndhash(); 1910 } 1911 1912 static inline void sk_rethink_txhash(struct sock *sk) 1913 { 1914 if (sk->sk_txhash) 1915 sk_set_txhash(sk); 1916 } 1917 1918 static inline struct dst_entry * 1919 __sk_dst_get(struct sock *sk) 1920 { 1921 return rcu_dereference_check(sk->sk_dst_cache, 1922 lockdep_sock_is_held(sk)); 1923 } 1924 1925 static inline struct dst_entry * 1926 sk_dst_get(struct sock *sk) 1927 { 1928 struct dst_entry *dst; 1929 1930 rcu_read_lock(); 1931 dst = rcu_dereference(sk->sk_dst_cache); 1932 if (dst && !atomic_inc_not_zero(&dst->__refcnt)) 1933 dst = NULL; 1934 rcu_read_unlock(); 1935 return dst; 1936 } 1937 1938 static inline void dst_negative_advice(struct sock *sk) 1939 { 1940 struct dst_entry *ndst, *dst = __sk_dst_get(sk); 1941 1942 sk_rethink_txhash(sk); 1943 1944 if (dst && dst->ops->negative_advice) { 1945 ndst = dst->ops->negative_advice(dst); 1946 1947 if (ndst != dst) { 1948 rcu_assign_pointer(sk->sk_dst_cache, ndst); 1949 sk_tx_queue_clear(sk); 1950 sk->sk_dst_pending_confirm = 0; 1951 } 1952 } 1953 } 1954 1955 static inline void 1956 __sk_dst_set(struct sock *sk, struct dst_entry *dst) 1957 { 1958 struct dst_entry *old_dst; 1959 1960 sk_tx_queue_clear(sk); 1961 sk->sk_dst_pending_confirm = 0; 1962 old_dst = rcu_dereference_protected(sk->sk_dst_cache, 1963 lockdep_sock_is_held(sk)); 1964 rcu_assign_pointer(sk->sk_dst_cache, dst); 1965 dst_release(old_dst); 1966 } 1967 1968 static inline void 1969 sk_dst_set(struct sock *sk, struct dst_entry *dst) 1970 { 1971 struct dst_entry *old_dst; 1972 1973 sk_tx_queue_clear(sk); 1974 sk->sk_dst_pending_confirm = 0; 1975 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst); 1976 dst_release(old_dst); 1977 } 1978 1979 static inline void 1980 __sk_dst_reset(struct sock *sk) 1981 { 1982 __sk_dst_set(sk, NULL); 1983 } 1984 1985 static inline void 1986 sk_dst_reset(struct sock *sk) 1987 { 1988 sk_dst_set(sk, NULL); 1989 } 1990 1991 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); 1992 1993 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); 1994 1995 static inline void sk_dst_confirm(struct sock *sk) 1996 { 1997 if (!READ_ONCE(sk->sk_dst_pending_confirm)) 1998 WRITE_ONCE(sk->sk_dst_pending_confirm, 1); 1999 } 2000 2001 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n) 2002 { 2003 if (skb_get_dst_pending_confirm(skb)) { 2004 struct sock *sk = skb->sk; 2005 unsigned long now = jiffies; 2006 2007 /* avoid dirtying neighbour */ 2008 if (READ_ONCE(n->confirmed) != now) 2009 WRITE_ONCE(n->confirmed, now); 2010 if (sk && READ_ONCE(sk->sk_dst_pending_confirm)) 2011 WRITE_ONCE(sk->sk_dst_pending_confirm, 0); 2012 } 2013 } 2014 2015 bool sk_mc_loop(struct sock *sk); 2016 2017 static inline bool sk_can_gso(const struct sock *sk) 2018 { 2019 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type); 2020 } 2021 2022 void sk_setup_caps(struct sock *sk, struct dst_entry *dst); 2023 2024 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags) 2025 { 2026 sk->sk_route_nocaps |= flags; 2027 sk->sk_route_caps &= ~flags; 2028 } 2029 2030 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb, 2031 struct iov_iter *from, char *to, 2032 int copy, int offset) 2033 { 2034 if (skb->ip_summed == CHECKSUM_NONE) { 2035 __wsum csum = 0; 2036 if (!csum_and_copy_from_iter_full(to, copy, &csum, from)) 2037 return -EFAULT; 2038 skb->csum = csum_block_add(skb->csum, csum, offset); 2039 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 2040 if (!copy_from_iter_full_nocache(to, copy, from)) 2041 return -EFAULT; 2042 } else if (!copy_from_iter_full(to, copy, from)) 2043 return -EFAULT; 2044 2045 return 0; 2046 } 2047 2048 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb, 2049 struct iov_iter *from, int copy) 2050 { 2051 int err, offset = skb->len; 2052 2053 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy), 2054 copy, offset); 2055 if (err) 2056 __skb_trim(skb, offset); 2057 2058 return err; 2059 } 2060 2061 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from, 2062 struct sk_buff *skb, 2063 struct page *page, 2064 int off, int copy) 2065 { 2066 int err; 2067 2068 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off, 2069 copy, skb->len); 2070 if (err) 2071 return err; 2072 2073 skb->len += copy; 2074 skb->data_len += copy; 2075 skb->truesize += copy; 2076 sk_wmem_queued_add(sk, copy); 2077 sk_mem_charge(sk, copy); 2078 return 0; 2079 } 2080 2081 /** 2082 * sk_wmem_alloc_get - returns write allocations 2083 * @sk: socket 2084 * 2085 * Return: sk_wmem_alloc minus initial offset of one 2086 */ 2087 static inline int sk_wmem_alloc_get(const struct sock *sk) 2088 { 2089 return refcount_read(&sk->sk_wmem_alloc) - 1; 2090 } 2091 2092 /** 2093 * sk_rmem_alloc_get - returns read allocations 2094 * @sk: socket 2095 * 2096 * Return: sk_rmem_alloc 2097 */ 2098 static inline int sk_rmem_alloc_get(const struct sock *sk) 2099 { 2100 return atomic_read(&sk->sk_rmem_alloc); 2101 } 2102 2103 /** 2104 * sk_has_allocations - check if allocations are outstanding 2105 * @sk: socket 2106 * 2107 * Return: true if socket has write or read allocations 2108 */ 2109 static inline bool sk_has_allocations(const struct sock *sk) 2110 { 2111 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk); 2112 } 2113 2114 /** 2115 * skwq_has_sleeper - check if there are any waiting processes 2116 * @wq: struct socket_wq 2117 * 2118 * Return: true if socket_wq has waiting processes 2119 * 2120 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory 2121 * barrier call. They were added due to the race found within the tcp code. 2122 * 2123 * Consider following tcp code paths:: 2124 * 2125 * CPU1 CPU2 2126 * sys_select receive packet 2127 * ... ... 2128 * __add_wait_queue update tp->rcv_nxt 2129 * ... ... 2130 * tp->rcv_nxt check sock_def_readable 2131 * ... { 2132 * schedule rcu_read_lock(); 2133 * wq = rcu_dereference(sk->sk_wq); 2134 * if (wq && waitqueue_active(&wq->wait)) 2135 * wake_up_interruptible(&wq->wait) 2136 * ... 2137 * } 2138 * 2139 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay 2140 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1 2141 * could then endup calling schedule and sleep forever if there are no more 2142 * data on the socket. 2143 * 2144 */ 2145 static inline bool skwq_has_sleeper(struct socket_wq *wq) 2146 { 2147 return wq && wq_has_sleeper(&wq->wait); 2148 } 2149 2150 /** 2151 * sock_poll_wait - place memory barrier behind the poll_wait call. 2152 * @filp: file 2153 * @sock: socket to wait on 2154 * @p: poll_table 2155 * 2156 * See the comments in the wq_has_sleeper function. 2157 */ 2158 static inline void sock_poll_wait(struct file *filp, struct socket *sock, 2159 poll_table *p) 2160 { 2161 if (!poll_does_not_wait(p)) { 2162 poll_wait(filp, &sock->wq.wait, p); 2163 /* We need to be sure we are in sync with the 2164 * socket flags modification. 2165 * 2166 * This memory barrier is paired in the wq_has_sleeper. 2167 */ 2168 smp_mb(); 2169 } 2170 } 2171 2172 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk) 2173 { 2174 if (sk->sk_txhash) { 2175 skb->l4_hash = 1; 2176 skb->hash = sk->sk_txhash; 2177 } 2178 } 2179 2180 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk); 2181 2182 /* 2183 * Queue a received datagram if it will fit. Stream and sequenced 2184 * protocols can't normally use this as they need to fit buffers in 2185 * and play with them. 2186 * 2187 * Inlined as it's very short and called for pretty much every 2188 * packet ever received. 2189 */ 2190 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 2191 { 2192 skb_orphan(skb); 2193 skb->sk = sk; 2194 skb->destructor = sock_rfree; 2195 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 2196 sk_mem_charge(sk, skb->truesize); 2197 } 2198 2199 void sk_reset_timer(struct sock *sk, struct timer_list *timer, 2200 unsigned long expires); 2201 2202 void sk_stop_timer(struct sock *sk, struct timer_list *timer); 2203 2204 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue, 2205 struct sk_buff *skb, unsigned int flags, 2206 void (*destructor)(struct sock *sk, 2207 struct sk_buff *skb)); 2208 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 2209 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 2210 2211 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb); 2212 struct sk_buff *sock_dequeue_err_skb(struct sock *sk); 2213 2214 /* 2215 * Recover an error report and clear atomically 2216 */ 2217 2218 static inline int sock_error(struct sock *sk) 2219 { 2220 int err; 2221 if (likely(!sk->sk_err)) 2222 return 0; 2223 err = xchg(&sk->sk_err, 0); 2224 return -err; 2225 } 2226 2227 static inline unsigned long sock_wspace(struct sock *sk) 2228 { 2229 int amt = 0; 2230 2231 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 2232 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc); 2233 if (amt < 0) 2234 amt = 0; 2235 } 2236 return amt; 2237 } 2238 2239 /* Note: 2240 * We use sk->sk_wq_raw, from contexts knowing this 2241 * pointer is not NULL and cannot disappear/change. 2242 */ 2243 static inline void sk_set_bit(int nr, struct sock *sk) 2244 { 2245 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && 2246 !sock_flag(sk, SOCK_FASYNC)) 2247 return; 2248 2249 set_bit(nr, &sk->sk_wq_raw->flags); 2250 } 2251 2252 static inline void sk_clear_bit(int nr, struct sock *sk) 2253 { 2254 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && 2255 !sock_flag(sk, SOCK_FASYNC)) 2256 return; 2257 2258 clear_bit(nr, &sk->sk_wq_raw->flags); 2259 } 2260 2261 static inline void sk_wake_async(const struct sock *sk, int how, int band) 2262 { 2263 if (sock_flag(sk, SOCK_FASYNC)) { 2264 rcu_read_lock(); 2265 sock_wake_async(rcu_dereference(sk->sk_wq), how, band); 2266 rcu_read_unlock(); 2267 } 2268 } 2269 2270 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might 2271 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak. 2272 * Note: for send buffers, TCP works better if we can build two skbs at 2273 * minimum. 2274 */ 2275 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff))) 2276 2277 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2) 2278 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE 2279 2280 static inline void sk_stream_moderate_sndbuf(struct sock *sk) 2281 { 2282 u32 val; 2283 2284 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 2285 return; 2286 2287 val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1); 2288 2289 WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF)); 2290 } 2291 2292 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 2293 bool force_schedule); 2294 2295 /** 2296 * sk_page_frag - return an appropriate page_frag 2297 * @sk: socket 2298 * 2299 * Use the per task page_frag instead of the per socket one for 2300 * optimization when we know that we're in the normal context and owns 2301 * everything that's associated with %current. 2302 * 2303 * gfpflags_allow_blocking() isn't enough here as direct reclaim may nest 2304 * inside other socket operations and end up recursing into sk_page_frag() 2305 * while it's already in use. 2306 * 2307 * Return: a per task page_frag if context allows that, 2308 * otherwise a per socket one. 2309 */ 2310 static inline struct page_frag *sk_page_frag(struct sock *sk) 2311 { 2312 if (gfpflags_normal_context(sk->sk_allocation)) 2313 return ¤t->task_frag; 2314 2315 return &sk->sk_frag; 2316 } 2317 2318 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag); 2319 2320 /* 2321 * Default write policy as shown to user space via poll/select/SIGIO 2322 */ 2323 static inline bool sock_writeable(const struct sock *sk) 2324 { 2325 return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1); 2326 } 2327 2328 static inline gfp_t gfp_any(void) 2329 { 2330 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; 2331 } 2332 2333 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock) 2334 { 2335 return noblock ? 0 : sk->sk_rcvtimeo; 2336 } 2337 2338 static inline long sock_sndtimeo(const struct sock *sk, bool noblock) 2339 { 2340 return noblock ? 0 : sk->sk_sndtimeo; 2341 } 2342 2343 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) 2344 { 2345 int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len); 2346 2347 return v ?: 1; 2348 } 2349 2350 /* Alas, with timeout socket operations are not restartable. 2351 * Compare this to poll(). 2352 */ 2353 static inline int sock_intr_errno(long timeo) 2354 { 2355 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; 2356 } 2357 2358 struct sock_skb_cb { 2359 u32 dropcount; 2360 }; 2361 2362 /* Store sock_skb_cb at the end of skb->cb[] so protocol families 2363 * using skb->cb[] would keep using it directly and utilize its 2364 * alignement guarantee. 2365 */ 2366 #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \ 2367 sizeof(struct sock_skb_cb))) 2368 2369 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \ 2370 SOCK_SKB_CB_OFFSET)) 2371 2372 #define sock_skb_cb_check_size(size) \ 2373 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET) 2374 2375 static inline void 2376 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb) 2377 { 2378 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ? 2379 atomic_read(&sk->sk_drops) : 0; 2380 } 2381 2382 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb) 2383 { 2384 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 2385 2386 atomic_add(segs, &sk->sk_drops); 2387 } 2388 2389 static inline ktime_t sock_read_timestamp(struct sock *sk) 2390 { 2391 #if BITS_PER_LONG==32 2392 unsigned int seq; 2393 ktime_t kt; 2394 2395 do { 2396 seq = read_seqbegin(&sk->sk_stamp_seq); 2397 kt = sk->sk_stamp; 2398 } while (read_seqretry(&sk->sk_stamp_seq, seq)); 2399 2400 return kt; 2401 #else 2402 return READ_ONCE(sk->sk_stamp); 2403 #endif 2404 } 2405 2406 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt) 2407 { 2408 #if BITS_PER_LONG==32 2409 write_seqlock(&sk->sk_stamp_seq); 2410 sk->sk_stamp = kt; 2411 write_sequnlock(&sk->sk_stamp_seq); 2412 #else 2413 WRITE_ONCE(sk->sk_stamp, kt); 2414 #endif 2415 } 2416 2417 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 2418 struct sk_buff *skb); 2419 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 2420 struct sk_buff *skb); 2421 2422 static inline void 2423 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) 2424 { 2425 ktime_t kt = skb->tstamp; 2426 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); 2427 2428 /* 2429 * generate control messages if 2430 * - receive time stamping in software requested 2431 * - software time stamp available and wanted 2432 * - hardware time stamps available and wanted 2433 */ 2434 if (sock_flag(sk, SOCK_RCVTSTAMP) || 2435 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) || 2436 (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) || 2437 (hwtstamps->hwtstamp && 2438 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE))) 2439 __sock_recv_timestamp(msg, sk, skb); 2440 else 2441 sock_write_timestamp(sk, kt); 2442 2443 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid) 2444 __sock_recv_wifi_status(msg, sk, skb); 2445 } 2446 2447 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2448 struct sk_buff *skb); 2449 2450 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC) 2451 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2452 struct sk_buff *skb) 2453 { 2454 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \ 2455 (1UL << SOCK_RCVTSTAMP)) 2456 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \ 2457 SOF_TIMESTAMPING_RAW_HARDWARE) 2458 2459 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY) 2460 __sock_recv_ts_and_drops(msg, sk, skb); 2461 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP))) 2462 sock_write_timestamp(sk, skb->tstamp); 2463 else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP)) 2464 sock_write_timestamp(sk, 0); 2465 } 2466 2467 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags); 2468 2469 /** 2470 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped 2471 * @sk: socket sending this packet 2472 * @tsflags: timestamping flags to use 2473 * @tx_flags: completed with instructions for time stamping 2474 * @tskey: filled in with next sk_tskey (not for TCP, which uses seqno) 2475 * 2476 * Note: callers should take care of initial ``*tx_flags`` value (usually 0) 2477 */ 2478 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags, 2479 __u8 *tx_flags, __u32 *tskey) 2480 { 2481 if (unlikely(tsflags)) { 2482 __sock_tx_timestamp(tsflags, tx_flags); 2483 if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey && 2484 tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 2485 *tskey = sk->sk_tskey++; 2486 } 2487 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS))) 2488 *tx_flags |= SKBTX_WIFI_STATUS; 2489 } 2490 2491 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags, 2492 __u8 *tx_flags) 2493 { 2494 _sock_tx_timestamp(sk, tsflags, tx_flags, NULL); 2495 } 2496 2497 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags) 2498 { 2499 _sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags, 2500 &skb_shinfo(skb)->tskey); 2501 } 2502 2503 DECLARE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key); 2504 /** 2505 * sk_eat_skb - Release a skb if it is no longer needed 2506 * @sk: socket to eat this skb from 2507 * @skb: socket buffer to eat 2508 * 2509 * This routine must be called with interrupts disabled or with the socket 2510 * locked so that the sk_buff queue operation is ok. 2511 */ 2512 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb) 2513 { 2514 __skb_unlink(skb, &sk->sk_receive_queue); 2515 if (static_branch_unlikely(&tcp_rx_skb_cache_key) && 2516 !sk->sk_rx_skb_cache) { 2517 sk->sk_rx_skb_cache = skb; 2518 skb_orphan(skb); 2519 return; 2520 } 2521 __kfree_skb(skb); 2522 } 2523 2524 static inline 2525 struct net *sock_net(const struct sock *sk) 2526 { 2527 return read_pnet(&sk->sk_net); 2528 } 2529 2530 static inline 2531 void sock_net_set(struct sock *sk, struct net *net) 2532 { 2533 write_pnet(&sk->sk_net, net); 2534 } 2535 2536 static inline bool 2537 skb_sk_is_prefetched(struct sk_buff *skb) 2538 { 2539 #ifdef CONFIG_INET 2540 return skb->destructor == sock_pfree; 2541 #else 2542 return false; 2543 #endif /* CONFIG_INET */ 2544 } 2545 2546 /* This helper checks if a socket is a full socket, 2547 * ie _not_ a timewait or request socket. 2548 */ 2549 static inline bool sk_fullsock(const struct sock *sk) 2550 { 2551 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV); 2552 } 2553 2554 static inline bool 2555 sk_is_refcounted(struct sock *sk) 2556 { 2557 /* Only full sockets have sk->sk_flags. */ 2558 return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE); 2559 } 2560 2561 /** 2562 * skb_steal_sock - steal a socket from an sk_buff 2563 * @skb: sk_buff to steal the socket from 2564 * @refcounted: is set to true if the socket is reference-counted 2565 */ 2566 static inline struct sock * 2567 skb_steal_sock(struct sk_buff *skb, bool *refcounted) 2568 { 2569 if (skb->sk) { 2570 struct sock *sk = skb->sk; 2571 2572 *refcounted = true; 2573 if (skb_sk_is_prefetched(skb)) 2574 *refcounted = sk_is_refcounted(sk); 2575 skb->destructor = NULL; 2576 skb->sk = NULL; 2577 return sk; 2578 } 2579 *refcounted = false; 2580 return NULL; 2581 } 2582 2583 /* Checks if this SKB belongs to an HW offloaded socket 2584 * and whether any SW fallbacks are required based on dev. 2585 * Check decrypted mark in case skb_orphan() cleared socket. 2586 */ 2587 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb, 2588 struct net_device *dev) 2589 { 2590 #ifdef CONFIG_SOCK_VALIDATE_XMIT 2591 struct sock *sk = skb->sk; 2592 2593 if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) { 2594 skb = sk->sk_validate_xmit_skb(sk, dev, skb); 2595 #ifdef CONFIG_TLS_DEVICE 2596 } else if (unlikely(skb->decrypted)) { 2597 pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n"); 2598 kfree_skb(skb); 2599 skb = NULL; 2600 #endif 2601 } 2602 #endif 2603 2604 return skb; 2605 } 2606 2607 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV 2608 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE) 2609 */ 2610 static inline bool sk_listener(const struct sock *sk) 2611 { 2612 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV); 2613 } 2614 2615 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag); 2616 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level, 2617 int type); 2618 2619 bool sk_ns_capable(const struct sock *sk, 2620 struct user_namespace *user_ns, int cap); 2621 bool sk_capable(const struct sock *sk, int cap); 2622 bool sk_net_capable(const struct sock *sk, int cap); 2623 2624 void sk_get_meminfo(const struct sock *sk, u32 *meminfo); 2625 2626 /* Take into consideration the size of the struct sk_buff overhead in the 2627 * determination of these values, since that is non-constant across 2628 * platforms. This makes socket queueing behavior and performance 2629 * not depend upon such differences. 2630 */ 2631 #define _SK_MEM_PACKETS 256 2632 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256) 2633 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 2634 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 2635 2636 extern __u32 sysctl_wmem_max; 2637 extern __u32 sysctl_rmem_max; 2638 2639 extern int sysctl_tstamp_allow_data; 2640 extern int sysctl_optmem_max; 2641 2642 extern __u32 sysctl_wmem_default; 2643 extern __u32 sysctl_rmem_default; 2644 2645 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key); 2646 2647 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto) 2648 { 2649 /* Does this proto have per netns sysctl_wmem ? */ 2650 if (proto->sysctl_wmem_offset) 2651 return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset); 2652 2653 return *proto->sysctl_wmem; 2654 } 2655 2656 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto) 2657 { 2658 /* Does this proto have per netns sysctl_rmem ? */ 2659 if (proto->sysctl_rmem_offset) 2660 return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset); 2661 2662 return *proto->sysctl_rmem; 2663 } 2664 2665 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10) 2666 * Some wifi drivers need to tweak it to get more chunks. 2667 * They can use this helper from their ndo_start_xmit() 2668 */ 2669 static inline void sk_pacing_shift_update(struct sock *sk, int val) 2670 { 2671 if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val) 2672 return; 2673 WRITE_ONCE(sk->sk_pacing_shift, val); 2674 } 2675 2676 /* if a socket is bound to a device, check that the given device 2677 * index is either the same or that the socket is bound to an L3 2678 * master device and the given device index is also enslaved to 2679 * that L3 master 2680 */ 2681 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif) 2682 { 2683 int mdif; 2684 2685 if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif) 2686 return true; 2687 2688 mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif); 2689 if (mdif && mdif == sk->sk_bound_dev_if) 2690 return true; 2691 2692 return false; 2693 } 2694 2695 void sock_def_readable(struct sock *sk); 2696 2697 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk); 2698 void sock_enable_timestamps(struct sock *sk); 2699 void sock_no_linger(struct sock *sk); 2700 void sock_set_keepalive(struct sock *sk); 2701 void sock_set_priority(struct sock *sk, u32 priority); 2702 void sock_set_rcvbuf(struct sock *sk, int val); 2703 void sock_set_reuseaddr(struct sock *sk); 2704 void sock_set_reuseport(struct sock *sk); 2705 void sock_set_sndtimeo(struct sock *sk, s64 secs); 2706 2707 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len); 2708 2709 #endif /* _SOCK_H */ 2710