xref: /linux/include/net/sock.h (revision 2c373e75155bcc9c81060cdc07ee1b59e113bd2b)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the AF_INET socket handler.
8  *
9  * Version:	@(#)sock.h	1.0.4	05/13/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Florian La Roche <flla@stud.uni-sb.de>
15  *
16  * Fixes:
17  *		Alan Cox	:	Volatiles in skbuff pointers. See
18  *					skbuff comments. May be overdone,
19  *					better to prove they can be removed
20  *					than the reverse.
21  *		Alan Cox	:	Added a zapped field for tcp to note
22  *					a socket is reset and must stay shut up
23  *		Alan Cox	:	New fields for options
24  *	Pauline Middelink	:	identd support
25  *		Alan Cox	:	Eliminate low level recv/recvfrom
26  *		David S. Miller	:	New socket lookup architecture.
27  *              Steve Whitehouse:       Default routines for sock_ops
28  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
29  *              			protinfo be just a void pointer, as the
30  *              			protocol specific parts were moved to
31  *              			respective headers and ipv4/v6, etc now
32  *              			use private slabcaches for its socks
33  *              Pedro Hortas	:	New flags field for socket options
34  */
35 #ifndef _SOCK_H
36 #define _SOCK_H
37 
38 #include <linux/hardirq.h>
39 #include <linux/kernel.h>
40 #include <linux/list.h>
41 #include <linux/list_nulls.h>
42 #include <linux/timer.h>
43 #include <linux/cache.h>
44 #include <linux/bitops.h>
45 #include <linux/lockdep.h>
46 #include <linux/netdevice.h>
47 #include <linux/skbuff.h>	/* struct sk_buff */
48 #include <linux/mm.h>
49 #include <linux/security.h>
50 #include <linux/slab.h>
51 #include <linux/uaccess.h>
52 #include <linux/page_counter.h>
53 #include <linux/memcontrol.h>
54 #include <linux/static_key.h>
55 #include <linux/sched.h>
56 #include <linux/wait.h>
57 #include <linux/cgroup-defs.h>
58 #include <linux/rbtree.h>
59 #include <linux/rculist_nulls.h>
60 #include <linux/poll.h>
61 #include <linux/sockptr.h>
62 #include <linux/indirect_call_wrapper.h>
63 #include <linux/atomic.h>
64 #include <linux/refcount.h>
65 #include <linux/llist.h>
66 #include <net/dst.h>
67 #include <net/checksum.h>
68 #include <net/tcp_states.h>
69 #include <linux/net_tstamp.h>
70 #include <net/l3mdev.h>
71 #include <uapi/linux/socket.h>
72 
73 /*
74  * This structure really needs to be cleaned up.
75  * Most of it is for TCP, and not used by any of
76  * the other protocols.
77  */
78 
79 /* This is the per-socket lock.  The spinlock provides a synchronization
80  * between user contexts and software interrupt processing, whereas the
81  * mini-semaphore synchronizes multiple users amongst themselves.
82  */
83 typedef struct {
84 	spinlock_t		slock;
85 	int			owned;
86 	wait_queue_head_t	wq;
87 	/*
88 	 * We express the mutex-alike socket_lock semantics
89 	 * to the lock validator by explicitly managing
90 	 * the slock as a lock variant (in addition to
91 	 * the slock itself):
92 	 */
93 #ifdef CONFIG_DEBUG_LOCK_ALLOC
94 	struct lockdep_map dep_map;
95 #endif
96 } socket_lock_t;
97 
98 struct sock;
99 struct proto;
100 struct net;
101 
102 typedef __u32 __bitwise __portpair;
103 typedef __u64 __bitwise __addrpair;
104 
105 /**
106  *	struct sock_common - minimal network layer representation of sockets
107  *	@skc_daddr: Foreign IPv4 addr
108  *	@skc_rcv_saddr: Bound local IPv4 addr
109  *	@skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
110  *	@skc_hash: hash value used with various protocol lookup tables
111  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
112  *	@skc_dport: placeholder for inet_dport/tw_dport
113  *	@skc_num: placeholder for inet_num/tw_num
114  *	@skc_portpair: __u32 union of @skc_dport & @skc_num
115  *	@skc_family: network address family
116  *	@skc_state: Connection state
117  *	@skc_reuse: %SO_REUSEADDR setting
118  *	@skc_reuseport: %SO_REUSEPORT setting
119  *	@skc_ipv6only: socket is IPV6 only
120  *	@skc_net_refcnt: socket is using net ref counting
121  *	@skc_bound_dev_if: bound device index if != 0
122  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
123  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
124  *	@skc_prot: protocol handlers inside a network family
125  *	@skc_net: reference to the network namespace of this socket
126  *	@skc_v6_daddr: IPV6 destination address
127  *	@skc_v6_rcv_saddr: IPV6 source address
128  *	@skc_cookie: socket's cookie value
129  *	@skc_node: main hash linkage for various protocol lookup tables
130  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
131  *	@skc_tx_queue_mapping: tx queue number for this connection
132  *	@skc_rx_queue_mapping: rx queue number for this connection
133  *	@skc_flags: place holder for sk_flags
134  *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
135  *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
136  *	@skc_listener: connection request listener socket (aka rsk_listener)
137  *		[union with @skc_flags]
138  *	@skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
139  *		[union with @skc_flags]
140  *	@skc_incoming_cpu: record/match cpu processing incoming packets
141  *	@skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
142  *		[union with @skc_incoming_cpu]
143  *	@skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
144  *		[union with @skc_incoming_cpu]
145  *	@skc_refcnt: reference count
146  *
147  *	This is the minimal network layer representation of sockets, the header
148  *	for struct sock and struct inet_timewait_sock.
149  */
150 struct sock_common {
151 	union {
152 		__addrpair	skc_addrpair;
153 		struct {
154 			__be32	skc_daddr;
155 			__be32	skc_rcv_saddr;
156 		};
157 	};
158 	union  {
159 		unsigned int	skc_hash;
160 		__u16		skc_u16hashes[2];
161 	};
162 	/* skc_dport && skc_num must be grouped as well */
163 	union {
164 		__portpair	skc_portpair;
165 		struct {
166 			__be16	skc_dport;
167 			__u16	skc_num;
168 		};
169 	};
170 
171 	unsigned short		skc_family;
172 	volatile unsigned char	skc_state;
173 	unsigned char		skc_reuse:4;
174 	unsigned char		skc_reuseport:1;
175 	unsigned char		skc_ipv6only:1;
176 	unsigned char		skc_net_refcnt:1;
177 	int			skc_bound_dev_if;
178 	union {
179 		struct hlist_node	skc_bind_node;
180 		struct hlist_node	skc_portaddr_node;
181 	};
182 	struct proto		*skc_prot;
183 	possible_net_t		skc_net;
184 
185 #if IS_ENABLED(CONFIG_IPV6)
186 	struct in6_addr		skc_v6_daddr;
187 	struct in6_addr		skc_v6_rcv_saddr;
188 #endif
189 
190 	atomic64_t		skc_cookie;
191 
192 	/* following fields are padding to force
193 	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
194 	 * assuming IPV6 is enabled. We use this padding differently
195 	 * for different kind of 'sockets'
196 	 */
197 	union {
198 		unsigned long	skc_flags;
199 		struct sock	*skc_listener; /* request_sock */
200 		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
201 	};
202 	/*
203 	 * fields between dontcopy_begin/dontcopy_end
204 	 * are not copied in sock_copy()
205 	 */
206 	/* private: */
207 	int			skc_dontcopy_begin[0];
208 	/* public: */
209 	union {
210 		struct hlist_node	skc_node;
211 		struct hlist_nulls_node skc_nulls_node;
212 	};
213 	unsigned short		skc_tx_queue_mapping;
214 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
215 	unsigned short		skc_rx_queue_mapping;
216 #endif
217 	union {
218 		int		skc_incoming_cpu;
219 		u32		skc_rcv_wnd;
220 		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
221 	};
222 
223 	refcount_t		skc_refcnt;
224 	/* private: */
225 	int                     skc_dontcopy_end[0];
226 	union {
227 		u32		skc_rxhash;
228 		u32		skc_window_clamp;
229 		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
230 	};
231 	/* public: */
232 };
233 
234 struct bpf_local_storage;
235 struct sk_filter;
236 
237 /**
238   *	struct sock - network layer representation of sockets
239   *	@__sk_common: shared layout with inet_timewait_sock
240   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
241   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
242   *	@sk_lock:	synchronizer
243   *	@sk_kern_sock: True if sock is using kernel lock classes
244   *	@sk_rcvbuf: size of receive buffer in bytes
245   *	@sk_wq: sock wait queue and async head
246   *	@sk_rx_dst: receive input route used by early demux
247   *	@sk_rx_dst_ifindex: ifindex for @sk_rx_dst
248   *	@sk_rx_dst_cookie: cookie for @sk_rx_dst
249   *	@sk_dst_cache: destination cache
250   *	@sk_dst_pending_confirm: need to confirm neighbour
251   *	@sk_policy: flow policy
252   *	@sk_receive_queue: incoming packets
253   *	@sk_wmem_alloc: transmit queue bytes committed
254   *	@sk_tsq_flags: TCP Small Queues flags
255   *	@sk_write_queue: Packet sending queue
256   *	@sk_omem_alloc: "o" is "option" or "other"
257   *	@sk_wmem_queued: persistent queue size
258   *	@sk_forward_alloc: space allocated forward
259   *	@sk_reserved_mem: space reserved and non-reclaimable for the socket
260   *	@sk_napi_id: id of the last napi context to receive data for sk
261   *	@sk_ll_usec: usecs to busypoll when there is no data
262   *	@sk_allocation: allocation mode
263   *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
264   *	@sk_pacing_status: Pacing status (requested, handled by sch_fq)
265   *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
266   *	@sk_sndbuf: size of send buffer in bytes
267   *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
268   *	@sk_no_check_rx: allow zero checksum in RX packets
269   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
270   *	@sk_gso_disabled: if set, NETIF_F_GSO_MASK is forbidden.
271   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
272   *	@sk_gso_max_size: Maximum GSO segment size to build
273   *	@sk_gso_max_segs: Maximum number of GSO segments
274   *	@sk_pacing_shift: scaling factor for TCP Small Queues
275   *	@sk_lingertime: %SO_LINGER l_linger setting
276   *	@sk_backlog: always used with the per-socket spinlock held
277   *	@sk_callback_lock: used with the callbacks in the end of this struct
278   *	@sk_error_queue: rarely used
279   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
280   *			  IPV6_ADDRFORM for instance)
281   *	@sk_err: last error
282   *	@sk_err_soft: errors that don't cause failure but are the cause of a
283   *		      persistent failure not just 'timed out'
284   *	@sk_drops: raw/udp drops counter
285   *	@sk_ack_backlog: current listen backlog
286   *	@sk_max_ack_backlog: listen backlog set in listen()
287   *	@sk_uid: user id of owner
288   *	@sk_prefer_busy_poll: prefer busypolling over softirq processing
289   *	@sk_busy_poll_budget: napi processing budget when busypolling
290   *	@sk_priority: %SO_PRIORITY setting
291   *	@sk_type: socket type (%SOCK_STREAM, etc)
292   *	@sk_protocol: which protocol this socket belongs in this network family
293   *	@sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred
294   *	@sk_peer_pid: &struct pid for this socket's peer
295   *	@sk_peer_cred: %SO_PEERCRED setting
296   *	@sk_rcvlowat: %SO_RCVLOWAT setting
297   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
298   *	@sk_sndtimeo: %SO_SNDTIMEO setting
299   *	@sk_txhash: computed flow hash for use on transmit
300   *	@sk_txrehash: enable TX hash rethink
301   *	@sk_filter: socket filtering instructions
302   *	@sk_timer: sock cleanup timer
303   *	@sk_stamp: time stamp of last packet received
304   *	@sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
305   *	@sk_tsflags: SO_TIMESTAMPING flags
306   *	@sk_use_task_frag: allow sk_page_frag() to use current->task_frag.
307   *			   Sockets that can be used under memory reclaim should
308   *			   set this to false.
309   *	@sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock
310   *	              for timestamping
311   *	@sk_tskey: counter to disambiguate concurrent tstamp requests
312   *	@sk_zckey: counter to order MSG_ZEROCOPY notifications
313   *	@sk_socket: Identd and reporting IO signals
314   *	@sk_user_data: RPC layer private data. Write-protected by @sk_callback_lock.
315   *	@sk_frag: cached page frag
316   *	@sk_peek_off: current peek_offset value
317   *	@sk_send_head: front of stuff to transmit
318   *	@tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
319   *	@sk_security: used by security modules
320   *	@sk_mark: generic packet mark
321   *	@sk_cgrp_data: cgroup data for this cgroup
322   *	@sk_memcg: this socket's memory cgroup association
323   *	@sk_write_pending: a write to stream socket waits to start
324   *	@sk_disconnects: number of disconnect operations performed on this sock
325   *	@sk_state_change: callback to indicate change in the state of the sock
326   *	@sk_data_ready: callback to indicate there is data to be processed
327   *	@sk_write_space: callback to indicate there is bf sending space available
328   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
329   *	@sk_backlog_rcv: callback to process the backlog
330   *	@sk_validate_xmit_skb: ptr to an optional validate function
331   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
332   *	@sk_reuseport_cb: reuseport group container
333   *	@sk_bpf_storage: ptr to cache and control for bpf_sk_storage
334   *	@sk_rcu: used during RCU grace period
335   *	@sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
336   *	@sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
337   *	@sk_txtime_report_errors: set report errors mode for SO_TXTIME
338   *	@sk_txtime_unused: unused txtime flags
339   *	@ns_tracker: tracker for netns reference
340   */
341 struct sock {
342 	/*
343 	 * Now struct inet_timewait_sock also uses sock_common, so please just
344 	 * don't add nothing before this first member (__sk_common) --acme
345 	 */
346 	struct sock_common	__sk_common;
347 #define sk_node			__sk_common.skc_node
348 #define sk_nulls_node		__sk_common.skc_nulls_node
349 #define sk_refcnt		__sk_common.skc_refcnt
350 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
351 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
352 #define sk_rx_queue_mapping	__sk_common.skc_rx_queue_mapping
353 #endif
354 
355 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
356 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
357 #define sk_hash			__sk_common.skc_hash
358 #define sk_portpair		__sk_common.skc_portpair
359 #define sk_num			__sk_common.skc_num
360 #define sk_dport		__sk_common.skc_dport
361 #define sk_addrpair		__sk_common.skc_addrpair
362 #define sk_daddr		__sk_common.skc_daddr
363 #define sk_rcv_saddr		__sk_common.skc_rcv_saddr
364 #define sk_family		__sk_common.skc_family
365 #define sk_state		__sk_common.skc_state
366 #define sk_reuse		__sk_common.skc_reuse
367 #define sk_reuseport		__sk_common.skc_reuseport
368 #define sk_ipv6only		__sk_common.skc_ipv6only
369 #define sk_net_refcnt		__sk_common.skc_net_refcnt
370 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
371 #define sk_bind_node		__sk_common.skc_bind_node
372 #define sk_prot			__sk_common.skc_prot
373 #define sk_net			__sk_common.skc_net
374 #define sk_v6_daddr		__sk_common.skc_v6_daddr
375 #define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
376 #define sk_cookie		__sk_common.skc_cookie
377 #define sk_incoming_cpu		__sk_common.skc_incoming_cpu
378 #define sk_flags		__sk_common.skc_flags
379 #define sk_rxhash		__sk_common.skc_rxhash
380 
381 	/* early demux fields */
382 	struct dst_entry __rcu	*sk_rx_dst;
383 	int			sk_rx_dst_ifindex;
384 	u32			sk_rx_dst_cookie;
385 
386 	socket_lock_t		sk_lock;
387 	atomic_t		sk_drops;
388 	int			sk_rcvlowat;
389 	struct sk_buff_head	sk_error_queue;
390 	struct sk_buff_head	sk_receive_queue;
391 	/*
392 	 * The backlog queue is special, it is always used with
393 	 * the per-socket spinlock held and requires low latency
394 	 * access. Therefore we special case it's implementation.
395 	 * Note : rmem_alloc is in this structure to fill a hole
396 	 * on 64bit arches, not because its logically part of
397 	 * backlog.
398 	 */
399 	struct {
400 		atomic_t	rmem_alloc;
401 		int		len;
402 		struct sk_buff	*head;
403 		struct sk_buff	*tail;
404 	} sk_backlog;
405 
406 #define sk_rmem_alloc sk_backlog.rmem_alloc
407 
408 	int			sk_forward_alloc;
409 	u32			sk_reserved_mem;
410 #ifdef CONFIG_NET_RX_BUSY_POLL
411 	unsigned int		sk_ll_usec;
412 	/* ===== mostly read cache line ===== */
413 	unsigned int		sk_napi_id;
414 #endif
415 	int			sk_rcvbuf;
416 	int			sk_disconnects;
417 
418 	struct sk_filter __rcu	*sk_filter;
419 	union {
420 		struct socket_wq __rcu	*sk_wq;
421 		/* private: */
422 		struct socket_wq	*sk_wq_raw;
423 		/* public: */
424 	};
425 #ifdef CONFIG_XFRM
426 	struct xfrm_policy __rcu *sk_policy[2];
427 #endif
428 
429 	struct dst_entry __rcu	*sk_dst_cache;
430 	atomic_t		sk_omem_alloc;
431 	int			sk_sndbuf;
432 
433 	/* ===== cache line for TX ===== */
434 	int			sk_wmem_queued;
435 	refcount_t		sk_wmem_alloc;
436 	unsigned long		sk_tsq_flags;
437 	union {
438 		struct sk_buff	*sk_send_head;
439 		struct rb_root	tcp_rtx_queue;
440 	};
441 	struct sk_buff_head	sk_write_queue;
442 	__s32			sk_peek_off;
443 	int			sk_write_pending;
444 	__u32			sk_dst_pending_confirm;
445 	u32			sk_pacing_status; /* see enum sk_pacing */
446 	long			sk_sndtimeo;
447 	struct timer_list	sk_timer;
448 	__u32			sk_priority;
449 	__u32			sk_mark;
450 	unsigned long		sk_pacing_rate; /* bytes per second */
451 	unsigned long		sk_max_pacing_rate;
452 	struct page_frag	sk_frag;
453 	netdev_features_t	sk_route_caps;
454 	int			sk_gso_type;
455 	unsigned int		sk_gso_max_size;
456 	gfp_t			sk_allocation;
457 	__u32			sk_txhash;
458 
459 	/*
460 	 * Because of non atomicity rules, all
461 	 * changes are protected by socket lock.
462 	 */
463 	u8			sk_gso_disabled : 1,
464 				sk_kern_sock : 1,
465 				sk_no_check_tx : 1,
466 				sk_no_check_rx : 1,
467 				sk_userlocks : 4;
468 	u8			sk_pacing_shift;
469 	u16			sk_type;
470 	u16			sk_protocol;
471 	u16			sk_gso_max_segs;
472 	unsigned long	        sk_lingertime;
473 	struct proto		*sk_prot_creator;
474 	rwlock_t		sk_callback_lock;
475 	int			sk_err,
476 				sk_err_soft;
477 	u32			sk_ack_backlog;
478 	u32			sk_max_ack_backlog;
479 	kuid_t			sk_uid;
480 	u8			sk_txrehash;
481 #ifdef CONFIG_NET_RX_BUSY_POLL
482 	u8			sk_prefer_busy_poll;
483 	u16			sk_busy_poll_budget;
484 #endif
485 	spinlock_t		sk_peer_lock;
486 	int			sk_bind_phc;
487 	struct pid		*sk_peer_pid;
488 	const struct cred	*sk_peer_cred;
489 
490 	long			sk_rcvtimeo;
491 	ktime_t			sk_stamp;
492 #if BITS_PER_LONG==32
493 	seqlock_t		sk_stamp_seq;
494 #endif
495 	atomic_t		sk_tskey;
496 	atomic_t		sk_zckey;
497 	u32			sk_tsflags;
498 	u8			sk_shutdown;
499 
500 	u8			sk_clockid;
501 	u8			sk_txtime_deadline_mode : 1,
502 				sk_txtime_report_errors : 1,
503 				sk_txtime_unused : 6;
504 	bool			sk_use_task_frag;
505 
506 	struct socket		*sk_socket;
507 	void			*sk_user_data;
508 #ifdef CONFIG_SECURITY
509 	void			*sk_security;
510 #endif
511 	struct sock_cgroup_data	sk_cgrp_data;
512 	struct mem_cgroup	*sk_memcg;
513 	void			(*sk_state_change)(struct sock *sk);
514 	void			(*sk_data_ready)(struct sock *sk);
515 	void			(*sk_write_space)(struct sock *sk);
516 	void			(*sk_error_report)(struct sock *sk);
517 	int			(*sk_backlog_rcv)(struct sock *sk,
518 						  struct sk_buff *skb);
519 #ifdef CONFIG_SOCK_VALIDATE_XMIT
520 	struct sk_buff*		(*sk_validate_xmit_skb)(struct sock *sk,
521 							struct net_device *dev,
522 							struct sk_buff *skb);
523 #endif
524 	void                    (*sk_destruct)(struct sock *sk);
525 	struct sock_reuseport __rcu	*sk_reuseport_cb;
526 #ifdef CONFIG_BPF_SYSCALL
527 	struct bpf_local_storage __rcu	*sk_bpf_storage;
528 #endif
529 	struct rcu_head		sk_rcu;
530 	netns_tracker		ns_tracker;
531 };
532 
533 enum sk_pacing {
534 	SK_PACING_NONE		= 0,
535 	SK_PACING_NEEDED	= 1,
536 	SK_PACING_FQ		= 2,
537 };
538 
539 /* flag bits in sk_user_data
540  *
541  * - SK_USER_DATA_NOCOPY:      Pointer stored in sk_user_data might
542  *   not be suitable for copying when cloning the socket. For instance,
543  *   it can point to a reference counted object. sk_user_data bottom
544  *   bit is set if pointer must not be copied.
545  *
546  * - SK_USER_DATA_BPF:         Mark whether sk_user_data field is
547  *   managed/owned by a BPF reuseport array. This bit should be set
548  *   when sk_user_data's sk is added to the bpf's reuseport_array.
549  *
550  * - SK_USER_DATA_PSOCK:       Mark whether pointer stored in
551  *   sk_user_data points to psock type. This bit should be set
552  *   when sk_user_data is assigned to a psock object.
553  */
554 #define SK_USER_DATA_NOCOPY	1UL
555 #define SK_USER_DATA_BPF	2UL
556 #define SK_USER_DATA_PSOCK	4UL
557 #define SK_USER_DATA_PTRMASK	~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF |\
558 				  SK_USER_DATA_PSOCK)
559 
560 /**
561  * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
562  * @sk: socket
563  */
564 static inline bool sk_user_data_is_nocopy(const struct sock *sk)
565 {
566 	return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
567 }
568 
569 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
570 
571 /**
572  * __locked_read_sk_user_data_with_flags - return the pointer
573  * only if argument flags all has been set in sk_user_data. Otherwise
574  * return NULL
575  *
576  * @sk: socket
577  * @flags: flag bits
578  *
579  * The caller must be holding sk->sk_callback_lock.
580  */
581 static inline void *
582 __locked_read_sk_user_data_with_flags(const struct sock *sk,
583 				      uintptr_t flags)
584 {
585 	uintptr_t sk_user_data =
586 		(uintptr_t)rcu_dereference_check(__sk_user_data(sk),
587 						 lockdep_is_held(&sk->sk_callback_lock));
588 
589 	WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
590 
591 	if ((sk_user_data & flags) == flags)
592 		return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
593 	return NULL;
594 }
595 
596 /**
597  * __rcu_dereference_sk_user_data_with_flags - return the pointer
598  * only if argument flags all has been set in sk_user_data. Otherwise
599  * return NULL
600  *
601  * @sk: socket
602  * @flags: flag bits
603  */
604 static inline void *
605 __rcu_dereference_sk_user_data_with_flags(const struct sock *sk,
606 					  uintptr_t flags)
607 {
608 	uintptr_t sk_user_data = (uintptr_t)rcu_dereference(__sk_user_data(sk));
609 
610 	WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
611 
612 	if ((sk_user_data & flags) == flags)
613 		return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
614 	return NULL;
615 }
616 
617 #define rcu_dereference_sk_user_data(sk)				\
618 	__rcu_dereference_sk_user_data_with_flags(sk, 0)
619 #define __rcu_assign_sk_user_data_with_flags(sk, ptr, flags)		\
620 ({									\
621 	uintptr_t __tmp1 = (uintptr_t)(ptr),				\
622 		  __tmp2 = (uintptr_t)(flags);				\
623 	WARN_ON_ONCE(__tmp1 & ~SK_USER_DATA_PTRMASK);			\
624 	WARN_ON_ONCE(__tmp2 & SK_USER_DATA_PTRMASK);			\
625 	rcu_assign_pointer(__sk_user_data((sk)),			\
626 			   __tmp1 | __tmp2);				\
627 })
628 #define rcu_assign_sk_user_data(sk, ptr)				\
629 	__rcu_assign_sk_user_data_with_flags(sk, ptr, 0)
630 
631 static inline
632 struct net *sock_net(const struct sock *sk)
633 {
634 	return read_pnet(&sk->sk_net);
635 }
636 
637 static inline
638 void sock_net_set(struct sock *sk, struct net *net)
639 {
640 	write_pnet(&sk->sk_net, net);
641 }
642 
643 /*
644  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
645  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
646  * on a socket means that the socket will reuse everybody else's port
647  * without looking at the other's sk_reuse value.
648  */
649 
650 #define SK_NO_REUSE	0
651 #define SK_CAN_REUSE	1
652 #define SK_FORCE_REUSE	2
653 
654 int sk_set_peek_off(struct sock *sk, int val);
655 
656 static inline int sk_peek_offset(const struct sock *sk, int flags)
657 {
658 	if (unlikely(flags & MSG_PEEK)) {
659 		return READ_ONCE(sk->sk_peek_off);
660 	}
661 
662 	return 0;
663 }
664 
665 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
666 {
667 	s32 off = READ_ONCE(sk->sk_peek_off);
668 
669 	if (unlikely(off >= 0)) {
670 		off = max_t(s32, off - val, 0);
671 		WRITE_ONCE(sk->sk_peek_off, off);
672 	}
673 }
674 
675 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
676 {
677 	sk_peek_offset_bwd(sk, -val);
678 }
679 
680 /*
681  * Hashed lists helper routines
682  */
683 static inline struct sock *sk_entry(const struct hlist_node *node)
684 {
685 	return hlist_entry(node, struct sock, sk_node);
686 }
687 
688 static inline struct sock *__sk_head(const struct hlist_head *head)
689 {
690 	return hlist_entry(head->first, struct sock, sk_node);
691 }
692 
693 static inline struct sock *sk_head(const struct hlist_head *head)
694 {
695 	return hlist_empty(head) ? NULL : __sk_head(head);
696 }
697 
698 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
699 {
700 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
701 }
702 
703 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
704 {
705 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
706 }
707 
708 static inline struct sock *sk_next(const struct sock *sk)
709 {
710 	return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
711 }
712 
713 static inline struct sock *sk_nulls_next(const struct sock *sk)
714 {
715 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
716 		hlist_nulls_entry(sk->sk_nulls_node.next,
717 				  struct sock, sk_nulls_node) :
718 		NULL;
719 }
720 
721 static inline bool sk_unhashed(const struct sock *sk)
722 {
723 	return hlist_unhashed(&sk->sk_node);
724 }
725 
726 static inline bool sk_hashed(const struct sock *sk)
727 {
728 	return !sk_unhashed(sk);
729 }
730 
731 static inline void sk_node_init(struct hlist_node *node)
732 {
733 	node->pprev = NULL;
734 }
735 
736 static inline void __sk_del_node(struct sock *sk)
737 {
738 	__hlist_del(&sk->sk_node);
739 }
740 
741 /* NB: equivalent to hlist_del_init_rcu */
742 static inline bool __sk_del_node_init(struct sock *sk)
743 {
744 	if (sk_hashed(sk)) {
745 		__sk_del_node(sk);
746 		sk_node_init(&sk->sk_node);
747 		return true;
748 	}
749 	return false;
750 }
751 
752 /* Grab socket reference count. This operation is valid only
753    when sk is ALREADY grabbed f.e. it is found in hash table
754    or a list and the lookup is made under lock preventing hash table
755    modifications.
756  */
757 
758 static __always_inline void sock_hold(struct sock *sk)
759 {
760 	refcount_inc(&sk->sk_refcnt);
761 }
762 
763 /* Ungrab socket in the context, which assumes that socket refcnt
764    cannot hit zero, f.e. it is true in context of any socketcall.
765  */
766 static __always_inline void __sock_put(struct sock *sk)
767 {
768 	refcount_dec(&sk->sk_refcnt);
769 }
770 
771 static inline bool sk_del_node_init(struct sock *sk)
772 {
773 	bool rc = __sk_del_node_init(sk);
774 
775 	if (rc) {
776 		/* paranoid for a while -acme */
777 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
778 		__sock_put(sk);
779 	}
780 	return rc;
781 }
782 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
783 
784 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
785 {
786 	if (sk_hashed(sk)) {
787 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
788 		return true;
789 	}
790 	return false;
791 }
792 
793 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
794 {
795 	bool rc = __sk_nulls_del_node_init_rcu(sk);
796 
797 	if (rc) {
798 		/* paranoid for a while -acme */
799 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
800 		__sock_put(sk);
801 	}
802 	return rc;
803 }
804 
805 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
806 {
807 	hlist_add_head(&sk->sk_node, list);
808 }
809 
810 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
811 {
812 	sock_hold(sk);
813 	__sk_add_node(sk, list);
814 }
815 
816 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
817 {
818 	sock_hold(sk);
819 	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
820 	    sk->sk_family == AF_INET6)
821 		hlist_add_tail_rcu(&sk->sk_node, list);
822 	else
823 		hlist_add_head_rcu(&sk->sk_node, list);
824 }
825 
826 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
827 {
828 	sock_hold(sk);
829 	hlist_add_tail_rcu(&sk->sk_node, list);
830 }
831 
832 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
833 {
834 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
835 }
836 
837 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
838 {
839 	hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
840 }
841 
842 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
843 {
844 	sock_hold(sk);
845 	__sk_nulls_add_node_rcu(sk, list);
846 }
847 
848 static inline void __sk_del_bind_node(struct sock *sk)
849 {
850 	__hlist_del(&sk->sk_bind_node);
851 }
852 
853 static inline void sk_add_bind_node(struct sock *sk,
854 					struct hlist_head *list)
855 {
856 	hlist_add_head(&sk->sk_bind_node, list);
857 }
858 
859 #define sk_for_each(__sk, list) \
860 	hlist_for_each_entry(__sk, list, sk_node)
861 #define sk_for_each_rcu(__sk, list) \
862 	hlist_for_each_entry_rcu(__sk, list, sk_node)
863 #define sk_nulls_for_each(__sk, node, list) \
864 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
865 #define sk_nulls_for_each_rcu(__sk, node, list) \
866 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
867 #define sk_for_each_from(__sk) \
868 	hlist_for_each_entry_from(__sk, sk_node)
869 #define sk_nulls_for_each_from(__sk, node) \
870 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
871 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
872 #define sk_for_each_safe(__sk, tmp, list) \
873 	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
874 #define sk_for_each_bound(__sk, list) \
875 	hlist_for_each_entry(__sk, list, sk_bind_node)
876 
877 /**
878  * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
879  * @tpos:	the type * to use as a loop cursor.
880  * @pos:	the &struct hlist_node to use as a loop cursor.
881  * @head:	the head for your list.
882  * @offset:	offset of hlist_node within the struct.
883  *
884  */
885 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \
886 	for (pos = rcu_dereference(hlist_first_rcu(head));		       \
887 	     pos != NULL &&						       \
888 		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
889 	     pos = rcu_dereference(hlist_next_rcu(pos)))
890 
891 static inline struct user_namespace *sk_user_ns(const struct sock *sk)
892 {
893 	/* Careful only use this in a context where these parameters
894 	 * can not change and must all be valid, such as recvmsg from
895 	 * userspace.
896 	 */
897 	return sk->sk_socket->file->f_cred->user_ns;
898 }
899 
900 /* Sock flags */
901 enum sock_flags {
902 	SOCK_DEAD,
903 	SOCK_DONE,
904 	SOCK_URGINLINE,
905 	SOCK_KEEPOPEN,
906 	SOCK_LINGER,
907 	SOCK_DESTROY,
908 	SOCK_BROADCAST,
909 	SOCK_TIMESTAMP,
910 	SOCK_ZAPPED,
911 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
912 	SOCK_DBG, /* %SO_DEBUG setting */
913 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
914 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
915 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
916 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
917 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
918 	SOCK_FASYNC, /* fasync() active */
919 	SOCK_RXQ_OVFL,
920 	SOCK_ZEROCOPY, /* buffers from userspace */
921 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
922 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
923 		     * Will use last 4 bytes of packet sent from
924 		     * user-space instead.
925 		     */
926 	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
927 	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
928 	SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
929 	SOCK_TXTIME,
930 	SOCK_XDP, /* XDP is attached */
931 	SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
932 	SOCK_RCVMARK, /* Receive SO_MARK  ancillary data with packet */
933 };
934 
935 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
936 
937 static inline void sock_copy_flags(struct sock *nsk, const struct sock *osk)
938 {
939 	nsk->sk_flags = osk->sk_flags;
940 }
941 
942 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
943 {
944 	__set_bit(flag, &sk->sk_flags);
945 }
946 
947 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
948 {
949 	__clear_bit(flag, &sk->sk_flags);
950 }
951 
952 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
953 				     int valbool)
954 {
955 	if (valbool)
956 		sock_set_flag(sk, bit);
957 	else
958 		sock_reset_flag(sk, bit);
959 }
960 
961 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
962 {
963 	return test_bit(flag, &sk->sk_flags);
964 }
965 
966 #ifdef CONFIG_NET
967 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
968 static inline int sk_memalloc_socks(void)
969 {
970 	return static_branch_unlikely(&memalloc_socks_key);
971 }
972 
973 void __receive_sock(struct file *file);
974 #else
975 
976 static inline int sk_memalloc_socks(void)
977 {
978 	return 0;
979 }
980 
981 static inline void __receive_sock(struct file *file)
982 { }
983 #endif
984 
985 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
986 {
987 	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
988 }
989 
990 static inline void sk_acceptq_removed(struct sock *sk)
991 {
992 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
993 }
994 
995 static inline void sk_acceptq_added(struct sock *sk)
996 {
997 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
998 }
999 
1000 /* Note: If you think the test should be:
1001  *	return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog);
1002  * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.")
1003  */
1004 static inline bool sk_acceptq_is_full(const struct sock *sk)
1005 {
1006 	return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
1007 }
1008 
1009 /*
1010  * Compute minimal free write space needed to queue new packets.
1011  */
1012 static inline int sk_stream_min_wspace(const struct sock *sk)
1013 {
1014 	return READ_ONCE(sk->sk_wmem_queued) >> 1;
1015 }
1016 
1017 static inline int sk_stream_wspace(const struct sock *sk)
1018 {
1019 	return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
1020 }
1021 
1022 static inline void sk_wmem_queued_add(struct sock *sk, int val)
1023 {
1024 	WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
1025 }
1026 
1027 static inline void sk_forward_alloc_add(struct sock *sk, int val)
1028 {
1029 	/* Paired with lockless reads of sk->sk_forward_alloc */
1030 	WRITE_ONCE(sk->sk_forward_alloc, sk->sk_forward_alloc + val);
1031 }
1032 
1033 void sk_stream_write_space(struct sock *sk);
1034 
1035 /* OOB backlog add */
1036 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
1037 {
1038 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
1039 	skb_dst_force(skb);
1040 
1041 	if (!sk->sk_backlog.tail)
1042 		WRITE_ONCE(sk->sk_backlog.head, skb);
1043 	else
1044 		sk->sk_backlog.tail->next = skb;
1045 
1046 	WRITE_ONCE(sk->sk_backlog.tail, skb);
1047 	skb->next = NULL;
1048 }
1049 
1050 /*
1051  * Take into account size of receive queue and backlog queue
1052  * Do not take into account this skb truesize,
1053  * to allow even a single big packet to come.
1054  */
1055 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
1056 {
1057 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
1058 
1059 	return qsize > limit;
1060 }
1061 
1062 /* The per-socket spinlock must be held here. */
1063 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
1064 					      unsigned int limit)
1065 {
1066 	if (sk_rcvqueues_full(sk, limit))
1067 		return -ENOBUFS;
1068 
1069 	/*
1070 	 * If the skb was allocated from pfmemalloc reserves, only
1071 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
1072 	 * helping free memory
1073 	 */
1074 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
1075 		return -ENOMEM;
1076 
1077 	__sk_add_backlog(sk, skb);
1078 	sk->sk_backlog.len += skb->truesize;
1079 	return 0;
1080 }
1081 
1082 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1083 
1084 INDIRECT_CALLABLE_DECLARE(int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb));
1085 INDIRECT_CALLABLE_DECLARE(int tcp_v6_do_rcv(struct sock *sk, struct sk_buff *skb));
1086 
1087 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1088 {
1089 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1090 		return __sk_backlog_rcv(sk, skb);
1091 
1092 	return INDIRECT_CALL_INET(sk->sk_backlog_rcv,
1093 				  tcp_v6_do_rcv,
1094 				  tcp_v4_do_rcv,
1095 				  sk, skb);
1096 }
1097 
1098 static inline void sk_incoming_cpu_update(struct sock *sk)
1099 {
1100 	int cpu = raw_smp_processor_id();
1101 
1102 	if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1103 		WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1104 }
1105 
1106 static inline void sock_rps_record_flow_hash(__u32 hash)
1107 {
1108 #ifdef CONFIG_RPS
1109 	struct rps_sock_flow_table *sock_flow_table;
1110 
1111 	rcu_read_lock();
1112 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
1113 	rps_record_sock_flow(sock_flow_table, hash);
1114 	rcu_read_unlock();
1115 #endif
1116 }
1117 
1118 static inline void sock_rps_record_flow(const struct sock *sk)
1119 {
1120 #ifdef CONFIG_RPS
1121 	if (static_branch_unlikely(&rfs_needed)) {
1122 		/* Reading sk->sk_rxhash might incur an expensive cache line
1123 		 * miss.
1124 		 *
1125 		 * TCP_ESTABLISHED does cover almost all states where RFS
1126 		 * might be useful, and is cheaper [1] than testing :
1127 		 *	IPv4: inet_sk(sk)->inet_daddr
1128 		 * 	IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
1129 		 * OR	an additional socket flag
1130 		 * [1] : sk_state and sk_prot are in the same cache line.
1131 		 */
1132 		if (sk->sk_state == TCP_ESTABLISHED) {
1133 			/* This READ_ONCE() is paired with the WRITE_ONCE()
1134 			 * from sock_rps_save_rxhash() and sock_rps_reset_rxhash().
1135 			 */
1136 			sock_rps_record_flow_hash(READ_ONCE(sk->sk_rxhash));
1137 		}
1138 	}
1139 #endif
1140 }
1141 
1142 static inline void sock_rps_save_rxhash(struct sock *sk,
1143 					const struct sk_buff *skb)
1144 {
1145 #ifdef CONFIG_RPS
1146 	/* The following WRITE_ONCE() is paired with the READ_ONCE()
1147 	 * here, and another one in sock_rps_record_flow().
1148 	 */
1149 	if (unlikely(READ_ONCE(sk->sk_rxhash) != skb->hash))
1150 		WRITE_ONCE(sk->sk_rxhash, skb->hash);
1151 #endif
1152 }
1153 
1154 static inline void sock_rps_reset_rxhash(struct sock *sk)
1155 {
1156 #ifdef CONFIG_RPS
1157 	/* Paired with READ_ONCE() in sock_rps_record_flow() */
1158 	WRITE_ONCE(sk->sk_rxhash, 0);
1159 #endif
1160 }
1161 
1162 #define sk_wait_event(__sk, __timeo, __condition, __wait)		\
1163 	({	int __rc, __dis = __sk->sk_disconnects;			\
1164 		release_sock(__sk);					\
1165 		__rc = __condition;					\
1166 		if (!__rc) {						\
1167 			*(__timeo) = wait_woken(__wait,			\
1168 						TASK_INTERRUPTIBLE,	\
1169 						*(__timeo));		\
1170 		}							\
1171 		sched_annotate_sleep();					\
1172 		lock_sock(__sk);					\
1173 		__rc = __dis == __sk->sk_disconnects ? __condition : -EPIPE; \
1174 		__rc;							\
1175 	})
1176 
1177 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1178 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1179 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1180 int sk_stream_error(struct sock *sk, int flags, int err);
1181 void sk_stream_kill_queues(struct sock *sk);
1182 void sk_set_memalloc(struct sock *sk);
1183 void sk_clear_memalloc(struct sock *sk);
1184 
1185 void __sk_flush_backlog(struct sock *sk);
1186 
1187 static inline bool sk_flush_backlog(struct sock *sk)
1188 {
1189 	if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1190 		__sk_flush_backlog(sk);
1191 		return true;
1192 	}
1193 	return false;
1194 }
1195 
1196 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1197 
1198 struct request_sock_ops;
1199 struct timewait_sock_ops;
1200 struct inet_hashinfo;
1201 struct raw_hashinfo;
1202 struct smc_hashinfo;
1203 struct module;
1204 struct sk_psock;
1205 
1206 /*
1207  * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1208  * un-modified. Special care is taken when initializing object to zero.
1209  */
1210 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1211 {
1212 	if (offsetof(struct sock, sk_node.next) != 0)
1213 		memset(sk, 0, offsetof(struct sock, sk_node.next));
1214 	memset(&sk->sk_node.pprev, 0,
1215 	       size - offsetof(struct sock, sk_node.pprev));
1216 }
1217 
1218 /* Networking protocol blocks we attach to sockets.
1219  * socket layer -> transport layer interface
1220  */
1221 struct proto {
1222 	void			(*close)(struct sock *sk,
1223 					long timeout);
1224 	int			(*pre_connect)(struct sock *sk,
1225 					struct sockaddr *uaddr,
1226 					int addr_len);
1227 	int			(*connect)(struct sock *sk,
1228 					struct sockaddr *uaddr,
1229 					int addr_len);
1230 	int			(*disconnect)(struct sock *sk, int flags);
1231 
1232 	struct sock *		(*accept)(struct sock *sk, int flags, int *err,
1233 					  bool kern);
1234 
1235 	int			(*ioctl)(struct sock *sk, int cmd,
1236 					 int *karg);
1237 	int			(*init)(struct sock *sk);
1238 	void			(*destroy)(struct sock *sk);
1239 	void			(*shutdown)(struct sock *sk, int how);
1240 	int			(*setsockopt)(struct sock *sk, int level,
1241 					int optname, sockptr_t optval,
1242 					unsigned int optlen);
1243 	int			(*getsockopt)(struct sock *sk, int level,
1244 					int optname, char __user *optval,
1245 					int __user *option);
1246 	void			(*keepalive)(struct sock *sk, int valbool);
1247 #ifdef CONFIG_COMPAT
1248 	int			(*compat_ioctl)(struct sock *sk,
1249 					unsigned int cmd, unsigned long arg);
1250 #endif
1251 	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
1252 					   size_t len);
1253 	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
1254 					   size_t len, int flags, int *addr_len);
1255 	void			(*splice_eof)(struct socket *sock);
1256 	int			(*bind)(struct sock *sk,
1257 					struct sockaddr *addr, int addr_len);
1258 	int			(*bind_add)(struct sock *sk,
1259 					struct sockaddr *addr, int addr_len);
1260 
1261 	int			(*backlog_rcv) (struct sock *sk,
1262 						struct sk_buff *skb);
1263 	bool			(*bpf_bypass_getsockopt)(int level,
1264 							 int optname);
1265 
1266 	void		(*release_cb)(struct sock *sk);
1267 
1268 	/* Keeping track of sk's, looking them up, and port selection methods. */
1269 	int			(*hash)(struct sock *sk);
1270 	void			(*unhash)(struct sock *sk);
1271 	void			(*rehash)(struct sock *sk);
1272 	int			(*get_port)(struct sock *sk, unsigned short snum);
1273 	void			(*put_port)(struct sock *sk);
1274 #ifdef CONFIG_BPF_SYSCALL
1275 	int			(*psock_update_sk_prot)(struct sock *sk,
1276 							struct sk_psock *psock,
1277 							bool restore);
1278 #endif
1279 
1280 	/* Keeping track of sockets in use */
1281 #ifdef CONFIG_PROC_FS
1282 	unsigned int		inuse_idx;
1283 #endif
1284 
1285 #if IS_ENABLED(CONFIG_MPTCP)
1286 	int			(*forward_alloc_get)(const struct sock *sk);
1287 #endif
1288 
1289 	bool			(*stream_memory_free)(const struct sock *sk, int wake);
1290 	bool			(*sock_is_readable)(struct sock *sk);
1291 	/* Memory pressure */
1292 	void			(*enter_memory_pressure)(struct sock *sk);
1293 	void			(*leave_memory_pressure)(struct sock *sk);
1294 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1295 	int  __percpu		*per_cpu_fw_alloc;
1296 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1297 
1298 	/*
1299 	 * Pressure flag: try to collapse.
1300 	 * Technical note: it is used by multiple contexts non atomically.
1301 	 * Make sure to use READ_ONCE()/WRITE_ONCE() for all reads/writes.
1302 	 * All the __sk_mem_schedule() is of this nature: accounting
1303 	 * is strict, actions are advisory and have some latency.
1304 	 */
1305 	unsigned long		*memory_pressure;
1306 	long			*sysctl_mem;
1307 
1308 	int			*sysctl_wmem;
1309 	int			*sysctl_rmem;
1310 	u32			sysctl_wmem_offset;
1311 	u32			sysctl_rmem_offset;
1312 
1313 	int			max_header;
1314 	bool			no_autobind;
1315 
1316 	struct kmem_cache	*slab;
1317 	unsigned int		obj_size;
1318 	unsigned int		ipv6_pinfo_offset;
1319 	slab_flags_t		slab_flags;
1320 	unsigned int		useroffset;	/* Usercopy region offset */
1321 	unsigned int		usersize;	/* Usercopy region size */
1322 
1323 	unsigned int __percpu	*orphan_count;
1324 
1325 	struct request_sock_ops	*rsk_prot;
1326 	struct timewait_sock_ops *twsk_prot;
1327 
1328 	union {
1329 		struct inet_hashinfo	*hashinfo;
1330 		struct udp_table	*udp_table;
1331 		struct raw_hashinfo	*raw_hash;
1332 		struct smc_hashinfo	*smc_hash;
1333 	} h;
1334 
1335 	struct module		*owner;
1336 
1337 	char			name[32];
1338 
1339 	struct list_head	node;
1340 	int			(*diag_destroy)(struct sock *sk, int err);
1341 } __randomize_layout;
1342 
1343 int proto_register(struct proto *prot, int alloc_slab);
1344 void proto_unregister(struct proto *prot);
1345 int sock_load_diag_module(int family, int protocol);
1346 
1347 INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake));
1348 
1349 static inline int sk_forward_alloc_get(const struct sock *sk)
1350 {
1351 #if IS_ENABLED(CONFIG_MPTCP)
1352 	if (sk->sk_prot->forward_alloc_get)
1353 		return sk->sk_prot->forward_alloc_get(sk);
1354 #endif
1355 	return READ_ONCE(sk->sk_forward_alloc);
1356 }
1357 
1358 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1359 {
1360 	if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1361 		return false;
1362 
1363 	return sk->sk_prot->stream_memory_free ?
1364 		INDIRECT_CALL_INET_1(sk->sk_prot->stream_memory_free,
1365 				     tcp_stream_memory_free, sk, wake) : true;
1366 }
1367 
1368 static inline bool sk_stream_memory_free(const struct sock *sk)
1369 {
1370 	return __sk_stream_memory_free(sk, 0);
1371 }
1372 
1373 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1374 {
1375 	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1376 	       __sk_stream_memory_free(sk, wake);
1377 }
1378 
1379 static inline bool sk_stream_is_writeable(const struct sock *sk)
1380 {
1381 	return __sk_stream_is_writeable(sk, 0);
1382 }
1383 
1384 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1385 					    struct cgroup *ancestor)
1386 {
1387 #ifdef CONFIG_SOCK_CGROUP_DATA
1388 	return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1389 				    ancestor);
1390 #else
1391 	return -ENOTSUPP;
1392 #endif
1393 }
1394 
1395 static inline bool sk_has_memory_pressure(const struct sock *sk)
1396 {
1397 	return sk->sk_prot->memory_pressure != NULL;
1398 }
1399 
1400 static inline bool sk_under_global_memory_pressure(const struct sock *sk)
1401 {
1402 	return sk->sk_prot->memory_pressure &&
1403 		!!READ_ONCE(*sk->sk_prot->memory_pressure);
1404 }
1405 
1406 static inline bool sk_under_memory_pressure(const struct sock *sk)
1407 {
1408 	if (!sk->sk_prot->memory_pressure)
1409 		return false;
1410 
1411 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1412 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
1413 		return true;
1414 
1415 	return !!READ_ONCE(*sk->sk_prot->memory_pressure);
1416 }
1417 
1418 static inline long
1419 proto_memory_allocated(const struct proto *prot)
1420 {
1421 	return max(0L, atomic_long_read(prot->memory_allocated));
1422 }
1423 
1424 static inline long
1425 sk_memory_allocated(const struct sock *sk)
1426 {
1427 	return proto_memory_allocated(sk->sk_prot);
1428 }
1429 
1430 /* 1 MB per cpu, in page units */
1431 #define SK_MEMORY_PCPU_RESERVE (1 << (20 - PAGE_SHIFT))
1432 
1433 static inline void
1434 sk_memory_allocated_add(struct sock *sk, int amt)
1435 {
1436 	int local_reserve;
1437 
1438 	preempt_disable();
1439 	local_reserve = __this_cpu_add_return(*sk->sk_prot->per_cpu_fw_alloc, amt);
1440 	if (local_reserve >= SK_MEMORY_PCPU_RESERVE) {
1441 		__this_cpu_sub(*sk->sk_prot->per_cpu_fw_alloc, local_reserve);
1442 		atomic_long_add(local_reserve, sk->sk_prot->memory_allocated);
1443 	}
1444 	preempt_enable();
1445 }
1446 
1447 static inline void
1448 sk_memory_allocated_sub(struct sock *sk, int amt)
1449 {
1450 	int local_reserve;
1451 
1452 	preempt_disable();
1453 	local_reserve = __this_cpu_sub_return(*sk->sk_prot->per_cpu_fw_alloc, amt);
1454 	if (local_reserve <= -SK_MEMORY_PCPU_RESERVE) {
1455 		__this_cpu_sub(*sk->sk_prot->per_cpu_fw_alloc, local_reserve);
1456 		atomic_long_add(local_reserve, sk->sk_prot->memory_allocated);
1457 	}
1458 	preempt_enable();
1459 }
1460 
1461 #define SK_ALLOC_PERCPU_COUNTER_BATCH 16
1462 
1463 static inline void sk_sockets_allocated_dec(struct sock *sk)
1464 {
1465 	percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1,
1466 				 SK_ALLOC_PERCPU_COUNTER_BATCH);
1467 }
1468 
1469 static inline void sk_sockets_allocated_inc(struct sock *sk)
1470 {
1471 	percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1,
1472 				 SK_ALLOC_PERCPU_COUNTER_BATCH);
1473 }
1474 
1475 static inline u64
1476 sk_sockets_allocated_read_positive(struct sock *sk)
1477 {
1478 	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1479 }
1480 
1481 static inline int
1482 proto_sockets_allocated_sum_positive(struct proto *prot)
1483 {
1484 	return percpu_counter_sum_positive(prot->sockets_allocated);
1485 }
1486 
1487 static inline bool
1488 proto_memory_pressure(struct proto *prot)
1489 {
1490 	if (!prot->memory_pressure)
1491 		return false;
1492 	return !!READ_ONCE(*prot->memory_pressure);
1493 }
1494 
1495 
1496 #ifdef CONFIG_PROC_FS
1497 #define PROTO_INUSE_NR	64	/* should be enough for the first time */
1498 struct prot_inuse {
1499 	int all;
1500 	int val[PROTO_INUSE_NR];
1501 };
1502 
1503 static inline void sock_prot_inuse_add(const struct net *net,
1504 				       const struct proto *prot, int val)
1505 {
1506 	this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
1507 }
1508 
1509 static inline void sock_inuse_add(const struct net *net, int val)
1510 {
1511 	this_cpu_add(net->core.prot_inuse->all, val);
1512 }
1513 
1514 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1515 int sock_inuse_get(struct net *net);
1516 #else
1517 static inline void sock_prot_inuse_add(const struct net *net,
1518 				       const struct proto *prot, int val)
1519 {
1520 }
1521 
1522 static inline void sock_inuse_add(const struct net *net, int val)
1523 {
1524 }
1525 #endif
1526 
1527 
1528 /* With per-bucket locks this operation is not-atomic, so that
1529  * this version is not worse.
1530  */
1531 static inline int __sk_prot_rehash(struct sock *sk)
1532 {
1533 	sk->sk_prot->unhash(sk);
1534 	return sk->sk_prot->hash(sk);
1535 }
1536 
1537 /* About 10 seconds */
1538 #define SOCK_DESTROY_TIME (10*HZ)
1539 
1540 /* Sockets 0-1023 can't be bound to unless you are superuser */
1541 #define PROT_SOCK	1024
1542 
1543 #define SHUTDOWN_MASK	3
1544 #define RCV_SHUTDOWN	1
1545 #define SEND_SHUTDOWN	2
1546 
1547 #define SOCK_BINDADDR_LOCK	4
1548 #define SOCK_BINDPORT_LOCK	8
1549 
1550 struct socket_alloc {
1551 	struct socket socket;
1552 	struct inode vfs_inode;
1553 };
1554 
1555 static inline struct socket *SOCKET_I(struct inode *inode)
1556 {
1557 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1558 }
1559 
1560 static inline struct inode *SOCK_INODE(struct socket *socket)
1561 {
1562 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1563 }
1564 
1565 /*
1566  * Functions for memory accounting
1567  */
1568 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1569 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1570 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1571 void __sk_mem_reclaim(struct sock *sk, int amount);
1572 
1573 #define SK_MEM_SEND	0
1574 #define SK_MEM_RECV	1
1575 
1576 /* sysctl_mem values are in pages */
1577 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1578 {
1579 	return READ_ONCE(sk->sk_prot->sysctl_mem[index]);
1580 }
1581 
1582 static inline int sk_mem_pages(int amt)
1583 {
1584 	return (amt + PAGE_SIZE - 1) >> PAGE_SHIFT;
1585 }
1586 
1587 static inline bool sk_has_account(struct sock *sk)
1588 {
1589 	/* return true if protocol supports memory accounting */
1590 	return !!sk->sk_prot->memory_allocated;
1591 }
1592 
1593 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1594 {
1595 	int delta;
1596 
1597 	if (!sk_has_account(sk))
1598 		return true;
1599 	delta = size - sk->sk_forward_alloc;
1600 	return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_SEND);
1601 }
1602 
1603 static inline bool
1604 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1605 {
1606 	int delta;
1607 
1608 	if (!sk_has_account(sk))
1609 		return true;
1610 	delta = size - sk->sk_forward_alloc;
1611 	return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_RECV) ||
1612 		skb_pfmemalloc(skb);
1613 }
1614 
1615 static inline int sk_unused_reserved_mem(const struct sock *sk)
1616 {
1617 	int unused_mem;
1618 
1619 	if (likely(!sk->sk_reserved_mem))
1620 		return 0;
1621 
1622 	unused_mem = sk->sk_reserved_mem - sk->sk_wmem_queued -
1623 			atomic_read(&sk->sk_rmem_alloc);
1624 
1625 	return unused_mem > 0 ? unused_mem : 0;
1626 }
1627 
1628 static inline void sk_mem_reclaim(struct sock *sk)
1629 {
1630 	int reclaimable;
1631 
1632 	if (!sk_has_account(sk))
1633 		return;
1634 
1635 	reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1636 
1637 	if (reclaimable >= (int)PAGE_SIZE)
1638 		__sk_mem_reclaim(sk, reclaimable);
1639 }
1640 
1641 static inline void sk_mem_reclaim_final(struct sock *sk)
1642 {
1643 	sk->sk_reserved_mem = 0;
1644 	sk_mem_reclaim(sk);
1645 }
1646 
1647 static inline void sk_mem_charge(struct sock *sk, int size)
1648 {
1649 	if (!sk_has_account(sk))
1650 		return;
1651 	sk_forward_alloc_add(sk, -size);
1652 }
1653 
1654 static inline void sk_mem_uncharge(struct sock *sk, int size)
1655 {
1656 	if (!sk_has_account(sk))
1657 		return;
1658 	sk_forward_alloc_add(sk, size);
1659 	sk_mem_reclaim(sk);
1660 }
1661 
1662 /*
1663  * Macro so as to not evaluate some arguments when
1664  * lockdep is not enabled.
1665  *
1666  * Mark both the sk_lock and the sk_lock.slock as a
1667  * per-address-family lock class.
1668  */
1669 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1670 do {									\
1671 	sk->sk_lock.owned = 0;						\
1672 	init_waitqueue_head(&sk->sk_lock.wq);				\
1673 	spin_lock_init(&(sk)->sk_lock.slock);				\
1674 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1675 			sizeof((sk)->sk_lock));				\
1676 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1677 				(skey), (sname));				\
1678 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1679 } while (0)
1680 
1681 static inline bool lockdep_sock_is_held(const struct sock *sk)
1682 {
1683 	return lockdep_is_held(&sk->sk_lock) ||
1684 	       lockdep_is_held(&sk->sk_lock.slock);
1685 }
1686 
1687 void lock_sock_nested(struct sock *sk, int subclass);
1688 
1689 static inline void lock_sock(struct sock *sk)
1690 {
1691 	lock_sock_nested(sk, 0);
1692 }
1693 
1694 void __lock_sock(struct sock *sk);
1695 void __release_sock(struct sock *sk);
1696 void release_sock(struct sock *sk);
1697 
1698 /* BH context may only use the following locking interface. */
1699 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1700 #define bh_lock_sock_nested(__sk) \
1701 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1702 				SINGLE_DEPTH_NESTING)
1703 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1704 
1705 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock);
1706 
1707 /**
1708  * lock_sock_fast - fast version of lock_sock
1709  * @sk: socket
1710  *
1711  * This version should be used for very small section, where process wont block
1712  * return false if fast path is taken:
1713  *
1714  *   sk_lock.slock locked, owned = 0, BH disabled
1715  *
1716  * return true if slow path is taken:
1717  *
1718  *   sk_lock.slock unlocked, owned = 1, BH enabled
1719  */
1720 static inline bool lock_sock_fast(struct sock *sk)
1721 {
1722 	/* The sk_lock has mutex_lock() semantics here. */
1723 	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
1724 
1725 	return __lock_sock_fast(sk);
1726 }
1727 
1728 /* fast socket lock variant for caller already holding a [different] socket lock */
1729 static inline bool lock_sock_fast_nested(struct sock *sk)
1730 {
1731 	mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_);
1732 
1733 	return __lock_sock_fast(sk);
1734 }
1735 
1736 /**
1737  * unlock_sock_fast - complement of lock_sock_fast
1738  * @sk: socket
1739  * @slow: slow mode
1740  *
1741  * fast unlock socket for user context.
1742  * If slow mode is on, we call regular release_sock()
1743  */
1744 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1745 	__releases(&sk->sk_lock.slock)
1746 {
1747 	if (slow) {
1748 		release_sock(sk);
1749 		__release(&sk->sk_lock.slock);
1750 	} else {
1751 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1752 		spin_unlock_bh(&sk->sk_lock.slock);
1753 	}
1754 }
1755 
1756 void sockopt_lock_sock(struct sock *sk);
1757 void sockopt_release_sock(struct sock *sk);
1758 bool sockopt_ns_capable(struct user_namespace *ns, int cap);
1759 bool sockopt_capable(int cap);
1760 
1761 /* Used by processes to "lock" a socket state, so that
1762  * interrupts and bottom half handlers won't change it
1763  * from under us. It essentially blocks any incoming
1764  * packets, so that we won't get any new data or any
1765  * packets that change the state of the socket.
1766  *
1767  * While locked, BH processing will add new packets to
1768  * the backlog queue.  This queue is processed by the
1769  * owner of the socket lock right before it is released.
1770  *
1771  * Since ~2.3.5 it is also exclusive sleep lock serializing
1772  * accesses from user process context.
1773  */
1774 
1775 static inline void sock_owned_by_me(const struct sock *sk)
1776 {
1777 #ifdef CONFIG_LOCKDEP
1778 	WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1779 #endif
1780 }
1781 
1782 static inline bool sock_owned_by_user(const struct sock *sk)
1783 {
1784 	sock_owned_by_me(sk);
1785 	return sk->sk_lock.owned;
1786 }
1787 
1788 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1789 {
1790 	return sk->sk_lock.owned;
1791 }
1792 
1793 static inline void sock_release_ownership(struct sock *sk)
1794 {
1795 	DEBUG_NET_WARN_ON_ONCE(!sock_owned_by_user_nocheck(sk));
1796 	sk->sk_lock.owned = 0;
1797 
1798 	/* The sk_lock has mutex_unlock() semantics: */
1799 	mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1800 }
1801 
1802 /* no reclassification while locks are held */
1803 static inline bool sock_allow_reclassification(const struct sock *csk)
1804 {
1805 	struct sock *sk = (struct sock *)csk;
1806 
1807 	return !sock_owned_by_user_nocheck(sk) &&
1808 		!spin_is_locked(&sk->sk_lock.slock);
1809 }
1810 
1811 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1812 		      struct proto *prot, int kern);
1813 void sk_free(struct sock *sk);
1814 void sk_destruct(struct sock *sk);
1815 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1816 void sk_free_unlock_clone(struct sock *sk);
1817 
1818 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1819 			     gfp_t priority);
1820 void __sock_wfree(struct sk_buff *skb);
1821 void sock_wfree(struct sk_buff *skb);
1822 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1823 			     gfp_t priority);
1824 void skb_orphan_partial(struct sk_buff *skb);
1825 void sock_rfree(struct sk_buff *skb);
1826 void sock_efree(struct sk_buff *skb);
1827 #ifdef CONFIG_INET
1828 void sock_edemux(struct sk_buff *skb);
1829 void sock_pfree(struct sk_buff *skb);
1830 #else
1831 #define sock_edemux sock_efree
1832 #endif
1833 
1834 int sk_setsockopt(struct sock *sk, int level, int optname,
1835 		  sockptr_t optval, unsigned int optlen);
1836 int sock_setsockopt(struct socket *sock, int level, int op,
1837 		    sockptr_t optval, unsigned int optlen);
1838 int do_sock_setsockopt(struct socket *sock, bool compat, int level,
1839 		       int optname, sockptr_t optval, int optlen);
1840 int do_sock_getsockopt(struct socket *sock, bool compat, int level,
1841 		       int optname, sockptr_t optval, sockptr_t optlen);
1842 
1843 int sk_getsockopt(struct sock *sk, int level, int optname,
1844 		  sockptr_t optval, sockptr_t optlen);
1845 int sock_gettstamp(struct socket *sock, void __user *userstamp,
1846 		   bool timeval, bool time32);
1847 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1848 				     unsigned long data_len, int noblock,
1849 				     int *errcode, int max_page_order);
1850 
1851 static inline struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1852 						  unsigned long size,
1853 						  int noblock, int *errcode)
1854 {
1855 	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1856 }
1857 
1858 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1859 void sock_kfree_s(struct sock *sk, void *mem, int size);
1860 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1861 void sk_send_sigurg(struct sock *sk);
1862 
1863 static inline void sock_replace_proto(struct sock *sk, struct proto *proto)
1864 {
1865 	if (sk->sk_socket)
1866 		clear_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1867 	WRITE_ONCE(sk->sk_prot, proto);
1868 }
1869 
1870 struct sockcm_cookie {
1871 	u64 transmit_time;
1872 	u32 mark;
1873 	u32 tsflags;
1874 };
1875 
1876 static inline void sockcm_init(struct sockcm_cookie *sockc,
1877 			       const struct sock *sk)
1878 {
1879 	*sockc = (struct sockcm_cookie) {
1880 		.tsflags = READ_ONCE(sk->sk_tsflags)
1881 	};
1882 }
1883 
1884 int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg,
1885 		     struct sockcm_cookie *sockc);
1886 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1887 		   struct sockcm_cookie *sockc);
1888 
1889 /*
1890  * Functions to fill in entries in struct proto_ops when a protocol
1891  * does not implement a particular function.
1892  */
1893 int sock_no_bind(struct socket *, struct sockaddr *, int);
1894 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1895 int sock_no_socketpair(struct socket *, struct socket *);
1896 int sock_no_accept(struct socket *, struct socket *, int, bool);
1897 int sock_no_getname(struct socket *, struct sockaddr *, int);
1898 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1899 int sock_no_listen(struct socket *, int);
1900 int sock_no_shutdown(struct socket *, int);
1901 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1902 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1903 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1904 int sock_no_mmap(struct file *file, struct socket *sock,
1905 		 struct vm_area_struct *vma);
1906 
1907 /*
1908  * Functions to fill in entries in struct proto_ops when a protocol
1909  * uses the inet style.
1910  */
1911 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1912 				  char __user *optval, int __user *optlen);
1913 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1914 			int flags);
1915 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1916 			   sockptr_t optval, unsigned int optlen);
1917 
1918 void sk_common_release(struct sock *sk);
1919 
1920 /*
1921  *	Default socket callbacks and setup code
1922  */
1923 
1924 /* Initialise core socket variables using an explicit uid. */
1925 void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid);
1926 
1927 /* Initialise core socket variables.
1928  * Assumes struct socket *sock is embedded in a struct socket_alloc.
1929  */
1930 void sock_init_data(struct socket *sock, struct sock *sk);
1931 
1932 /*
1933  * Socket reference counting postulates.
1934  *
1935  * * Each user of socket SHOULD hold a reference count.
1936  * * Each access point to socket (an hash table bucket, reference from a list,
1937  *   running timer, skb in flight MUST hold a reference count.
1938  * * When reference count hits 0, it means it will never increase back.
1939  * * When reference count hits 0, it means that no references from
1940  *   outside exist to this socket and current process on current CPU
1941  *   is last user and may/should destroy this socket.
1942  * * sk_free is called from any context: process, BH, IRQ. When
1943  *   it is called, socket has no references from outside -> sk_free
1944  *   may release descendant resources allocated by the socket, but
1945  *   to the time when it is called, socket is NOT referenced by any
1946  *   hash tables, lists etc.
1947  * * Packets, delivered from outside (from network or from another process)
1948  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1949  *   when they sit in queue. Otherwise, packets will leak to hole, when
1950  *   socket is looked up by one cpu and unhasing is made by another CPU.
1951  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1952  *   (leak to backlog). Packet socket does all the processing inside
1953  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1954  *   use separate SMP lock, so that they are prone too.
1955  */
1956 
1957 /* Ungrab socket and destroy it, if it was the last reference. */
1958 static inline void sock_put(struct sock *sk)
1959 {
1960 	if (refcount_dec_and_test(&sk->sk_refcnt))
1961 		sk_free(sk);
1962 }
1963 /* Generic version of sock_put(), dealing with all sockets
1964  * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1965  */
1966 void sock_gen_put(struct sock *sk);
1967 
1968 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1969 		     unsigned int trim_cap, bool refcounted);
1970 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1971 				 const int nested)
1972 {
1973 	return __sk_receive_skb(sk, skb, nested, 1, true);
1974 }
1975 
1976 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1977 {
1978 	/* sk_tx_queue_mapping accept only upto a 16-bit value */
1979 	if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1980 		return;
1981 	/* Paired with READ_ONCE() in sk_tx_queue_get() and
1982 	 * other WRITE_ONCE() because socket lock might be not held.
1983 	 */
1984 	WRITE_ONCE(sk->sk_tx_queue_mapping, tx_queue);
1985 }
1986 
1987 #define NO_QUEUE_MAPPING	USHRT_MAX
1988 
1989 static inline void sk_tx_queue_clear(struct sock *sk)
1990 {
1991 	/* Paired with READ_ONCE() in sk_tx_queue_get() and
1992 	 * other WRITE_ONCE() because socket lock might be not held.
1993 	 */
1994 	WRITE_ONCE(sk->sk_tx_queue_mapping, NO_QUEUE_MAPPING);
1995 }
1996 
1997 static inline int sk_tx_queue_get(const struct sock *sk)
1998 {
1999 	if (sk) {
2000 		/* Paired with WRITE_ONCE() in sk_tx_queue_clear()
2001 		 * and sk_tx_queue_set().
2002 		 */
2003 		int val = READ_ONCE(sk->sk_tx_queue_mapping);
2004 
2005 		if (val != NO_QUEUE_MAPPING)
2006 			return val;
2007 	}
2008 	return -1;
2009 }
2010 
2011 static inline void __sk_rx_queue_set(struct sock *sk,
2012 				     const struct sk_buff *skb,
2013 				     bool force_set)
2014 {
2015 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2016 	if (skb_rx_queue_recorded(skb)) {
2017 		u16 rx_queue = skb_get_rx_queue(skb);
2018 
2019 		if (force_set ||
2020 		    unlikely(READ_ONCE(sk->sk_rx_queue_mapping) != rx_queue))
2021 			WRITE_ONCE(sk->sk_rx_queue_mapping, rx_queue);
2022 	}
2023 #endif
2024 }
2025 
2026 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
2027 {
2028 	__sk_rx_queue_set(sk, skb, true);
2029 }
2030 
2031 static inline void sk_rx_queue_update(struct sock *sk, const struct sk_buff *skb)
2032 {
2033 	__sk_rx_queue_set(sk, skb, false);
2034 }
2035 
2036 static inline void sk_rx_queue_clear(struct sock *sk)
2037 {
2038 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2039 	WRITE_ONCE(sk->sk_rx_queue_mapping, NO_QUEUE_MAPPING);
2040 #endif
2041 }
2042 
2043 static inline int sk_rx_queue_get(const struct sock *sk)
2044 {
2045 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2046 	if (sk) {
2047 		int res = READ_ONCE(sk->sk_rx_queue_mapping);
2048 
2049 		if (res != NO_QUEUE_MAPPING)
2050 			return res;
2051 	}
2052 #endif
2053 
2054 	return -1;
2055 }
2056 
2057 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
2058 {
2059 	sk->sk_socket = sock;
2060 }
2061 
2062 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
2063 {
2064 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
2065 	return &rcu_dereference_raw(sk->sk_wq)->wait;
2066 }
2067 /* Detach socket from process context.
2068  * Announce socket dead, detach it from wait queue and inode.
2069  * Note that parent inode held reference count on this struct sock,
2070  * we do not release it in this function, because protocol
2071  * probably wants some additional cleanups or even continuing
2072  * to work with this socket (TCP).
2073  */
2074 static inline void sock_orphan(struct sock *sk)
2075 {
2076 	write_lock_bh(&sk->sk_callback_lock);
2077 	sock_set_flag(sk, SOCK_DEAD);
2078 	sk_set_socket(sk, NULL);
2079 	sk->sk_wq  = NULL;
2080 	write_unlock_bh(&sk->sk_callback_lock);
2081 }
2082 
2083 static inline void sock_graft(struct sock *sk, struct socket *parent)
2084 {
2085 	WARN_ON(parent->sk);
2086 	write_lock_bh(&sk->sk_callback_lock);
2087 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
2088 	parent->sk = sk;
2089 	sk_set_socket(sk, parent);
2090 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
2091 	security_sock_graft(sk, parent);
2092 	write_unlock_bh(&sk->sk_callback_lock);
2093 }
2094 
2095 kuid_t sock_i_uid(struct sock *sk);
2096 unsigned long __sock_i_ino(struct sock *sk);
2097 unsigned long sock_i_ino(struct sock *sk);
2098 
2099 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
2100 {
2101 	return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
2102 }
2103 
2104 static inline u32 net_tx_rndhash(void)
2105 {
2106 	u32 v = get_random_u32();
2107 
2108 	return v ?: 1;
2109 }
2110 
2111 static inline void sk_set_txhash(struct sock *sk)
2112 {
2113 	/* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
2114 	WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
2115 }
2116 
2117 static inline bool sk_rethink_txhash(struct sock *sk)
2118 {
2119 	if (sk->sk_txhash && sk->sk_txrehash == SOCK_TXREHASH_ENABLED) {
2120 		sk_set_txhash(sk);
2121 		return true;
2122 	}
2123 	return false;
2124 }
2125 
2126 static inline struct dst_entry *
2127 __sk_dst_get(const struct sock *sk)
2128 {
2129 	return rcu_dereference_check(sk->sk_dst_cache,
2130 				     lockdep_sock_is_held(sk));
2131 }
2132 
2133 static inline struct dst_entry *
2134 sk_dst_get(const struct sock *sk)
2135 {
2136 	struct dst_entry *dst;
2137 
2138 	rcu_read_lock();
2139 	dst = rcu_dereference(sk->sk_dst_cache);
2140 	if (dst && !rcuref_get(&dst->__rcuref))
2141 		dst = NULL;
2142 	rcu_read_unlock();
2143 	return dst;
2144 }
2145 
2146 static inline void __dst_negative_advice(struct sock *sk)
2147 {
2148 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
2149 
2150 	if (dst && dst->ops->negative_advice) {
2151 		ndst = dst->ops->negative_advice(dst);
2152 
2153 		if (ndst != dst) {
2154 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
2155 			sk_tx_queue_clear(sk);
2156 			WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2157 		}
2158 	}
2159 }
2160 
2161 static inline void dst_negative_advice(struct sock *sk)
2162 {
2163 	sk_rethink_txhash(sk);
2164 	__dst_negative_advice(sk);
2165 }
2166 
2167 static inline void
2168 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
2169 {
2170 	struct dst_entry *old_dst;
2171 
2172 	sk_tx_queue_clear(sk);
2173 	WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2174 	old_dst = rcu_dereference_protected(sk->sk_dst_cache,
2175 					    lockdep_sock_is_held(sk));
2176 	rcu_assign_pointer(sk->sk_dst_cache, dst);
2177 	dst_release(old_dst);
2178 }
2179 
2180 static inline void
2181 sk_dst_set(struct sock *sk, struct dst_entry *dst)
2182 {
2183 	struct dst_entry *old_dst;
2184 
2185 	sk_tx_queue_clear(sk);
2186 	WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2187 	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
2188 	dst_release(old_dst);
2189 }
2190 
2191 static inline void
2192 __sk_dst_reset(struct sock *sk)
2193 {
2194 	__sk_dst_set(sk, NULL);
2195 }
2196 
2197 static inline void
2198 sk_dst_reset(struct sock *sk)
2199 {
2200 	sk_dst_set(sk, NULL);
2201 }
2202 
2203 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
2204 
2205 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
2206 
2207 static inline void sk_dst_confirm(struct sock *sk)
2208 {
2209 	if (!READ_ONCE(sk->sk_dst_pending_confirm))
2210 		WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2211 }
2212 
2213 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2214 {
2215 	if (skb_get_dst_pending_confirm(skb)) {
2216 		struct sock *sk = skb->sk;
2217 
2218 		if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2219 			WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2220 		neigh_confirm(n);
2221 	}
2222 }
2223 
2224 bool sk_mc_loop(const struct sock *sk);
2225 
2226 static inline bool sk_can_gso(const struct sock *sk)
2227 {
2228 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2229 }
2230 
2231 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2232 
2233 static inline void sk_gso_disable(struct sock *sk)
2234 {
2235 	sk->sk_gso_disabled = 1;
2236 	sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2237 }
2238 
2239 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2240 					   struct iov_iter *from, char *to,
2241 					   int copy, int offset)
2242 {
2243 	if (skb->ip_summed == CHECKSUM_NONE) {
2244 		__wsum csum = 0;
2245 		if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2246 			return -EFAULT;
2247 		skb->csum = csum_block_add(skb->csum, csum, offset);
2248 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2249 		if (!copy_from_iter_full_nocache(to, copy, from))
2250 			return -EFAULT;
2251 	} else if (!copy_from_iter_full(to, copy, from))
2252 		return -EFAULT;
2253 
2254 	return 0;
2255 }
2256 
2257 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2258 				       struct iov_iter *from, int copy)
2259 {
2260 	int err, offset = skb->len;
2261 
2262 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2263 				       copy, offset);
2264 	if (err)
2265 		__skb_trim(skb, offset);
2266 
2267 	return err;
2268 }
2269 
2270 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2271 					   struct sk_buff *skb,
2272 					   struct page *page,
2273 					   int off, int copy)
2274 {
2275 	int err;
2276 
2277 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2278 				       copy, skb->len);
2279 	if (err)
2280 		return err;
2281 
2282 	skb_len_add(skb, copy);
2283 	sk_wmem_queued_add(sk, copy);
2284 	sk_mem_charge(sk, copy);
2285 	return 0;
2286 }
2287 
2288 /**
2289  * sk_wmem_alloc_get - returns write allocations
2290  * @sk: socket
2291  *
2292  * Return: sk_wmem_alloc minus initial offset of one
2293  */
2294 static inline int sk_wmem_alloc_get(const struct sock *sk)
2295 {
2296 	return refcount_read(&sk->sk_wmem_alloc) - 1;
2297 }
2298 
2299 /**
2300  * sk_rmem_alloc_get - returns read allocations
2301  * @sk: socket
2302  *
2303  * Return: sk_rmem_alloc
2304  */
2305 static inline int sk_rmem_alloc_get(const struct sock *sk)
2306 {
2307 	return atomic_read(&sk->sk_rmem_alloc);
2308 }
2309 
2310 /**
2311  * sk_has_allocations - check if allocations are outstanding
2312  * @sk: socket
2313  *
2314  * Return: true if socket has write or read allocations
2315  */
2316 static inline bool sk_has_allocations(const struct sock *sk)
2317 {
2318 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2319 }
2320 
2321 /**
2322  * skwq_has_sleeper - check if there are any waiting processes
2323  * @wq: struct socket_wq
2324  *
2325  * Return: true if socket_wq has waiting processes
2326  *
2327  * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2328  * barrier call. They were added due to the race found within the tcp code.
2329  *
2330  * Consider following tcp code paths::
2331  *
2332  *   CPU1                CPU2
2333  *   sys_select          receive packet
2334  *   ...                 ...
2335  *   __add_wait_queue    update tp->rcv_nxt
2336  *   ...                 ...
2337  *   tp->rcv_nxt check   sock_def_readable
2338  *   ...                 {
2339  *   schedule               rcu_read_lock();
2340  *                          wq = rcu_dereference(sk->sk_wq);
2341  *                          if (wq && waitqueue_active(&wq->wait))
2342  *                              wake_up_interruptible(&wq->wait)
2343  *                          ...
2344  *                       }
2345  *
2346  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2347  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
2348  * could then endup calling schedule and sleep forever if there are no more
2349  * data on the socket.
2350  *
2351  */
2352 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2353 {
2354 	return wq && wq_has_sleeper(&wq->wait);
2355 }
2356 
2357 /**
2358  * sock_poll_wait - place memory barrier behind the poll_wait call.
2359  * @filp:           file
2360  * @sock:           socket to wait on
2361  * @p:              poll_table
2362  *
2363  * See the comments in the wq_has_sleeper function.
2364  */
2365 static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2366 				  poll_table *p)
2367 {
2368 	if (!poll_does_not_wait(p)) {
2369 		poll_wait(filp, &sock->wq.wait, p);
2370 		/* We need to be sure we are in sync with the
2371 		 * socket flags modification.
2372 		 *
2373 		 * This memory barrier is paired in the wq_has_sleeper.
2374 		 */
2375 		smp_mb();
2376 	}
2377 }
2378 
2379 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2380 {
2381 	/* This pairs with WRITE_ONCE() in sk_set_txhash() */
2382 	u32 txhash = READ_ONCE(sk->sk_txhash);
2383 
2384 	if (txhash) {
2385 		skb->l4_hash = 1;
2386 		skb->hash = txhash;
2387 	}
2388 }
2389 
2390 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2391 
2392 /*
2393  *	Queue a received datagram if it will fit. Stream and sequenced
2394  *	protocols can't normally use this as they need to fit buffers in
2395  *	and play with them.
2396  *
2397  *	Inlined as it's very short and called for pretty much every
2398  *	packet ever received.
2399  */
2400 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2401 {
2402 	skb_orphan(skb);
2403 	skb->sk = sk;
2404 	skb->destructor = sock_rfree;
2405 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2406 	sk_mem_charge(sk, skb->truesize);
2407 }
2408 
2409 static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
2410 {
2411 	if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
2412 		skb_orphan(skb);
2413 		skb->destructor = sock_efree;
2414 		skb->sk = sk;
2415 		return true;
2416 	}
2417 	return false;
2418 }
2419 
2420 static inline struct sk_buff *skb_clone_and_charge_r(struct sk_buff *skb, struct sock *sk)
2421 {
2422 	skb = skb_clone(skb, sk_gfp_mask(sk, GFP_ATOMIC));
2423 	if (skb) {
2424 		if (sk_rmem_schedule(sk, skb, skb->truesize)) {
2425 			skb_set_owner_r(skb, sk);
2426 			return skb;
2427 		}
2428 		__kfree_skb(skb);
2429 	}
2430 	return NULL;
2431 }
2432 
2433 static inline void skb_prepare_for_gro(struct sk_buff *skb)
2434 {
2435 	if (skb->destructor != sock_wfree) {
2436 		skb_orphan(skb);
2437 		return;
2438 	}
2439 	skb->slow_gro = 1;
2440 }
2441 
2442 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2443 		    unsigned long expires);
2444 
2445 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2446 
2447 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2448 
2449 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2450 			struct sk_buff *skb, unsigned int flags,
2451 			void (*destructor)(struct sock *sk,
2452 					   struct sk_buff *skb));
2453 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2454 
2455 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
2456 			      enum skb_drop_reason *reason);
2457 
2458 static inline int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2459 {
2460 	return sock_queue_rcv_skb_reason(sk, skb, NULL);
2461 }
2462 
2463 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2464 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2465 
2466 /*
2467  *	Recover an error report and clear atomically
2468  */
2469 
2470 static inline int sock_error(struct sock *sk)
2471 {
2472 	int err;
2473 
2474 	/* Avoid an atomic operation for the common case.
2475 	 * This is racy since another cpu/thread can change sk_err under us.
2476 	 */
2477 	if (likely(data_race(!sk->sk_err)))
2478 		return 0;
2479 
2480 	err = xchg(&sk->sk_err, 0);
2481 	return -err;
2482 }
2483 
2484 void sk_error_report(struct sock *sk);
2485 
2486 static inline unsigned long sock_wspace(struct sock *sk)
2487 {
2488 	int amt = 0;
2489 
2490 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2491 		amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2492 		if (amt < 0)
2493 			amt = 0;
2494 	}
2495 	return amt;
2496 }
2497 
2498 /* Note:
2499  *  We use sk->sk_wq_raw, from contexts knowing this
2500  *  pointer is not NULL and cannot disappear/change.
2501  */
2502 static inline void sk_set_bit(int nr, struct sock *sk)
2503 {
2504 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2505 	    !sock_flag(sk, SOCK_FASYNC))
2506 		return;
2507 
2508 	set_bit(nr, &sk->sk_wq_raw->flags);
2509 }
2510 
2511 static inline void sk_clear_bit(int nr, struct sock *sk)
2512 {
2513 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2514 	    !sock_flag(sk, SOCK_FASYNC))
2515 		return;
2516 
2517 	clear_bit(nr, &sk->sk_wq_raw->flags);
2518 }
2519 
2520 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2521 {
2522 	if (sock_flag(sk, SOCK_FASYNC)) {
2523 		rcu_read_lock();
2524 		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2525 		rcu_read_unlock();
2526 	}
2527 }
2528 
2529 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2530  * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2531  * Note: for send buffers, TCP works better if we can build two skbs at
2532  * minimum.
2533  */
2534 #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2535 
2536 #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2537 #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2538 
2539 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2540 {
2541 	u32 val;
2542 
2543 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2544 		return;
2545 
2546 	val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2547 	val = max_t(u32, val, sk_unused_reserved_mem(sk));
2548 
2549 	WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2550 }
2551 
2552 /**
2553  * sk_page_frag - return an appropriate page_frag
2554  * @sk: socket
2555  *
2556  * Use the per task page_frag instead of the per socket one for
2557  * optimization when we know that we're in process context and own
2558  * everything that's associated with %current.
2559  *
2560  * Both direct reclaim and page faults can nest inside other
2561  * socket operations and end up recursing into sk_page_frag()
2562  * while it's already in use: explicitly avoid task page_frag
2563  * when users disable sk_use_task_frag.
2564  *
2565  * Return: a per task page_frag if context allows that,
2566  * otherwise a per socket one.
2567  */
2568 static inline struct page_frag *sk_page_frag(struct sock *sk)
2569 {
2570 	if (sk->sk_use_task_frag)
2571 		return &current->task_frag;
2572 
2573 	return &sk->sk_frag;
2574 }
2575 
2576 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2577 
2578 /*
2579  *	Default write policy as shown to user space via poll/select/SIGIO
2580  */
2581 static inline bool sock_writeable(const struct sock *sk)
2582 {
2583 	return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2584 }
2585 
2586 static inline gfp_t gfp_any(void)
2587 {
2588 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2589 }
2590 
2591 static inline gfp_t gfp_memcg_charge(void)
2592 {
2593 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2594 }
2595 
2596 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2597 {
2598 	return noblock ? 0 : sk->sk_rcvtimeo;
2599 }
2600 
2601 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2602 {
2603 	return noblock ? 0 : sk->sk_sndtimeo;
2604 }
2605 
2606 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2607 {
2608 	int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2609 
2610 	return v ?: 1;
2611 }
2612 
2613 /* Alas, with timeout socket operations are not restartable.
2614  * Compare this to poll().
2615  */
2616 static inline int sock_intr_errno(long timeo)
2617 {
2618 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2619 }
2620 
2621 struct sock_skb_cb {
2622 	u32 dropcount;
2623 };
2624 
2625 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2626  * using skb->cb[] would keep using it directly and utilize its
2627  * alignement guarantee.
2628  */
2629 #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2630 			    sizeof(struct sock_skb_cb)))
2631 
2632 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2633 			    SOCK_SKB_CB_OFFSET))
2634 
2635 #define sock_skb_cb_check_size(size) \
2636 	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2637 
2638 static inline void
2639 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2640 {
2641 	SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2642 						atomic_read(&sk->sk_drops) : 0;
2643 }
2644 
2645 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2646 {
2647 	int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2648 
2649 	atomic_add(segs, &sk->sk_drops);
2650 }
2651 
2652 static inline ktime_t sock_read_timestamp(struct sock *sk)
2653 {
2654 #if BITS_PER_LONG==32
2655 	unsigned int seq;
2656 	ktime_t kt;
2657 
2658 	do {
2659 		seq = read_seqbegin(&sk->sk_stamp_seq);
2660 		kt = sk->sk_stamp;
2661 	} while (read_seqretry(&sk->sk_stamp_seq, seq));
2662 
2663 	return kt;
2664 #else
2665 	return READ_ONCE(sk->sk_stamp);
2666 #endif
2667 }
2668 
2669 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2670 {
2671 #if BITS_PER_LONG==32
2672 	write_seqlock(&sk->sk_stamp_seq);
2673 	sk->sk_stamp = kt;
2674 	write_sequnlock(&sk->sk_stamp_seq);
2675 #else
2676 	WRITE_ONCE(sk->sk_stamp, kt);
2677 #endif
2678 }
2679 
2680 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2681 			   struct sk_buff *skb);
2682 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2683 			     struct sk_buff *skb);
2684 
2685 static inline void
2686 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2687 {
2688 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2689 	u32 tsflags = READ_ONCE(sk->sk_tsflags);
2690 	ktime_t kt = skb->tstamp;
2691 	/*
2692 	 * generate control messages if
2693 	 * - receive time stamping in software requested
2694 	 * - software time stamp available and wanted
2695 	 * - hardware time stamps available and wanted
2696 	 */
2697 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2698 	    (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2699 	    (kt && tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2700 	    (hwtstamps->hwtstamp &&
2701 	     (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2702 		__sock_recv_timestamp(msg, sk, skb);
2703 	else
2704 		sock_write_timestamp(sk, kt);
2705 
2706 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb_wifi_acked_valid(skb))
2707 		__sock_recv_wifi_status(msg, sk, skb);
2708 }
2709 
2710 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2711 		       struct sk_buff *skb);
2712 
2713 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2714 static inline void sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2715 				   struct sk_buff *skb)
2716 {
2717 #define FLAGS_RECV_CMSGS ((1UL << SOCK_RXQ_OVFL)			| \
2718 			   (1UL << SOCK_RCVTSTAMP)			| \
2719 			   (1UL << SOCK_RCVMARK))
2720 #define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2721 			   SOF_TIMESTAMPING_RAW_HARDWARE)
2722 
2723 	if (sk->sk_flags & FLAGS_RECV_CMSGS ||
2724 	    READ_ONCE(sk->sk_tsflags) & TSFLAGS_ANY)
2725 		__sock_recv_cmsgs(msg, sk, skb);
2726 	else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2727 		sock_write_timestamp(sk, skb->tstamp);
2728 	else if (unlikely(sock_read_timestamp(sk) == SK_DEFAULT_STAMP))
2729 		sock_write_timestamp(sk, 0);
2730 }
2731 
2732 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2733 
2734 /**
2735  * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2736  * @sk:		socket sending this packet
2737  * @tsflags:	timestamping flags to use
2738  * @tx_flags:	completed with instructions for time stamping
2739  * @tskey:      filled in with next sk_tskey (not for TCP, which uses seqno)
2740  *
2741  * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2742  */
2743 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2744 				      __u8 *tx_flags, __u32 *tskey)
2745 {
2746 	if (unlikely(tsflags)) {
2747 		__sock_tx_timestamp(tsflags, tx_flags);
2748 		if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2749 		    tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2750 			*tskey = atomic_inc_return(&sk->sk_tskey) - 1;
2751 	}
2752 	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2753 		*tx_flags |= SKBTX_WIFI_STATUS;
2754 }
2755 
2756 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2757 				     __u8 *tx_flags)
2758 {
2759 	_sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2760 }
2761 
2762 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2763 {
2764 	_sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2765 			   &skb_shinfo(skb)->tskey);
2766 }
2767 
2768 static inline bool sk_is_tcp(const struct sock *sk)
2769 {
2770 	return sk->sk_type == SOCK_STREAM && sk->sk_protocol == IPPROTO_TCP;
2771 }
2772 
2773 static inline bool sk_is_stream_unix(const struct sock *sk)
2774 {
2775 	return sk->sk_family == AF_UNIX && sk->sk_type == SOCK_STREAM;
2776 }
2777 
2778 /**
2779  * sk_eat_skb - Release a skb if it is no longer needed
2780  * @sk: socket to eat this skb from
2781  * @skb: socket buffer to eat
2782  *
2783  * This routine must be called with interrupts disabled or with the socket
2784  * locked so that the sk_buff queue operation is ok.
2785 */
2786 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2787 {
2788 	__skb_unlink(skb, &sk->sk_receive_queue);
2789 	__kfree_skb(skb);
2790 }
2791 
2792 static inline bool
2793 skb_sk_is_prefetched(struct sk_buff *skb)
2794 {
2795 #ifdef CONFIG_INET
2796 	return skb->destructor == sock_pfree;
2797 #else
2798 	return false;
2799 #endif /* CONFIG_INET */
2800 }
2801 
2802 /* This helper checks if a socket is a full socket,
2803  * ie _not_ a timewait or request socket.
2804  */
2805 static inline bool sk_fullsock(const struct sock *sk)
2806 {
2807 	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2808 }
2809 
2810 static inline bool
2811 sk_is_refcounted(struct sock *sk)
2812 {
2813 	/* Only full sockets have sk->sk_flags. */
2814 	return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2815 }
2816 
2817 /**
2818  * skb_steal_sock - steal a socket from an sk_buff
2819  * @skb: sk_buff to steal the socket from
2820  * @refcounted: is set to true if the socket is reference-counted
2821  * @prefetched: is set to true if the socket was assigned from bpf
2822  */
2823 static inline struct sock *
2824 skb_steal_sock(struct sk_buff *skb, bool *refcounted, bool *prefetched)
2825 {
2826 	if (skb->sk) {
2827 		struct sock *sk = skb->sk;
2828 
2829 		*refcounted = true;
2830 		*prefetched = skb_sk_is_prefetched(skb);
2831 		if (*prefetched)
2832 			*refcounted = sk_is_refcounted(sk);
2833 		skb->destructor = NULL;
2834 		skb->sk = NULL;
2835 		return sk;
2836 	}
2837 	*prefetched = false;
2838 	*refcounted = false;
2839 	return NULL;
2840 }
2841 
2842 /* Checks if this SKB belongs to an HW offloaded socket
2843  * and whether any SW fallbacks are required based on dev.
2844  * Check decrypted mark in case skb_orphan() cleared socket.
2845  */
2846 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2847 						   struct net_device *dev)
2848 {
2849 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2850 	struct sock *sk = skb->sk;
2851 
2852 	if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2853 		skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2854 #ifdef CONFIG_TLS_DEVICE
2855 	} else if (unlikely(skb->decrypted)) {
2856 		pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2857 		kfree_skb(skb);
2858 		skb = NULL;
2859 #endif
2860 	}
2861 #endif
2862 
2863 	return skb;
2864 }
2865 
2866 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2867  * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2868  */
2869 static inline bool sk_listener(const struct sock *sk)
2870 {
2871 	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2872 }
2873 
2874 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2875 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2876 		       int type);
2877 
2878 bool sk_ns_capable(const struct sock *sk,
2879 		   struct user_namespace *user_ns, int cap);
2880 bool sk_capable(const struct sock *sk, int cap);
2881 bool sk_net_capable(const struct sock *sk, int cap);
2882 
2883 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2884 
2885 /* Take into consideration the size of the struct sk_buff overhead in the
2886  * determination of these values, since that is non-constant across
2887  * platforms.  This makes socket queueing behavior and performance
2888  * not depend upon such differences.
2889  */
2890 #define _SK_MEM_PACKETS		256
2891 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
2892 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2893 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2894 
2895 extern __u32 sysctl_wmem_max;
2896 extern __u32 sysctl_rmem_max;
2897 
2898 extern int sysctl_tstamp_allow_data;
2899 
2900 extern __u32 sysctl_wmem_default;
2901 extern __u32 sysctl_rmem_default;
2902 
2903 #define SKB_FRAG_PAGE_ORDER	get_order(32768)
2904 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2905 
2906 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2907 {
2908 	/* Does this proto have per netns sysctl_wmem ? */
2909 	if (proto->sysctl_wmem_offset)
2910 		return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset));
2911 
2912 	return READ_ONCE(*proto->sysctl_wmem);
2913 }
2914 
2915 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2916 {
2917 	/* Does this proto have per netns sysctl_rmem ? */
2918 	if (proto->sysctl_rmem_offset)
2919 		return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset));
2920 
2921 	return READ_ONCE(*proto->sysctl_rmem);
2922 }
2923 
2924 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2925  * Some wifi drivers need to tweak it to get more chunks.
2926  * They can use this helper from their ndo_start_xmit()
2927  */
2928 static inline void sk_pacing_shift_update(struct sock *sk, int val)
2929 {
2930 	if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2931 		return;
2932 	WRITE_ONCE(sk->sk_pacing_shift, val);
2933 }
2934 
2935 /* if a socket is bound to a device, check that the given device
2936  * index is either the same or that the socket is bound to an L3
2937  * master device and the given device index is also enslaved to
2938  * that L3 master
2939  */
2940 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2941 {
2942 	int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
2943 	int mdif;
2944 
2945 	if (!bound_dev_if || bound_dev_if == dif)
2946 		return true;
2947 
2948 	mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2949 	if (mdif && mdif == bound_dev_if)
2950 		return true;
2951 
2952 	return false;
2953 }
2954 
2955 void sock_def_readable(struct sock *sk);
2956 
2957 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2958 void sock_set_timestamp(struct sock *sk, int optname, bool valbool);
2959 int sock_set_timestamping(struct sock *sk, int optname,
2960 			  struct so_timestamping timestamping);
2961 
2962 void sock_enable_timestamps(struct sock *sk);
2963 void sock_no_linger(struct sock *sk);
2964 void sock_set_keepalive(struct sock *sk);
2965 void sock_set_priority(struct sock *sk, u32 priority);
2966 void sock_set_rcvbuf(struct sock *sk, int val);
2967 void sock_set_mark(struct sock *sk, u32 val);
2968 void sock_set_reuseaddr(struct sock *sk);
2969 void sock_set_reuseport(struct sock *sk);
2970 void sock_set_sndtimeo(struct sock *sk, s64 secs);
2971 
2972 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2973 
2974 int sock_get_timeout(long timeo, void *optval, bool old_timeval);
2975 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
2976 			   sockptr_t optval, int optlen, bool old_timeval);
2977 
2978 int sock_ioctl_inout(struct sock *sk, unsigned int cmd,
2979 		     void __user *arg, void *karg, size_t size);
2980 int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg);
2981 static inline bool sk_is_readable(struct sock *sk)
2982 {
2983 	if (sk->sk_prot->sock_is_readable)
2984 		return sk->sk_prot->sock_is_readable(sk);
2985 	return false;
2986 }
2987 #endif	/* _SOCK_H */
2988