xref: /linux/include/net/sock.h (revision 2187af84e5d0062090f5e0e89281a00d0b8afa40)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the AF_INET socket handler.
8  *
9  * Version:	@(#)sock.h	1.0.4	05/13/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Florian La Roche <flla@stud.uni-sb.de>
15  *
16  * Fixes:
17  *		Alan Cox	:	Volatiles in skbuff pointers. See
18  *					skbuff comments. May be overdone,
19  *					better to prove they can be removed
20  *					than the reverse.
21  *		Alan Cox	:	Added a zapped field for tcp to note
22  *					a socket is reset and must stay shut up
23  *		Alan Cox	:	New fields for options
24  *	Pauline Middelink	:	identd support
25  *		Alan Cox	:	Eliminate low level recv/recvfrom
26  *		David S. Miller	:	New socket lookup architecture.
27  *              Steve Whitehouse:       Default routines for sock_ops
28  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
29  *              			protinfo be just a void pointer, as the
30  *              			protocol specific parts were moved to
31  *              			respective headers and ipv4/v6, etc now
32  *              			use private slabcaches for its socks
33  *              Pedro Hortas	:	New flags field for socket options
34  */
35 #ifndef _SOCK_H
36 #define _SOCK_H
37 
38 #include <linux/hardirq.h>
39 #include <linux/kernel.h>
40 #include <linux/list.h>
41 #include <linux/list_nulls.h>
42 #include <linux/timer.h>
43 #include <linux/cache.h>
44 #include <linux/bitops.h>
45 #include <linux/lockdep.h>
46 #include <linux/netdevice.h>
47 #include <linux/skbuff.h>	/* struct sk_buff */
48 #include <linux/mm.h>
49 #include <linux/security.h>
50 #include <linux/slab.h>
51 #include <linux/uaccess.h>
52 #include <linux/page_counter.h>
53 #include <linux/memcontrol.h>
54 #include <linux/static_key.h>
55 #include <linux/sched.h>
56 #include <linux/wait.h>
57 #include <linux/cgroup-defs.h>
58 #include <linux/rbtree.h>
59 #include <linux/rculist_nulls.h>
60 #include <linux/poll.h>
61 #include <linux/sockptr.h>
62 #include <linux/indirect_call_wrapper.h>
63 #include <linux/atomic.h>
64 #include <linux/refcount.h>
65 #include <linux/llist.h>
66 #include <net/dst.h>
67 #include <net/checksum.h>
68 #include <net/tcp_states.h>
69 #include <linux/net_tstamp.h>
70 #include <net/l3mdev.h>
71 #include <uapi/linux/socket.h>
72 
73 /*
74  * This structure really needs to be cleaned up.
75  * Most of it is for TCP, and not used by any of
76  * the other protocols.
77  */
78 
79 /* Define this to get the SOCK_DBG debugging facility. */
80 #define SOCK_DEBUGGING
81 #ifdef SOCK_DEBUGGING
82 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
83 					printk(KERN_DEBUG msg); } while (0)
84 #else
85 /* Validate arguments and do nothing */
86 static inline __printf(2, 3)
87 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
88 {
89 }
90 #endif
91 
92 /* This is the per-socket lock.  The spinlock provides a synchronization
93  * between user contexts and software interrupt processing, whereas the
94  * mini-semaphore synchronizes multiple users amongst themselves.
95  */
96 typedef struct {
97 	spinlock_t		slock;
98 	int			owned;
99 	wait_queue_head_t	wq;
100 	/*
101 	 * We express the mutex-alike socket_lock semantics
102 	 * to the lock validator by explicitly managing
103 	 * the slock as a lock variant (in addition to
104 	 * the slock itself):
105 	 */
106 #ifdef CONFIG_DEBUG_LOCK_ALLOC
107 	struct lockdep_map dep_map;
108 #endif
109 } socket_lock_t;
110 
111 struct sock;
112 struct proto;
113 struct net;
114 
115 typedef __u32 __bitwise __portpair;
116 typedef __u64 __bitwise __addrpair;
117 
118 /**
119  *	struct sock_common - minimal network layer representation of sockets
120  *	@skc_daddr: Foreign IPv4 addr
121  *	@skc_rcv_saddr: Bound local IPv4 addr
122  *	@skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
123  *	@skc_hash: hash value used with various protocol lookup tables
124  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
125  *	@skc_dport: placeholder for inet_dport/tw_dport
126  *	@skc_num: placeholder for inet_num/tw_num
127  *	@skc_portpair: __u32 union of @skc_dport & @skc_num
128  *	@skc_family: network address family
129  *	@skc_state: Connection state
130  *	@skc_reuse: %SO_REUSEADDR setting
131  *	@skc_reuseport: %SO_REUSEPORT setting
132  *	@skc_ipv6only: socket is IPV6 only
133  *	@skc_net_refcnt: socket is using net ref counting
134  *	@skc_bound_dev_if: bound device index if != 0
135  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
136  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
137  *	@skc_prot: protocol handlers inside a network family
138  *	@skc_net: reference to the network namespace of this socket
139  *	@skc_v6_daddr: IPV6 destination address
140  *	@skc_v6_rcv_saddr: IPV6 source address
141  *	@skc_cookie: socket's cookie value
142  *	@skc_node: main hash linkage for various protocol lookup tables
143  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
144  *	@skc_tx_queue_mapping: tx queue number for this connection
145  *	@skc_rx_queue_mapping: rx queue number for this connection
146  *	@skc_flags: place holder for sk_flags
147  *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
148  *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
149  *	@skc_listener: connection request listener socket (aka rsk_listener)
150  *		[union with @skc_flags]
151  *	@skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
152  *		[union with @skc_flags]
153  *	@skc_incoming_cpu: record/match cpu processing incoming packets
154  *	@skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
155  *		[union with @skc_incoming_cpu]
156  *	@skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
157  *		[union with @skc_incoming_cpu]
158  *	@skc_refcnt: reference count
159  *
160  *	This is the minimal network layer representation of sockets, the header
161  *	for struct sock and struct inet_timewait_sock.
162  */
163 struct sock_common {
164 	union {
165 		__addrpair	skc_addrpair;
166 		struct {
167 			__be32	skc_daddr;
168 			__be32	skc_rcv_saddr;
169 		};
170 	};
171 	union  {
172 		unsigned int	skc_hash;
173 		__u16		skc_u16hashes[2];
174 	};
175 	/* skc_dport && skc_num must be grouped as well */
176 	union {
177 		__portpair	skc_portpair;
178 		struct {
179 			__be16	skc_dport;
180 			__u16	skc_num;
181 		};
182 	};
183 
184 	unsigned short		skc_family;
185 	volatile unsigned char	skc_state;
186 	unsigned char		skc_reuse:4;
187 	unsigned char		skc_reuseport:1;
188 	unsigned char		skc_ipv6only:1;
189 	unsigned char		skc_net_refcnt:1;
190 	int			skc_bound_dev_if;
191 	union {
192 		struct hlist_node	skc_bind_node;
193 		struct hlist_node	skc_portaddr_node;
194 	};
195 	struct proto		*skc_prot;
196 	possible_net_t		skc_net;
197 
198 #if IS_ENABLED(CONFIG_IPV6)
199 	struct in6_addr		skc_v6_daddr;
200 	struct in6_addr		skc_v6_rcv_saddr;
201 #endif
202 
203 	atomic64_t		skc_cookie;
204 
205 	/* following fields are padding to force
206 	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
207 	 * assuming IPV6 is enabled. We use this padding differently
208 	 * for different kind of 'sockets'
209 	 */
210 	union {
211 		unsigned long	skc_flags;
212 		struct sock	*skc_listener; /* request_sock */
213 		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
214 	};
215 	/*
216 	 * fields between dontcopy_begin/dontcopy_end
217 	 * are not copied in sock_copy()
218 	 */
219 	/* private: */
220 	int			skc_dontcopy_begin[0];
221 	/* public: */
222 	union {
223 		struct hlist_node	skc_node;
224 		struct hlist_nulls_node skc_nulls_node;
225 	};
226 	unsigned short		skc_tx_queue_mapping;
227 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
228 	unsigned short		skc_rx_queue_mapping;
229 #endif
230 	union {
231 		int		skc_incoming_cpu;
232 		u32		skc_rcv_wnd;
233 		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
234 	};
235 
236 	refcount_t		skc_refcnt;
237 	/* private: */
238 	int                     skc_dontcopy_end[0];
239 	union {
240 		u32		skc_rxhash;
241 		u32		skc_window_clamp;
242 		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
243 	};
244 	/* public: */
245 };
246 
247 struct bpf_local_storage;
248 struct sk_filter;
249 
250 /**
251   *	struct sock - network layer representation of sockets
252   *	@__sk_common: shared layout with inet_timewait_sock
253   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
254   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
255   *	@sk_lock:	synchronizer
256   *	@sk_kern_sock: True if sock is using kernel lock classes
257   *	@sk_rcvbuf: size of receive buffer in bytes
258   *	@sk_wq: sock wait queue and async head
259   *	@sk_rx_dst: receive input route used by early demux
260   *	@sk_rx_dst_ifindex: ifindex for @sk_rx_dst
261   *	@sk_rx_dst_cookie: cookie for @sk_rx_dst
262   *	@sk_dst_cache: destination cache
263   *	@sk_dst_pending_confirm: need to confirm neighbour
264   *	@sk_policy: flow policy
265   *	@sk_receive_queue: incoming packets
266   *	@sk_wmem_alloc: transmit queue bytes committed
267   *	@sk_tsq_flags: TCP Small Queues flags
268   *	@sk_write_queue: Packet sending queue
269   *	@sk_omem_alloc: "o" is "option" or "other"
270   *	@sk_wmem_queued: persistent queue size
271   *	@sk_forward_alloc: space allocated forward
272   *	@sk_reserved_mem: space reserved and non-reclaimable for the socket
273   *	@sk_napi_id: id of the last napi context to receive data for sk
274   *	@sk_ll_usec: usecs to busypoll when there is no data
275   *	@sk_allocation: allocation mode
276   *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
277   *	@sk_pacing_status: Pacing status (requested, handled by sch_fq)
278   *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
279   *	@sk_sndbuf: size of send buffer in bytes
280   *	@__sk_flags_offset: empty field used to determine location of bitfield
281   *	@sk_padding: unused element for alignment
282   *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
283   *	@sk_no_check_rx: allow zero checksum in RX packets
284   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
285   *	@sk_gso_disabled: if set, NETIF_F_GSO_MASK is forbidden.
286   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
287   *	@sk_gso_max_size: Maximum GSO segment size to build
288   *	@sk_gso_max_segs: Maximum number of GSO segments
289   *	@sk_pacing_shift: scaling factor for TCP Small Queues
290   *	@sk_lingertime: %SO_LINGER l_linger setting
291   *	@sk_backlog: always used with the per-socket spinlock held
292   *	@sk_callback_lock: used with the callbacks in the end of this struct
293   *	@sk_error_queue: rarely used
294   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
295   *			  IPV6_ADDRFORM for instance)
296   *	@sk_err: last error
297   *	@sk_err_soft: errors that don't cause failure but are the cause of a
298   *		      persistent failure not just 'timed out'
299   *	@sk_drops: raw/udp drops counter
300   *	@sk_ack_backlog: current listen backlog
301   *	@sk_max_ack_backlog: listen backlog set in listen()
302   *	@sk_uid: user id of owner
303   *	@sk_prefer_busy_poll: prefer busypolling over softirq processing
304   *	@sk_busy_poll_budget: napi processing budget when busypolling
305   *	@sk_priority: %SO_PRIORITY setting
306   *	@sk_type: socket type (%SOCK_STREAM, etc)
307   *	@sk_protocol: which protocol this socket belongs in this network family
308   *	@sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred
309   *	@sk_peer_pid: &struct pid for this socket's peer
310   *	@sk_peer_cred: %SO_PEERCRED setting
311   *	@sk_rcvlowat: %SO_RCVLOWAT setting
312   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
313   *	@sk_sndtimeo: %SO_SNDTIMEO setting
314   *	@sk_txhash: computed flow hash for use on transmit
315   *	@sk_txrehash: enable TX hash rethink
316   *	@sk_filter: socket filtering instructions
317   *	@sk_timer: sock cleanup timer
318   *	@sk_stamp: time stamp of last packet received
319   *	@sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
320   *	@sk_tsflags: SO_TIMESTAMPING flags
321   *	@sk_use_task_frag: allow sk_page_frag() to use current->task_frag.
322   *			   Sockets that can be used under memory reclaim should
323   *			   set this to false.
324   *	@sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock
325   *	              for timestamping
326   *	@sk_tskey: counter to disambiguate concurrent tstamp requests
327   *	@sk_zckey: counter to order MSG_ZEROCOPY notifications
328   *	@sk_socket: Identd and reporting IO signals
329   *	@sk_user_data: RPC layer private data. Write-protected by @sk_callback_lock.
330   *	@sk_frag: cached page frag
331   *	@sk_peek_off: current peek_offset value
332   *	@sk_send_head: front of stuff to transmit
333   *	@tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
334   *	@sk_security: used by security modules
335   *	@sk_mark: generic packet mark
336   *	@sk_cgrp_data: cgroup data for this cgroup
337   *	@sk_memcg: this socket's memory cgroup association
338   *	@sk_write_pending: a write to stream socket waits to start
339   *	@sk_state_change: callback to indicate change in the state of the sock
340   *	@sk_data_ready: callback to indicate there is data to be processed
341   *	@sk_write_space: callback to indicate there is bf sending space available
342   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
343   *	@sk_backlog_rcv: callback to process the backlog
344   *	@sk_validate_xmit_skb: ptr to an optional validate function
345   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
346   *	@sk_reuseport_cb: reuseport group container
347   *	@sk_bpf_storage: ptr to cache and control for bpf_sk_storage
348   *	@sk_rcu: used during RCU grace period
349   *	@sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
350   *	@sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
351   *	@sk_txtime_report_errors: set report errors mode for SO_TXTIME
352   *	@sk_txtime_unused: unused txtime flags
353   *	@ns_tracker: tracker for netns reference
354   *	@sk_bind2_node: bind node in the bhash2 table
355   */
356 struct sock {
357 	/*
358 	 * Now struct inet_timewait_sock also uses sock_common, so please just
359 	 * don't add nothing before this first member (__sk_common) --acme
360 	 */
361 	struct sock_common	__sk_common;
362 #define sk_node			__sk_common.skc_node
363 #define sk_nulls_node		__sk_common.skc_nulls_node
364 #define sk_refcnt		__sk_common.skc_refcnt
365 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
366 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
367 #define sk_rx_queue_mapping	__sk_common.skc_rx_queue_mapping
368 #endif
369 
370 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
371 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
372 #define sk_hash			__sk_common.skc_hash
373 #define sk_portpair		__sk_common.skc_portpair
374 #define sk_num			__sk_common.skc_num
375 #define sk_dport		__sk_common.skc_dport
376 #define sk_addrpair		__sk_common.skc_addrpair
377 #define sk_daddr		__sk_common.skc_daddr
378 #define sk_rcv_saddr		__sk_common.skc_rcv_saddr
379 #define sk_family		__sk_common.skc_family
380 #define sk_state		__sk_common.skc_state
381 #define sk_reuse		__sk_common.skc_reuse
382 #define sk_reuseport		__sk_common.skc_reuseport
383 #define sk_ipv6only		__sk_common.skc_ipv6only
384 #define sk_net_refcnt		__sk_common.skc_net_refcnt
385 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
386 #define sk_bind_node		__sk_common.skc_bind_node
387 #define sk_prot			__sk_common.skc_prot
388 #define sk_net			__sk_common.skc_net
389 #define sk_v6_daddr		__sk_common.skc_v6_daddr
390 #define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
391 #define sk_cookie		__sk_common.skc_cookie
392 #define sk_incoming_cpu		__sk_common.skc_incoming_cpu
393 #define sk_flags		__sk_common.skc_flags
394 #define sk_rxhash		__sk_common.skc_rxhash
395 
396 	/* early demux fields */
397 	struct dst_entry __rcu	*sk_rx_dst;
398 	int			sk_rx_dst_ifindex;
399 	u32			sk_rx_dst_cookie;
400 
401 	socket_lock_t		sk_lock;
402 	atomic_t		sk_drops;
403 	int			sk_rcvlowat;
404 	struct sk_buff_head	sk_error_queue;
405 	struct sk_buff_head	sk_receive_queue;
406 	/*
407 	 * The backlog queue is special, it is always used with
408 	 * the per-socket spinlock held and requires low latency
409 	 * access. Therefore we special case it's implementation.
410 	 * Note : rmem_alloc is in this structure to fill a hole
411 	 * on 64bit arches, not because its logically part of
412 	 * backlog.
413 	 */
414 	struct {
415 		atomic_t	rmem_alloc;
416 		int		len;
417 		struct sk_buff	*head;
418 		struct sk_buff	*tail;
419 	} sk_backlog;
420 
421 #define sk_rmem_alloc sk_backlog.rmem_alloc
422 
423 	int			sk_forward_alloc;
424 	u32			sk_reserved_mem;
425 #ifdef CONFIG_NET_RX_BUSY_POLL
426 	unsigned int		sk_ll_usec;
427 	/* ===== mostly read cache line ===== */
428 	unsigned int		sk_napi_id;
429 #endif
430 	int			sk_rcvbuf;
431 
432 	struct sk_filter __rcu	*sk_filter;
433 	union {
434 		struct socket_wq __rcu	*sk_wq;
435 		/* private: */
436 		struct socket_wq	*sk_wq_raw;
437 		/* public: */
438 	};
439 #ifdef CONFIG_XFRM
440 	struct xfrm_policy __rcu *sk_policy[2];
441 #endif
442 
443 	struct dst_entry __rcu	*sk_dst_cache;
444 	atomic_t		sk_omem_alloc;
445 	int			sk_sndbuf;
446 
447 	/* ===== cache line for TX ===== */
448 	int			sk_wmem_queued;
449 	refcount_t		sk_wmem_alloc;
450 	unsigned long		sk_tsq_flags;
451 	union {
452 		struct sk_buff	*sk_send_head;
453 		struct rb_root	tcp_rtx_queue;
454 	};
455 	struct sk_buff_head	sk_write_queue;
456 	__s32			sk_peek_off;
457 	int			sk_write_pending;
458 	__u32			sk_dst_pending_confirm;
459 	u32			sk_pacing_status; /* see enum sk_pacing */
460 	long			sk_sndtimeo;
461 	struct timer_list	sk_timer;
462 	__u32			sk_priority;
463 	__u32			sk_mark;
464 	unsigned long		sk_pacing_rate; /* bytes per second */
465 	unsigned long		sk_max_pacing_rate;
466 	struct page_frag	sk_frag;
467 	netdev_features_t	sk_route_caps;
468 	int			sk_gso_type;
469 	unsigned int		sk_gso_max_size;
470 	gfp_t			sk_allocation;
471 	__u32			sk_txhash;
472 
473 	/*
474 	 * Because of non atomicity rules, all
475 	 * changes are protected by socket lock.
476 	 */
477 	u8			sk_gso_disabled : 1,
478 				sk_kern_sock : 1,
479 				sk_no_check_tx : 1,
480 				sk_no_check_rx : 1,
481 				sk_userlocks : 4;
482 	u8			sk_pacing_shift;
483 	u16			sk_type;
484 	u16			sk_protocol;
485 	u16			sk_gso_max_segs;
486 	unsigned long	        sk_lingertime;
487 	struct proto		*sk_prot_creator;
488 	rwlock_t		sk_callback_lock;
489 	int			sk_err,
490 				sk_err_soft;
491 	u32			sk_ack_backlog;
492 	u32			sk_max_ack_backlog;
493 	kuid_t			sk_uid;
494 	u8			sk_txrehash;
495 #ifdef CONFIG_NET_RX_BUSY_POLL
496 	u8			sk_prefer_busy_poll;
497 	u16			sk_busy_poll_budget;
498 #endif
499 	spinlock_t		sk_peer_lock;
500 	int			sk_bind_phc;
501 	struct pid		*sk_peer_pid;
502 	const struct cred	*sk_peer_cred;
503 
504 	long			sk_rcvtimeo;
505 	ktime_t			sk_stamp;
506 #if BITS_PER_LONG==32
507 	seqlock_t		sk_stamp_seq;
508 #endif
509 	atomic_t		sk_tskey;
510 	atomic_t		sk_zckey;
511 	u32			sk_tsflags;
512 	u8			sk_shutdown;
513 
514 	u8			sk_clockid;
515 	u8			sk_txtime_deadline_mode : 1,
516 				sk_txtime_report_errors : 1,
517 				sk_txtime_unused : 6;
518 	bool			sk_use_task_frag;
519 
520 	struct socket		*sk_socket;
521 	void			*sk_user_data;
522 #ifdef CONFIG_SECURITY
523 	void			*sk_security;
524 #endif
525 	struct sock_cgroup_data	sk_cgrp_data;
526 	struct mem_cgroup	*sk_memcg;
527 	void			(*sk_state_change)(struct sock *sk);
528 	void			(*sk_data_ready)(struct sock *sk);
529 	void			(*sk_write_space)(struct sock *sk);
530 	void			(*sk_error_report)(struct sock *sk);
531 	int			(*sk_backlog_rcv)(struct sock *sk,
532 						  struct sk_buff *skb);
533 #ifdef CONFIG_SOCK_VALIDATE_XMIT
534 	struct sk_buff*		(*sk_validate_xmit_skb)(struct sock *sk,
535 							struct net_device *dev,
536 							struct sk_buff *skb);
537 #endif
538 	void                    (*sk_destruct)(struct sock *sk);
539 	struct sock_reuseport __rcu	*sk_reuseport_cb;
540 #ifdef CONFIG_BPF_SYSCALL
541 	struct bpf_local_storage __rcu	*sk_bpf_storage;
542 #endif
543 	struct rcu_head		sk_rcu;
544 	netns_tracker		ns_tracker;
545 	struct hlist_node	sk_bind2_node;
546 };
547 
548 enum sk_pacing {
549 	SK_PACING_NONE		= 0,
550 	SK_PACING_NEEDED	= 1,
551 	SK_PACING_FQ		= 2,
552 };
553 
554 /* flag bits in sk_user_data
555  *
556  * - SK_USER_DATA_NOCOPY:      Pointer stored in sk_user_data might
557  *   not be suitable for copying when cloning the socket. For instance,
558  *   it can point to a reference counted object. sk_user_data bottom
559  *   bit is set if pointer must not be copied.
560  *
561  * - SK_USER_DATA_BPF:         Mark whether sk_user_data field is
562  *   managed/owned by a BPF reuseport array. This bit should be set
563  *   when sk_user_data's sk is added to the bpf's reuseport_array.
564  *
565  * - SK_USER_DATA_PSOCK:       Mark whether pointer stored in
566  *   sk_user_data points to psock type. This bit should be set
567  *   when sk_user_data is assigned to a psock object.
568  */
569 #define SK_USER_DATA_NOCOPY	1UL
570 #define SK_USER_DATA_BPF	2UL
571 #define SK_USER_DATA_PSOCK	4UL
572 #define SK_USER_DATA_PTRMASK	~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF |\
573 				  SK_USER_DATA_PSOCK)
574 
575 /**
576  * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
577  * @sk: socket
578  */
579 static inline bool sk_user_data_is_nocopy(const struct sock *sk)
580 {
581 	return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
582 }
583 
584 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
585 
586 /**
587  * __locked_read_sk_user_data_with_flags - return the pointer
588  * only if argument flags all has been set in sk_user_data. Otherwise
589  * return NULL
590  *
591  * @sk: socket
592  * @flags: flag bits
593  *
594  * The caller must be holding sk->sk_callback_lock.
595  */
596 static inline void *
597 __locked_read_sk_user_data_with_flags(const struct sock *sk,
598 				      uintptr_t flags)
599 {
600 	uintptr_t sk_user_data =
601 		(uintptr_t)rcu_dereference_check(__sk_user_data(sk),
602 						 lockdep_is_held(&sk->sk_callback_lock));
603 
604 	WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
605 
606 	if ((sk_user_data & flags) == flags)
607 		return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
608 	return NULL;
609 }
610 
611 /**
612  * __rcu_dereference_sk_user_data_with_flags - return the pointer
613  * only if argument flags all has been set in sk_user_data. Otherwise
614  * return NULL
615  *
616  * @sk: socket
617  * @flags: flag bits
618  */
619 static inline void *
620 __rcu_dereference_sk_user_data_with_flags(const struct sock *sk,
621 					  uintptr_t flags)
622 {
623 	uintptr_t sk_user_data = (uintptr_t)rcu_dereference(__sk_user_data(sk));
624 
625 	WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
626 
627 	if ((sk_user_data & flags) == flags)
628 		return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
629 	return NULL;
630 }
631 
632 #define rcu_dereference_sk_user_data(sk)				\
633 	__rcu_dereference_sk_user_data_with_flags(sk, 0)
634 #define __rcu_assign_sk_user_data_with_flags(sk, ptr, flags)		\
635 ({									\
636 	uintptr_t __tmp1 = (uintptr_t)(ptr),				\
637 		  __tmp2 = (uintptr_t)(flags);				\
638 	WARN_ON_ONCE(__tmp1 & ~SK_USER_DATA_PTRMASK);			\
639 	WARN_ON_ONCE(__tmp2 & SK_USER_DATA_PTRMASK);			\
640 	rcu_assign_pointer(__sk_user_data((sk)),			\
641 			   __tmp1 | __tmp2);				\
642 })
643 #define rcu_assign_sk_user_data(sk, ptr)				\
644 	__rcu_assign_sk_user_data_with_flags(sk, ptr, 0)
645 
646 static inline
647 struct net *sock_net(const struct sock *sk)
648 {
649 	return read_pnet(&sk->sk_net);
650 }
651 
652 static inline
653 void sock_net_set(struct sock *sk, struct net *net)
654 {
655 	write_pnet(&sk->sk_net, net);
656 }
657 
658 /*
659  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
660  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
661  * on a socket means that the socket will reuse everybody else's port
662  * without looking at the other's sk_reuse value.
663  */
664 
665 #define SK_NO_REUSE	0
666 #define SK_CAN_REUSE	1
667 #define SK_FORCE_REUSE	2
668 
669 int sk_set_peek_off(struct sock *sk, int val);
670 
671 static inline int sk_peek_offset(const struct sock *sk, int flags)
672 {
673 	if (unlikely(flags & MSG_PEEK)) {
674 		return READ_ONCE(sk->sk_peek_off);
675 	}
676 
677 	return 0;
678 }
679 
680 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
681 {
682 	s32 off = READ_ONCE(sk->sk_peek_off);
683 
684 	if (unlikely(off >= 0)) {
685 		off = max_t(s32, off - val, 0);
686 		WRITE_ONCE(sk->sk_peek_off, off);
687 	}
688 }
689 
690 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
691 {
692 	sk_peek_offset_bwd(sk, -val);
693 }
694 
695 /*
696  * Hashed lists helper routines
697  */
698 static inline struct sock *sk_entry(const struct hlist_node *node)
699 {
700 	return hlist_entry(node, struct sock, sk_node);
701 }
702 
703 static inline struct sock *__sk_head(const struct hlist_head *head)
704 {
705 	return hlist_entry(head->first, struct sock, sk_node);
706 }
707 
708 static inline struct sock *sk_head(const struct hlist_head *head)
709 {
710 	return hlist_empty(head) ? NULL : __sk_head(head);
711 }
712 
713 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
714 {
715 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
716 }
717 
718 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
719 {
720 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
721 }
722 
723 static inline struct sock *sk_next(const struct sock *sk)
724 {
725 	return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
726 }
727 
728 static inline struct sock *sk_nulls_next(const struct sock *sk)
729 {
730 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
731 		hlist_nulls_entry(sk->sk_nulls_node.next,
732 				  struct sock, sk_nulls_node) :
733 		NULL;
734 }
735 
736 static inline bool sk_unhashed(const struct sock *sk)
737 {
738 	return hlist_unhashed(&sk->sk_node);
739 }
740 
741 static inline bool sk_hashed(const struct sock *sk)
742 {
743 	return !sk_unhashed(sk);
744 }
745 
746 static inline void sk_node_init(struct hlist_node *node)
747 {
748 	node->pprev = NULL;
749 }
750 
751 static inline void __sk_del_node(struct sock *sk)
752 {
753 	__hlist_del(&sk->sk_node);
754 }
755 
756 /* NB: equivalent to hlist_del_init_rcu */
757 static inline bool __sk_del_node_init(struct sock *sk)
758 {
759 	if (sk_hashed(sk)) {
760 		__sk_del_node(sk);
761 		sk_node_init(&sk->sk_node);
762 		return true;
763 	}
764 	return false;
765 }
766 
767 /* Grab socket reference count. This operation is valid only
768    when sk is ALREADY grabbed f.e. it is found in hash table
769    or a list and the lookup is made under lock preventing hash table
770    modifications.
771  */
772 
773 static __always_inline void sock_hold(struct sock *sk)
774 {
775 	refcount_inc(&sk->sk_refcnt);
776 }
777 
778 /* Ungrab socket in the context, which assumes that socket refcnt
779    cannot hit zero, f.e. it is true in context of any socketcall.
780  */
781 static __always_inline void __sock_put(struct sock *sk)
782 {
783 	refcount_dec(&sk->sk_refcnt);
784 }
785 
786 static inline bool sk_del_node_init(struct sock *sk)
787 {
788 	bool rc = __sk_del_node_init(sk);
789 
790 	if (rc) {
791 		/* paranoid for a while -acme */
792 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
793 		__sock_put(sk);
794 	}
795 	return rc;
796 }
797 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
798 
799 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
800 {
801 	if (sk_hashed(sk)) {
802 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
803 		return true;
804 	}
805 	return false;
806 }
807 
808 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
809 {
810 	bool rc = __sk_nulls_del_node_init_rcu(sk);
811 
812 	if (rc) {
813 		/* paranoid for a while -acme */
814 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
815 		__sock_put(sk);
816 	}
817 	return rc;
818 }
819 
820 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
821 {
822 	hlist_add_head(&sk->sk_node, list);
823 }
824 
825 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
826 {
827 	sock_hold(sk);
828 	__sk_add_node(sk, list);
829 }
830 
831 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
832 {
833 	sock_hold(sk);
834 	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
835 	    sk->sk_family == AF_INET6)
836 		hlist_add_tail_rcu(&sk->sk_node, list);
837 	else
838 		hlist_add_head_rcu(&sk->sk_node, list);
839 }
840 
841 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
842 {
843 	sock_hold(sk);
844 	hlist_add_tail_rcu(&sk->sk_node, list);
845 }
846 
847 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
848 {
849 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
850 }
851 
852 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
853 {
854 	hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
855 }
856 
857 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
858 {
859 	sock_hold(sk);
860 	__sk_nulls_add_node_rcu(sk, list);
861 }
862 
863 static inline void __sk_del_bind_node(struct sock *sk)
864 {
865 	__hlist_del(&sk->sk_bind_node);
866 }
867 
868 static inline void sk_add_bind_node(struct sock *sk,
869 					struct hlist_head *list)
870 {
871 	hlist_add_head(&sk->sk_bind_node, list);
872 }
873 
874 static inline void __sk_del_bind2_node(struct sock *sk)
875 {
876 	__hlist_del(&sk->sk_bind2_node);
877 }
878 
879 static inline void sk_add_bind2_node(struct sock *sk, struct hlist_head *list)
880 {
881 	hlist_add_head(&sk->sk_bind2_node, list);
882 }
883 
884 #define sk_for_each(__sk, list) \
885 	hlist_for_each_entry(__sk, list, sk_node)
886 #define sk_for_each_rcu(__sk, list) \
887 	hlist_for_each_entry_rcu(__sk, list, sk_node)
888 #define sk_nulls_for_each(__sk, node, list) \
889 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
890 #define sk_nulls_for_each_rcu(__sk, node, list) \
891 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
892 #define sk_for_each_from(__sk) \
893 	hlist_for_each_entry_from(__sk, sk_node)
894 #define sk_nulls_for_each_from(__sk, node) \
895 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
896 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
897 #define sk_for_each_safe(__sk, tmp, list) \
898 	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
899 #define sk_for_each_bound(__sk, list) \
900 	hlist_for_each_entry(__sk, list, sk_bind_node)
901 #define sk_for_each_bound_bhash2(__sk, list) \
902 	hlist_for_each_entry(__sk, list, sk_bind2_node)
903 
904 /**
905  * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
906  * @tpos:	the type * to use as a loop cursor.
907  * @pos:	the &struct hlist_node to use as a loop cursor.
908  * @head:	the head for your list.
909  * @offset:	offset of hlist_node within the struct.
910  *
911  */
912 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \
913 	for (pos = rcu_dereference(hlist_first_rcu(head));		       \
914 	     pos != NULL &&						       \
915 		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
916 	     pos = rcu_dereference(hlist_next_rcu(pos)))
917 
918 static inline struct user_namespace *sk_user_ns(const struct sock *sk)
919 {
920 	/* Careful only use this in a context where these parameters
921 	 * can not change and must all be valid, such as recvmsg from
922 	 * userspace.
923 	 */
924 	return sk->sk_socket->file->f_cred->user_ns;
925 }
926 
927 /* Sock flags */
928 enum sock_flags {
929 	SOCK_DEAD,
930 	SOCK_DONE,
931 	SOCK_URGINLINE,
932 	SOCK_KEEPOPEN,
933 	SOCK_LINGER,
934 	SOCK_DESTROY,
935 	SOCK_BROADCAST,
936 	SOCK_TIMESTAMP,
937 	SOCK_ZAPPED,
938 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
939 	SOCK_DBG, /* %SO_DEBUG setting */
940 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
941 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
942 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
943 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
944 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
945 	SOCK_FASYNC, /* fasync() active */
946 	SOCK_RXQ_OVFL,
947 	SOCK_ZEROCOPY, /* buffers from userspace */
948 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
949 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
950 		     * Will use last 4 bytes of packet sent from
951 		     * user-space instead.
952 		     */
953 	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
954 	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
955 	SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
956 	SOCK_TXTIME,
957 	SOCK_XDP, /* XDP is attached */
958 	SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
959 	SOCK_RCVMARK, /* Receive SO_MARK  ancillary data with packet */
960 };
961 
962 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
963 
964 static inline void sock_copy_flags(struct sock *nsk, const struct sock *osk)
965 {
966 	nsk->sk_flags = osk->sk_flags;
967 }
968 
969 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
970 {
971 	__set_bit(flag, &sk->sk_flags);
972 }
973 
974 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
975 {
976 	__clear_bit(flag, &sk->sk_flags);
977 }
978 
979 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
980 				     int valbool)
981 {
982 	if (valbool)
983 		sock_set_flag(sk, bit);
984 	else
985 		sock_reset_flag(sk, bit);
986 }
987 
988 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
989 {
990 	return test_bit(flag, &sk->sk_flags);
991 }
992 
993 #ifdef CONFIG_NET
994 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
995 static inline int sk_memalloc_socks(void)
996 {
997 	return static_branch_unlikely(&memalloc_socks_key);
998 }
999 
1000 void __receive_sock(struct file *file);
1001 #else
1002 
1003 static inline int sk_memalloc_socks(void)
1004 {
1005 	return 0;
1006 }
1007 
1008 static inline void __receive_sock(struct file *file)
1009 { }
1010 #endif
1011 
1012 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
1013 {
1014 	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
1015 }
1016 
1017 static inline void sk_acceptq_removed(struct sock *sk)
1018 {
1019 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
1020 }
1021 
1022 static inline void sk_acceptq_added(struct sock *sk)
1023 {
1024 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
1025 }
1026 
1027 /* Note: If you think the test should be:
1028  *	return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog);
1029  * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.")
1030  */
1031 static inline bool sk_acceptq_is_full(const struct sock *sk)
1032 {
1033 	return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
1034 }
1035 
1036 /*
1037  * Compute minimal free write space needed to queue new packets.
1038  */
1039 static inline int sk_stream_min_wspace(const struct sock *sk)
1040 {
1041 	return READ_ONCE(sk->sk_wmem_queued) >> 1;
1042 }
1043 
1044 static inline int sk_stream_wspace(const struct sock *sk)
1045 {
1046 	return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
1047 }
1048 
1049 static inline void sk_wmem_queued_add(struct sock *sk, int val)
1050 {
1051 	WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
1052 }
1053 
1054 void sk_stream_write_space(struct sock *sk);
1055 
1056 /* OOB backlog add */
1057 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
1058 {
1059 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
1060 	skb_dst_force(skb);
1061 
1062 	if (!sk->sk_backlog.tail)
1063 		WRITE_ONCE(sk->sk_backlog.head, skb);
1064 	else
1065 		sk->sk_backlog.tail->next = skb;
1066 
1067 	WRITE_ONCE(sk->sk_backlog.tail, skb);
1068 	skb->next = NULL;
1069 }
1070 
1071 /*
1072  * Take into account size of receive queue and backlog queue
1073  * Do not take into account this skb truesize,
1074  * to allow even a single big packet to come.
1075  */
1076 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
1077 {
1078 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
1079 
1080 	return qsize > limit;
1081 }
1082 
1083 /* The per-socket spinlock must be held here. */
1084 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
1085 					      unsigned int limit)
1086 {
1087 	if (sk_rcvqueues_full(sk, limit))
1088 		return -ENOBUFS;
1089 
1090 	/*
1091 	 * If the skb was allocated from pfmemalloc reserves, only
1092 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
1093 	 * helping free memory
1094 	 */
1095 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
1096 		return -ENOMEM;
1097 
1098 	__sk_add_backlog(sk, skb);
1099 	sk->sk_backlog.len += skb->truesize;
1100 	return 0;
1101 }
1102 
1103 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1104 
1105 INDIRECT_CALLABLE_DECLARE(int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb));
1106 INDIRECT_CALLABLE_DECLARE(int tcp_v6_do_rcv(struct sock *sk, struct sk_buff *skb));
1107 
1108 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1109 {
1110 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1111 		return __sk_backlog_rcv(sk, skb);
1112 
1113 	return INDIRECT_CALL_INET(sk->sk_backlog_rcv,
1114 				  tcp_v6_do_rcv,
1115 				  tcp_v4_do_rcv,
1116 				  sk, skb);
1117 }
1118 
1119 static inline void sk_incoming_cpu_update(struct sock *sk)
1120 {
1121 	int cpu = raw_smp_processor_id();
1122 
1123 	if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1124 		WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1125 }
1126 
1127 static inline void sock_rps_record_flow_hash(__u32 hash)
1128 {
1129 #ifdef CONFIG_RPS
1130 	struct rps_sock_flow_table *sock_flow_table;
1131 
1132 	rcu_read_lock();
1133 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
1134 	rps_record_sock_flow(sock_flow_table, hash);
1135 	rcu_read_unlock();
1136 #endif
1137 }
1138 
1139 static inline void sock_rps_record_flow(const struct sock *sk)
1140 {
1141 #ifdef CONFIG_RPS
1142 	if (static_branch_unlikely(&rfs_needed)) {
1143 		/* Reading sk->sk_rxhash might incur an expensive cache line
1144 		 * miss.
1145 		 *
1146 		 * TCP_ESTABLISHED does cover almost all states where RFS
1147 		 * might be useful, and is cheaper [1] than testing :
1148 		 *	IPv4: inet_sk(sk)->inet_daddr
1149 		 * 	IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
1150 		 * OR	an additional socket flag
1151 		 * [1] : sk_state and sk_prot are in the same cache line.
1152 		 */
1153 		if (sk->sk_state == TCP_ESTABLISHED)
1154 			sock_rps_record_flow_hash(sk->sk_rxhash);
1155 	}
1156 #endif
1157 }
1158 
1159 static inline void sock_rps_save_rxhash(struct sock *sk,
1160 					const struct sk_buff *skb)
1161 {
1162 #ifdef CONFIG_RPS
1163 	if (unlikely(sk->sk_rxhash != skb->hash))
1164 		sk->sk_rxhash = skb->hash;
1165 #endif
1166 }
1167 
1168 static inline void sock_rps_reset_rxhash(struct sock *sk)
1169 {
1170 #ifdef CONFIG_RPS
1171 	sk->sk_rxhash = 0;
1172 #endif
1173 }
1174 
1175 #define sk_wait_event(__sk, __timeo, __condition, __wait)		\
1176 	({	int __rc;						\
1177 		release_sock(__sk);					\
1178 		__rc = __condition;					\
1179 		if (!__rc) {						\
1180 			*(__timeo) = wait_woken(__wait,			\
1181 						TASK_INTERRUPTIBLE,	\
1182 						*(__timeo));		\
1183 		}							\
1184 		sched_annotate_sleep();					\
1185 		lock_sock(__sk);					\
1186 		__rc = __condition;					\
1187 		__rc;							\
1188 	})
1189 
1190 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1191 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1192 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1193 int sk_stream_error(struct sock *sk, int flags, int err);
1194 void sk_stream_kill_queues(struct sock *sk);
1195 void sk_set_memalloc(struct sock *sk);
1196 void sk_clear_memalloc(struct sock *sk);
1197 
1198 void __sk_flush_backlog(struct sock *sk);
1199 
1200 static inline bool sk_flush_backlog(struct sock *sk)
1201 {
1202 	if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1203 		__sk_flush_backlog(sk);
1204 		return true;
1205 	}
1206 	return false;
1207 }
1208 
1209 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1210 
1211 struct request_sock_ops;
1212 struct timewait_sock_ops;
1213 struct inet_hashinfo;
1214 struct raw_hashinfo;
1215 struct smc_hashinfo;
1216 struct module;
1217 struct sk_psock;
1218 
1219 /*
1220  * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1221  * un-modified. Special care is taken when initializing object to zero.
1222  */
1223 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1224 {
1225 	if (offsetof(struct sock, sk_node.next) != 0)
1226 		memset(sk, 0, offsetof(struct sock, sk_node.next));
1227 	memset(&sk->sk_node.pprev, 0,
1228 	       size - offsetof(struct sock, sk_node.pprev));
1229 }
1230 
1231 /* Networking protocol blocks we attach to sockets.
1232  * socket layer -> transport layer interface
1233  */
1234 struct proto {
1235 	void			(*close)(struct sock *sk,
1236 					long timeout);
1237 	int			(*pre_connect)(struct sock *sk,
1238 					struct sockaddr *uaddr,
1239 					int addr_len);
1240 	int			(*connect)(struct sock *sk,
1241 					struct sockaddr *uaddr,
1242 					int addr_len);
1243 	int			(*disconnect)(struct sock *sk, int flags);
1244 
1245 	struct sock *		(*accept)(struct sock *sk, int flags, int *err,
1246 					  bool kern);
1247 
1248 	int			(*ioctl)(struct sock *sk, int cmd,
1249 					 unsigned long arg);
1250 	int			(*init)(struct sock *sk);
1251 	void			(*destroy)(struct sock *sk);
1252 	void			(*shutdown)(struct sock *sk, int how);
1253 	int			(*setsockopt)(struct sock *sk, int level,
1254 					int optname, sockptr_t optval,
1255 					unsigned int optlen);
1256 	int			(*getsockopt)(struct sock *sk, int level,
1257 					int optname, char __user *optval,
1258 					int __user *option);
1259 	void			(*keepalive)(struct sock *sk, int valbool);
1260 #ifdef CONFIG_COMPAT
1261 	int			(*compat_ioctl)(struct sock *sk,
1262 					unsigned int cmd, unsigned long arg);
1263 #endif
1264 	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
1265 					   size_t len);
1266 	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
1267 					   size_t len, int flags, int *addr_len);
1268 	int			(*sendpage)(struct sock *sk, struct page *page,
1269 					int offset, size_t size, int flags);
1270 	int			(*bind)(struct sock *sk,
1271 					struct sockaddr *addr, int addr_len);
1272 	int			(*bind_add)(struct sock *sk,
1273 					struct sockaddr *addr, int addr_len);
1274 
1275 	int			(*backlog_rcv) (struct sock *sk,
1276 						struct sk_buff *skb);
1277 	bool			(*bpf_bypass_getsockopt)(int level,
1278 							 int optname);
1279 
1280 	void		(*release_cb)(struct sock *sk);
1281 
1282 	/* Keeping track of sk's, looking them up, and port selection methods. */
1283 	int			(*hash)(struct sock *sk);
1284 	void			(*unhash)(struct sock *sk);
1285 	void			(*rehash)(struct sock *sk);
1286 	int			(*get_port)(struct sock *sk, unsigned short snum);
1287 	void			(*put_port)(struct sock *sk);
1288 #ifdef CONFIG_BPF_SYSCALL
1289 	int			(*psock_update_sk_prot)(struct sock *sk,
1290 							struct sk_psock *psock,
1291 							bool restore);
1292 #endif
1293 
1294 	/* Keeping track of sockets in use */
1295 #ifdef CONFIG_PROC_FS
1296 	unsigned int		inuse_idx;
1297 #endif
1298 
1299 #if IS_ENABLED(CONFIG_MPTCP)
1300 	int			(*forward_alloc_get)(const struct sock *sk);
1301 #endif
1302 
1303 	bool			(*stream_memory_free)(const struct sock *sk, int wake);
1304 	bool			(*sock_is_readable)(struct sock *sk);
1305 	/* Memory pressure */
1306 	void			(*enter_memory_pressure)(struct sock *sk);
1307 	void			(*leave_memory_pressure)(struct sock *sk);
1308 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1309 	int  __percpu		*per_cpu_fw_alloc;
1310 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1311 
1312 	/*
1313 	 * Pressure flag: try to collapse.
1314 	 * Technical note: it is used by multiple contexts non atomically.
1315 	 * All the __sk_mem_schedule() is of this nature: accounting
1316 	 * is strict, actions are advisory and have some latency.
1317 	 */
1318 	unsigned long		*memory_pressure;
1319 	long			*sysctl_mem;
1320 
1321 	int			*sysctl_wmem;
1322 	int			*sysctl_rmem;
1323 	u32			sysctl_wmem_offset;
1324 	u32			sysctl_rmem_offset;
1325 
1326 	int			max_header;
1327 	bool			no_autobind;
1328 
1329 	struct kmem_cache	*slab;
1330 	unsigned int		obj_size;
1331 	slab_flags_t		slab_flags;
1332 	unsigned int		useroffset;	/* Usercopy region offset */
1333 	unsigned int		usersize;	/* Usercopy region size */
1334 
1335 	unsigned int __percpu	*orphan_count;
1336 
1337 	struct request_sock_ops	*rsk_prot;
1338 	struct timewait_sock_ops *twsk_prot;
1339 
1340 	union {
1341 		struct inet_hashinfo	*hashinfo;
1342 		struct udp_table	*udp_table;
1343 		struct raw_hashinfo	*raw_hash;
1344 		struct smc_hashinfo	*smc_hash;
1345 	} h;
1346 
1347 	struct module		*owner;
1348 
1349 	char			name[32];
1350 
1351 	struct list_head	node;
1352 	int			(*diag_destroy)(struct sock *sk, int err);
1353 } __randomize_layout;
1354 
1355 int proto_register(struct proto *prot, int alloc_slab);
1356 void proto_unregister(struct proto *prot);
1357 int sock_load_diag_module(int family, int protocol);
1358 
1359 INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake));
1360 
1361 static inline int sk_forward_alloc_get(const struct sock *sk)
1362 {
1363 #if IS_ENABLED(CONFIG_MPTCP)
1364 	if (sk->sk_prot->forward_alloc_get)
1365 		return sk->sk_prot->forward_alloc_get(sk);
1366 #endif
1367 	return sk->sk_forward_alloc;
1368 }
1369 
1370 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1371 {
1372 	if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1373 		return false;
1374 
1375 	return sk->sk_prot->stream_memory_free ?
1376 		INDIRECT_CALL_INET_1(sk->sk_prot->stream_memory_free,
1377 				     tcp_stream_memory_free, sk, wake) : true;
1378 }
1379 
1380 static inline bool sk_stream_memory_free(const struct sock *sk)
1381 {
1382 	return __sk_stream_memory_free(sk, 0);
1383 }
1384 
1385 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1386 {
1387 	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1388 	       __sk_stream_memory_free(sk, wake);
1389 }
1390 
1391 static inline bool sk_stream_is_writeable(const struct sock *sk)
1392 {
1393 	return __sk_stream_is_writeable(sk, 0);
1394 }
1395 
1396 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1397 					    struct cgroup *ancestor)
1398 {
1399 #ifdef CONFIG_SOCK_CGROUP_DATA
1400 	return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1401 				    ancestor);
1402 #else
1403 	return -ENOTSUPP;
1404 #endif
1405 }
1406 
1407 static inline bool sk_has_memory_pressure(const struct sock *sk)
1408 {
1409 	return sk->sk_prot->memory_pressure != NULL;
1410 }
1411 
1412 static inline bool sk_under_memory_pressure(const struct sock *sk)
1413 {
1414 	if (!sk->sk_prot->memory_pressure)
1415 		return false;
1416 
1417 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1418 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
1419 		return true;
1420 
1421 	return !!*sk->sk_prot->memory_pressure;
1422 }
1423 
1424 static inline long
1425 proto_memory_allocated(const struct proto *prot)
1426 {
1427 	return max(0L, atomic_long_read(prot->memory_allocated));
1428 }
1429 
1430 static inline long
1431 sk_memory_allocated(const struct sock *sk)
1432 {
1433 	return proto_memory_allocated(sk->sk_prot);
1434 }
1435 
1436 /* 1 MB per cpu, in page units */
1437 #define SK_MEMORY_PCPU_RESERVE (1 << (20 - PAGE_SHIFT))
1438 
1439 static inline void
1440 sk_memory_allocated_add(struct sock *sk, int amt)
1441 {
1442 	int local_reserve;
1443 
1444 	preempt_disable();
1445 	local_reserve = __this_cpu_add_return(*sk->sk_prot->per_cpu_fw_alloc, amt);
1446 	if (local_reserve >= SK_MEMORY_PCPU_RESERVE) {
1447 		__this_cpu_sub(*sk->sk_prot->per_cpu_fw_alloc, local_reserve);
1448 		atomic_long_add(local_reserve, sk->sk_prot->memory_allocated);
1449 	}
1450 	preempt_enable();
1451 }
1452 
1453 static inline void
1454 sk_memory_allocated_sub(struct sock *sk, int amt)
1455 {
1456 	int local_reserve;
1457 
1458 	preempt_disable();
1459 	local_reserve = __this_cpu_sub_return(*sk->sk_prot->per_cpu_fw_alloc, amt);
1460 	if (local_reserve <= -SK_MEMORY_PCPU_RESERVE) {
1461 		__this_cpu_sub(*sk->sk_prot->per_cpu_fw_alloc, local_reserve);
1462 		atomic_long_add(local_reserve, sk->sk_prot->memory_allocated);
1463 	}
1464 	preempt_enable();
1465 }
1466 
1467 #define SK_ALLOC_PERCPU_COUNTER_BATCH 16
1468 
1469 static inline void sk_sockets_allocated_dec(struct sock *sk)
1470 {
1471 	percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1,
1472 				 SK_ALLOC_PERCPU_COUNTER_BATCH);
1473 }
1474 
1475 static inline void sk_sockets_allocated_inc(struct sock *sk)
1476 {
1477 	percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1,
1478 				 SK_ALLOC_PERCPU_COUNTER_BATCH);
1479 }
1480 
1481 static inline u64
1482 sk_sockets_allocated_read_positive(struct sock *sk)
1483 {
1484 	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1485 }
1486 
1487 static inline int
1488 proto_sockets_allocated_sum_positive(struct proto *prot)
1489 {
1490 	return percpu_counter_sum_positive(prot->sockets_allocated);
1491 }
1492 
1493 static inline bool
1494 proto_memory_pressure(struct proto *prot)
1495 {
1496 	if (!prot->memory_pressure)
1497 		return false;
1498 	return !!*prot->memory_pressure;
1499 }
1500 
1501 
1502 #ifdef CONFIG_PROC_FS
1503 #define PROTO_INUSE_NR	64	/* should be enough for the first time */
1504 struct prot_inuse {
1505 	int all;
1506 	int val[PROTO_INUSE_NR];
1507 };
1508 
1509 static inline void sock_prot_inuse_add(const struct net *net,
1510 				       const struct proto *prot, int val)
1511 {
1512 	this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
1513 }
1514 
1515 static inline void sock_inuse_add(const struct net *net, int val)
1516 {
1517 	this_cpu_add(net->core.prot_inuse->all, val);
1518 }
1519 
1520 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1521 int sock_inuse_get(struct net *net);
1522 #else
1523 static inline void sock_prot_inuse_add(const struct net *net,
1524 				       const struct proto *prot, int val)
1525 {
1526 }
1527 
1528 static inline void sock_inuse_add(const struct net *net, int val)
1529 {
1530 }
1531 #endif
1532 
1533 
1534 /* With per-bucket locks this operation is not-atomic, so that
1535  * this version is not worse.
1536  */
1537 static inline int __sk_prot_rehash(struct sock *sk)
1538 {
1539 	sk->sk_prot->unhash(sk);
1540 	return sk->sk_prot->hash(sk);
1541 }
1542 
1543 /* About 10 seconds */
1544 #define SOCK_DESTROY_TIME (10*HZ)
1545 
1546 /* Sockets 0-1023 can't be bound to unless you are superuser */
1547 #define PROT_SOCK	1024
1548 
1549 #define SHUTDOWN_MASK	3
1550 #define RCV_SHUTDOWN	1
1551 #define SEND_SHUTDOWN	2
1552 
1553 #define SOCK_BINDADDR_LOCK	4
1554 #define SOCK_BINDPORT_LOCK	8
1555 
1556 struct socket_alloc {
1557 	struct socket socket;
1558 	struct inode vfs_inode;
1559 };
1560 
1561 static inline struct socket *SOCKET_I(struct inode *inode)
1562 {
1563 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1564 }
1565 
1566 static inline struct inode *SOCK_INODE(struct socket *socket)
1567 {
1568 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1569 }
1570 
1571 /*
1572  * Functions for memory accounting
1573  */
1574 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1575 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1576 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1577 void __sk_mem_reclaim(struct sock *sk, int amount);
1578 
1579 #define SK_MEM_SEND	0
1580 #define SK_MEM_RECV	1
1581 
1582 /* sysctl_mem values are in pages */
1583 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1584 {
1585 	return READ_ONCE(sk->sk_prot->sysctl_mem[index]);
1586 }
1587 
1588 static inline int sk_mem_pages(int amt)
1589 {
1590 	return (amt + PAGE_SIZE - 1) >> PAGE_SHIFT;
1591 }
1592 
1593 static inline bool sk_has_account(struct sock *sk)
1594 {
1595 	/* return true if protocol supports memory accounting */
1596 	return !!sk->sk_prot->memory_allocated;
1597 }
1598 
1599 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1600 {
1601 	int delta;
1602 
1603 	if (!sk_has_account(sk))
1604 		return true;
1605 	delta = size - sk->sk_forward_alloc;
1606 	return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_SEND);
1607 }
1608 
1609 static inline bool
1610 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1611 {
1612 	int delta;
1613 
1614 	if (!sk_has_account(sk))
1615 		return true;
1616 	delta = size - sk->sk_forward_alloc;
1617 	return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_RECV) ||
1618 		skb_pfmemalloc(skb);
1619 }
1620 
1621 static inline int sk_unused_reserved_mem(const struct sock *sk)
1622 {
1623 	int unused_mem;
1624 
1625 	if (likely(!sk->sk_reserved_mem))
1626 		return 0;
1627 
1628 	unused_mem = sk->sk_reserved_mem - sk->sk_wmem_queued -
1629 			atomic_read(&sk->sk_rmem_alloc);
1630 
1631 	return unused_mem > 0 ? unused_mem : 0;
1632 }
1633 
1634 static inline void sk_mem_reclaim(struct sock *sk)
1635 {
1636 	int reclaimable;
1637 
1638 	if (!sk_has_account(sk))
1639 		return;
1640 
1641 	reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1642 
1643 	if (reclaimable >= (int)PAGE_SIZE)
1644 		__sk_mem_reclaim(sk, reclaimable);
1645 }
1646 
1647 static inline void sk_mem_reclaim_final(struct sock *sk)
1648 {
1649 	sk->sk_reserved_mem = 0;
1650 	sk_mem_reclaim(sk);
1651 }
1652 
1653 static inline void sk_mem_charge(struct sock *sk, int size)
1654 {
1655 	if (!sk_has_account(sk))
1656 		return;
1657 	sk->sk_forward_alloc -= size;
1658 }
1659 
1660 static inline void sk_mem_uncharge(struct sock *sk, int size)
1661 {
1662 	if (!sk_has_account(sk))
1663 		return;
1664 	sk->sk_forward_alloc += size;
1665 	sk_mem_reclaim(sk);
1666 }
1667 
1668 /*
1669  * Macro so as to not evaluate some arguments when
1670  * lockdep is not enabled.
1671  *
1672  * Mark both the sk_lock and the sk_lock.slock as a
1673  * per-address-family lock class.
1674  */
1675 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1676 do {									\
1677 	sk->sk_lock.owned = 0;						\
1678 	init_waitqueue_head(&sk->sk_lock.wq);				\
1679 	spin_lock_init(&(sk)->sk_lock.slock);				\
1680 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1681 			sizeof((sk)->sk_lock));				\
1682 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1683 				(skey), (sname));				\
1684 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1685 } while (0)
1686 
1687 static inline bool lockdep_sock_is_held(const struct sock *sk)
1688 {
1689 	return lockdep_is_held(&sk->sk_lock) ||
1690 	       lockdep_is_held(&sk->sk_lock.slock);
1691 }
1692 
1693 void lock_sock_nested(struct sock *sk, int subclass);
1694 
1695 static inline void lock_sock(struct sock *sk)
1696 {
1697 	lock_sock_nested(sk, 0);
1698 }
1699 
1700 void __lock_sock(struct sock *sk);
1701 void __release_sock(struct sock *sk);
1702 void release_sock(struct sock *sk);
1703 
1704 /* BH context may only use the following locking interface. */
1705 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1706 #define bh_lock_sock_nested(__sk) \
1707 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1708 				SINGLE_DEPTH_NESTING)
1709 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1710 
1711 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock);
1712 
1713 /**
1714  * lock_sock_fast - fast version of lock_sock
1715  * @sk: socket
1716  *
1717  * This version should be used for very small section, where process wont block
1718  * return false if fast path is taken:
1719  *
1720  *   sk_lock.slock locked, owned = 0, BH disabled
1721  *
1722  * return true if slow path is taken:
1723  *
1724  *   sk_lock.slock unlocked, owned = 1, BH enabled
1725  */
1726 static inline bool lock_sock_fast(struct sock *sk)
1727 {
1728 	/* The sk_lock has mutex_lock() semantics here. */
1729 	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
1730 
1731 	return __lock_sock_fast(sk);
1732 }
1733 
1734 /* fast socket lock variant for caller already holding a [different] socket lock */
1735 static inline bool lock_sock_fast_nested(struct sock *sk)
1736 {
1737 	mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_);
1738 
1739 	return __lock_sock_fast(sk);
1740 }
1741 
1742 /**
1743  * unlock_sock_fast - complement of lock_sock_fast
1744  * @sk: socket
1745  * @slow: slow mode
1746  *
1747  * fast unlock socket for user context.
1748  * If slow mode is on, we call regular release_sock()
1749  */
1750 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1751 	__releases(&sk->sk_lock.slock)
1752 {
1753 	if (slow) {
1754 		release_sock(sk);
1755 		__release(&sk->sk_lock.slock);
1756 	} else {
1757 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1758 		spin_unlock_bh(&sk->sk_lock.slock);
1759 	}
1760 }
1761 
1762 void sockopt_lock_sock(struct sock *sk);
1763 void sockopt_release_sock(struct sock *sk);
1764 bool sockopt_ns_capable(struct user_namespace *ns, int cap);
1765 bool sockopt_capable(int cap);
1766 
1767 /* Used by processes to "lock" a socket state, so that
1768  * interrupts and bottom half handlers won't change it
1769  * from under us. It essentially blocks any incoming
1770  * packets, so that we won't get any new data or any
1771  * packets that change the state of the socket.
1772  *
1773  * While locked, BH processing will add new packets to
1774  * the backlog queue.  This queue is processed by the
1775  * owner of the socket lock right before it is released.
1776  *
1777  * Since ~2.3.5 it is also exclusive sleep lock serializing
1778  * accesses from user process context.
1779  */
1780 
1781 static inline void sock_owned_by_me(const struct sock *sk)
1782 {
1783 #ifdef CONFIG_LOCKDEP
1784 	WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1785 #endif
1786 }
1787 
1788 static inline bool sock_owned_by_user(const struct sock *sk)
1789 {
1790 	sock_owned_by_me(sk);
1791 	return sk->sk_lock.owned;
1792 }
1793 
1794 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1795 {
1796 	return sk->sk_lock.owned;
1797 }
1798 
1799 static inline void sock_release_ownership(struct sock *sk)
1800 {
1801 	if (sock_owned_by_user_nocheck(sk)) {
1802 		sk->sk_lock.owned = 0;
1803 
1804 		/* The sk_lock has mutex_unlock() semantics: */
1805 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1806 	}
1807 }
1808 
1809 /* no reclassification while locks are held */
1810 static inline bool sock_allow_reclassification(const struct sock *csk)
1811 {
1812 	struct sock *sk = (struct sock *)csk;
1813 
1814 	return !sock_owned_by_user_nocheck(sk) &&
1815 		!spin_is_locked(&sk->sk_lock.slock);
1816 }
1817 
1818 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1819 		      struct proto *prot, int kern);
1820 void sk_free(struct sock *sk);
1821 void sk_destruct(struct sock *sk);
1822 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1823 void sk_free_unlock_clone(struct sock *sk);
1824 
1825 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1826 			     gfp_t priority);
1827 void __sock_wfree(struct sk_buff *skb);
1828 void sock_wfree(struct sk_buff *skb);
1829 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1830 			     gfp_t priority);
1831 void skb_orphan_partial(struct sk_buff *skb);
1832 void sock_rfree(struct sk_buff *skb);
1833 void sock_efree(struct sk_buff *skb);
1834 #ifdef CONFIG_INET
1835 void sock_edemux(struct sk_buff *skb);
1836 void sock_pfree(struct sk_buff *skb);
1837 #else
1838 #define sock_edemux sock_efree
1839 #endif
1840 
1841 int sk_setsockopt(struct sock *sk, int level, int optname,
1842 		  sockptr_t optval, unsigned int optlen);
1843 int sock_setsockopt(struct socket *sock, int level, int op,
1844 		    sockptr_t optval, unsigned int optlen);
1845 
1846 int sk_getsockopt(struct sock *sk, int level, int optname,
1847 		  sockptr_t optval, sockptr_t optlen);
1848 int sock_getsockopt(struct socket *sock, int level, int op,
1849 		    char __user *optval, int __user *optlen);
1850 int sock_gettstamp(struct socket *sock, void __user *userstamp,
1851 		   bool timeval, bool time32);
1852 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1853 				     unsigned long data_len, int noblock,
1854 				     int *errcode, int max_page_order);
1855 
1856 static inline struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1857 						  unsigned long size,
1858 						  int noblock, int *errcode)
1859 {
1860 	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1861 }
1862 
1863 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1864 void sock_kfree_s(struct sock *sk, void *mem, int size);
1865 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1866 void sk_send_sigurg(struct sock *sk);
1867 
1868 static inline void sock_replace_proto(struct sock *sk, struct proto *proto)
1869 {
1870 	if (sk->sk_socket)
1871 		clear_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1872 	WRITE_ONCE(sk->sk_prot, proto);
1873 }
1874 
1875 struct sockcm_cookie {
1876 	u64 transmit_time;
1877 	u32 mark;
1878 	u32 tsflags;
1879 };
1880 
1881 static inline void sockcm_init(struct sockcm_cookie *sockc,
1882 			       const struct sock *sk)
1883 {
1884 	*sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1885 }
1886 
1887 int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg,
1888 		     struct sockcm_cookie *sockc);
1889 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1890 		   struct sockcm_cookie *sockc);
1891 
1892 /*
1893  * Functions to fill in entries in struct proto_ops when a protocol
1894  * does not implement a particular function.
1895  */
1896 int sock_no_bind(struct socket *, struct sockaddr *, int);
1897 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1898 int sock_no_socketpair(struct socket *, struct socket *);
1899 int sock_no_accept(struct socket *, struct socket *, int, bool);
1900 int sock_no_getname(struct socket *, struct sockaddr *, int);
1901 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1902 int sock_no_listen(struct socket *, int);
1903 int sock_no_shutdown(struct socket *, int);
1904 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1905 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1906 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1907 int sock_no_mmap(struct file *file, struct socket *sock,
1908 		 struct vm_area_struct *vma);
1909 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1910 			 size_t size, int flags);
1911 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1912 				int offset, size_t size, int flags);
1913 
1914 /*
1915  * Functions to fill in entries in struct proto_ops when a protocol
1916  * uses the inet style.
1917  */
1918 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1919 				  char __user *optval, int __user *optlen);
1920 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1921 			int flags);
1922 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1923 			   sockptr_t optval, unsigned int optlen);
1924 
1925 void sk_common_release(struct sock *sk);
1926 
1927 /*
1928  *	Default socket callbacks and setup code
1929  */
1930 
1931 /* Initialise core socket variables using an explicit uid. */
1932 void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid);
1933 
1934 /* Initialise core socket variables.
1935  * Assumes struct socket *sock is embedded in a struct socket_alloc.
1936  */
1937 void sock_init_data(struct socket *sock, struct sock *sk);
1938 
1939 /*
1940  * Socket reference counting postulates.
1941  *
1942  * * Each user of socket SHOULD hold a reference count.
1943  * * Each access point to socket (an hash table bucket, reference from a list,
1944  *   running timer, skb in flight MUST hold a reference count.
1945  * * When reference count hits 0, it means it will never increase back.
1946  * * When reference count hits 0, it means that no references from
1947  *   outside exist to this socket and current process on current CPU
1948  *   is last user and may/should destroy this socket.
1949  * * sk_free is called from any context: process, BH, IRQ. When
1950  *   it is called, socket has no references from outside -> sk_free
1951  *   may release descendant resources allocated by the socket, but
1952  *   to the time when it is called, socket is NOT referenced by any
1953  *   hash tables, lists etc.
1954  * * Packets, delivered from outside (from network or from another process)
1955  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1956  *   when they sit in queue. Otherwise, packets will leak to hole, when
1957  *   socket is looked up by one cpu and unhasing is made by another CPU.
1958  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1959  *   (leak to backlog). Packet socket does all the processing inside
1960  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1961  *   use separate SMP lock, so that they are prone too.
1962  */
1963 
1964 /* Ungrab socket and destroy it, if it was the last reference. */
1965 static inline void sock_put(struct sock *sk)
1966 {
1967 	if (refcount_dec_and_test(&sk->sk_refcnt))
1968 		sk_free(sk);
1969 }
1970 /* Generic version of sock_put(), dealing with all sockets
1971  * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1972  */
1973 void sock_gen_put(struct sock *sk);
1974 
1975 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1976 		     unsigned int trim_cap, bool refcounted);
1977 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1978 				 const int nested)
1979 {
1980 	return __sk_receive_skb(sk, skb, nested, 1, true);
1981 }
1982 
1983 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1984 {
1985 	/* sk_tx_queue_mapping accept only upto a 16-bit value */
1986 	if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1987 		return;
1988 	sk->sk_tx_queue_mapping = tx_queue;
1989 }
1990 
1991 #define NO_QUEUE_MAPPING	USHRT_MAX
1992 
1993 static inline void sk_tx_queue_clear(struct sock *sk)
1994 {
1995 	sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
1996 }
1997 
1998 static inline int sk_tx_queue_get(const struct sock *sk)
1999 {
2000 	if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
2001 		return sk->sk_tx_queue_mapping;
2002 
2003 	return -1;
2004 }
2005 
2006 static inline void __sk_rx_queue_set(struct sock *sk,
2007 				     const struct sk_buff *skb,
2008 				     bool force_set)
2009 {
2010 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2011 	if (skb_rx_queue_recorded(skb)) {
2012 		u16 rx_queue = skb_get_rx_queue(skb);
2013 
2014 		if (force_set ||
2015 		    unlikely(READ_ONCE(sk->sk_rx_queue_mapping) != rx_queue))
2016 			WRITE_ONCE(sk->sk_rx_queue_mapping, rx_queue);
2017 	}
2018 #endif
2019 }
2020 
2021 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
2022 {
2023 	__sk_rx_queue_set(sk, skb, true);
2024 }
2025 
2026 static inline void sk_rx_queue_update(struct sock *sk, const struct sk_buff *skb)
2027 {
2028 	__sk_rx_queue_set(sk, skb, false);
2029 }
2030 
2031 static inline void sk_rx_queue_clear(struct sock *sk)
2032 {
2033 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2034 	WRITE_ONCE(sk->sk_rx_queue_mapping, NO_QUEUE_MAPPING);
2035 #endif
2036 }
2037 
2038 static inline int sk_rx_queue_get(const struct sock *sk)
2039 {
2040 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2041 	if (sk) {
2042 		int res = READ_ONCE(sk->sk_rx_queue_mapping);
2043 
2044 		if (res != NO_QUEUE_MAPPING)
2045 			return res;
2046 	}
2047 #endif
2048 
2049 	return -1;
2050 }
2051 
2052 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
2053 {
2054 	sk->sk_socket = sock;
2055 }
2056 
2057 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
2058 {
2059 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
2060 	return &rcu_dereference_raw(sk->sk_wq)->wait;
2061 }
2062 /* Detach socket from process context.
2063  * Announce socket dead, detach it from wait queue and inode.
2064  * Note that parent inode held reference count on this struct sock,
2065  * we do not release it in this function, because protocol
2066  * probably wants some additional cleanups or even continuing
2067  * to work with this socket (TCP).
2068  */
2069 static inline void sock_orphan(struct sock *sk)
2070 {
2071 	write_lock_bh(&sk->sk_callback_lock);
2072 	sock_set_flag(sk, SOCK_DEAD);
2073 	sk_set_socket(sk, NULL);
2074 	sk->sk_wq  = NULL;
2075 	write_unlock_bh(&sk->sk_callback_lock);
2076 }
2077 
2078 static inline void sock_graft(struct sock *sk, struct socket *parent)
2079 {
2080 	WARN_ON(parent->sk);
2081 	write_lock_bh(&sk->sk_callback_lock);
2082 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
2083 	parent->sk = sk;
2084 	sk_set_socket(sk, parent);
2085 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
2086 	security_sock_graft(sk, parent);
2087 	write_unlock_bh(&sk->sk_callback_lock);
2088 }
2089 
2090 kuid_t sock_i_uid(struct sock *sk);
2091 unsigned long sock_i_ino(struct sock *sk);
2092 
2093 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
2094 {
2095 	return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
2096 }
2097 
2098 static inline u32 net_tx_rndhash(void)
2099 {
2100 	u32 v = get_random_u32();
2101 
2102 	return v ?: 1;
2103 }
2104 
2105 static inline void sk_set_txhash(struct sock *sk)
2106 {
2107 	/* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
2108 	WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
2109 }
2110 
2111 static inline bool sk_rethink_txhash(struct sock *sk)
2112 {
2113 	if (sk->sk_txhash && sk->sk_txrehash == SOCK_TXREHASH_ENABLED) {
2114 		sk_set_txhash(sk);
2115 		return true;
2116 	}
2117 	return false;
2118 }
2119 
2120 static inline struct dst_entry *
2121 __sk_dst_get(struct sock *sk)
2122 {
2123 	return rcu_dereference_check(sk->sk_dst_cache,
2124 				     lockdep_sock_is_held(sk));
2125 }
2126 
2127 static inline struct dst_entry *
2128 sk_dst_get(struct sock *sk)
2129 {
2130 	struct dst_entry *dst;
2131 
2132 	rcu_read_lock();
2133 	dst = rcu_dereference(sk->sk_dst_cache);
2134 	if (dst && !atomic_inc_not_zero(&dst->__refcnt))
2135 		dst = NULL;
2136 	rcu_read_unlock();
2137 	return dst;
2138 }
2139 
2140 static inline void __dst_negative_advice(struct sock *sk)
2141 {
2142 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
2143 
2144 	if (dst && dst->ops->negative_advice) {
2145 		ndst = dst->ops->negative_advice(dst);
2146 
2147 		if (ndst != dst) {
2148 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
2149 			sk_tx_queue_clear(sk);
2150 			sk->sk_dst_pending_confirm = 0;
2151 		}
2152 	}
2153 }
2154 
2155 static inline void dst_negative_advice(struct sock *sk)
2156 {
2157 	sk_rethink_txhash(sk);
2158 	__dst_negative_advice(sk);
2159 }
2160 
2161 static inline void
2162 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
2163 {
2164 	struct dst_entry *old_dst;
2165 
2166 	sk_tx_queue_clear(sk);
2167 	sk->sk_dst_pending_confirm = 0;
2168 	old_dst = rcu_dereference_protected(sk->sk_dst_cache,
2169 					    lockdep_sock_is_held(sk));
2170 	rcu_assign_pointer(sk->sk_dst_cache, dst);
2171 	dst_release(old_dst);
2172 }
2173 
2174 static inline void
2175 sk_dst_set(struct sock *sk, struct dst_entry *dst)
2176 {
2177 	struct dst_entry *old_dst;
2178 
2179 	sk_tx_queue_clear(sk);
2180 	sk->sk_dst_pending_confirm = 0;
2181 	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
2182 	dst_release(old_dst);
2183 }
2184 
2185 static inline void
2186 __sk_dst_reset(struct sock *sk)
2187 {
2188 	__sk_dst_set(sk, NULL);
2189 }
2190 
2191 static inline void
2192 sk_dst_reset(struct sock *sk)
2193 {
2194 	sk_dst_set(sk, NULL);
2195 }
2196 
2197 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
2198 
2199 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
2200 
2201 static inline void sk_dst_confirm(struct sock *sk)
2202 {
2203 	if (!READ_ONCE(sk->sk_dst_pending_confirm))
2204 		WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2205 }
2206 
2207 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2208 {
2209 	if (skb_get_dst_pending_confirm(skb)) {
2210 		struct sock *sk = skb->sk;
2211 
2212 		if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2213 			WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2214 		neigh_confirm(n);
2215 	}
2216 }
2217 
2218 bool sk_mc_loop(struct sock *sk);
2219 
2220 static inline bool sk_can_gso(const struct sock *sk)
2221 {
2222 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2223 }
2224 
2225 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2226 
2227 static inline void sk_gso_disable(struct sock *sk)
2228 {
2229 	sk->sk_gso_disabled = 1;
2230 	sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2231 }
2232 
2233 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2234 					   struct iov_iter *from, char *to,
2235 					   int copy, int offset)
2236 {
2237 	if (skb->ip_summed == CHECKSUM_NONE) {
2238 		__wsum csum = 0;
2239 		if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2240 			return -EFAULT;
2241 		skb->csum = csum_block_add(skb->csum, csum, offset);
2242 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2243 		if (!copy_from_iter_full_nocache(to, copy, from))
2244 			return -EFAULT;
2245 	} else if (!copy_from_iter_full(to, copy, from))
2246 		return -EFAULT;
2247 
2248 	return 0;
2249 }
2250 
2251 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2252 				       struct iov_iter *from, int copy)
2253 {
2254 	int err, offset = skb->len;
2255 
2256 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2257 				       copy, offset);
2258 	if (err)
2259 		__skb_trim(skb, offset);
2260 
2261 	return err;
2262 }
2263 
2264 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2265 					   struct sk_buff *skb,
2266 					   struct page *page,
2267 					   int off, int copy)
2268 {
2269 	int err;
2270 
2271 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2272 				       copy, skb->len);
2273 	if (err)
2274 		return err;
2275 
2276 	skb_len_add(skb, copy);
2277 	sk_wmem_queued_add(sk, copy);
2278 	sk_mem_charge(sk, copy);
2279 	return 0;
2280 }
2281 
2282 /**
2283  * sk_wmem_alloc_get - returns write allocations
2284  * @sk: socket
2285  *
2286  * Return: sk_wmem_alloc minus initial offset of one
2287  */
2288 static inline int sk_wmem_alloc_get(const struct sock *sk)
2289 {
2290 	return refcount_read(&sk->sk_wmem_alloc) - 1;
2291 }
2292 
2293 /**
2294  * sk_rmem_alloc_get - returns read allocations
2295  * @sk: socket
2296  *
2297  * Return: sk_rmem_alloc
2298  */
2299 static inline int sk_rmem_alloc_get(const struct sock *sk)
2300 {
2301 	return atomic_read(&sk->sk_rmem_alloc);
2302 }
2303 
2304 /**
2305  * sk_has_allocations - check if allocations are outstanding
2306  * @sk: socket
2307  *
2308  * Return: true if socket has write or read allocations
2309  */
2310 static inline bool sk_has_allocations(const struct sock *sk)
2311 {
2312 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2313 }
2314 
2315 /**
2316  * skwq_has_sleeper - check if there are any waiting processes
2317  * @wq: struct socket_wq
2318  *
2319  * Return: true if socket_wq has waiting processes
2320  *
2321  * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2322  * barrier call. They were added due to the race found within the tcp code.
2323  *
2324  * Consider following tcp code paths::
2325  *
2326  *   CPU1                CPU2
2327  *   sys_select          receive packet
2328  *   ...                 ...
2329  *   __add_wait_queue    update tp->rcv_nxt
2330  *   ...                 ...
2331  *   tp->rcv_nxt check   sock_def_readable
2332  *   ...                 {
2333  *   schedule               rcu_read_lock();
2334  *                          wq = rcu_dereference(sk->sk_wq);
2335  *                          if (wq && waitqueue_active(&wq->wait))
2336  *                              wake_up_interruptible(&wq->wait)
2337  *                          ...
2338  *                       }
2339  *
2340  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2341  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
2342  * could then endup calling schedule and sleep forever if there are no more
2343  * data on the socket.
2344  *
2345  */
2346 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2347 {
2348 	return wq && wq_has_sleeper(&wq->wait);
2349 }
2350 
2351 /**
2352  * sock_poll_wait - place memory barrier behind the poll_wait call.
2353  * @filp:           file
2354  * @sock:           socket to wait on
2355  * @p:              poll_table
2356  *
2357  * See the comments in the wq_has_sleeper function.
2358  */
2359 static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2360 				  poll_table *p)
2361 {
2362 	if (!poll_does_not_wait(p)) {
2363 		poll_wait(filp, &sock->wq.wait, p);
2364 		/* We need to be sure we are in sync with the
2365 		 * socket flags modification.
2366 		 *
2367 		 * This memory barrier is paired in the wq_has_sleeper.
2368 		 */
2369 		smp_mb();
2370 	}
2371 }
2372 
2373 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2374 {
2375 	/* This pairs with WRITE_ONCE() in sk_set_txhash() */
2376 	u32 txhash = READ_ONCE(sk->sk_txhash);
2377 
2378 	if (txhash) {
2379 		skb->l4_hash = 1;
2380 		skb->hash = txhash;
2381 	}
2382 }
2383 
2384 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2385 
2386 /*
2387  *	Queue a received datagram if it will fit. Stream and sequenced
2388  *	protocols can't normally use this as they need to fit buffers in
2389  *	and play with them.
2390  *
2391  *	Inlined as it's very short and called for pretty much every
2392  *	packet ever received.
2393  */
2394 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2395 {
2396 	skb_orphan(skb);
2397 	skb->sk = sk;
2398 	skb->destructor = sock_rfree;
2399 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2400 	sk_mem_charge(sk, skb->truesize);
2401 }
2402 
2403 static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
2404 {
2405 	if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
2406 		skb_orphan(skb);
2407 		skb->destructor = sock_efree;
2408 		skb->sk = sk;
2409 		return true;
2410 	}
2411 	return false;
2412 }
2413 
2414 static inline struct sk_buff *skb_clone_and_charge_r(struct sk_buff *skb, struct sock *sk)
2415 {
2416 	skb = skb_clone(skb, sk_gfp_mask(sk, GFP_ATOMIC));
2417 	if (skb) {
2418 		if (sk_rmem_schedule(sk, skb, skb->truesize)) {
2419 			skb_set_owner_r(skb, sk);
2420 			return skb;
2421 		}
2422 		__kfree_skb(skb);
2423 	}
2424 	return NULL;
2425 }
2426 
2427 static inline void skb_prepare_for_gro(struct sk_buff *skb)
2428 {
2429 	if (skb->destructor != sock_wfree) {
2430 		skb_orphan(skb);
2431 		return;
2432 	}
2433 	skb->slow_gro = 1;
2434 }
2435 
2436 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2437 		    unsigned long expires);
2438 
2439 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2440 
2441 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2442 
2443 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2444 			struct sk_buff *skb, unsigned int flags,
2445 			void (*destructor)(struct sock *sk,
2446 					   struct sk_buff *skb));
2447 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2448 
2449 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
2450 			      enum skb_drop_reason *reason);
2451 
2452 static inline int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2453 {
2454 	return sock_queue_rcv_skb_reason(sk, skb, NULL);
2455 }
2456 
2457 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2458 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2459 
2460 /*
2461  *	Recover an error report and clear atomically
2462  */
2463 
2464 static inline int sock_error(struct sock *sk)
2465 {
2466 	int err;
2467 
2468 	/* Avoid an atomic operation for the common case.
2469 	 * This is racy since another cpu/thread can change sk_err under us.
2470 	 */
2471 	if (likely(data_race(!sk->sk_err)))
2472 		return 0;
2473 
2474 	err = xchg(&sk->sk_err, 0);
2475 	return -err;
2476 }
2477 
2478 void sk_error_report(struct sock *sk);
2479 
2480 static inline unsigned long sock_wspace(struct sock *sk)
2481 {
2482 	int amt = 0;
2483 
2484 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2485 		amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2486 		if (amt < 0)
2487 			amt = 0;
2488 	}
2489 	return amt;
2490 }
2491 
2492 /* Note:
2493  *  We use sk->sk_wq_raw, from contexts knowing this
2494  *  pointer is not NULL and cannot disappear/change.
2495  */
2496 static inline void sk_set_bit(int nr, struct sock *sk)
2497 {
2498 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2499 	    !sock_flag(sk, SOCK_FASYNC))
2500 		return;
2501 
2502 	set_bit(nr, &sk->sk_wq_raw->flags);
2503 }
2504 
2505 static inline void sk_clear_bit(int nr, struct sock *sk)
2506 {
2507 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2508 	    !sock_flag(sk, SOCK_FASYNC))
2509 		return;
2510 
2511 	clear_bit(nr, &sk->sk_wq_raw->flags);
2512 }
2513 
2514 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2515 {
2516 	if (sock_flag(sk, SOCK_FASYNC)) {
2517 		rcu_read_lock();
2518 		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2519 		rcu_read_unlock();
2520 	}
2521 }
2522 
2523 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2524  * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2525  * Note: for send buffers, TCP works better if we can build two skbs at
2526  * minimum.
2527  */
2528 #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2529 
2530 #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2531 #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2532 
2533 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2534 {
2535 	u32 val;
2536 
2537 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2538 		return;
2539 
2540 	val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2541 	val = max_t(u32, val, sk_unused_reserved_mem(sk));
2542 
2543 	WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2544 }
2545 
2546 /**
2547  * sk_page_frag - return an appropriate page_frag
2548  * @sk: socket
2549  *
2550  * Use the per task page_frag instead of the per socket one for
2551  * optimization when we know that we're in process context and own
2552  * everything that's associated with %current.
2553  *
2554  * Both direct reclaim and page faults can nest inside other
2555  * socket operations and end up recursing into sk_page_frag()
2556  * while it's already in use: explicitly avoid task page_frag
2557  * when users disable sk_use_task_frag.
2558  *
2559  * Return: a per task page_frag if context allows that,
2560  * otherwise a per socket one.
2561  */
2562 static inline struct page_frag *sk_page_frag(struct sock *sk)
2563 {
2564 	if (sk->sk_use_task_frag)
2565 		return &current->task_frag;
2566 
2567 	return &sk->sk_frag;
2568 }
2569 
2570 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2571 
2572 /*
2573  *	Default write policy as shown to user space via poll/select/SIGIO
2574  */
2575 static inline bool sock_writeable(const struct sock *sk)
2576 {
2577 	return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2578 }
2579 
2580 static inline gfp_t gfp_any(void)
2581 {
2582 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2583 }
2584 
2585 static inline gfp_t gfp_memcg_charge(void)
2586 {
2587 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2588 }
2589 
2590 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2591 {
2592 	return noblock ? 0 : sk->sk_rcvtimeo;
2593 }
2594 
2595 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2596 {
2597 	return noblock ? 0 : sk->sk_sndtimeo;
2598 }
2599 
2600 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2601 {
2602 	int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2603 
2604 	return v ?: 1;
2605 }
2606 
2607 /* Alas, with timeout socket operations are not restartable.
2608  * Compare this to poll().
2609  */
2610 static inline int sock_intr_errno(long timeo)
2611 {
2612 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2613 }
2614 
2615 struct sock_skb_cb {
2616 	u32 dropcount;
2617 };
2618 
2619 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2620  * using skb->cb[] would keep using it directly and utilize its
2621  * alignement guarantee.
2622  */
2623 #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2624 			    sizeof(struct sock_skb_cb)))
2625 
2626 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2627 			    SOCK_SKB_CB_OFFSET))
2628 
2629 #define sock_skb_cb_check_size(size) \
2630 	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2631 
2632 static inline void
2633 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2634 {
2635 	SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2636 						atomic_read(&sk->sk_drops) : 0;
2637 }
2638 
2639 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2640 {
2641 	int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2642 
2643 	atomic_add(segs, &sk->sk_drops);
2644 }
2645 
2646 static inline ktime_t sock_read_timestamp(struct sock *sk)
2647 {
2648 #if BITS_PER_LONG==32
2649 	unsigned int seq;
2650 	ktime_t kt;
2651 
2652 	do {
2653 		seq = read_seqbegin(&sk->sk_stamp_seq);
2654 		kt = sk->sk_stamp;
2655 	} while (read_seqretry(&sk->sk_stamp_seq, seq));
2656 
2657 	return kt;
2658 #else
2659 	return READ_ONCE(sk->sk_stamp);
2660 #endif
2661 }
2662 
2663 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2664 {
2665 #if BITS_PER_LONG==32
2666 	write_seqlock(&sk->sk_stamp_seq);
2667 	sk->sk_stamp = kt;
2668 	write_sequnlock(&sk->sk_stamp_seq);
2669 #else
2670 	WRITE_ONCE(sk->sk_stamp, kt);
2671 #endif
2672 }
2673 
2674 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2675 			   struct sk_buff *skb);
2676 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2677 			     struct sk_buff *skb);
2678 
2679 static inline void
2680 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2681 {
2682 	ktime_t kt = skb->tstamp;
2683 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2684 
2685 	/*
2686 	 * generate control messages if
2687 	 * - receive time stamping in software requested
2688 	 * - software time stamp available and wanted
2689 	 * - hardware time stamps available and wanted
2690 	 */
2691 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2692 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2693 	    (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2694 	    (hwtstamps->hwtstamp &&
2695 	     (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2696 		__sock_recv_timestamp(msg, sk, skb);
2697 	else
2698 		sock_write_timestamp(sk, kt);
2699 
2700 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2701 		__sock_recv_wifi_status(msg, sk, skb);
2702 }
2703 
2704 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2705 		       struct sk_buff *skb);
2706 
2707 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2708 static inline void sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2709 				   struct sk_buff *skb)
2710 {
2711 #define FLAGS_RECV_CMSGS ((1UL << SOCK_RXQ_OVFL)			| \
2712 			   (1UL << SOCK_RCVTSTAMP)			| \
2713 			   (1UL << SOCK_RCVMARK))
2714 #define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2715 			   SOF_TIMESTAMPING_RAW_HARDWARE)
2716 
2717 	if (sk->sk_flags & FLAGS_RECV_CMSGS || sk->sk_tsflags & TSFLAGS_ANY)
2718 		__sock_recv_cmsgs(msg, sk, skb);
2719 	else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2720 		sock_write_timestamp(sk, skb->tstamp);
2721 	else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2722 		sock_write_timestamp(sk, 0);
2723 }
2724 
2725 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2726 
2727 /**
2728  * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2729  * @sk:		socket sending this packet
2730  * @tsflags:	timestamping flags to use
2731  * @tx_flags:	completed with instructions for time stamping
2732  * @tskey:      filled in with next sk_tskey (not for TCP, which uses seqno)
2733  *
2734  * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2735  */
2736 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2737 				      __u8 *tx_flags, __u32 *tskey)
2738 {
2739 	if (unlikely(tsflags)) {
2740 		__sock_tx_timestamp(tsflags, tx_flags);
2741 		if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2742 		    tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2743 			*tskey = atomic_inc_return(&sk->sk_tskey) - 1;
2744 	}
2745 	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2746 		*tx_flags |= SKBTX_WIFI_STATUS;
2747 }
2748 
2749 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2750 				     __u8 *tx_flags)
2751 {
2752 	_sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2753 }
2754 
2755 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2756 {
2757 	_sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2758 			   &skb_shinfo(skb)->tskey);
2759 }
2760 
2761 static inline bool sk_is_tcp(const struct sock *sk)
2762 {
2763 	return sk->sk_type == SOCK_STREAM && sk->sk_protocol == IPPROTO_TCP;
2764 }
2765 
2766 /**
2767  * sk_eat_skb - Release a skb if it is no longer needed
2768  * @sk: socket to eat this skb from
2769  * @skb: socket buffer to eat
2770  *
2771  * This routine must be called with interrupts disabled or with the socket
2772  * locked so that the sk_buff queue operation is ok.
2773 */
2774 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2775 {
2776 	__skb_unlink(skb, &sk->sk_receive_queue);
2777 	__kfree_skb(skb);
2778 }
2779 
2780 static inline bool
2781 skb_sk_is_prefetched(struct sk_buff *skb)
2782 {
2783 #ifdef CONFIG_INET
2784 	return skb->destructor == sock_pfree;
2785 #else
2786 	return false;
2787 #endif /* CONFIG_INET */
2788 }
2789 
2790 /* This helper checks if a socket is a full socket,
2791  * ie _not_ a timewait or request socket.
2792  */
2793 static inline bool sk_fullsock(const struct sock *sk)
2794 {
2795 	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2796 }
2797 
2798 static inline bool
2799 sk_is_refcounted(struct sock *sk)
2800 {
2801 	/* Only full sockets have sk->sk_flags. */
2802 	return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2803 }
2804 
2805 /**
2806  * skb_steal_sock - steal a socket from an sk_buff
2807  * @skb: sk_buff to steal the socket from
2808  * @refcounted: is set to true if the socket is reference-counted
2809  */
2810 static inline struct sock *
2811 skb_steal_sock(struct sk_buff *skb, bool *refcounted)
2812 {
2813 	if (skb->sk) {
2814 		struct sock *sk = skb->sk;
2815 
2816 		*refcounted = true;
2817 		if (skb_sk_is_prefetched(skb))
2818 			*refcounted = sk_is_refcounted(sk);
2819 		skb->destructor = NULL;
2820 		skb->sk = NULL;
2821 		return sk;
2822 	}
2823 	*refcounted = false;
2824 	return NULL;
2825 }
2826 
2827 /* Checks if this SKB belongs to an HW offloaded socket
2828  * and whether any SW fallbacks are required based on dev.
2829  * Check decrypted mark in case skb_orphan() cleared socket.
2830  */
2831 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2832 						   struct net_device *dev)
2833 {
2834 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2835 	struct sock *sk = skb->sk;
2836 
2837 	if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2838 		skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2839 #ifdef CONFIG_TLS_DEVICE
2840 	} else if (unlikely(skb->decrypted)) {
2841 		pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2842 		kfree_skb(skb);
2843 		skb = NULL;
2844 #endif
2845 	}
2846 #endif
2847 
2848 	return skb;
2849 }
2850 
2851 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2852  * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2853  */
2854 static inline bool sk_listener(const struct sock *sk)
2855 {
2856 	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2857 }
2858 
2859 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2860 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2861 		       int type);
2862 
2863 bool sk_ns_capable(const struct sock *sk,
2864 		   struct user_namespace *user_ns, int cap);
2865 bool sk_capable(const struct sock *sk, int cap);
2866 bool sk_net_capable(const struct sock *sk, int cap);
2867 
2868 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2869 
2870 /* Take into consideration the size of the struct sk_buff overhead in the
2871  * determination of these values, since that is non-constant across
2872  * platforms.  This makes socket queueing behavior and performance
2873  * not depend upon such differences.
2874  */
2875 #define _SK_MEM_PACKETS		256
2876 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
2877 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2878 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2879 
2880 extern __u32 sysctl_wmem_max;
2881 extern __u32 sysctl_rmem_max;
2882 
2883 extern int sysctl_tstamp_allow_data;
2884 extern int sysctl_optmem_max;
2885 
2886 extern __u32 sysctl_wmem_default;
2887 extern __u32 sysctl_rmem_default;
2888 
2889 #define SKB_FRAG_PAGE_ORDER	get_order(32768)
2890 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2891 
2892 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2893 {
2894 	/* Does this proto have per netns sysctl_wmem ? */
2895 	if (proto->sysctl_wmem_offset)
2896 		return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset));
2897 
2898 	return READ_ONCE(*proto->sysctl_wmem);
2899 }
2900 
2901 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2902 {
2903 	/* Does this proto have per netns sysctl_rmem ? */
2904 	if (proto->sysctl_rmem_offset)
2905 		return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset));
2906 
2907 	return READ_ONCE(*proto->sysctl_rmem);
2908 }
2909 
2910 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2911  * Some wifi drivers need to tweak it to get more chunks.
2912  * They can use this helper from their ndo_start_xmit()
2913  */
2914 static inline void sk_pacing_shift_update(struct sock *sk, int val)
2915 {
2916 	if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2917 		return;
2918 	WRITE_ONCE(sk->sk_pacing_shift, val);
2919 }
2920 
2921 /* if a socket is bound to a device, check that the given device
2922  * index is either the same or that the socket is bound to an L3
2923  * master device and the given device index is also enslaved to
2924  * that L3 master
2925  */
2926 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2927 {
2928 	int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
2929 	int mdif;
2930 
2931 	if (!bound_dev_if || bound_dev_if == dif)
2932 		return true;
2933 
2934 	mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2935 	if (mdif && mdif == bound_dev_if)
2936 		return true;
2937 
2938 	return false;
2939 }
2940 
2941 void sock_def_readable(struct sock *sk);
2942 
2943 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2944 void sock_set_timestamp(struct sock *sk, int optname, bool valbool);
2945 int sock_set_timestamping(struct sock *sk, int optname,
2946 			  struct so_timestamping timestamping);
2947 
2948 void sock_enable_timestamps(struct sock *sk);
2949 void sock_no_linger(struct sock *sk);
2950 void sock_set_keepalive(struct sock *sk);
2951 void sock_set_priority(struct sock *sk, u32 priority);
2952 void sock_set_rcvbuf(struct sock *sk, int val);
2953 void sock_set_mark(struct sock *sk, u32 val);
2954 void sock_set_reuseaddr(struct sock *sk);
2955 void sock_set_reuseport(struct sock *sk);
2956 void sock_set_sndtimeo(struct sock *sk, s64 secs);
2957 
2958 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2959 
2960 int sock_get_timeout(long timeo, void *optval, bool old_timeval);
2961 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
2962 			   sockptr_t optval, int optlen, bool old_timeval);
2963 
2964 static inline bool sk_is_readable(struct sock *sk)
2965 {
2966 	if (sk->sk_prot->sock_is_readable)
2967 		return sk->sk_prot->sock_is_readable(sk);
2968 	return false;
2969 }
2970 #endif	/* _SOCK_H */
2971