xref: /linux/include/net/sock.h (revision 1fc31357ad194fb98691f3d122bcd47e59239e83)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the AF_INET socket handler.
7  *
8  * Version:	@(#)sock.h	1.0.4	05/13/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche <flla@stud.uni-sb.de>
14  *
15  * Fixes:
16  *		Alan Cox	:	Volatiles in skbuff pointers. See
17  *					skbuff comments. May be overdone,
18  *					better to prove they can be removed
19  *					than the reverse.
20  *		Alan Cox	:	Added a zapped field for tcp to note
21  *					a socket is reset and must stay shut up
22  *		Alan Cox	:	New fields for options
23  *	Pauline Middelink	:	identd support
24  *		Alan Cox	:	Eliminate low level recv/recvfrom
25  *		David S. Miller	:	New socket lookup architecture.
26  *              Steve Whitehouse:       Default routines for sock_ops
27  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
28  *              			protinfo be just a void pointer, as the
29  *              			protocol specific parts were moved to
30  *              			respective headers and ipv4/v6, etc now
31  *              			use private slabcaches for its socks
32  *              Pedro Hortas	:	New flags field for socket options
33  *
34  *
35  *		This program is free software; you can redistribute it and/or
36  *		modify it under the terms of the GNU General Public License
37  *		as published by the Free Software Foundation; either version
38  *		2 of the License, or (at your option) any later version.
39  */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42 
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h>	/* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/page_counter.h>
58 #include <linux/memcontrol.h>
59 #include <linux/static_key.h>
60 #include <linux/sched.h>
61 #include <linux/wait.h>
62 #include <linux/cgroup-defs.h>
63 
64 #include <linux/filter.h>
65 #include <linux/rculist_nulls.h>
66 #include <linux/poll.h>
67 
68 #include <linux/atomic.h>
69 #include <net/dst.h>
70 #include <net/checksum.h>
71 #include <net/tcp_states.h>
72 #include <linux/net_tstamp.h>
73 
74 /*
75  * This structure really needs to be cleaned up.
76  * Most of it is for TCP, and not used by any of
77  * the other protocols.
78  */
79 
80 /* Define this to get the SOCK_DBG debugging facility. */
81 #define SOCK_DEBUGGING
82 #ifdef SOCK_DEBUGGING
83 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
84 					printk(KERN_DEBUG msg); } while (0)
85 #else
86 /* Validate arguments and do nothing */
87 static inline __printf(2, 3)
88 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
89 {
90 }
91 #endif
92 
93 /* This is the per-socket lock.  The spinlock provides a synchronization
94  * between user contexts and software interrupt processing, whereas the
95  * mini-semaphore synchronizes multiple users amongst themselves.
96  */
97 typedef struct {
98 	spinlock_t		slock;
99 	int			owned;
100 	wait_queue_head_t	wq;
101 	/*
102 	 * We express the mutex-alike socket_lock semantics
103 	 * to the lock validator by explicitly managing
104 	 * the slock as a lock variant (in addition to
105 	 * the slock itself):
106 	 */
107 #ifdef CONFIG_DEBUG_LOCK_ALLOC
108 	struct lockdep_map dep_map;
109 #endif
110 } socket_lock_t;
111 
112 struct sock;
113 struct proto;
114 struct net;
115 
116 typedef __u32 __bitwise __portpair;
117 typedef __u64 __bitwise __addrpair;
118 
119 /**
120  *	struct sock_common - minimal network layer representation of sockets
121  *	@skc_daddr: Foreign IPv4 addr
122  *	@skc_rcv_saddr: Bound local IPv4 addr
123  *	@skc_hash: hash value used with various protocol lookup tables
124  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
125  *	@skc_dport: placeholder for inet_dport/tw_dport
126  *	@skc_num: placeholder for inet_num/tw_num
127  *	@skc_family: network address family
128  *	@skc_state: Connection state
129  *	@skc_reuse: %SO_REUSEADDR setting
130  *	@skc_reuseport: %SO_REUSEPORT setting
131  *	@skc_bound_dev_if: bound device index if != 0
132  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
133  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
134  *	@skc_prot: protocol handlers inside a network family
135  *	@skc_net: reference to the network namespace of this socket
136  *	@skc_node: main hash linkage for various protocol lookup tables
137  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
138  *	@skc_tx_queue_mapping: tx queue number for this connection
139  *	@skc_flags: place holder for sk_flags
140  *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
141  *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
142  *	@skc_incoming_cpu: record/match cpu processing incoming packets
143  *	@skc_refcnt: reference count
144  *
145  *	This is the minimal network layer representation of sockets, the header
146  *	for struct sock and struct inet_timewait_sock.
147  */
148 struct sock_common {
149 	/* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
150 	 * address on 64bit arches : cf INET_MATCH()
151 	 */
152 	union {
153 		__addrpair	skc_addrpair;
154 		struct {
155 			__be32	skc_daddr;
156 			__be32	skc_rcv_saddr;
157 		};
158 	};
159 	union  {
160 		unsigned int	skc_hash;
161 		__u16		skc_u16hashes[2];
162 	};
163 	/* skc_dport && skc_num must be grouped as well */
164 	union {
165 		__portpair	skc_portpair;
166 		struct {
167 			__be16	skc_dport;
168 			__u16	skc_num;
169 		};
170 	};
171 
172 	unsigned short		skc_family;
173 	volatile unsigned char	skc_state;
174 	unsigned char		skc_reuse:4;
175 	unsigned char		skc_reuseport:1;
176 	unsigned char		skc_ipv6only:1;
177 	unsigned char		skc_net_refcnt:1;
178 	int			skc_bound_dev_if;
179 	union {
180 		struct hlist_node	skc_bind_node;
181 		struct hlist_node	skc_portaddr_node;
182 	};
183 	struct proto		*skc_prot;
184 	possible_net_t		skc_net;
185 
186 #if IS_ENABLED(CONFIG_IPV6)
187 	struct in6_addr		skc_v6_daddr;
188 	struct in6_addr		skc_v6_rcv_saddr;
189 #endif
190 
191 	atomic64_t		skc_cookie;
192 
193 	/* following fields are padding to force
194 	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
195 	 * assuming IPV6 is enabled. We use this padding differently
196 	 * for different kind of 'sockets'
197 	 */
198 	union {
199 		unsigned long	skc_flags;
200 		struct sock	*skc_listener; /* request_sock */
201 		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
202 	};
203 	/*
204 	 * fields between dontcopy_begin/dontcopy_end
205 	 * are not copied in sock_copy()
206 	 */
207 	/* private: */
208 	int			skc_dontcopy_begin[0];
209 	/* public: */
210 	union {
211 		struct hlist_node	skc_node;
212 		struct hlist_nulls_node skc_nulls_node;
213 	};
214 	int			skc_tx_queue_mapping;
215 	union {
216 		int		skc_incoming_cpu;
217 		u32		skc_rcv_wnd;
218 		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
219 	};
220 
221 	atomic_t		skc_refcnt;
222 	/* private: */
223 	int                     skc_dontcopy_end[0];
224 	union {
225 		u32		skc_rxhash;
226 		u32		skc_window_clamp;
227 		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
228 	};
229 	/* public: */
230 };
231 
232 /**
233   *	struct sock - network layer representation of sockets
234   *	@__sk_common: shared layout with inet_timewait_sock
235   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
236   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
237   *	@sk_lock:	synchronizer
238   *	@sk_rcvbuf: size of receive buffer in bytes
239   *	@sk_wq: sock wait queue and async head
240   *	@sk_rx_dst: receive input route used by early demux
241   *	@sk_dst_cache: destination cache
242   *	@sk_policy: flow policy
243   *	@sk_receive_queue: incoming packets
244   *	@sk_wmem_alloc: transmit queue bytes committed
245   *	@sk_write_queue: Packet sending queue
246   *	@sk_omem_alloc: "o" is "option" or "other"
247   *	@sk_wmem_queued: persistent queue size
248   *	@sk_forward_alloc: space allocated forward
249   *	@sk_napi_id: id of the last napi context to receive data for sk
250   *	@sk_ll_usec: usecs to busypoll when there is no data
251   *	@sk_allocation: allocation mode
252   *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
253   *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
254   *	@sk_sndbuf: size of send buffer in bytes
255   *	@sk_padding: unused element for alignment
256   *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
257   *	@sk_no_check_rx: allow zero checksum in RX packets
258   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
259   *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
260   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
261   *	@sk_gso_max_size: Maximum GSO segment size to build
262   *	@sk_gso_max_segs: Maximum number of GSO segments
263   *	@sk_lingertime: %SO_LINGER l_linger setting
264   *	@sk_backlog: always used with the per-socket spinlock held
265   *	@sk_callback_lock: used with the callbacks in the end of this struct
266   *	@sk_error_queue: rarely used
267   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
268   *			  IPV6_ADDRFORM for instance)
269   *	@sk_err: last error
270   *	@sk_err_soft: errors that don't cause failure but are the cause of a
271   *		      persistent failure not just 'timed out'
272   *	@sk_drops: raw/udp drops counter
273   *	@sk_ack_backlog: current listen backlog
274   *	@sk_max_ack_backlog: listen backlog set in listen()
275   *	@sk_priority: %SO_PRIORITY setting
276   *	@sk_type: socket type (%SOCK_STREAM, etc)
277   *	@sk_protocol: which protocol this socket belongs in this network family
278   *	@sk_peer_pid: &struct pid for this socket's peer
279   *	@sk_peer_cred: %SO_PEERCRED setting
280   *	@sk_rcvlowat: %SO_RCVLOWAT setting
281   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
282   *	@sk_sndtimeo: %SO_SNDTIMEO setting
283   *	@sk_txhash: computed flow hash for use on transmit
284   *	@sk_filter: socket filtering instructions
285   *	@sk_timer: sock cleanup timer
286   *	@sk_stamp: time stamp of last packet received
287   *	@sk_tsflags: SO_TIMESTAMPING socket options
288   *	@sk_tskey: counter to disambiguate concurrent tstamp requests
289   *	@sk_socket: Identd and reporting IO signals
290   *	@sk_user_data: RPC layer private data
291   *	@sk_frag: cached page frag
292   *	@sk_peek_off: current peek_offset value
293   *	@sk_send_head: front of stuff to transmit
294   *	@sk_security: used by security modules
295   *	@sk_mark: generic packet mark
296   *	@sk_cgrp_data: cgroup data for this cgroup
297   *	@sk_memcg: this socket's memory cgroup association
298   *	@sk_write_pending: a write to stream socket waits to start
299   *	@sk_state_change: callback to indicate change in the state of the sock
300   *	@sk_data_ready: callback to indicate there is data to be processed
301   *	@sk_write_space: callback to indicate there is bf sending space available
302   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
303   *	@sk_backlog_rcv: callback to process the backlog
304   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
305   *	@sk_reuseport_cb: reuseport group container
306   *	@sk_rcu: used during RCU grace period
307   */
308 struct sock {
309 	/*
310 	 * Now struct inet_timewait_sock also uses sock_common, so please just
311 	 * don't add nothing before this first member (__sk_common) --acme
312 	 */
313 	struct sock_common	__sk_common;
314 #define sk_node			__sk_common.skc_node
315 #define sk_nulls_node		__sk_common.skc_nulls_node
316 #define sk_refcnt		__sk_common.skc_refcnt
317 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
318 
319 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
320 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
321 #define sk_hash			__sk_common.skc_hash
322 #define sk_portpair		__sk_common.skc_portpair
323 #define sk_num			__sk_common.skc_num
324 #define sk_dport		__sk_common.skc_dport
325 #define sk_addrpair		__sk_common.skc_addrpair
326 #define sk_daddr		__sk_common.skc_daddr
327 #define sk_rcv_saddr		__sk_common.skc_rcv_saddr
328 #define sk_family		__sk_common.skc_family
329 #define sk_state		__sk_common.skc_state
330 #define sk_reuse		__sk_common.skc_reuse
331 #define sk_reuseport		__sk_common.skc_reuseport
332 #define sk_ipv6only		__sk_common.skc_ipv6only
333 #define sk_net_refcnt		__sk_common.skc_net_refcnt
334 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
335 #define sk_bind_node		__sk_common.skc_bind_node
336 #define sk_prot			__sk_common.skc_prot
337 #define sk_net			__sk_common.skc_net
338 #define sk_v6_daddr		__sk_common.skc_v6_daddr
339 #define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
340 #define sk_cookie		__sk_common.skc_cookie
341 #define sk_incoming_cpu		__sk_common.skc_incoming_cpu
342 #define sk_flags		__sk_common.skc_flags
343 #define sk_rxhash		__sk_common.skc_rxhash
344 
345 	socket_lock_t		sk_lock;
346 	struct sk_buff_head	sk_receive_queue;
347 	/*
348 	 * The backlog queue is special, it is always used with
349 	 * the per-socket spinlock held and requires low latency
350 	 * access. Therefore we special case it's implementation.
351 	 * Note : rmem_alloc is in this structure to fill a hole
352 	 * on 64bit arches, not because its logically part of
353 	 * backlog.
354 	 */
355 	struct {
356 		atomic_t	rmem_alloc;
357 		int		len;
358 		struct sk_buff	*head;
359 		struct sk_buff	*tail;
360 	} sk_backlog;
361 #define sk_rmem_alloc sk_backlog.rmem_alloc
362 	int			sk_forward_alloc;
363 
364 	__u32			sk_txhash;
365 #ifdef CONFIG_NET_RX_BUSY_POLL
366 	unsigned int		sk_napi_id;
367 	unsigned int		sk_ll_usec;
368 #endif
369 	atomic_t		sk_drops;
370 	int			sk_rcvbuf;
371 
372 	struct sk_filter __rcu	*sk_filter;
373 	union {
374 		struct socket_wq __rcu	*sk_wq;
375 		struct socket_wq	*sk_wq_raw;
376 	};
377 #ifdef CONFIG_XFRM
378 	struct xfrm_policy __rcu *sk_policy[2];
379 #endif
380 	struct dst_entry	*sk_rx_dst;
381 	struct dst_entry __rcu	*sk_dst_cache;
382 	/* Note: 32bit hole on 64bit arches */
383 	atomic_t		sk_wmem_alloc;
384 	atomic_t		sk_omem_alloc;
385 	int			sk_sndbuf;
386 	struct sk_buff_head	sk_write_queue;
387 
388 	/*
389 	 * Because of non atomicity rules, all
390 	 * changes are protected by socket lock.
391 	 */
392 	kmemcheck_bitfield_begin(flags);
393 	unsigned int		sk_padding : 2,
394 				sk_no_check_tx : 1,
395 				sk_no_check_rx : 1,
396 				sk_userlocks : 4,
397 				sk_protocol  : 8,
398 				sk_type      : 16;
399 #define SK_PROTOCOL_MAX U8_MAX
400 	kmemcheck_bitfield_end(flags);
401 
402 	int			sk_wmem_queued;
403 	gfp_t			sk_allocation;
404 	u32			sk_pacing_rate; /* bytes per second */
405 	u32			sk_max_pacing_rate;
406 	netdev_features_t	sk_route_caps;
407 	netdev_features_t	sk_route_nocaps;
408 	int			sk_gso_type;
409 	unsigned int		sk_gso_max_size;
410 	u16			sk_gso_max_segs;
411 	int			sk_rcvlowat;
412 	unsigned long	        sk_lingertime;
413 	struct sk_buff_head	sk_error_queue;
414 	struct proto		*sk_prot_creator;
415 	rwlock_t		sk_callback_lock;
416 	int			sk_err,
417 				sk_err_soft;
418 	u32			sk_ack_backlog;
419 	u32			sk_max_ack_backlog;
420 	__u32			sk_priority;
421 	__u32			sk_mark;
422 	kuid_t			sk_uid;
423 	struct pid		*sk_peer_pid;
424 	const struct cred	*sk_peer_cred;
425 	long			sk_rcvtimeo;
426 	long			sk_sndtimeo;
427 	struct timer_list	sk_timer;
428 	ktime_t			sk_stamp;
429 	u16			sk_tsflags;
430 	u8			sk_shutdown;
431 	u32			sk_tskey;
432 	struct socket		*sk_socket;
433 	void			*sk_user_data;
434 	struct page_frag	sk_frag;
435 	struct sk_buff		*sk_send_head;
436 	__s32			sk_peek_off;
437 	int			sk_write_pending;
438 #ifdef CONFIG_SECURITY
439 	void			*sk_security;
440 #endif
441 	struct sock_cgroup_data	sk_cgrp_data;
442 	struct mem_cgroup	*sk_memcg;
443 	void			(*sk_state_change)(struct sock *sk);
444 	void			(*sk_data_ready)(struct sock *sk);
445 	void			(*sk_write_space)(struct sock *sk);
446 	void			(*sk_error_report)(struct sock *sk);
447 	int			(*sk_backlog_rcv)(struct sock *sk,
448 						  struct sk_buff *skb);
449 	void                    (*sk_destruct)(struct sock *sk);
450 	struct sock_reuseport __rcu	*sk_reuseport_cb;
451 	struct rcu_head		sk_rcu;
452 };
453 
454 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
455 
456 #define rcu_dereference_sk_user_data(sk)	rcu_dereference(__sk_user_data((sk)))
457 #define rcu_assign_sk_user_data(sk, ptr)	rcu_assign_pointer(__sk_user_data((sk)), ptr)
458 
459 /*
460  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
461  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
462  * on a socket means that the socket will reuse everybody else's port
463  * without looking at the other's sk_reuse value.
464  */
465 
466 #define SK_NO_REUSE	0
467 #define SK_CAN_REUSE	1
468 #define SK_FORCE_REUSE	2
469 
470 int sk_set_peek_off(struct sock *sk, int val);
471 
472 static inline int sk_peek_offset(struct sock *sk, int flags)
473 {
474 	if (unlikely(flags & MSG_PEEK)) {
475 		s32 off = READ_ONCE(sk->sk_peek_off);
476 		if (off >= 0)
477 			return off;
478 	}
479 
480 	return 0;
481 }
482 
483 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
484 {
485 	s32 off = READ_ONCE(sk->sk_peek_off);
486 
487 	if (unlikely(off >= 0)) {
488 		off = max_t(s32, off - val, 0);
489 		WRITE_ONCE(sk->sk_peek_off, off);
490 	}
491 }
492 
493 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
494 {
495 	sk_peek_offset_bwd(sk, -val);
496 }
497 
498 /*
499  * Hashed lists helper routines
500  */
501 static inline struct sock *sk_entry(const struct hlist_node *node)
502 {
503 	return hlist_entry(node, struct sock, sk_node);
504 }
505 
506 static inline struct sock *__sk_head(const struct hlist_head *head)
507 {
508 	return hlist_entry(head->first, struct sock, sk_node);
509 }
510 
511 static inline struct sock *sk_head(const struct hlist_head *head)
512 {
513 	return hlist_empty(head) ? NULL : __sk_head(head);
514 }
515 
516 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
517 {
518 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
519 }
520 
521 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
522 {
523 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
524 }
525 
526 static inline struct sock *sk_next(const struct sock *sk)
527 {
528 	return sk->sk_node.next ?
529 		hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
530 }
531 
532 static inline struct sock *sk_nulls_next(const struct sock *sk)
533 {
534 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
535 		hlist_nulls_entry(sk->sk_nulls_node.next,
536 				  struct sock, sk_nulls_node) :
537 		NULL;
538 }
539 
540 static inline bool sk_unhashed(const struct sock *sk)
541 {
542 	return hlist_unhashed(&sk->sk_node);
543 }
544 
545 static inline bool sk_hashed(const struct sock *sk)
546 {
547 	return !sk_unhashed(sk);
548 }
549 
550 static inline void sk_node_init(struct hlist_node *node)
551 {
552 	node->pprev = NULL;
553 }
554 
555 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
556 {
557 	node->pprev = NULL;
558 }
559 
560 static inline void __sk_del_node(struct sock *sk)
561 {
562 	__hlist_del(&sk->sk_node);
563 }
564 
565 /* NB: equivalent to hlist_del_init_rcu */
566 static inline bool __sk_del_node_init(struct sock *sk)
567 {
568 	if (sk_hashed(sk)) {
569 		__sk_del_node(sk);
570 		sk_node_init(&sk->sk_node);
571 		return true;
572 	}
573 	return false;
574 }
575 
576 /* Grab socket reference count. This operation is valid only
577    when sk is ALREADY grabbed f.e. it is found in hash table
578    or a list and the lookup is made under lock preventing hash table
579    modifications.
580  */
581 
582 static __always_inline void sock_hold(struct sock *sk)
583 {
584 	atomic_inc(&sk->sk_refcnt);
585 }
586 
587 /* Ungrab socket in the context, which assumes that socket refcnt
588    cannot hit zero, f.e. it is true in context of any socketcall.
589  */
590 static __always_inline void __sock_put(struct sock *sk)
591 {
592 	atomic_dec(&sk->sk_refcnt);
593 }
594 
595 static inline bool sk_del_node_init(struct sock *sk)
596 {
597 	bool rc = __sk_del_node_init(sk);
598 
599 	if (rc) {
600 		/* paranoid for a while -acme */
601 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
602 		__sock_put(sk);
603 	}
604 	return rc;
605 }
606 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
607 
608 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
609 {
610 	if (sk_hashed(sk)) {
611 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
612 		return true;
613 	}
614 	return false;
615 }
616 
617 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
618 {
619 	bool rc = __sk_nulls_del_node_init_rcu(sk);
620 
621 	if (rc) {
622 		/* paranoid for a while -acme */
623 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
624 		__sock_put(sk);
625 	}
626 	return rc;
627 }
628 
629 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
630 {
631 	hlist_add_head(&sk->sk_node, list);
632 }
633 
634 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
635 {
636 	sock_hold(sk);
637 	__sk_add_node(sk, list);
638 }
639 
640 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
641 {
642 	sock_hold(sk);
643 	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
644 	    sk->sk_family == AF_INET6)
645 		hlist_add_tail_rcu(&sk->sk_node, list);
646 	else
647 		hlist_add_head_rcu(&sk->sk_node, list);
648 }
649 
650 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
651 {
652 	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
653 	    sk->sk_family == AF_INET6)
654 		hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
655 	else
656 		hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
657 }
658 
659 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
660 {
661 	sock_hold(sk);
662 	__sk_nulls_add_node_rcu(sk, list);
663 }
664 
665 static inline void __sk_del_bind_node(struct sock *sk)
666 {
667 	__hlist_del(&sk->sk_bind_node);
668 }
669 
670 static inline void sk_add_bind_node(struct sock *sk,
671 					struct hlist_head *list)
672 {
673 	hlist_add_head(&sk->sk_bind_node, list);
674 }
675 
676 #define sk_for_each(__sk, list) \
677 	hlist_for_each_entry(__sk, list, sk_node)
678 #define sk_for_each_rcu(__sk, list) \
679 	hlist_for_each_entry_rcu(__sk, list, sk_node)
680 #define sk_nulls_for_each(__sk, node, list) \
681 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
682 #define sk_nulls_for_each_rcu(__sk, node, list) \
683 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
684 #define sk_for_each_from(__sk) \
685 	hlist_for_each_entry_from(__sk, sk_node)
686 #define sk_nulls_for_each_from(__sk, node) \
687 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
688 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
689 #define sk_for_each_safe(__sk, tmp, list) \
690 	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
691 #define sk_for_each_bound(__sk, list) \
692 	hlist_for_each_entry(__sk, list, sk_bind_node)
693 
694 /**
695  * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
696  * @tpos:	the type * to use as a loop cursor.
697  * @pos:	the &struct hlist_node to use as a loop cursor.
698  * @head:	the head for your list.
699  * @offset:	offset of hlist_node within the struct.
700  *
701  */
702 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \
703 	for (pos = rcu_dereference((head)->first);			       \
704 	     pos != NULL &&						       \
705 		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
706 	     pos = rcu_dereference(pos->next))
707 
708 static inline struct user_namespace *sk_user_ns(struct sock *sk)
709 {
710 	/* Careful only use this in a context where these parameters
711 	 * can not change and must all be valid, such as recvmsg from
712 	 * userspace.
713 	 */
714 	return sk->sk_socket->file->f_cred->user_ns;
715 }
716 
717 /* Sock flags */
718 enum sock_flags {
719 	SOCK_DEAD,
720 	SOCK_DONE,
721 	SOCK_URGINLINE,
722 	SOCK_KEEPOPEN,
723 	SOCK_LINGER,
724 	SOCK_DESTROY,
725 	SOCK_BROADCAST,
726 	SOCK_TIMESTAMP,
727 	SOCK_ZAPPED,
728 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
729 	SOCK_DBG, /* %SO_DEBUG setting */
730 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
731 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
732 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
733 	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
734 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
735 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
736 	SOCK_FASYNC, /* fasync() active */
737 	SOCK_RXQ_OVFL,
738 	SOCK_ZEROCOPY, /* buffers from userspace */
739 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
740 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
741 		     * Will use last 4 bytes of packet sent from
742 		     * user-space instead.
743 		     */
744 	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
745 	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
746 	SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
747 };
748 
749 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
750 
751 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
752 {
753 	nsk->sk_flags = osk->sk_flags;
754 }
755 
756 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
757 {
758 	__set_bit(flag, &sk->sk_flags);
759 }
760 
761 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
762 {
763 	__clear_bit(flag, &sk->sk_flags);
764 }
765 
766 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
767 {
768 	return test_bit(flag, &sk->sk_flags);
769 }
770 
771 #ifdef CONFIG_NET
772 extern struct static_key memalloc_socks;
773 static inline int sk_memalloc_socks(void)
774 {
775 	return static_key_false(&memalloc_socks);
776 }
777 #else
778 
779 static inline int sk_memalloc_socks(void)
780 {
781 	return 0;
782 }
783 
784 #endif
785 
786 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
787 {
788 	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
789 }
790 
791 static inline void sk_acceptq_removed(struct sock *sk)
792 {
793 	sk->sk_ack_backlog--;
794 }
795 
796 static inline void sk_acceptq_added(struct sock *sk)
797 {
798 	sk->sk_ack_backlog++;
799 }
800 
801 static inline bool sk_acceptq_is_full(const struct sock *sk)
802 {
803 	return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
804 }
805 
806 /*
807  * Compute minimal free write space needed to queue new packets.
808  */
809 static inline int sk_stream_min_wspace(const struct sock *sk)
810 {
811 	return sk->sk_wmem_queued >> 1;
812 }
813 
814 static inline int sk_stream_wspace(const struct sock *sk)
815 {
816 	return sk->sk_sndbuf - sk->sk_wmem_queued;
817 }
818 
819 void sk_stream_write_space(struct sock *sk);
820 
821 /* OOB backlog add */
822 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
823 {
824 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
825 	skb_dst_force_safe(skb);
826 
827 	if (!sk->sk_backlog.tail)
828 		sk->sk_backlog.head = skb;
829 	else
830 		sk->sk_backlog.tail->next = skb;
831 
832 	sk->sk_backlog.tail = skb;
833 	skb->next = NULL;
834 }
835 
836 /*
837  * Take into account size of receive queue and backlog queue
838  * Do not take into account this skb truesize,
839  * to allow even a single big packet to come.
840  */
841 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
842 {
843 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
844 
845 	return qsize > limit;
846 }
847 
848 /* The per-socket spinlock must be held here. */
849 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
850 					      unsigned int limit)
851 {
852 	if (sk_rcvqueues_full(sk, limit))
853 		return -ENOBUFS;
854 
855 	/*
856 	 * If the skb was allocated from pfmemalloc reserves, only
857 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
858 	 * helping free memory
859 	 */
860 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
861 		return -ENOMEM;
862 
863 	__sk_add_backlog(sk, skb);
864 	sk->sk_backlog.len += skb->truesize;
865 	return 0;
866 }
867 
868 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
869 
870 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
871 {
872 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
873 		return __sk_backlog_rcv(sk, skb);
874 
875 	return sk->sk_backlog_rcv(sk, skb);
876 }
877 
878 static inline void sk_incoming_cpu_update(struct sock *sk)
879 {
880 	sk->sk_incoming_cpu = raw_smp_processor_id();
881 }
882 
883 static inline void sock_rps_record_flow_hash(__u32 hash)
884 {
885 #ifdef CONFIG_RPS
886 	struct rps_sock_flow_table *sock_flow_table;
887 
888 	rcu_read_lock();
889 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
890 	rps_record_sock_flow(sock_flow_table, hash);
891 	rcu_read_unlock();
892 #endif
893 }
894 
895 static inline void sock_rps_record_flow(const struct sock *sk)
896 {
897 #ifdef CONFIG_RPS
898 	sock_rps_record_flow_hash(sk->sk_rxhash);
899 #endif
900 }
901 
902 static inline void sock_rps_save_rxhash(struct sock *sk,
903 					const struct sk_buff *skb)
904 {
905 #ifdef CONFIG_RPS
906 	if (unlikely(sk->sk_rxhash != skb->hash))
907 		sk->sk_rxhash = skb->hash;
908 #endif
909 }
910 
911 static inline void sock_rps_reset_rxhash(struct sock *sk)
912 {
913 #ifdef CONFIG_RPS
914 	sk->sk_rxhash = 0;
915 #endif
916 }
917 
918 #define sk_wait_event(__sk, __timeo, __condition, __wait)		\
919 	({	int __rc;						\
920 		release_sock(__sk);					\
921 		__rc = __condition;					\
922 		if (!__rc) {						\
923 			*(__timeo) = wait_woken(__wait,			\
924 						TASK_INTERRUPTIBLE,	\
925 						*(__timeo));		\
926 		}							\
927 		sched_annotate_sleep();					\
928 		lock_sock(__sk);					\
929 		__rc = __condition;					\
930 		__rc;							\
931 	})
932 
933 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
934 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
935 void sk_stream_wait_close(struct sock *sk, long timeo_p);
936 int sk_stream_error(struct sock *sk, int flags, int err);
937 void sk_stream_kill_queues(struct sock *sk);
938 void sk_set_memalloc(struct sock *sk);
939 void sk_clear_memalloc(struct sock *sk);
940 
941 void __sk_flush_backlog(struct sock *sk);
942 
943 static inline bool sk_flush_backlog(struct sock *sk)
944 {
945 	if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
946 		__sk_flush_backlog(sk);
947 		return true;
948 	}
949 	return false;
950 }
951 
952 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
953 
954 struct request_sock_ops;
955 struct timewait_sock_ops;
956 struct inet_hashinfo;
957 struct raw_hashinfo;
958 struct module;
959 
960 /*
961  * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
962  * un-modified. Special care is taken when initializing object to zero.
963  */
964 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
965 {
966 	if (offsetof(struct sock, sk_node.next) != 0)
967 		memset(sk, 0, offsetof(struct sock, sk_node.next));
968 	memset(&sk->sk_node.pprev, 0,
969 	       size - offsetof(struct sock, sk_node.pprev));
970 }
971 
972 /* Networking protocol blocks we attach to sockets.
973  * socket layer -> transport layer interface
974  */
975 struct proto {
976 	void			(*close)(struct sock *sk,
977 					long timeout);
978 	int			(*connect)(struct sock *sk,
979 					struct sockaddr *uaddr,
980 					int addr_len);
981 	int			(*disconnect)(struct sock *sk, int flags);
982 
983 	struct sock *		(*accept)(struct sock *sk, int flags, int *err);
984 
985 	int			(*ioctl)(struct sock *sk, int cmd,
986 					 unsigned long arg);
987 	int			(*init)(struct sock *sk);
988 	void			(*destroy)(struct sock *sk);
989 	void			(*shutdown)(struct sock *sk, int how);
990 	int			(*setsockopt)(struct sock *sk, int level,
991 					int optname, char __user *optval,
992 					unsigned int optlen);
993 	int			(*getsockopt)(struct sock *sk, int level,
994 					int optname, char __user *optval,
995 					int __user *option);
996 #ifdef CONFIG_COMPAT
997 	int			(*compat_setsockopt)(struct sock *sk,
998 					int level,
999 					int optname, char __user *optval,
1000 					unsigned int optlen);
1001 	int			(*compat_getsockopt)(struct sock *sk,
1002 					int level,
1003 					int optname, char __user *optval,
1004 					int __user *option);
1005 	int			(*compat_ioctl)(struct sock *sk,
1006 					unsigned int cmd, unsigned long arg);
1007 #endif
1008 	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
1009 					   size_t len);
1010 	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
1011 					   size_t len, int noblock, int flags,
1012 					   int *addr_len);
1013 	int			(*sendpage)(struct sock *sk, struct page *page,
1014 					int offset, size_t size, int flags);
1015 	int			(*bind)(struct sock *sk,
1016 					struct sockaddr *uaddr, int addr_len);
1017 
1018 	int			(*backlog_rcv) (struct sock *sk,
1019 						struct sk_buff *skb);
1020 
1021 	void		(*release_cb)(struct sock *sk);
1022 
1023 	/* Keeping track of sk's, looking them up, and port selection methods. */
1024 	int			(*hash)(struct sock *sk);
1025 	void			(*unhash)(struct sock *sk);
1026 	void			(*rehash)(struct sock *sk);
1027 	int			(*get_port)(struct sock *sk, unsigned short snum);
1028 
1029 	/* Keeping track of sockets in use */
1030 #ifdef CONFIG_PROC_FS
1031 	unsigned int		inuse_idx;
1032 #endif
1033 
1034 	bool			(*stream_memory_free)(const struct sock *sk);
1035 	/* Memory pressure */
1036 	void			(*enter_memory_pressure)(struct sock *sk);
1037 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1038 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1039 	/*
1040 	 * Pressure flag: try to collapse.
1041 	 * Technical note: it is used by multiple contexts non atomically.
1042 	 * All the __sk_mem_schedule() is of this nature: accounting
1043 	 * is strict, actions are advisory and have some latency.
1044 	 */
1045 	int			*memory_pressure;
1046 	long			*sysctl_mem;
1047 	int			*sysctl_wmem;
1048 	int			*sysctl_rmem;
1049 	int			max_header;
1050 	bool			no_autobind;
1051 
1052 	struct kmem_cache	*slab;
1053 	unsigned int		obj_size;
1054 	int			slab_flags;
1055 
1056 	struct percpu_counter	*orphan_count;
1057 
1058 	struct request_sock_ops	*rsk_prot;
1059 	struct timewait_sock_ops *twsk_prot;
1060 
1061 	union {
1062 		struct inet_hashinfo	*hashinfo;
1063 		struct udp_table	*udp_table;
1064 		struct raw_hashinfo	*raw_hash;
1065 	} h;
1066 
1067 	struct module		*owner;
1068 
1069 	char			name[32];
1070 
1071 	struct list_head	node;
1072 #ifdef SOCK_REFCNT_DEBUG
1073 	atomic_t		socks;
1074 #endif
1075 	int			(*diag_destroy)(struct sock *sk, int err);
1076 };
1077 
1078 int proto_register(struct proto *prot, int alloc_slab);
1079 void proto_unregister(struct proto *prot);
1080 
1081 #ifdef SOCK_REFCNT_DEBUG
1082 static inline void sk_refcnt_debug_inc(struct sock *sk)
1083 {
1084 	atomic_inc(&sk->sk_prot->socks);
1085 }
1086 
1087 static inline void sk_refcnt_debug_dec(struct sock *sk)
1088 {
1089 	atomic_dec(&sk->sk_prot->socks);
1090 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1091 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1092 }
1093 
1094 static inline void sk_refcnt_debug_release(const struct sock *sk)
1095 {
1096 	if (atomic_read(&sk->sk_refcnt) != 1)
1097 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1098 		       sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1099 }
1100 #else /* SOCK_REFCNT_DEBUG */
1101 #define sk_refcnt_debug_inc(sk) do { } while (0)
1102 #define sk_refcnt_debug_dec(sk) do { } while (0)
1103 #define sk_refcnt_debug_release(sk) do { } while (0)
1104 #endif /* SOCK_REFCNT_DEBUG */
1105 
1106 static inline bool sk_stream_memory_free(const struct sock *sk)
1107 {
1108 	if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1109 		return false;
1110 
1111 	return sk->sk_prot->stream_memory_free ?
1112 		sk->sk_prot->stream_memory_free(sk) : true;
1113 }
1114 
1115 static inline bool sk_stream_is_writeable(const struct sock *sk)
1116 {
1117 	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1118 	       sk_stream_memory_free(sk);
1119 }
1120 
1121 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1122 					    struct cgroup *ancestor)
1123 {
1124 #ifdef CONFIG_SOCK_CGROUP_DATA
1125 	return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1126 				    ancestor);
1127 #else
1128 	return -ENOTSUPP;
1129 #endif
1130 }
1131 
1132 static inline bool sk_has_memory_pressure(const struct sock *sk)
1133 {
1134 	return sk->sk_prot->memory_pressure != NULL;
1135 }
1136 
1137 static inline bool sk_under_memory_pressure(const struct sock *sk)
1138 {
1139 	if (!sk->sk_prot->memory_pressure)
1140 		return false;
1141 
1142 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1143 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
1144 		return true;
1145 
1146 	return !!*sk->sk_prot->memory_pressure;
1147 }
1148 
1149 static inline void sk_leave_memory_pressure(struct sock *sk)
1150 {
1151 	int *memory_pressure = sk->sk_prot->memory_pressure;
1152 
1153 	if (!memory_pressure)
1154 		return;
1155 
1156 	if (*memory_pressure)
1157 		*memory_pressure = 0;
1158 }
1159 
1160 static inline void sk_enter_memory_pressure(struct sock *sk)
1161 {
1162 	if (!sk->sk_prot->enter_memory_pressure)
1163 		return;
1164 
1165 	sk->sk_prot->enter_memory_pressure(sk);
1166 }
1167 
1168 static inline long
1169 sk_memory_allocated(const struct sock *sk)
1170 {
1171 	return atomic_long_read(sk->sk_prot->memory_allocated);
1172 }
1173 
1174 static inline long
1175 sk_memory_allocated_add(struct sock *sk, int amt)
1176 {
1177 	return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1178 }
1179 
1180 static inline void
1181 sk_memory_allocated_sub(struct sock *sk, int amt)
1182 {
1183 	atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1184 }
1185 
1186 static inline void sk_sockets_allocated_dec(struct sock *sk)
1187 {
1188 	percpu_counter_dec(sk->sk_prot->sockets_allocated);
1189 }
1190 
1191 static inline void sk_sockets_allocated_inc(struct sock *sk)
1192 {
1193 	percpu_counter_inc(sk->sk_prot->sockets_allocated);
1194 }
1195 
1196 static inline int
1197 sk_sockets_allocated_read_positive(struct sock *sk)
1198 {
1199 	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1200 }
1201 
1202 static inline int
1203 proto_sockets_allocated_sum_positive(struct proto *prot)
1204 {
1205 	return percpu_counter_sum_positive(prot->sockets_allocated);
1206 }
1207 
1208 static inline long
1209 proto_memory_allocated(struct proto *prot)
1210 {
1211 	return atomic_long_read(prot->memory_allocated);
1212 }
1213 
1214 static inline bool
1215 proto_memory_pressure(struct proto *prot)
1216 {
1217 	if (!prot->memory_pressure)
1218 		return false;
1219 	return !!*prot->memory_pressure;
1220 }
1221 
1222 
1223 #ifdef CONFIG_PROC_FS
1224 /* Called with local bh disabled */
1225 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1226 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1227 #else
1228 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1229 		int inc)
1230 {
1231 }
1232 #endif
1233 
1234 
1235 /* With per-bucket locks this operation is not-atomic, so that
1236  * this version is not worse.
1237  */
1238 static inline int __sk_prot_rehash(struct sock *sk)
1239 {
1240 	sk->sk_prot->unhash(sk);
1241 	return sk->sk_prot->hash(sk);
1242 }
1243 
1244 /* About 10 seconds */
1245 #define SOCK_DESTROY_TIME (10*HZ)
1246 
1247 /* Sockets 0-1023 can't be bound to unless you are superuser */
1248 #define PROT_SOCK	1024
1249 
1250 #define SHUTDOWN_MASK	3
1251 #define RCV_SHUTDOWN	1
1252 #define SEND_SHUTDOWN	2
1253 
1254 #define SOCK_SNDBUF_LOCK	1
1255 #define SOCK_RCVBUF_LOCK	2
1256 #define SOCK_BINDADDR_LOCK	4
1257 #define SOCK_BINDPORT_LOCK	8
1258 
1259 struct socket_alloc {
1260 	struct socket socket;
1261 	struct inode vfs_inode;
1262 };
1263 
1264 static inline struct socket *SOCKET_I(struct inode *inode)
1265 {
1266 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1267 }
1268 
1269 static inline struct inode *SOCK_INODE(struct socket *socket)
1270 {
1271 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1272 }
1273 
1274 /*
1275  * Functions for memory accounting
1276  */
1277 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1278 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1279 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1280 void __sk_mem_reclaim(struct sock *sk, int amount);
1281 
1282 /* We used to have PAGE_SIZE here, but systems with 64KB pages
1283  * do not necessarily have 16x time more memory than 4KB ones.
1284  */
1285 #define SK_MEM_QUANTUM 4096
1286 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1287 #define SK_MEM_SEND	0
1288 #define SK_MEM_RECV	1
1289 
1290 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1291 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1292 {
1293 	long val = sk->sk_prot->sysctl_mem[index];
1294 
1295 #if PAGE_SIZE > SK_MEM_QUANTUM
1296 	val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1297 #elif PAGE_SIZE < SK_MEM_QUANTUM
1298 	val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1299 #endif
1300 	return val;
1301 }
1302 
1303 static inline int sk_mem_pages(int amt)
1304 {
1305 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1306 }
1307 
1308 static inline bool sk_has_account(struct sock *sk)
1309 {
1310 	/* return true if protocol supports memory accounting */
1311 	return !!sk->sk_prot->memory_allocated;
1312 }
1313 
1314 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1315 {
1316 	if (!sk_has_account(sk))
1317 		return true;
1318 	return size <= sk->sk_forward_alloc ||
1319 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1320 }
1321 
1322 static inline bool
1323 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1324 {
1325 	if (!sk_has_account(sk))
1326 		return true;
1327 	return size<= sk->sk_forward_alloc ||
1328 		__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1329 		skb_pfmemalloc(skb);
1330 }
1331 
1332 static inline void sk_mem_reclaim(struct sock *sk)
1333 {
1334 	if (!sk_has_account(sk))
1335 		return;
1336 	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1337 		__sk_mem_reclaim(sk, sk->sk_forward_alloc);
1338 }
1339 
1340 static inline void sk_mem_reclaim_partial(struct sock *sk)
1341 {
1342 	if (!sk_has_account(sk))
1343 		return;
1344 	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1345 		__sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1346 }
1347 
1348 static inline void sk_mem_charge(struct sock *sk, int size)
1349 {
1350 	if (!sk_has_account(sk))
1351 		return;
1352 	sk->sk_forward_alloc -= size;
1353 }
1354 
1355 static inline void sk_mem_uncharge(struct sock *sk, int size)
1356 {
1357 	if (!sk_has_account(sk))
1358 		return;
1359 	sk->sk_forward_alloc += size;
1360 
1361 	/* Avoid a possible overflow.
1362 	 * TCP send queues can make this happen, if sk_mem_reclaim()
1363 	 * is not called and more than 2 GBytes are released at once.
1364 	 *
1365 	 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1366 	 * no need to hold that much forward allocation anyway.
1367 	 */
1368 	if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1369 		__sk_mem_reclaim(sk, 1 << 20);
1370 }
1371 
1372 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1373 {
1374 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1375 	sk->sk_wmem_queued -= skb->truesize;
1376 	sk_mem_uncharge(sk, skb->truesize);
1377 	__kfree_skb(skb);
1378 }
1379 
1380 static inline void sock_release_ownership(struct sock *sk)
1381 {
1382 	if (sk->sk_lock.owned) {
1383 		sk->sk_lock.owned = 0;
1384 
1385 		/* The sk_lock has mutex_unlock() semantics: */
1386 		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1387 	}
1388 }
1389 
1390 /*
1391  * Macro so as to not evaluate some arguments when
1392  * lockdep is not enabled.
1393  *
1394  * Mark both the sk_lock and the sk_lock.slock as a
1395  * per-address-family lock class.
1396  */
1397 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1398 do {									\
1399 	sk->sk_lock.owned = 0;						\
1400 	init_waitqueue_head(&sk->sk_lock.wq);				\
1401 	spin_lock_init(&(sk)->sk_lock.slock);				\
1402 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1403 			sizeof((sk)->sk_lock));				\
1404 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1405 				(skey), (sname));				\
1406 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1407 } while (0)
1408 
1409 #ifdef CONFIG_LOCKDEP
1410 static inline bool lockdep_sock_is_held(const struct sock *csk)
1411 {
1412 	struct sock *sk = (struct sock *)csk;
1413 
1414 	return lockdep_is_held(&sk->sk_lock) ||
1415 	       lockdep_is_held(&sk->sk_lock.slock);
1416 }
1417 #endif
1418 
1419 void lock_sock_nested(struct sock *sk, int subclass);
1420 
1421 static inline void lock_sock(struct sock *sk)
1422 {
1423 	lock_sock_nested(sk, 0);
1424 }
1425 
1426 void release_sock(struct sock *sk);
1427 
1428 /* BH context may only use the following locking interface. */
1429 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1430 #define bh_lock_sock_nested(__sk) \
1431 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1432 				SINGLE_DEPTH_NESTING)
1433 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1434 
1435 bool lock_sock_fast(struct sock *sk);
1436 /**
1437  * unlock_sock_fast - complement of lock_sock_fast
1438  * @sk: socket
1439  * @slow: slow mode
1440  *
1441  * fast unlock socket for user context.
1442  * If slow mode is on, we call regular release_sock()
1443  */
1444 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1445 {
1446 	if (slow)
1447 		release_sock(sk);
1448 	else
1449 		spin_unlock_bh(&sk->sk_lock.slock);
1450 }
1451 
1452 /* Used by processes to "lock" a socket state, so that
1453  * interrupts and bottom half handlers won't change it
1454  * from under us. It essentially blocks any incoming
1455  * packets, so that we won't get any new data or any
1456  * packets that change the state of the socket.
1457  *
1458  * While locked, BH processing will add new packets to
1459  * the backlog queue.  This queue is processed by the
1460  * owner of the socket lock right before it is released.
1461  *
1462  * Since ~2.3.5 it is also exclusive sleep lock serializing
1463  * accesses from user process context.
1464  */
1465 
1466 static inline void sock_owned_by_me(const struct sock *sk)
1467 {
1468 #ifdef CONFIG_LOCKDEP
1469 	WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1470 #endif
1471 }
1472 
1473 static inline bool sock_owned_by_user(const struct sock *sk)
1474 {
1475 	sock_owned_by_me(sk);
1476 	return sk->sk_lock.owned;
1477 }
1478 
1479 /* no reclassification while locks are held */
1480 static inline bool sock_allow_reclassification(const struct sock *csk)
1481 {
1482 	struct sock *sk = (struct sock *)csk;
1483 
1484 	return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1485 }
1486 
1487 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1488 		      struct proto *prot, int kern);
1489 void sk_free(struct sock *sk);
1490 void sk_destruct(struct sock *sk);
1491 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1492 
1493 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1494 			     gfp_t priority);
1495 void __sock_wfree(struct sk_buff *skb);
1496 void sock_wfree(struct sk_buff *skb);
1497 void skb_orphan_partial(struct sk_buff *skb);
1498 void sock_rfree(struct sk_buff *skb);
1499 void sock_efree(struct sk_buff *skb);
1500 #ifdef CONFIG_INET
1501 void sock_edemux(struct sk_buff *skb);
1502 #else
1503 #define sock_edemux(skb) sock_efree(skb)
1504 #endif
1505 
1506 int sock_setsockopt(struct socket *sock, int level, int op,
1507 		    char __user *optval, unsigned int optlen);
1508 
1509 int sock_getsockopt(struct socket *sock, int level, int op,
1510 		    char __user *optval, int __user *optlen);
1511 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1512 				    int noblock, int *errcode);
1513 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1514 				     unsigned long data_len, int noblock,
1515 				     int *errcode, int max_page_order);
1516 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1517 void sock_kfree_s(struct sock *sk, void *mem, int size);
1518 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1519 void sk_send_sigurg(struct sock *sk);
1520 
1521 struct sockcm_cookie {
1522 	u32 mark;
1523 	u16 tsflags;
1524 };
1525 
1526 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1527 		     struct sockcm_cookie *sockc);
1528 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1529 		   struct sockcm_cookie *sockc);
1530 
1531 /*
1532  * Functions to fill in entries in struct proto_ops when a protocol
1533  * does not implement a particular function.
1534  */
1535 int sock_no_bind(struct socket *, struct sockaddr *, int);
1536 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1537 int sock_no_socketpair(struct socket *, struct socket *);
1538 int sock_no_accept(struct socket *, struct socket *, int);
1539 int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
1540 unsigned int sock_no_poll(struct file *, struct socket *,
1541 			  struct poll_table_struct *);
1542 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1543 int sock_no_listen(struct socket *, int);
1544 int sock_no_shutdown(struct socket *, int);
1545 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1546 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1547 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1548 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1549 int sock_no_mmap(struct file *file, struct socket *sock,
1550 		 struct vm_area_struct *vma);
1551 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1552 			 size_t size, int flags);
1553 
1554 /*
1555  * Functions to fill in entries in struct proto_ops when a protocol
1556  * uses the inet style.
1557  */
1558 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1559 				  char __user *optval, int __user *optlen);
1560 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1561 			int flags);
1562 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1563 				  char __user *optval, unsigned int optlen);
1564 int compat_sock_common_getsockopt(struct socket *sock, int level,
1565 		int optname, char __user *optval, int __user *optlen);
1566 int compat_sock_common_setsockopt(struct socket *sock, int level,
1567 		int optname, char __user *optval, unsigned int optlen);
1568 
1569 void sk_common_release(struct sock *sk);
1570 
1571 /*
1572  *	Default socket callbacks and setup code
1573  */
1574 
1575 /* Initialise core socket variables */
1576 void sock_init_data(struct socket *sock, struct sock *sk);
1577 
1578 /*
1579  * Socket reference counting postulates.
1580  *
1581  * * Each user of socket SHOULD hold a reference count.
1582  * * Each access point to socket (an hash table bucket, reference from a list,
1583  *   running timer, skb in flight MUST hold a reference count.
1584  * * When reference count hits 0, it means it will never increase back.
1585  * * When reference count hits 0, it means that no references from
1586  *   outside exist to this socket and current process on current CPU
1587  *   is last user and may/should destroy this socket.
1588  * * sk_free is called from any context: process, BH, IRQ. When
1589  *   it is called, socket has no references from outside -> sk_free
1590  *   may release descendant resources allocated by the socket, but
1591  *   to the time when it is called, socket is NOT referenced by any
1592  *   hash tables, lists etc.
1593  * * Packets, delivered from outside (from network or from another process)
1594  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1595  *   when they sit in queue. Otherwise, packets will leak to hole, when
1596  *   socket is looked up by one cpu and unhasing is made by another CPU.
1597  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1598  *   (leak to backlog). Packet socket does all the processing inside
1599  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1600  *   use separate SMP lock, so that they are prone too.
1601  */
1602 
1603 /* Ungrab socket and destroy it, if it was the last reference. */
1604 static inline void sock_put(struct sock *sk)
1605 {
1606 	if (atomic_dec_and_test(&sk->sk_refcnt))
1607 		sk_free(sk);
1608 }
1609 /* Generic version of sock_put(), dealing with all sockets
1610  * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1611  */
1612 void sock_gen_put(struct sock *sk);
1613 
1614 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1615 		     unsigned int trim_cap, bool refcounted);
1616 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1617 				 const int nested)
1618 {
1619 	return __sk_receive_skb(sk, skb, nested, 1, true);
1620 }
1621 
1622 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1623 {
1624 	sk->sk_tx_queue_mapping = tx_queue;
1625 }
1626 
1627 static inline void sk_tx_queue_clear(struct sock *sk)
1628 {
1629 	sk->sk_tx_queue_mapping = -1;
1630 }
1631 
1632 static inline int sk_tx_queue_get(const struct sock *sk)
1633 {
1634 	return sk ? sk->sk_tx_queue_mapping : -1;
1635 }
1636 
1637 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1638 {
1639 	sk_tx_queue_clear(sk);
1640 	sk->sk_socket = sock;
1641 }
1642 
1643 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1644 {
1645 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1646 	return &rcu_dereference_raw(sk->sk_wq)->wait;
1647 }
1648 /* Detach socket from process context.
1649  * Announce socket dead, detach it from wait queue and inode.
1650  * Note that parent inode held reference count on this struct sock,
1651  * we do not release it in this function, because protocol
1652  * probably wants some additional cleanups or even continuing
1653  * to work with this socket (TCP).
1654  */
1655 static inline void sock_orphan(struct sock *sk)
1656 {
1657 	write_lock_bh(&sk->sk_callback_lock);
1658 	sock_set_flag(sk, SOCK_DEAD);
1659 	sk_set_socket(sk, NULL);
1660 	sk->sk_wq  = NULL;
1661 	write_unlock_bh(&sk->sk_callback_lock);
1662 }
1663 
1664 static inline void sock_graft(struct sock *sk, struct socket *parent)
1665 {
1666 	write_lock_bh(&sk->sk_callback_lock);
1667 	sk->sk_wq = parent->wq;
1668 	parent->sk = sk;
1669 	sk_set_socket(sk, parent);
1670 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
1671 	security_sock_graft(sk, parent);
1672 	write_unlock_bh(&sk->sk_callback_lock);
1673 }
1674 
1675 kuid_t sock_i_uid(struct sock *sk);
1676 unsigned long sock_i_ino(struct sock *sk);
1677 
1678 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1679 {
1680 	return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1681 }
1682 
1683 static inline u32 net_tx_rndhash(void)
1684 {
1685 	u32 v = prandom_u32();
1686 
1687 	return v ?: 1;
1688 }
1689 
1690 static inline void sk_set_txhash(struct sock *sk)
1691 {
1692 	sk->sk_txhash = net_tx_rndhash();
1693 }
1694 
1695 static inline void sk_rethink_txhash(struct sock *sk)
1696 {
1697 	if (sk->sk_txhash)
1698 		sk_set_txhash(sk);
1699 }
1700 
1701 static inline struct dst_entry *
1702 __sk_dst_get(struct sock *sk)
1703 {
1704 	return rcu_dereference_check(sk->sk_dst_cache,
1705 				     lockdep_sock_is_held(sk));
1706 }
1707 
1708 static inline struct dst_entry *
1709 sk_dst_get(struct sock *sk)
1710 {
1711 	struct dst_entry *dst;
1712 
1713 	rcu_read_lock();
1714 	dst = rcu_dereference(sk->sk_dst_cache);
1715 	if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1716 		dst = NULL;
1717 	rcu_read_unlock();
1718 	return dst;
1719 }
1720 
1721 static inline void dst_negative_advice(struct sock *sk)
1722 {
1723 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1724 
1725 	sk_rethink_txhash(sk);
1726 
1727 	if (dst && dst->ops->negative_advice) {
1728 		ndst = dst->ops->negative_advice(dst);
1729 
1730 		if (ndst != dst) {
1731 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
1732 			sk_tx_queue_clear(sk);
1733 		}
1734 	}
1735 }
1736 
1737 static inline void
1738 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1739 {
1740 	struct dst_entry *old_dst;
1741 
1742 	sk_tx_queue_clear(sk);
1743 	/*
1744 	 * This can be called while sk is owned by the caller only,
1745 	 * with no state that can be checked in a rcu_dereference_check() cond
1746 	 */
1747 	old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1748 	rcu_assign_pointer(sk->sk_dst_cache, dst);
1749 	dst_release(old_dst);
1750 }
1751 
1752 static inline void
1753 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1754 {
1755 	struct dst_entry *old_dst;
1756 
1757 	sk_tx_queue_clear(sk);
1758 	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1759 	dst_release(old_dst);
1760 }
1761 
1762 static inline void
1763 __sk_dst_reset(struct sock *sk)
1764 {
1765 	__sk_dst_set(sk, NULL);
1766 }
1767 
1768 static inline void
1769 sk_dst_reset(struct sock *sk)
1770 {
1771 	sk_dst_set(sk, NULL);
1772 }
1773 
1774 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1775 
1776 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1777 
1778 bool sk_mc_loop(struct sock *sk);
1779 
1780 static inline bool sk_can_gso(const struct sock *sk)
1781 {
1782 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1783 }
1784 
1785 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1786 
1787 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1788 {
1789 	sk->sk_route_nocaps |= flags;
1790 	sk->sk_route_caps &= ~flags;
1791 }
1792 
1793 static inline bool sk_check_csum_caps(struct sock *sk)
1794 {
1795 	return (sk->sk_route_caps & NETIF_F_HW_CSUM) ||
1796 	       (sk->sk_family == PF_INET &&
1797 		(sk->sk_route_caps & NETIF_F_IP_CSUM)) ||
1798 	       (sk->sk_family == PF_INET6 &&
1799 		(sk->sk_route_caps & NETIF_F_IPV6_CSUM));
1800 }
1801 
1802 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1803 					   struct iov_iter *from, char *to,
1804 					   int copy, int offset)
1805 {
1806 	if (skb->ip_summed == CHECKSUM_NONE) {
1807 		__wsum csum = 0;
1808 		if (csum_and_copy_from_iter(to, copy, &csum, from) != copy)
1809 			return -EFAULT;
1810 		skb->csum = csum_block_add(skb->csum, csum, offset);
1811 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1812 		if (copy_from_iter_nocache(to, copy, from) != copy)
1813 			return -EFAULT;
1814 	} else if (copy_from_iter(to, copy, from) != copy)
1815 		return -EFAULT;
1816 
1817 	return 0;
1818 }
1819 
1820 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1821 				       struct iov_iter *from, int copy)
1822 {
1823 	int err, offset = skb->len;
1824 
1825 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1826 				       copy, offset);
1827 	if (err)
1828 		__skb_trim(skb, offset);
1829 
1830 	return err;
1831 }
1832 
1833 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1834 					   struct sk_buff *skb,
1835 					   struct page *page,
1836 					   int off, int copy)
1837 {
1838 	int err;
1839 
1840 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1841 				       copy, skb->len);
1842 	if (err)
1843 		return err;
1844 
1845 	skb->len	     += copy;
1846 	skb->data_len	     += copy;
1847 	skb->truesize	     += copy;
1848 	sk->sk_wmem_queued   += copy;
1849 	sk_mem_charge(sk, copy);
1850 	return 0;
1851 }
1852 
1853 /**
1854  * sk_wmem_alloc_get - returns write allocations
1855  * @sk: socket
1856  *
1857  * Returns sk_wmem_alloc minus initial offset of one
1858  */
1859 static inline int sk_wmem_alloc_get(const struct sock *sk)
1860 {
1861 	return atomic_read(&sk->sk_wmem_alloc) - 1;
1862 }
1863 
1864 /**
1865  * sk_rmem_alloc_get - returns read allocations
1866  * @sk: socket
1867  *
1868  * Returns sk_rmem_alloc
1869  */
1870 static inline int sk_rmem_alloc_get(const struct sock *sk)
1871 {
1872 	return atomic_read(&sk->sk_rmem_alloc);
1873 }
1874 
1875 /**
1876  * sk_has_allocations - check if allocations are outstanding
1877  * @sk: socket
1878  *
1879  * Returns true if socket has write or read allocations
1880  */
1881 static inline bool sk_has_allocations(const struct sock *sk)
1882 {
1883 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1884 }
1885 
1886 /**
1887  * skwq_has_sleeper - check if there are any waiting processes
1888  * @wq: struct socket_wq
1889  *
1890  * Returns true if socket_wq has waiting processes
1891  *
1892  * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
1893  * barrier call. They were added due to the race found within the tcp code.
1894  *
1895  * Consider following tcp code paths:
1896  *
1897  * CPU1                  CPU2
1898  *
1899  * sys_select            receive packet
1900  *   ...                 ...
1901  *   __add_wait_queue    update tp->rcv_nxt
1902  *   ...                 ...
1903  *   tp->rcv_nxt check   sock_def_readable
1904  *   ...                 {
1905  *   schedule               rcu_read_lock();
1906  *                          wq = rcu_dereference(sk->sk_wq);
1907  *                          if (wq && waitqueue_active(&wq->wait))
1908  *                              wake_up_interruptible(&wq->wait)
1909  *                          ...
1910  *                       }
1911  *
1912  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1913  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
1914  * could then endup calling schedule and sleep forever if there are no more
1915  * data on the socket.
1916  *
1917  */
1918 static inline bool skwq_has_sleeper(struct socket_wq *wq)
1919 {
1920 	return wq && wq_has_sleeper(&wq->wait);
1921 }
1922 
1923 /**
1924  * sock_poll_wait - place memory barrier behind the poll_wait call.
1925  * @filp:           file
1926  * @wait_address:   socket wait queue
1927  * @p:              poll_table
1928  *
1929  * See the comments in the wq_has_sleeper function.
1930  */
1931 static inline void sock_poll_wait(struct file *filp,
1932 		wait_queue_head_t *wait_address, poll_table *p)
1933 {
1934 	if (!poll_does_not_wait(p) && wait_address) {
1935 		poll_wait(filp, wait_address, p);
1936 		/* We need to be sure we are in sync with the
1937 		 * socket flags modification.
1938 		 *
1939 		 * This memory barrier is paired in the wq_has_sleeper.
1940 		 */
1941 		smp_mb();
1942 	}
1943 }
1944 
1945 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
1946 {
1947 	if (sk->sk_txhash) {
1948 		skb->l4_hash = 1;
1949 		skb->hash = sk->sk_txhash;
1950 	}
1951 }
1952 
1953 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
1954 
1955 /*
1956  *	Queue a received datagram if it will fit. Stream and sequenced
1957  *	protocols can't normally use this as they need to fit buffers in
1958  *	and play with them.
1959  *
1960  *	Inlined as it's very short and called for pretty much every
1961  *	packet ever received.
1962  */
1963 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1964 {
1965 	skb_orphan(skb);
1966 	skb->sk = sk;
1967 	skb->destructor = sock_rfree;
1968 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1969 	sk_mem_charge(sk, skb->truesize);
1970 }
1971 
1972 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
1973 		    unsigned long expires);
1974 
1975 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
1976 
1977 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff *skb,
1978 			unsigned int flags);
1979 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1980 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1981 
1982 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1983 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
1984 
1985 /*
1986  *	Recover an error report and clear atomically
1987  */
1988 
1989 static inline int sock_error(struct sock *sk)
1990 {
1991 	int err;
1992 	if (likely(!sk->sk_err))
1993 		return 0;
1994 	err = xchg(&sk->sk_err, 0);
1995 	return -err;
1996 }
1997 
1998 static inline unsigned long sock_wspace(struct sock *sk)
1999 {
2000 	int amt = 0;
2001 
2002 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2003 		amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
2004 		if (amt < 0)
2005 			amt = 0;
2006 	}
2007 	return amt;
2008 }
2009 
2010 /* Note:
2011  *  We use sk->sk_wq_raw, from contexts knowing this
2012  *  pointer is not NULL and cannot disappear/change.
2013  */
2014 static inline void sk_set_bit(int nr, struct sock *sk)
2015 {
2016 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2017 	    !sock_flag(sk, SOCK_FASYNC))
2018 		return;
2019 
2020 	set_bit(nr, &sk->sk_wq_raw->flags);
2021 }
2022 
2023 static inline void sk_clear_bit(int nr, struct sock *sk)
2024 {
2025 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2026 	    !sock_flag(sk, SOCK_FASYNC))
2027 		return;
2028 
2029 	clear_bit(nr, &sk->sk_wq_raw->flags);
2030 }
2031 
2032 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2033 {
2034 	if (sock_flag(sk, SOCK_FASYNC)) {
2035 		rcu_read_lock();
2036 		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2037 		rcu_read_unlock();
2038 	}
2039 }
2040 
2041 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2042  * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2043  * Note: for send buffers, TCP works better if we can build two skbs at
2044  * minimum.
2045  */
2046 #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2047 
2048 #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2049 #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2050 
2051 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2052 {
2053 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2054 		sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2055 		sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2056 	}
2057 }
2058 
2059 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2060 				    bool force_schedule);
2061 
2062 /**
2063  * sk_page_frag - return an appropriate page_frag
2064  * @sk: socket
2065  *
2066  * If socket allocation mode allows current thread to sleep, it means its
2067  * safe to use the per task page_frag instead of the per socket one.
2068  */
2069 static inline struct page_frag *sk_page_frag(struct sock *sk)
2070 {
2071 	if (gfpflags_allow_blocking(sk->sk_allocation))
2072 		return &current->task_frag;
2073 
2074 	return &sk->sk_frag;
2075 }
2076 
2077 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2078 
2079 /*
2080  *	Default write policy as shown to user space via poll/select/SIGIO
2081  */
2082 static inline bool sock_writeable(const struct sock *sk)
2083 {
2084 	return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2085 }
2086 
2087 static inline gfp_t gfp_any(void)
2088 {
2089 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2090 }
2091 
2092 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2093 {
2094 	return noblock ? 0 : sk->sk_rcvtimeo;
2095 }
2096 
2097 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2098 {
2099 	return noblock ? 0 : sk->sk_sndtimeo;
2100 }
2101 
2102 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2103 {
2104 	return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2105 }
2106 
2107 /* Alas, with timeout socket operations are not restartable.
2108  * Compare this to poll().
2109  */
2110 static inline int sock_intr_errno(long timeo)
2111 {
2112 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2113 }
2114 
2115 struct sock_skb_cb {
2116 	u32 dropcount;
2117 };
2118 
2119 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2120  * using skb->cb[] would keep using it directly and utilize its
2121  * alignement guarantee.
2122  */
2123 #define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2124 			    sizeof(struct sock_skb_cb)))
2125 
2126 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2127 			    SOCK_SKB_CB_OFFSET))
2128 
2129 #define sock_skb_cb_check_size(size) \
2130 	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2131 
2132 static inline void
2133 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2134 {
2135 	SOCK_SKB_CB(skb)->dropcount = atomic_read(&sk->sk_drops);
2136 }
2137 
2138 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2139 {
2140 	int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2141 
2142 	atomic_add(segs, &sk->sk_drops);
2143 }
2144 
2145 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2146 			   struct sk_buff *skb);
2147 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2148 			     struct sk_buff *skb);
2149 
2150 static inline void
2151 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2152 {
2153 	ktime_t kt = skb->tstamp;
2154 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2155 
2156 	/*
2157 	 * generate control messages if
2158 	 * - receive time stamping in software requested
2159 	 * - software time stamp available and wanted
2160 	 * - hardware time stamps available and wanted
2161 	 */
2162 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2163 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2164 	    (kt.tv64 && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2165 	    (hwtstamps->hwtstamp.tv64 &&
2166 	     (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2167 		__sock_recv_timestamp(msg, sk, skb);
2168 	else
2169 		sk->sk_stamp = kt;
2170 
2171 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2172 		__sock_recv_wifi_status(msg, sk, skb);
2173 }
2174 
2175 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2176 			      struct sk_buff *skb);
2177 
2178 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2179 					  struct sk_buff *skb)
2180 {
2181 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2182 			   (1UL << SOCK_RCVTSTAMP))
2183 #define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2184 			   SOF_TIMESTAMPING_RAW_HARDWARE)
2185 
2186 	if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2187 		__sock_recv_ts_and_drops(msg, sk, skb);
2188 	else
2189 		sk->sk_stamp = skb->tstamp;
2190 }
2191 
2192 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2193 
2194 /**
2195  * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2196  * @sk:		socket sending this packet
2197  * @tsflags:	timestamping flags to use
2198  * @tx_flags:	completed with instructions for time stamping
2199  *
2200  * Note : callers should take care of initial *tx_flags value (usually 0)
2201  */
2202 static inline void sock_tx_timestamp(const struct sock *sk, __u16 tsflags,
2203 				     __u8 *tx_flags)
2204 {
2205 	if (unlikely(tsflags))
2206 		__sock_tx_timestamp(tsflags, tx_flags);
2207 	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2208 		*tx_flags |= SKBTX_WIFI_STATUS;
2209 }
2210 
2211 /**
2212  * sk_eat_skb - Release a skb if it is no longer needed
2213  * @sk: socket to eat this skb from
2214  * @skb: socket buffer to eat
2215  *
2216  * This routine must be called with interrupts disabled or with the socket
2217  * locked so that the sk_buff queue operation is ok.
2218 */
2219 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2220 {
2221 	__skb_unlink(skb, &sk->sk_receive_queue);
2222 	__kfree_skb(skb);
2223 }
2224 
2225 static inline
2226 struct net *sock_net(const struct sock *sk)
2227 {
2228 	return read_pnet(&sk->sk_net);
2229 }
2230 
2231 static inline
2232 void sock_net_set(struct sock *sk, struct net *net)
2233 {
2234 	write_pnet(&sk->sk_net, net);
2235 }
2236 
2237 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2238 {
2239 	if (skb->sk) {
2240 		struct sock *sk = skb->sk;
2241 
2242 		skb->destructor = NULL;
2243 		skb->sk = NULL;
2244 		return sk;
2245 	}
2246 	return NULL;
2247 }
2248 
2249 /* This helper checks if a socket is a full socket,
2250  * ie _not_ a timewait or request socket.
2251  */
2252 static inline bool sk_fullsock(const struct sock *sk)
2253 {
2254 	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2255 }
2256 
2257 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2258  * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2259  */
2260 static inline bool sk_listener(const struct sock *sk)
2261 {
2262 	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2263 }
2264 
2265 /**
2266  * sk_state_load - read sk->sk_state for lockless contexts
2267  * @sk: socket pointer
2268  *
2269  * Paired with sk_state_store(). Used in places we do not hold socket lock :
2270  * tcp_diag_get_info(), tcp_get_info(), tcp_poll(), get_tcp4_sock() ...
2271  */
2272 static inline int sk_state_load(const struct sock *sk)
2273 {
2274 	return smp_load_acquire(&sk->sk_state);
2275 }
2276 
2277 /**
2278  * sk_state_store - update sk->sk_state
2279  * @sk: socket pointer
2280  * @newstate: new state
2281  *
2282  * Paired with sk_state_load(). Should be used in contexts where
2283  * state change might impact lockless readers.
2284  */
2285 static inline void sk_state_store(struct sock *sk, int newstate)
2286 {
2287 	smp_store_release(&sk->sk_state, newstate);
2288 }
2289 
2290 void sock_enable_timestamp(struct sock *sk, int flag);
2291 int sock_get_timestamp(struct sock *, struct timeval __user *);
2292 int sock_get_timestampns(struct sock *, struct timespec __user *);
2293 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2294 		       int type);
2295 
2296 bool sk_ns_capable(const struct sock *sk,
2297 		   struct user_namespace *user_ns, int cap);
2298 bool sk_capable(const struct sock *sk, int cap);
2299 bool sk_net_capable(const struct sock *sk, int cap);
2300 
2301 extern __u32 sysctl_wmem_max;
2302 extern __u32 sysctl_rmem_max;
2303 
2304 extern int sysctl_tstamp_allow_data;
2305 extern int sysctl_optmem_max;
2306 
2307 extern __u32 sysctl_wmem_default;
2308 extern __u32 sysctl_rmem_default;
2309 
2310 #endif	/* _SOCK_H */
2311