1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the AF_INET socket handler. 7 * 8 * Version: @(#)sock.h 1.0.4 05/13/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche <flla@stud.uni-sb.de> 14 * 15 * Fixes: 16 * Alan Cox : Volatiles in skbuff pointers. See 17 * skbuff comments. May be overdone, 18 * better to prove they can be removed 19 * than the reverse. 20 * Alan Cox : Added a zapped field for tcp to note 21 * a socket is reset and must stay shut up 22 * Alan Cox : New fields for options 23 * Pauline Middelink : identd support 24 * Alan Cox : Eliminate low level recv/recvfrom 25 * David S. Miller : New socket lookup architecture. 26 * Steve Whitehouse: Default routines for sock_ops 27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made 28 * protinfo be just a void pointer, as the 29 * protocol specific parts were moved to 30 * respective headers and ipv4/v6, etc now 31 * use private slabcaches for its socks 32 * Pedro Hortas : New flags field for socket options 33 * 34 * 35 * This program is free software; you can redistribute it and/or 36 * modify it under the terms of the GNU General Public License 37 * as published by the Free Software Foundation; either version 38 * 2 of the License, or (at your option) any later version. 39 */ 40 #ifndef _SOCK_H 41 #define _SOCK_H 42 43 #include <linux/list.h> 44 #include <linux/timer.h> 45 #include <linux/cache.h> 46 #include <linux/module.h> 47 #include <linux/lockdep.h> 48 #include <linux/netdevice.h> 49 #include <linux/skbuff.h> /* struct sk_buff */ 50 #include <linux/security.h> 51 52 #include <linux/filter.h> 53 54 #include <asm/atomic.h> 55 #include <net/dst.h> 56 #include <net/checksum.h> 57 58 /* 59 * This structure really needs to be cleaned up. 60 * Most of it is for TCP, and not used by any of 61 * the other protocols. 62 */ 63 64 /* Define this to get the SOCK_DBG debugging facility. */ 65 #define SOCK_DEBUGGING 66 #ifdef SOCK_DEBUGGING 67 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \ 68 printk(KERN_DEBUG msg); } while (0) 69 #else 70 #define SOCK_DEBUG(sk, msg...) do { } while (0) 71 #endif 72 73 /* This is the per-socket lock. The spinlock provides a synchronization 74 * between user contexts and software interrupt processing, whereas the 75 * mini-semaphore synchronizes multiple users amongst themselves. 76 */ 77 struct sock_iocb; 78 typedef struct { 79 spinlock_t slock; 80 struct sock_iocb *owner; 81 wait_queue_head_t wq; 82 /* 83 * We express the mutex-alike socket_lock semantics 84 * to the lock validator by explicitly managing 85 * the slock as a lock variant (in addition to 86 * the slock itself): 87 */ 88 #ifdef CONFIG_DEBUG_LOCK_ALLOC 89 struct lockdep_map dep_map; 90 #endif 91 } socket_lock_t; 92 93 struct sock; 94 struct proto; 95 96 /** 97 * struct sock_common - minimal network layer representation of sockets 98 * @skc_family: network address family 99 * @skc_state: Connection state 100 * @skc_reuse: %SO_REUSEADDR setting 101 * @skc_bound_dev_if: bound device index if != 0 102 * @skc_node: main hash linkage for various protocol lookup tables 103 * @skc_bind_node: bind hash linkage for various protocol lookup tables 104 * @skc_refcnt: reference count 105 * @skc_hash: hash value used with various protocol lookup tables 106 * @skc_prot: protocol handlers inside a network family 107 * 108 * This is the minimal network layer representation of sockets, the header 109 * for struct sock and struct inet_timewait_sock. 110 */ 111 struct sock_common { 112 unsigned short skc_family; 113 volatile unsigned char skc_state; 114 unsigned char skc_reuse; 115 int skc_bound_dev_if; 116 struct hlist_node skc_node; 117 struct hlist_node skc_bind_node; 118 atomic_t skc_refcnt; 119 unsigned int skc_hash; 120 struct proto *skc_prot; 121 }; 122 123 /** 124 * struct sock - network layer representation of sockets 125 * @__sk_common: shared layout with inet_timewait_sock 126 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN 127 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings 128 * @sk_lock: synchronizer 129 * @sk_rcvbuf: size of receive buffer in bytes 130 * @sk_sleep: sock wait queue 131 * @sk_dst_cache: destination cache 132 * @sk_dst_lock: destination cache lock 133 * @sk_policy: flow policy 134 * @sk_rmem_alloc: receive queue bytes committed 135 * @sk_receive_queue: incoming packets 136 * @sk_wmem_alloc: transmit queue bytes committed 137 * @sk_write_queue: Packet sending queue 138 * @sk_async_wait_queue: DMA copied packets 139 * @sk_omem_alloc: "o" is "option" or "other" 140 * @sk_wmem_queued: persistent queue size 141 * @sk_forward_alloc: space allocated forward 142 * @sk_allocation: allocation mode 143 * @sk_sndbuf: size of send buffer in bytes 144 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, %SO_OOBINLINE settings 145 * @sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets 146 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) 147 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4) 148 * @sk_lingertime: %SO_LINGER l_linger setting 149 * @sk_backlog: always used with the per-socket spinlock held 150 * @sk_callback_lock: used with the callbacks in the end of this struct 151 * @sk_error_queue: rarely used 152 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, IPV6_ADDRFORM for instance) 153 * @sk_err: last error 154 * @sk_err_soft: errors that don't cause failure but are the cause of a persistent failure not just 'timed out' 155 * @sk_ack_backlog: current listen backlog 156 * @sk_max_ack_backlog: listen backlog set in listen() 157 * @sk_priority: %SO_PRIORITY setting 158 * @sk_type: socket type (%SOCK_STREAM, etc) 159 * @sk_protocol: which protocol this socket belongs in this network family 160 * @sk_peercred: %SO_PEERCRED setting 161 * @sk_rcvlowat: %SO_RCVLOWAT setting 162 * @sk_rcvtimeo: %SO_RCVTIMEO setting 163 * @sk_sndtimeo: %SO_SNDTIMEO setting 164 * @sk_filter: socket filtering instructions 165 * @sk_protinfo: private area, net family specific, when not using slab 166 * @sk_timer: sock cleanup timer 167 * @sk_stamp: time stamp of last packet received 168 * @sk_socket: Identd and reporting IO signals 169 * @sk_user_data: RPC layer private data 170 * @sk_sndmsg_page: cached page for sendmsg 171 * @sk_sndmsg_off: cached offset for sendmsg 172 * @sk_send_head: front of stuff to transmit 173 * @sk_security: used by security modules 174 * @sk_write_pending: a write to stream socket waits to start 175 * @sk_state_change: callback to indicate change in the state of the sock 176 * @sk_data_ready: callback to indicate there is data to be processed 177 * @sk_write_space: callback to indicate there is bf sending space available 178 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) 179 * @sk_backlog_rcv: callback to process the backlog 180 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 181 */ 182 struct sock { 183 /* 184 * Now struct inet_timewait_sock also uses sock_common, so please just 185 * don't add nothing before this first member (__sk_common) --acme 186 */ 187 struct sock_common __sk_common; 188 #define sk_family __sk_common.skc_family 189 #define sk_state __sk_common.skc_state 190 #define sk_reuse __sk_common.skc_reuse 191 #define sk_bound_dev_if __sk_common.skc_bound_dev_if 192 #define sk_node __sk_common.skc_node 193 #define sk_bind_node __sk_common.skc_bind_node 194 #define sk_refcnt __sk_common.skc_refcnt 195 #define sk_hash __sk_common.skc_hash 196 #define sk_prot __sk_common.skc_prot 197 unsigned char sk_shutdown : 2, 198 sk_no_check : 2, 199 sk_userlocks : 4; 200 unsigned char sk_protocol; 201 unsigned short sk_type; 202 int sk_rcvbuf; 203 socket_lock_t sk_lock; 204 wait_queue_head_t *sk_sleep; 205 struct dst_entry *sk_dst_cache; 206 struct xfrm_policy *sk_policy[2]; 207 rwlock_t sk_dst_lock; 208 atomic_t sk_rmem_alloc; 209 atomic_t sk_wmem_alloc; 210 atomic_t sk_omem_alloc; 211 struct sk_buff_head sk_receive_queue; 212 struct sk_buff_head sk_write_queue; 213 struct sk_buff_head sk_async_wait_queue; 214 int sk_wmem_queued; 215 int sk_forward_alloc; 216 gfp_t sk_allocation; 217 int sk_sndbuf; 218 int sk_route_caps; 219 int sk_gso_type; 220 int sk_rcvlowat; 221 unsigned long sk_flags; 222 unsigned long sk_lingertime; 223 /* 224 * The backlog queue is special, it is always used with 225 * the per-socket spinlock held and requires low latency 226 * access. Therefore we special case it's implementation. 227 */ 228 struct { 229 struct sk_buff *head; 230 struct sk_buff *tail; 231 } sk_backlog; 232 struct sk_buff_head sk_error_queue; 233 struct proto *sk_prot_creator; 234 rwlock_t sk_callback_lock; 235 int sk_err, 236 sk_err_soft; 237 unsigned short sk_ack_backlog; 238 unsigned short sk_max_ack_backlog; 239 __u32 sk_priority; 240 struct ucred sk_peercred; 241 long sk_rcvtimeo; 242 long sk_sndtimeo; 243 struct sk_filter *sk_filter; 244 void *sk_protinfo; 245 struct timer_list sk_timer; 246 struct timeval sk_stamp; 247 struct socket *sk_socket; 248 void *sk_user_data; 249 struct page *sk_sndmsg_page; 250 struct sk_buff *sk_send_head; 251 __u32 sk_sndmsg_off; 252 int sk_write_pending; 253 void *sk_security; 254 void (*sk_state_change)(struct sock *sk); 255 void (*sk_data_ready)(struct sock *sk, int bytes); 256 void (*sk_write_space)(struct sock *sk); 257 void (*sk_error_report)(struct sock *sk); 258 int (*sk_backlog_rcv)(struct sock *sk, 259 struct sk_buff *skb); 260 void (*sk_destruct)(struct sock *sk); 261 }; 262 263 /* 264 * Hashed lists helper routines 265 */ 266 static inline struct sock *__sk_head(const struct hlist_head *head) 267 { 268 return hlist_entry(head->first, struct sock, sk_node); 269 } 270 271 static inline struct sock *sk_head(const struct hlist_head *head) 272 { 273 return hlist_empty(head) ? NULL : __sk_head(head); 274 } 275 276 static inline struct sock *sk_next(const struct sock *sk) 277 { 278 return sk->sk_node.next ? 279 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL; 280 } 281 282 static inline int sk_unhashed(const struct sock *sk) 283 { 284 return hlist_unhashed(&sk->sk_node); 285 } 286 287 static inline int sk_hashed(const struct sock *sk) 288 { 289 return !sk_unhashed(sk); 290 } 291 292 static __inline__ void sk_node_init(struct hlist_node *node) 293 { 294 node->pprev = NULL; 295 } 296 297 static __inline__ void __sk_del_node(struct sock *sk) 298 { 299 __hlist_del(&sk->sk_node); 300 } 301 302 static __inline__ int __sk_del_node_init(struct sock *sk) 303 { 304 if (sk_hashed(sk)) { 305 __sk_del_node(sk); 306 sk_node_init(&sk->sk_node); 307 return 1; 308 } 309 return 0; 310 } 311 312 /* Grab socket reference count. This operation is valid only 313 when sk is ALREADY grabbed f.e. it is found in hash table 314 or a list and the lookup is made under lock preventing hash table 315 modifications. 316 */ 317 318 static inline void sock_hold(struct sock *sk) 319 { 320 atomic_inc(&sk->sk_refcnt); 321 } 322 323 /* Ungrab socket in the context, which assumes that socket refcnt 324 cannot hit zero, f.e. it is true in context of any socketcall. 325 */ 326 static inline void __sock_put(struct sock *sk) 327 { 328 atomic_dec(&sk->sk_refcnt); 329 } 330 331 static __inline__ int sk_del_node_init(struct sock *sk) 332 { 333 int rc = __sk_del_node_init(sk); 334 335 if (rc) { 336 /* paranoid for a while -acme */ 337 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 338 __sock_put(sk); 339 } 340 return rc; 341 } 342 343 static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list) 344 { 345 hlist_add_head(&sk->sk_node, list); 346 } 347 348 static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list) 349 { 350 sock_hold(sk); 351 __sk_add_node(sk, list); 352 } 353 354 static __inline__ void __sk_del_bind_node(struct sock *sk) 355 { 356 __hlist_del(&sk->sk_bind_node); 357 } 358 359 static __inline__ void sk_add_bind_node(struct sock *sk, 360 struct hlist_head *list) 361 { 362 hlist_add_head(&sk->sk_bind_node, list); 363 } 364 365 #define sk_for_each(__sk, node, list) \ 366 hlist_for_each_entry(__sk, node, list, sk_node) 367 #define sk_for_each_from(__sk, node) \ 368 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \ 369 hlist_for_each_entry_from(__sk, node, sk_node) 370 #define sk_for_each_continue(__sk, node) \ 371 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \ 372 hlist_for_each_entry_continue(__sk, node, sk_node) 373 #define sk_for_each_safe(__sk, node, tmp, list) \ 374 hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node) 375 #define sk_for_each_bound(__sk, node, list) \ 376 hlist_for_each_entry(__sk, node, list, sk_bind_node) 377 378 /* Sock flags */ 379 enum sock_flags { 380 SOCK_DEAD, 381 SOCK_DONE, 382 SOCK_URGINLINE, 383 SOCK_KEEPOPEN, 384 SOCK_LINGER, 385 SOCK_DESTROY, 386 SOCK_BROADCAST, 387 SOCK_TIMESTAMP, 388 SOCK_ZAPPED, 389 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ 390 SOCK_DBG, /* %SO_DEBUG setting */ 391 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ 392 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ 393 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */ 394 }; 395 396 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk) 397 { 398 nsk->sk_flags = osk->sk_flags; 399 } 400 401 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) 402 { 403 __set_bit(flag, &sk->sk_flags); 404 } 405 406 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) 407 { 408 __clear_bit(flag, &sk->sk_flags); 409 } 410 411 static inline int sock_flag(struct sock *sk, enum sock_flags flag) 412 { 413 return test_bit(flag, &sk->sk_flags); 414 } 415 416 static inline void sk_acceptq_removed(struct sock *sk) 417 { 418 sk->sk_ack_backlog--; 419 } 420 421 static inline void sk_acceptq_added(struct sock *sk) 422 { 423 sk->sk_ack_backlog++; 424 } 425 426 static inline int sk_acceptq_is_full(struct sock *sk) 427 { 428 return sk->sk_ack_backlog > sk->sk_max_ack_backlog; 429 } 430 431 /* 432 * Compute minimal free write space needed to queue new packets. 433 */ 434 static inline int sk_stream_min_wspace(struct sock *sk) 435 { 436 return sk->sk_wmem_queued / 2; 437 } 438 439 static inline int sk_stream_wspace(struct sock *sk) 440 { 441 return sk->sk_sndbuf - sk->sk_wmem_queued; 442 } 443 444 extern void sk_stream_write_space(struct sock *sk); 445 446 static inline int sk_stream_memory_free(struct sock *sk) 447 { 448 return sk->sk_wmem_queued < sk->sk_sndbuf; 449 } 450 451 extern void sk_stream_rfree(struct sk_buff *skb); 452 453 static inline void sk_stream_set_owner_r(struct sk_buff *skb, struct sock *sk) 454 { 455 skb->sk = sk; 456 skb->destructor = sk_stream_rfree; 457 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 458 sk->sk_forward_alloc -= skb->truesize; 459 } 460 461 static inline void sk_stream_free_skb(struct sock *sk, struct sk_buff *skb) 462 { 463 skb_truesize_check(skb); 464 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 465 sk->sk_wmem_queued -= skb->truesize; 466 sk->sk_forward_alloc += skb->truesize; 467 __kfree_skb(skb); 468 } 469 470 /* The per-socket spinlock must be held here. */ 471 static inline void sk_add_backlog(struct sock *sk, struct sk_buff *skb) 472 { 473 if (!sk->sk_backlog.tail) { 474 sk->sk_backlog.head = sk->sk_backlog.tail = skb; 475 } else { 476 sk->sk_backlog.tail->next = skb; 477 sk->sk_backlog.tail = skb; 478 } 479 skb->next = NULL; 480 } 481 482 #define sk_wait_event(__sk, __timeo, __condition) \ 483 ({ int rc; \ 484 release_sock(__sk); \ 485 rc = __condition; \ 486 if (!rc) { \ 487 *(__timeo) = schedule_timeout(*(__timeo)); \ 488 } \ 489 lock_sock(__sk); \ 490 rc = __condition; \ 491 rc; \ 492 }) 493 494 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p); 495 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p); 496 extern void sk_stream_wait_close(struct sock *sk, long timeo_p); 497 extern int sk_stream_error(struct sock *sk, int flags, int err); 498 extern void sk_stream_kill_queues(struct sock *sk); 499 500 extern int sk_wait_data(struct sock *sk, long *timeo); 501 502 struct request_sock_ops; 503 struct timewait_sock_ops; 504 505 /* Networking protocol blocks we attach to sockets. 506 * socket layer -> transport layer interface 507 * transport -> network interface is defined by struct inet_proto 508 */ 509 struct proto { 510 void (*close)(struct sock *sk, 511 long timeout); 512 int (*connect)(struct sock *sk, 513 struct sockaddr *uaddr, 514 int addr_len); 515 int (*disconnect)(struct sock *sk, int flags); 516 517 struct sock * (*accept) (struct sock *sk, int flags, int *err); 518 519 int (*ioctl)(struct sock *sk, int cmd, 520 unsigned long arg); 521 int (*init)(struct sock *sk); 522 int (*destroy)(struct sock *sk); 523 void (*shutdown)(struct sock *sk, int how); 524 int (*setsockopt)(struct sock *sk, int level, 525 int optname, char __user *optval, 526 int optlen); 527 int (*getsockopt)(struct sock *sk, int level, 528 int optname, char __user *optval, 529 int __user *option); 530 int (*compat_setsockopt)(struct sock *sk, 531 int level, 532 int optname, char __user *optval, 533 int optlen); 534 int (*compat_getsockopt)(struct sock *sk, 535 int level, 536 int optname, char __user *optval, 537 int __user *option); 538 int (*sendmsg)(struct kiocb *iocb, struct sock *sk, 539 struct msghdr *msg, size_t len); 540 int (*recvmsg)(struct kiocb *iocb, struct sock *sk, 541 struct msghdr *msg, 542 size_t len, int noblock, int flags, 543 int *addr_len); 544 int (*sendpage)(struct sock *sk, struct page *page, 545 int offset, size_t size, int flags); 546 int (*bind)(struct sock *sk, 547 struct sockaddr *uaddr, int addr_len); 548 549 int (*backlog_rcv) (struct sock *sk, 550 struct sk_buff *skb); 551 552 /* Keeping track of sk's, looking them up, and port selection methods. */ 553 void (*hash)(struct sock *sk); 554 void (*unhash)(struct sock *sk); 555 int (*get_port)(struct sock *sk, unsigned short snum); 556 557 /* Memory pressure */ 558 void (*enter_memory_pressure)(void); 559 atomic_t *memory_allocated; /* Current allocated memory. */ 560 atomic_t *sockets_allocated; /* Current number of sockets. */ 561 /* 562 * Pressure flag: try to collapse. 563 * Technical note: it is used by multiple contexts non atomically. 564 * All the sk_stream_mem_schedule() is of this nature: accounting 565 * is strict, actions are advisory and have some latency. 566 */ 567 int *memory_pressure; 568 int *sysctl_mem; 569 int *sysctl_wmem; 570 int *sysctl_rmem; 571 int max_header; 572 573 kmem_cache_t *slab; 574 unsigned int obj_size; 575 576 atomic_t *orphan_count; 577 578 struct request_sock_ops *rsk_prot; 579 struct timewait_sock_ops *twsk_prot; 580 581 struct module *owner; 582 583 char name[32]; 584 585 struct list_head node; 586 #ifdef SOCK_REFCNT_DEBUG 587 atomic_t socks; 588 #endif 589 struct { 590 int inuse; 591 u8 __pad[SMP_CACHE_BYTES - sizeof(int)]; 592 } stats[NR_CPUS]; 593 }; 594 595 extern int proto_register(struct proto *prot, int alloc_slab); 596 extern void proto_unregister(struct proto *prot); 597 598 #ifdef SOCK_REFCNT_DEBUG 599 static inline void sk_refcnt_debug_inc(struct sock *sk) 600 { 601 atomic_inc(&sk->sk_prot->socks); 602 } 603 604 static inline void sk_refcnt_debug_dec(struct sock *sk) 605 { 606 atomic_dec(&sk->sk_prot->socks); 607 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n", 608 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks)); 609 } 610 611 static inline void sk_refcnt_debug_release(const struct sock *sk) 612 { 613 if (atomic_read(&sk->sk_refcnt) != 1) 614 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n", 615 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt)); 616 } 617 #else /* SOCK_REFCNT_DEBUG */ 618 #define sk_refcnt_debug_inc(sk) do { } while (0) 619 #define sk_refcnt_debug_dec(sk) do { } while (0) 620 #define sk_refcnt_debug_release(sk) do { } while (0) 621 #endif /* SOCK_REFCNT_DEBUG */ 622 623 /* Called with local bh disabled */ 624 static __inline__ void sock_prot_inc_use(struct proto *prot) 625 { 626 prot->stats[smp_processor_id()].inuse++; 627 } 628 629 static __inline__ void sock_prot_dec_use(struct proto *prot) 630 { 631 prot->stats[smp_processor_id()].inuse--; 632 } 633 634 /* With per-bucket locks this operation is not-atomic, so that 635 * this version is not worse. 636 */ 637 static inline void __sk_prot_rehash(struct sock *sk) 638 { 639 sk->sk_prot->unhash(sk); 640 sk->sk_prot->hash(sk); 641 } 642 643 /* About 10 seconds */ 644 #define SOCK_DESTROY_TIME (10*HZ) 645 646 /* Sockets 0-1023 can't be bound to unless you are superuser */ 647 #define PROT_SOCK 1024 648 649 #define SHUTDOWN_MASK 3 650 #define RCV_SHUTDOWN 1 651 #define SEND_SHUTDOWN 2 652 653 #define SOCK_SNDBUF_LOCK 1 654 #define SOCK_RCVBUF_LOCK 2 655 #define SOCK_BINDADDR_LOCK 4 656 #define SOCK_BINDPORT_LOCK 8 657 658 /* sock_iocb: used to kick off async processing of socket ios */ 659 struct sock_iocb { 660 struct list_head list; 661 662 int flags; 663 int size; 664 struct socket *sock; 665 struct sock *sk; 666 struct scm_cookie *scm; 667 struct msghdr *msg, async_msg; 668 struct iovec async_iov; 669 struct kiocb *kiocb; 670 }; 671 672 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb) 673 { 674 return (struct sock_iocb *)iocb->private; 675 } 676 677 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si) 678 { 679 return si->kiocb; 680 } 681 682 struct socket_alloc { 683 struct socket socket; 684 struct inode vfs_inode; 685 }; 686 687 static inline struct socket *SOCKET_I(struct inode *inode) 688 { 689 return &container_of(inode, struct socket_alloc, vfs_inode)->socket; 690 } 691 692 static inline struct inode *SOCK_INODE(struct socket *socket) 693 { 694 return &container_of(socket, struct socket_alloc, socket)->vfs_inode; 695 } 696 697 extern void __sk_stream_mem_reclaim(struct sock *sk); 698 extern int sk_stream_mem_schedule(struct sock *sk, int size, int kind); 699 700 #define SK_STREAM_MEM_QUANTUM ((int)PAGE_SIZE) 701 702 static inline int sk_stream_pages(int amt) 703 { 704 return (amt + SK_STREAM_MEM_QUANTUM - 1) / SK_STREAM_MEM_QUANTUM; 705 } 706 707 static inline void sk_stream_mem_reclaim(struct sock *sk) 708 { 709 if (sk->sk_forward_alloc >= SK_STREAM_MEM_QUANTUM) 710 __sk_stream_mem_reclaim(sk); 711 } 712 713 static inline void sk_stream_writequeue_purge(struct sock *sk) 714 { 715 struct sk_buff *skb; 716 717 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) 718 sk_stream_free_skb(sk, skb); 719 sk_stream_mem_reclaim(sk); 720 } 721 722 static inline int sk_stream_rmem_schedule(struct sock *sk, struct sk_buff *skb) 723 { 724 return (int)skb->truesize <= sk->sk_forward_alloc || 725 sk_stream_mem_schedule(sk, skb->truesize, 1); 726 } 727 728 static inline int sk_stream_wmem_schedule(struct sock *sk, int size) 729 { 730 return size <= sk->sk_forward_alloc || 731 sk_stream_mem_schedule(sk, size, 0); 732 } 733 734 /* Used by processes to "lock" a socket state, so that 735 * interrupts and bottom half handlers won't change it 736 * from under us. It essentially blocks any incoming 737 * packets, so that we won't get any new data or any 738 * packets that change the state of the socket. 739 * 740 * While locked, BH processing will add new packets to 741 * the backlog queue. This queue is processed by the 742 * owner of the socket lock right before it is released. 743 * 744 * Since ~2.3.5 it is also exclusive sleep lock serializing 745 * accesses from user process context. 746 */ 747 #define sock_owned_by_user(sk) ((sk)->sk_lock.owner) 748 749 extern void FASTCALL(lock_sock(struct sock *sk)); 750 extern void FASTCALL(release_sock(struct sock *sk)); 751 752 /* BH context may only use the following locking interface. */ 753 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) 754 #define bh_lock_sock_nested(__sk) \ 755 spin_lock_nested(&((__sk)->sk_lock.slock), \ 756 SINGLE_DEPTH_NESTING) 757 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) 758 759 extern struct sock *sk_alloc(int family, 760 gfp_t priority, 761 struct proto *prot, int zero_it); 762 extern void sk_free(struct sock *sk); 763 extern struct sock *sk_clone(const struct sock *sk, 764 const gfp_t priority); 765 766 extern struct sk_buff *sock_wmalloc(struct sock *sk, 767 unsigned long size, int force, 768 gfp_t priority); 769 extern struct sk_buff *sock_rmalloc(struct sock *sk, 770 unsigned long size, int force, 771 gfp_t priority); 772 extern void sock_wfree(struct sk_buff *skb); 773 extern void sock_rfree(struct sk_buff *skb); 774 775 extern int sock_setsockopt(struct socket *sock, int level, 776 int op, char __user *optval, 777 int optlen); 778 779 extern int sock_getsockopt(struct socket *sock, int level, 780 int op, char __user *optval, 781 int __user *optlen); 782 extern struct sk_buff *sock_alloc_send_skb(struct sock *sk, 783 unsigned long size, 784 int noblock, 785 int *errcode); 786 extern void *sock_kmalloc(struct sock *sk, int size, 787 gfp_t priority); 788 extern void sock_kfree_s(struct sock *sk, void *mem, int size); 789 extern void sk_send_sigurg(struct sock *sk); 790 791 /* 792 * Functions to fill in entries in struct proto_ops when a protocol 793 * does not implement a particular function. 794 */ 795 extern int sock_no_bind(struct socket *, 796 struct sockaddr *, int); 797 extern int sock_no_connect(struct socket *, 798 struct sockaddr *, int, int); 799 extern int sock_no_socketpair(struct socket *, 800 struct socket *); 801 extern int sock_no_accept(struct socket *, 802 struct socket *, int); 803 extern int sock_no_getname(struct socket *, 804 struct sockaddr *, int *, int); 805 extern unsigned int sock_no_poll(struct file *, struct socket *, 806 struct poll_table_struct *); 807 extern int sock_no_ioctl(struct socket *, unsigned int, 808 unsigned long); 809 extern int sock_no_listen(struct socket *, int); 810 extern int sock_no_shutdown(struct socket *, int); 811 extern int sock_no_getsockopt(struct socket *, int , int, 812 char __user *, int __user *); 813 extern int sock_no_setsockopt(struct socket *, int, int, 814 char __user *, int); 815 extern int sock_no_sendmsg(struct kiocb *, struct socket *, 816 struct msghdr *, size_t); 817 extern int sock_no_recvmsg(struct kiocb *, struct socket *, 818 struct msghdr *, size_t, int); 819 extern int sock_no_mmap(struct file *file, 820 struct socket *sock, 821 struct vm_area_struct *vma); 822 extern ssize_t sock_no_sendpage(struct socket *sock, 823 struct page *page, 824 int offset, size_t size, 825 int flags); 826 827 /* 828 * Functions to fill in entries in struct proto_ops when a protocol 829 * uses the inet style. 830 */ 831 extern int sock_common_getsockopt(struct socket *sock, int level, int optname, 832 char __user *optval, int __user *optlen); 833 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock, 834 struct msghdr *msg, size_t size, int flags); 835 extern int sock_common_setsockopt(struct socket *sock, int level, int optname, 836 char __user *optval, int optlen); 837 extern int compat_sock_common_getsockopt(struct socket *sock, int level, 838 int optname, char __user *optval, int __user *optlen); 839 extern int compat_sock_common_setsockopt(struct socket *sock, int level, 840 int optname, char __user *optval, int optlen); 841 842 extern void sk_common_release(struct sock *sk); 843 844 /* 845 * Default socket callbacks and setup code 846 */ 847 848 /* Initialise core socket variables */ 849 extern void sock_init_data(struct socket *sock, struct sock *sk); 850 851 /** 852 * sk_filter - run a packet through a socket filter 853 * @sk: sock associated with &sk_buff 854 * @skb: buffer to filter 855 * @needlock: set to 1 if the sock is not locked by caller. 856 * 857 * Run the filter code and then cut skb->data to correct size returned by 858 * sk_run_filter. If pkt_len is 0 we toss packet. If skb->len is smaller 859 * than pkt_len we keep whole skb->data. This is the socket level 860 * wrapper to sk_run_filter. It returns 0 if the packet should 861 * be accepted or -EPERM if the packet should be tossed. 862 * 863 */ 864 865 static inline int sk_filter(struct sock *sk, struct sk_buff *skb, int needlock) 866 { 867 int err; 868 869 err = security_sock_rcv_skb(sk, skb); 870 if (err) 871 return err; 872 873 if (sk->sk_filter) { 874 struct sk_filter *filter; 875 876 if (needlock) 877 bh_lock_sock(sk); 878 879 filter = sk->sk_filter; 880 if (filter) { 881 unsigned int pkt_len = sk_run_filter(skb, filter->insns, 882 filter->len); 883 err = pkt_len ? pskb_trim(skb, pkt_len) : -EPERM; 884 } 885 886 if (needlock) 887 bh_unlock_sock(sk); 888 } 889 return err; 890 } 891 892 /** 893 * sk_filter_release: Release a socket filter 894 * @sk: socket 895 * @fp: filter to remove 896 * 897 * Remove a filter from a socket and release its resources. 898 */ 899 900 static inline void sk_filter_release(struct sock *sk, struct sk_filter *fp) 901 { 902 unsigned int size = sk_filter_len(fp); 903 904 atomic_sub(size, &sk->sk_omem_alloc); 905 906 if (atomic_dec_and_test(&fp->refcnt)) 907 kfree(fp); 908 } 909 910 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp) 911 { 912 atomic_inc(&fp->refcnt); 913 atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc); 914 } 915 916 /* 917 * Socket reference counting postulates. 918 * 919 * * Each user of socket SHOULD hold a reference count. 920 * * Each access point to socket (an hash table bucket, reference from a list, 921 * running timer, skb in flight MUST hold a reference count. 922 * * When reference count hits 0, it means it will never increase back. 923 * * When reference count hits 0, it means that no references from 924 * outside exist to this socket and current process on current CPU 925 * is last user and may/should destroy this socket. 926 * * sk_free is called from any context: process, BH, IRQ. When 927 * it is called, socket has no references from outside -> sk_free 928 * may release descendant resources allocated by the socket, but 929 * to the time when it is called, socket is NOT referenced by any 930 * hash tables, lists etc. 931 * * Packets, delivered from outside (from network or from another process) 932 * and enqueued on receive/error queues SHOULD NOT grab reference count, 933 * when they sit in queue. Otherwise, packets will leak to hole, when 934 * socket is looked up by one cpu and unhasing is made by another CPU. 935 * It is true for udp/raw, netlink (leak to receive and error queues), tcp 936 * (leak to backlog). Packet socket does all the processing inside 937 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets 938 * use separate SMP lock, so that they are prone too. 939 */ 940 941 /* Ungrab socket and destroy it, if it was the last reference. */ 942 static inline void sock_put(struct sock *sk) 943 { 944 if (atomic_dec_and_test(&sk->sk_refcnt)) 945 sk_free(sk); 946 } 947 948 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb); 949 950 /* Detach socket from process context. 951 * Announce socket dead, detach it from wait queue and inode. 952 * Note that parent inode held reference count on this struct sock, 953 * we do not release it in this function, because protocol 954 * probably wants some additional cleanups or even continuing 955 * to work with this socket (TCP). 956 */ 957 static inline void sock_orphan(struct sock *sk) 958 { 959 write_lock_bh(&sk->sk_callback_lock); 960 sock_set_flag(sk, SOCK_DEAD); 961 sk->sk_socket = NULL; 962 sk->sk_sleep = NULL; 963 write_unlock_bh(&sk->sk_callback_lock); 964 } 965 966 static inline void sock_graft(struct sock *sk, struct socket *parent) 967 { 968 write_lock_bh(&sk->sk_callback_lock); 969 sk->sk_sleep = &parent->wait; 970 parent->sk = sk; 971 sk->sk_socket = parent; 972 write_unlock_bh(&sk->sk_callback_lock); 973 } 974 975 extern int sock_i_uid(struct sock *sk); 976 extern unsigned long sock_i_ino(struct sock *sk); 977 978 static inline struct dst_entry * 979 __sk_dst_get(struct sock *sk) 980 { 981 return sk->sk_dst_cache; 982 } 983 984 static inline struct dst_entry * 985 sk_dst_get(struct sock *sk) 986 { 987 struct dst_entry *dst; 988 989 read_lock(&sk->sk_dst_lock); 990 dst = sk->sk_dst_cache; 991 if (dst) 992 dst_hold(dst); 993 read_unlock(&sk->sk_dst_lock); 994 return dst; 995 } 996 997 static inline void 998 __sk_dst_set(struct sock *sk, struct dst_entry *dst) 999 { 1000 struct dst_entry *old_dst; 1001 1002 old_dst = sk->sk_dst_cache; 1003 sk->sk_dst_cache = dst; 1004 dst_release(old_dst); 1005 } 1006 1007 static inline void 1008 sk_dst_set(struct sock *sk, struct dst_entry *dst) 1009 { 1010 write_lock(&sk->sk_dst_lock); 1011 __sk_dst_set(sk, dst); 1012 write_unlock(&sk->sk_dst_lock); 1013 } 1014 1015 static inline void 1016 __sk_dst_reset(struct sock *sk) 1017 { 1018 struct dst_entry *old_dst; 1019 1020 old_dst = sk->sk_dst_cache; 1021 sk->sk_dst_cache = NULL; 1022 dst_release(old_dst); 1023 } 1024 1025 static inline void 1026 sk_dst_reset(struct sock *sk) 1027 { 1028 write_lock(&sk->sk_dst_lock); 1029 __sk_dst_reset(sk); 1030 write_unlock(&sk->sk_dst_lock); 1031 } 1032 1033 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); 1034 1035 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); 1036 1037 static inline int sk_can_gso(const struct sock *sk) 1038 { 1039 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type); 1040 } 1041 1042 static inline void sk_setup_caps(struct sock *sk, struct dst_entry *dst) 1043 { 1044 __sk_dst_set(sk, dst); 1045 sk->sk_route_caps = dst->dev->features; 1046 if (sk->sk_route_caps & NETIF_F_GSO) 1047 sk->sk_route_caps |= NETIF_F_GSO_MASK; 1048 if (sk_can_gso(sk)) { 1049 if (dst->header_len) 1050 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 1051 else 1052 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM; 1053 } 1054 } 1055 1056 static inline void sk_charge_skb(struct sock *sk, struct sk_buff *skb) 1057 { 1058 sk->sk_wmem_queued += skb->truesize; 1059 sk->sk_forward_alloc -= skb->truesize; 1060 } 1061 1062 static inline int skb_copy_to_page(struct sock *sk, char __user *from, 1063 struct sk_buff *skb, struct page *page, 1064 int off, int copy) 1065 { 1066 if (skb->ip_summed == CHECKSUM_NONE) { 1067 int err = 0; 1068 unsigned int csum = csum_and_copy_from_user(from, 1069 page_address(page) + off, 1070 copy, 0, &err); 1071 if (err) 1072 return err; 1073 skb->csum = csum_block_add(skb->csum, csum, skb->len); 1074 } else if (copy_from_user(page_address(page) + off, from, copy)) 1075 return -EFAULT; 1076 1077 skb->len += copy; 1078 skb->data_len += copy; 1079 skb->truesize += copy; 1080 sk->sk_wmem_queued += copy; 1081 sk->sk_forward_alloc -= copy; 1082 return 0; 1083 } 1084 1085 /* 1086 * Queue a received datagram if it will fit. Stream and sequenced 1087 * protocols can't normally use this as they need to fit buffers in 1088 * and play with them. 1089 * 1090 * Inlined as it's very short and called for pretty much every 1091 * packet ever received. 1092 */ 1093 1094 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 1095 { 1096 sock_hold(sk); 1097 skb->sk = sk; 1098 skb->destructor = sock_wfree; 1099 atomic_add(skb->truesize, &sk->sk_wmem_alloc); 1100 } 1101 1102 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 1103 { 1104 skb->sk = sk; 1105 skb->destructor = sock_rfree; 1106 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 1107 } 1108 1109 extern void sk_reset_timer(struct sock *sk, struct timer_list* timer, 1110 unsigned long expires); 1111 1112 extern void sk_stop_timer(struct sock *sk, struct timer_list* timer); 1113 1114 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 1115 1116 static inline int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 1117 { 1118 /* Cast skb->rcvbuf to unsigned... It's pointless, but reduces 1119 number of warnings when compiling with -W --ANK 1120 */ 1121 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 1122 (unsigned)sk->sk_rcvbuf) 1123 return -ENOMEM; 1124 skb_set_owner_r(skb, sk); 1125 skb_queue_tail(&sk->sk_error_queue, skb); 1126 if (!sock_flag(sk, SOCK_DEAD)) 1127 sk->sk_data_ready(sk, skb->len); 1128 return 0; 1129 } 1130 1131 /* 1132 * Recover an error report and clear atomically 1133 */ 1134 1135 static inline int sock_error(struct sock *sk) 1136 { 1137 int err; 1138 if (likely(!sk->sk_err)) 1139 return 0; 1140 err = xchg(&sk->sk_err, 0); 1141 return -err; 1142 } 1143 1144 static inline unsigned long sock_wspace(struct sock *sk) 1145 { 1146 int amt = 0; 1147 1148 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 1149 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); 1150 if (amt < 0) 1151 amt = 0; 1152 } 1153 return amt; 1154 } 1155 1156 static inline void sk_wake_async(struct sock *sk, int how, int band) 1157 { 1158 if (sk->sk_socket && sk->sk_socket->fasync_list) 1159 sock_wake_async(sk->sk_socket, how, band); 1160 } 1161 1162 #define SOCK_MIN_SNDBUF 2048 1163 #define SOCK_MIN_RCVBUF 256 1164 1165 static inline void sk_stream_moderate_sndbuf(struct sock *sk) 1166 { 1167 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) { 1168 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued / 2); 1169 sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF); 1170 } 1171 } 1172 1173 static inline struct sk_buff *sk_stream_alloc_pskb(struct sock *sk, 1174 int size, int mem, 1175 gfp_t gfp) 1176 { 1177 struct sk_buff *skb; 1178 int hdr_len; 1179 1180 hdr_len = SKB_DATA_ALIGN(sk->sk_prot->max_header); 1181 skb = alloc_skb_fclone(size + hdr_len, gfp); 1182 if (skb) { 1183 skb->truesize += mem; 1184 if (sk_stream_wmem_schedule(sk, skb->truesize)) { 1185 skb_reserve(skb, hdr_len); 1186 return skb; 1187 } 1188 __kfree_skb(skb); 1189 } else { 1190 sk->sk_prot->enter_memory_pressure(); 1191 sk_stream_moderate_sndbuf(sk); 1192 } 1193 return NULL; 1194 } 1195 1196 static inline struct sk_buff *sk_stream_alloc_skb(struct sock *sk, 1197 int size, 1198 gfp_t gfp) 1199 { 1200 return sk_stream_alloc_pskb(sk, size, 0, gfp); 1201 } 1202 1203 static inline struct page *sk_stream_alloc_page(struct sock *sk) 1204 { 1205 struct page *page = NULL; 1206 1207 page = alloc_pages(sk->sk_allocation, 0); 1208 if (!page) { 1209 sk->sk_prot->enter_memory_pressure(); 1210 sk_stream_moderate_sndbuf(sk); 1211 } 1212 return page; 1213 } 1214 1215 #define sk_stream_for_retrans_queue(skb, sk) \ 1216 for (skb = (sk)->sk_write_queue.next; \ 1217 (skb != (sk)->sk_send_head) && \ 1218 (skb != (struct sk_buff *)&(sk)->sk_write_queue); \ 1219 skb = skb->next) 1220 1221 /*from STCP for fast SACK Process*/ 1222 #define sk_stream_for_retrans_queue_from(skb, sk) \ 1223 for (; (skb != (sk)->sk_send_head) && \ 1224 (skb != (struct sk_buff *)&(sk)->sk_write_queue); \ 1225 skb = skb->next) 1226 1227 /* 1228 * Default write policy as shown to user space via poll/select/SIGIO 1229 */ 1230 static inline int sock_writeable(const struct sock *sk) 1231 { 1232 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf / 2); 1233 } 1234 1235 static inline gfp_t gfp_any(void) 1236 { 1237 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; 1238 } 1239 1240 static inline long sock_rcvtimeo(const struct sock *sk, int noblock) 1241 { 1242 return noblock ? 0 : sk->sk_rcvtimeo; 1243 } 1244 1245 static inline long sock_sndtimeo(const struct sock *sk, int noblock) 1246 { 1247 return noblock ? 0 : sk->sk_sndtimeo; 1248 } 1249 1250 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) 1251 { 1252 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1; 1253 } 1254 1255 /* Alas, with timeout socket operations are not restartable. 1256 * Compare this to poll(). 1257 */ 1258 static inline int sock_intr_errno(long timeo) 1259 { 1260 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; 1261 } 1262 1263 static __inline__ void 1264 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) 1265 { 1266 struct timeval stamp; 1267 1268 skb_get_timestamp(skb, &stamp); 1269 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 1270 /* Race occurred between timestamp enabling and packet 1271 receiving. Fill in the current time for now. */ 1272 if (stamp.tv_sec == 0) 1273 do_gettimeofday(&stamp); 1274 skb_set_timestamp(skb, &stamp); 1275 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP, sizeof(struct timeval), 1276 &stamp); 1277 } else 1278 sk->sk_stamp = stamp; 1279 } 1280 1281 /** 1282 * sk_eat_skb - Release a skb if it is no longer needed 1283 * @sk: socket to eat this skb from 1284 * @skb: socket buffer to eat 1285 * @copied_early: flag indicating whether DMA operations copied this data early 1286 * 1287 * This routine must be called with interrupts disabled or with the socket 1288 * locked so that the sk_buff queue operation is ok. 1289 */ 1290 #ifdef CONFIG_NET_DMA 1291 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early) 1292 { 1293 __skb_unlink(skb, &sk->sk_receive_queue); 1294 if (!copied_early) 1295 __kfree_skb(skb); 1296 else 1297 __skb_queue_tail(&sk->sk_async_wait_queue, skb); 1298 } 1299 #else 1300 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early) 1301 { 1302 __skb_unlink(skb, &sk->sk_receive_queue); 1303 __kfree_skb(skb); 1304 } 1305 #endif 1306 1307 extern void sock_enable_timestamp(struct sock *sk); 1308 extern int sock_get_timestamp(struct sock *, struct timeval __user *); 1309 1310 /* 1311 * Enable debug/info messages 1312 */ 1313 1314 #ifdef CONFIG_NETDEBUG 1315 #define NETDEBUG(fmt, args...) printk(fmt,##args) 1316 #define LIMIT_NETDEBUG(fmt, args...) do { if (net_ratelimit()) printk(fmt,##args); } while(0) 1317 #else 1318 #define NETDEBUG(fmt, args...) do { } while (0) 1319 #define LIMIT_NETDEBUG(fmt, args...) do { } while(0) 1320 #endif 1321 1322 /* 1323 * Macros for sleeping on a socket. Use them like this: 1324 * 1325 * SOCK_SLEEP_PRE(sk) 1326 * if (condition) 1327 * schedule(); 1328 * SOCK_SLEEP_POST(sk) 1329 * 1330 * N.B. These are now obsolete and were, afaik, only ever used in DECnet 1331 * and when the last use of them in DECnet has gone, I'm intending to 1332 * remove them. 1333 */ 1334 1335 #define SOCK_SLEEP_PRE(sk) { struct task_struct *tsk = current; \ 1336 DECLARE_WAITQUEUE(wait, tsk); \ 1337 tsk->state = TASK_INTERRUPTIBLE; \ 1338 add_wait_queue((sk)->sk_sleep, &wait); \ 1339 release_sock(sk); 1340 1341 #define SOCK_SLEEP_POST(sk) tsk->state = TASK_RUNNING; \ 1342 remove_wait_queue((sk)->sk_sleep, &wait); \ 1343 lock_sock(sk); \ 1344 } 1345 1346 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool) 1347 { 1348 if (valbool) 1349 sock_set_flag(sk, bit); 1350 else 1351 sock_reset_flag(sk, bit); 1352 } 1353 1354 extern __u32 sysctl_wmem_max; 1355 extern __u32 sysctl_rmem_max; 1356 1357 #ifdef CONFIG_NET 1358 int siocdevprivate_ioctl(unsigned int fd, unsigned int cmd, unsigned long arg); 1359 #else 1360 static inline int siocdevprivate_ioctl(unsigned int fd, unsigned int cmd, unsigned long arg) 1361 { 1362 return -ENODEV; 1363 } 1364 #endif 1365 1366 extern void sk_init(void); 1367 1368 #ifdef CONFIG_SYSCTL 1369 extern struct ctl_table core_table[]; 1370 #endif 1371 1372 extern int sysctl_optmem_max; 1373 1374 extern __u32 sysctl_wmem_default; 1375 extern __u32 sysctl_rmem_default; 1376 1377 #endif /* _SOCK_H */ 1378