1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the AF_INET socket handler. 7 * 8 * Version: @(#)sock.h 1.0.4 05/13/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche <flla@stud.uni-sb.de> 14 * 15 * Fixes: 16 * Alan Cox : Volatiles in skbuff pointers. See 17 * skbuff comments. May be overdone, 18 * better to prove they can be removed 19 * than the reverse. 20 * Alan Cox : Added a zapped field for tcp to note 21 * a socket is reset and must stay shut up 22 * Alan Cox : New fields for options 23 * Pauline Middelink : identd support 24 * Alan Cox : Eliminate low level recv/recvfrom 25 * David S. Miller : New socket lookup architecture. 26 * Steve Whitehouse: Default routines for sock_ops 27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made 28 * protinfo be just a void pointer, as the 29 * protocol specific parts were moved to 30 * respective headers and ipv4/v6, etc now 31 * use private slabcaches for its socks 32 * Pedro Hortas : New flags field for socket options 33 * 34 * 35 * This program is free software; you can redistribute it and/or 36 * modify it under the terms of the GNU General Public License 37 * as published by the Free Software Foundation; either version 38 * 2 of the License, or (at your option) any later version. 39 */ 40 #ifndef _SOCK_H 41 #define _SOCK_H 42 43 #include <linux/hardirq.h> 44 #include <linux/kernel.h> 45 #include <linux/list.h> 46 #include <linux/list_nulls.h> 47 #include <linux/timer.h> 48 #include <linux/cache.h> 49 #include <linux/bitops.h> 50 #include <linux/lockdep.h> 51 #include <linux/netdevice.h> 52 #include <linux/skbuff.h> /* struct sk_buff */ 53 #include <linux/mm.h> 54 #include <linux/security.h> 55 #include <linux/slab.h> 56 #include <linux/uaccess.h> 57 #include <linux/page_counter.h> 58 #include <linux/memcontrol.h> 59 #include <linux/static_key.h> 60 #include <linux/sched.h> 61 #include <linux/wait.h> 62 #include <linux/cgroup-defs.h> 63 64 #include <linux/filter.h> 65 #include <linux/rculist_nulls.h> 66 #include <linux/poll.h> 67 68 #include <linux/atomic.h> 69 #include <net/dst.h> 70 #include <net/checksum.h> 71 #include <net/tcp_states.h> 72 #include <linux/net_tstamp.h> 73 74 /* 75 * This structure really needs to be cleaned up. 76 * Most of it is for TCP, and not used by any of 77 * the other protocols. 78 */ 79 80 /* Define this to get the SOCK_DBG debugging facility. */ 81 #define SOCK_DEBUGGING 82 #ifdef SOCK_DEBUGGING 83 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \ 84 printk(KERN_DEBUG msg); } while (0) 85 #else 86 /* Validate arguments and do nothing */ 87 static inline __printf(2, 3) 88 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...) 89 { 90 } 91 #endif 92 93 /* This is the per-socket lock. The spinlock provides a synchronization 94 * between user contexts and software interrupt processing, whereas the 95 * mini-semaphore synchronizes multiple users amongst themselves. 96 */ 97 typedef struct { 98 spinlock_t slock; 99 int owned; 100 wait_queue_head_t wq; 101 /* 102 * We express the mutex-alike socket_lock semantics 103 * to the lock validator by explicitly managing 104 * the slock as a lock variant (in addition to 105 * the slock itself): 106 */ 107 #ifdef CONFIG_DEBUG_LOCK_ALLOC 108 struct lockdep_map dep_map; 109 #endif 110 } socket_lock_t; 111 112 struct sock; 113 struct proto; 114 struct net; 115 116 typedef __u32 __bitwise __portpair; 117 typedef __u64 __bitwise __addrpair; 118 119 /** 120 * struct sock_common - minimal network layer representation of sockets 121 * @skc_daddr: Foreign IPv4 addr 122 * @skc_rcv_saddr: Bound local IPv4 addr 123 * @skc_hash: hash value used with various protocol lookup tables 124 * @skc_u16hashes: two u16 hash values used by UDP lookup tables 125 * @skc_dport: placeholder for inet_dport/tw_dport 126 * @skc_num: placeholder for inet_num/tw_num 127 * @skc_family: network address family 128 * @skc_state: Connection state 129 * @skc_reuse: %SO_REUSEADDR setting 130 * @skc_reuseport: %SO_REUSEPORT setting 131 * @skc_bound_dev_if: bound device index if != 0 132 * @skc_bind_node: bind hash linkage for various protocol lookup tables 133 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol 134 * @skc_prot: protocol handlers inside a network family 135 * @skc_net: reference to the network namespace of this socket 136 * @skc_node: main hash linkage for various protocol lookup tables 137 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol 138 * @skc_tx_queue_mapping: tx queue number for this connection 139 * @skc_flags: place holder for sk_flags 140 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, 141 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings 142 * @skc_incoming_cpu: record/match cpu processing incoming packets 143 * @skc_refcnt: reference count 144 * 145 * This is the minimal network layer representation of sockets, the header 146 * for struct sock and struct inet_timewait_sock. 147 */ 148 struct sock_common { 149 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned 150 * address on 64bit arches : cf INET_MATCH() 151 */ 152 union { 153 __addrpair skc_addrpair; 154 struct { 155 __be32 skc_daddr; 156 __be32 skc_rcv_saddr; 157 }; 158 }; 159 union { 160 unsigned int skc_hash; 161 __u16 skc_u16hashes[2]; 162 }; 163 /* skc_dport && skc_num must be grouped as well */ 164 union { 165 __portpair skc_portpair; 166 struct { 167 __be16 skc_dport; 168 __u16 skc_num; 169 }; 170 }; 171 172 unsigned short skc_family; 173 volatile unsigned char skc_state; 174 unsigned char skc_reuse:4; 175 unsigned char skc_reuseport:1; 176 unsigned char skc_ipv6only:1; 177 unsigned char skc_net_refcnt:1; 178 int skc_bound_dev_if; 179 union { 180 struct hlist_node skc_bind_node; 181 struct hlist_nulls_node skc_portaddr_node; 182 }; 183 struct proto *skc_prot; 184 possible_net_t skc_net; 185 186 #if IS_ENABLED(CONFIG_IPV6) 187 struct in6_addr skc_v6_daddr; 188 struct in6_addr skc_v6_rcv_saddr; 189 #endif 190 191 atomic64_t skc_cookie; 192 193 /* following fields are padding to force 194 * offset(struct sock, sk_refcnt) == 128 on 64bit arches 195 * assuming IPV6 is enabled. We use this padding differently 196 * for different kind of 'sockets' 197 */ 198 union { 199 unsigned long skc_flags; 200 struct sock *skc_listener; /* request_sock */ 201 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */ 202 }; 203 /* 204 * fields between dontcopy_begin/dontcopy_end 205 * are not copied in sock_copy() 206 */ 207 /* private: */ 208 int skc_dontcopy_begin[0]; 209 /* public: */ 210 union { 211 struct hlist_node skc_node; 212 struct hlist_nulls_node skc_nulls_node; 213 }; 214 int skc_tx_queue_mapping; 215 union { 216 int skc_incoming_cpu; 217 u32 skc_rcv_wnd; 218 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */ 219 }; 220 221 atomic_t skc_refcnt; 222 /* private: */ 223 int skc_dontcopy_end[0]; 224 union { 225 u32 skc_rxhash; 226 u32 skc_window_clamp; 227 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */ 228 }; 229 /* public: */ 230 }; 231 232 /** 233 * struct sock - network layer representation of sockets 234 * @__sk_common: shared layout with inet_timewait_sock 235 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN 236 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings 237 * @sk_lock: synchronizer 238 * @sk_rcvbuf: size of receive buffer in bytes 239 * @sk_wq: sock wait queue and async head 240 * @sk_rx_dst: receive input route used by early demux 241 * @sk_dst_cache: destination cache 242 * @sk_policy: flow policy 243 * @sk_receive_queue: incoming packets 244 * @sk_wmem_alloc: transmit queue bytes committed 245 * @sk_write_queue: Packet sending queue 246 * @sk_omem_alloc: "o" is "option" or "other" 247 * @sk_wmem_queued: persistent queue size 248 * @sk_forward_alloc: space allocated forward 249 * @sk_napi_id: id of the last napi context to receive data for sk 250 * @sk_ll_usec: usecs to busypoll when there is no data 251 * @sk_allocation: allocation mode 252 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler) 253 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE) 254 * @sk_sndbuf: size of send buffer in bytes 255 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets 256 * @sk_no_check_rx: allow zero checksum in RX packets 257 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) 258 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK) 259 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4) 260 * @sk_gso_max_size: Maximum GSO segment size to build 261 * @sk_gso_max_segs: Maximum number of GSO segments 262 * @sk_lingertime: %SO_LINGER l_linger setting 263 * @sk_backlog: always used with the per-socket spinlock held 264 * @sk_callback_lock: used with the callbacks in the end of this struct 265 * @sk_error_queue: rarely used 266 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, 267 * IPV6_ADDRFORM for instance) 268 * @sk_err: last error 269 * @sk_err_soft: errors that don't cause failure but are the cause of a 270 * persistent failure not just 'timed out' 271 * @sk_drops: raw/udp drops counter 272 * @sk_ack_backlog: current listen backlog 273 * @sk_max_ack_backlog: listen backlog set in listen() 274 * @sk_priority: %SO_PRIORITY setting 275 * @sk_type: socket type (%SOCK_STREAM, etc) 276 * @sk_protocol: which protocol this socket belongs in this network family 277 * @sk_peer_pid: &struct pid for this socket's peer 278 * @sk_peer_cred: %SO_PEERCRED setting 279 * @sk_rcvlowat: %SO_RCVLOWAT setting 280 * @sk_rcvtimeo: %SO_RCVTIMEO setting 281 * @sk_sndtimeo: %SO_SNDTIMEO setting 282 * @sk_txhash: computed flow hash for use on transmit 283 * @sk_filter: socket filtering instructions 284 * @sk_timer: sock cleanup timer 285 * @sk_stamp: time stamp of last packet received 286 * @sk_tsflags: SO_TIMESTAMPING socket options 287 * @sk_tskey: counter to disambiguate concurrent tstamp requests 288 * @sk_socket: Identd and reporting IO signals 289 * @sk_user_data: RPC layer private data 290 * @sk_frag: cached page frag 291 * @sk_peek_off: current peek_offset value 292 * @sk_send_head: front of stuff to transmit 293 * @sk_security: used by security modules 294 * @sk_mark: generic packet mark 295 * @sk_cgrp_data: cgroup data for this cgroup 296 * @sk_memcg: this socket's memory cgroup association 297 * @sk_write_pending: a write to stream socket waits to start 298 * @sk_state_change: callback to indicate change in the state of the sock 299 * @sk_data_ready: callback to indicate there is data to be processed 300 * @sk_write_space: callback to indicate there is bf sending space available 301 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) 302 * @sk_backlog_rcv: callback to process the backlog 303 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 304 * @sk_reuseport_cb: reuseport group container 305 */ 306 struct sock { 307 /* 308 * Now struct inet_timewait_sock also uses sock_common, so please just 309 * don't add nothing before this first member (__sk_common) --acme 310 */ 311 struct sock_common __sk_common; 312 #define sk_node __sk_common.skc_node 313 #define sk_nulls_node __sk_common.skc_nulls_node 314 #define sk_refcnt __sk_common.skc_refcnt 315 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping 316 317 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin 318 #define sk_dontcopy_end __sk_common.skc_dontcopy_end 319 #define sk_hash __sk_common.skc_hash 320 #define sk_portpair __sk_common.skc_portpair 321 #define sk_num __sk_common.skc_num 322 #define sk_dport __sk_common.skc_dport 323 #define sk_addrpair __sk_common.skc_addrpair 324 #define sk_daddr __sk_common.skc_daddr 325 #define sk_rcv_saddr __sk_common.skc_rcv_saddr 326 #define sk_family __sk_common.skc_family 327 #define sk_state __sk_common.skc_state 328 #define sk_reuse __sk_common.skc_reuse 329 #define sk_reuseport __sk_common.skc_reuseport 330 #define sk_ipv6only __sk_common.skc_ipv6only 331 #define sk_net_refcnt __sk_common.skc_net_refcnt 332 #define sk_bound_dev_if __sk_common.skc_bound_dev_if 333 #define sk_bind_node __sk_common.skc_bind_node 334 #define sk_prot __sk_common.skc_prot 335 #define sk_net __sk_common.skc_net 336 #define sk_v6_daddr __sk_common.skc_v6_daddr 337 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr 338 #define sk_cookie __sk_common.skc_cookie 339 #define sk_incoming_cpu __sk_common.skc_incoming_cpu 340 #define sk_flags __sk_common.skc_flags 341 #define sk_rxhash __sk_common.skc_rxhash 342 343 socket_lock_t sk_lock; 344 struct sk_buff_head sk_receive_queue; 345 /* 346 * The backlog queue is special, it is always used with 347 * the per-socket spinlock held and requires low latency 348 * access. Therefore we special case it's implementation. 349 * Note : rmem_alloc is in this structure to fill a hole 350 * on 64bit arches, not because its logically part of 351 * backlog. 352 */ 353 struct { 354 atomic_t rmem_alloc; 355 int len; 356 struct sk_buff *head; 357 struct sk_buff *tail; 358 } sk_backlog; 359 #define sk_rmem_alloc sk_backlog.rmem_alloc 360 int sk_forward_alloc; 361 362 __u32 sk_txhash; 363 #ifdef CONFIG_NET_RX_BUSY_POLL 364 unsigned int sk_napi_id; 365 unsigned int sk_ll_usec; 366 #endif 367 atomic_t sk_drops; 368 int sk_rcvbuf; 369 370 struct sk_filter __rcu *sk_filter; 371 union { 372 struct socket_wq __rcu *sk_wq; 373 struct socket_wq *sk_wq_raw; 374 }; 375 #ifdef CONFIG_XFRM 376 struct xfrm_policy __rcu *sk_policy[2]; 377 #endif 378 struct dst_entry *sk_rx_dst; 379 struct dst_entry __rcu *sk_dst_cache; 380 /* Note: 32bit hole on 64bit arches */ 381 atomic_t sk_wmem_alloc; 382 atomic_t sk_omem_alloc; 383 int sk_sndbuf; 384 struct sk_buff_head sk_write_queue; 385 kmemcheck_bitfield_begin(flags); 386 unsigned int sk_shutdown : 2, 387 sk_no_check_tx : 1, 388 sk_no_check_rx : 1, 389 sk_userlocks : 4, 390 sk_protocol : 8, 391 sk_type : 16; 392 #define SK_PROTOCOL_MAX U8_MAX 393 kmemcheck_bitfield_end(flags); 394 int sk_wmem_queued; 395 gfp_t sk_allocation; 396 u32 sk_pacing_rate; /* bytes per second */ 397 u32 sk_max_pacing_rate; 398 netdev_features_t sk_route_caps; 399 netdev_features_t sk_route_nocaps; 400 int sk_gso_type; 401 unsigned int sk_gso_max_size; 402 u16 sk_gso_max_segs; 403 int sk_rcvlowat; 404 unsigned long sk_lingertime; 405 struct sk_buff_head sk_error_queue; 406 struct proto *sk_prot_creator; 407 rwlock_t sk_callback_lock; 408 int sk_err, 409 sk_err_soft; 410 u32 sk_ack_backlog; 411 u32 sk_max_ack_backlog; 412 __u32 sk_priority; 413 __u32 sk_mark; 414 struct pid *sk_peer_pid; 415 const struct cred *sk_peer_cred; 416 long sk_rcvtimeo; 417 long sk_sndtimeo; 418 struct timer_list sk_timer; 419 ktime_t sk_stamp; 420 u16 sk_tsflags; 421 u32 sk_tskey; 422 struct socket *sk_socket; 423 void *sk_user_data; 424 struct page_frag sk_frag; 425 struct sk_buff *sk_send_head; 426 __s32 sk_peek_off; 427 int sk_write_pending; 428 #ifdef CONFIG_SECURITY 429 void *sk_security; 430 #endif 431 struct sock_cgroup_data sk_cgrp_data; 432 struct mem_cgroup *sk_memcg; 433 void (*sk_state_change)(struct sock *sk); 434 void (*sk_data_ready)(struct sock *sk); 435 void (*sk_write_space)(struct sock *sk); 436 void (*sk_error_report)(struct sock *sk); 437 int (*sk_backlog_rcv)(struct sock *sk, 438 struct sk_buff *skb); 439 void (*sk_destruct)(struct sock *sk); 440 struct sock_reuseport __rcu *sk_reuseport_cb; 441 }; 442 443 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data))) 444 445 #define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk))) 446 #define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr) 447 448 /* 449 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK 450 * or not whether his port will be reused by someone else. SK_FORCE_REUSE 451 * on a socket means that the socket will reuse everybody else's port 452 * without looking at the other's sk_reuse value. 453 */ 454 455 #define SK_NO_REUSE 0 456 #define SK_CAN_REUSE 1 457 #define SK_FORCE_REUSE 2 458 459 static inline int sk_peek_offset(struct sock *sk, int flags) 460 { 461 if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0)) 462 return sk->sk_peek_off; 463 else 464 return 0; 465 } 466 467 static inline void sk_peek_offset_bwd(struct sock *sk, int val) 468 { 469 if (sk->sk_peek_off >= 0) { 470 if (sk->sk_peek_off >= val) 471 sk->sk_peek_off -= val; 472 else 473 sk->sk_peek_off = 0; 474 } 475 } 476 477 static inline void sk_peek_offset_fwd(struct sock *sk, int val) 478 { 479 if (sk->sk_peek_off >= 0) 480 sk->sk_peek_off += val; 481 } 482 483 /* 484 * Hashed lists helper routines 485 */ 486 static inline struct sock *sk_entry(const struct hlist_node *node) 487 { 488 return hlist_entry(node, struct sock, sk_node); 489 } 490 491 static inline struct sock *__sk_head(const struct hlist_head *head) 492 { 493 return hlist_entry(head->first, struct sock, sk_node); 494 } 495 496 static inline struct sock *sk_head(const struct hlist_head *head) 497 { 498 return hlist_empty(head) ? NULL : __sk_head(head); 499 } 500 501 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head) 502 { 503 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node); 504 } 505 506 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head) 507 { 508 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head); 509 } 510 511 static inline struct sock *sk_next(const struct sock *sk) 512 { 513 return sk->sk_node.next ? 514 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL; 515 } 516 517 static inline struct sock *sk_nulls_next(const struct sock *sk) 518 { 519 return (!is_a_nulls(sk->sk_nulls_node.next)) ? 520 hlist_nulls_entry(sk->sk_nulls_node.next, 521 struct sock, sk_nulls_node) : 522 NULL; 523 } 524 525 static inline bool sk_unhashed(const struct sock *sk) 526 { 527 return hlist_unhashed(&sk->sk_node); 528 } 529 530 static inline bool sk_hashed(const struct sock *sk) 531 { 532 return !sk_unhashed(sk); 533 } 534 535 static inline void sk_node_init(struct hlist_node *node) 536 { 537 node->pprev = NULL; 538 } 539 540 static inline void sk_nulls_node_init(struct hlist_nulls_node *node) 541 { 542 node->pprev = NULL; 543 } 544 545 static inline void __sk_del_node(struct sock *sk) 546 { 547 __hlist_del(&sk->sk_node); 548 } 549 550 /* NB: equivalent to hlist_del_init_rcu */ 551 static inline bool __sk_del_node_init(struct sock *sk) 552 { 553 if (sk_hashed(sk)) { 554 __sk_del_node(sk); 555 sk_node_init(&sk->sk_node); 556 return true; 557 } 558 return false; 559 } 560 561 /* Grab socket reference count. This operation is valid only 562 when sk is ALREADY grabbed f.e. it is found in hash table 563 or a list and the lookup is made under lock preventing hash table 564 modifications. 565 */ 566 567 static inline void sock_hold(struct sock *sk) 568 { 569 atomic_inc(&sk->sk_refcnt); 570 } 571 572 /* Ungrab socket in the context, which assumes that socket refcnt 573 cannot hit zero, f.e. it is true in context of any socketcall. 574 */ 575 static inline void __sock_put(struct sock *sk) 576 { 577 atomic_dec(&sk->sk_refcnt); 578 } 579 580 static inline bool sk_del_node_init(struct sock *sk) 581 { 582 bool rc = __sk_del_node_init(sk); 583 584 if (rc) { 585 /* paranoid for a while -acme */ 586 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 587 __sock_put(sk); 588 } 589 return rc; 590 } 591 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk) 592 593 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk) 594 { 595 if (sk_hashed(sk)) { 596 hlist_nulls_del_init_rcu(&sk->sk_nulls_node); 597 return true; 598 } 599 return false; 600 } 601 602 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk) 603 { 604 bool rc = __sk_nulls_del_node_init_rcu(sk); 605 606 if (rc) { 607 /* paranoid for a while -acme */ 608 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 609 __sock_put(sk); 610 } 611 return rc; 612 } 613 614 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list) 615 { 616 hlist_add_head(&sk->sk_node, list); 617 } 618 619 static inline void sk_add_node(struct sock *sk, struct hlist_head *list) 620 { 621 sock_hold(sk); 622 __sk_add_node(sk, list); 623 } 624 625 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list) 626 { 627 sock_hold(sk); 628 hlist_add_head_rcu(&sk->sk_node, list); 629 } 630 631 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 632 { 633 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list); 634 } 635 636 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 637 { 638 sock_hold(sk); 639 __sk_nulls_add_node_rcu(sk, list); 640 } 641 642 static inline void __sk_del_bind_node(struct sock *sk) 643 { 644 __hlist_del(&sk->sk_bind_node); 645 } 646 647 static inline void sk_add_bind_node(struct sock *sk, 648 struct hlist_head *list) 649 { 650 hlist_add_head(&sk->sk_bind_node, list); 651 } 652 653 #define sk_for_each(__sk, list) \ 654 hlist_for_each_entry(__sk, list, sk_node) 655 #define sk_for_each_rcu(__sk, list) \ 656 hlist_for_each_entry_rcu(__sk, list, sk_node) 657 #define sk_nulls_for_each(__sk, node, list) \ 658 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node) 659 #define sk_nulls_for_each_rcu(__sk, node, list) \ 660 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node) 661 #define sk_for_each_from(__sk) \ 662 hlist_for_each_entry_from(__sk, sk_node) 663 #define sk_nulls_for_each_from(__sk, node) \ 664 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \ 665 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node) 666 #define sk_for_each_safe(__sk, tmp, list) \ 667 hlist_for_each_entry_safe(__sk, tmp, list, sk_node) 668 #define sk_for_each_bound(__sk, list) \ 669 hlist_for_each_entry(__sk, list, sk_bind_node) 670 671 /** 672 * sk_nulls_for_each_entry_offset - iterate over a list at a given struct offset 673 * @tpos: the type * to use as a loop cursor. 674 * @pos: the &struct hlist_node to use as a loop cursor. 675 * @head: the head for your list. 676 * @offset: offset of hlist_node within the struct. 677 * 678 */ 679 #define sk_nulls_for_each_entry_offset(tpos, pos, head, offset) \ 680 for (pos = (head)->first; \ 681 (!is_a_nulls(pos)) && \ 682 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \ 683 pos = pos->next) 684 685 static inline struct user_namespace *sk_user_ns(struct sock *sk) 686 { 687 /* Careful only use this in a context where these parameters 688 * can not change and must all be valid, such as recvmsg from 689 * userspace. 690 */ 691 return sk->sk_socket->file->f_cred->user_ns; 692 } 693 694 /* Sock flags */ 695 enum sock_flags { 696 SOCK_DEAD, 697 SOCK_DONE, 698 SOCK_URGINLINE, 699 SOCK_KEEPOPEN, 700 SOCK_LINGER, 701 SOCK_DESTROY, 702 SOCK_BROADCAST, 703 SOCK_TIMESTAMP, 704 SOCK_ZAPPED, 705 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ 706 SOCK_DBG, /* %SO_DEBUG setting */ 707 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ 708 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */ 709 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ 710 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */ 711 SOCK_MEMALLOC, /* VM depends on this socket for swapping */ 712 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */ 713 SOCK_FASYNC, /* fasync() active */ 714 SOCK_RXQ_OVFL, 715 SOCK_ZEROCOPY, /* buffers from userspace */ 716 SOCK_WIFI_STATUS, /* push wifi status to userspace */ 717 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS. 718 * Will use last 4 bytes of packet sent from 719 * user-space instead. 720 */ 721 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */ 722 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */ 723 }; 724 725 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)) 726 727 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk) 728 { 729 nsk->sk_flags = osk->sk_flags; 730 } 731 732 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) 733 { 734 __set_bit(flag, &sk->sk_flags); 735 } 736 737 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) 738 { 739 __clear_bit(flag, &sk->sk_flags); 740 } 741 742 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag) 743 { 744 return test_bit(flag, &sk->sk_flags); 745 } 746 747 #ifdef CONFIG_NET 748 extern struct static_key memalloc_socks; 749 static inline int sk_memalloc_socks(void) 750 { 751 return static_key_false(&memalloc_socks); 752 } 753 #else 754 755 static inline int sk_memalloc_socks(void) 756 { 757 return 0; 758 } 759 760 #endif 761 762 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask) 763 { 764 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC); 765 } 766 767 static inline void sk_acceptq_removed(struct sock *sk) 768 { 769 sk->sk_ack_backlog--; 770 } 771 772 static inline void sk_acceptq_added(struct sock *sk) 773 { 774 sk->sk_ack_backlog++; 775 } 776 777 static inline bool sk_acceptq_is_full(const struct sock *sk) 778 { 779 return sk->sk_ack_backlog > sk->sk_max_ack_backlog; 780 } 781 782 /* 783 * Compute minimal free write space needed to queue new packets. 784 */ 785 static inline int sk_stream_min_wspace(const struct sock *sk) 786 { 787 return sk->sk_wmem_queued >> 1; 788 } 789 790 static inline int sk_stream_wspace(const struct sock *sk) 791 { 792 return sk->sk_sndbuf - sk->sk_wmem_queued; 793 } 794 795 void sk_stream_write_space(struct sock *sk); 796 797 /* OOB backlog add */ 798 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb) 799 { 800 /* dont let skb dst not refcounted, we are going to leave rcu lock */ 801 skb_dst_force_safe(skb); 802 803 if (!sk->sk_backlog.tail) 804 sk->sk_backlog.head = skb; 805 else 806 sk->sk_backlog.tail->next = skb; 807 808 sk->sk_backlog.tail = skb; 809 skb->next = NULL; 810 } 811 812 /* 813 * Take into account size of receive queue and backlog queue 814 * Do not take into account this skb truesize, 815 * to allow even a single big packet to come. 816 */ 817 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit) 818 { 819 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc); 820 821 return qsize > limit; 822 } 823 824 /* The per-socket spinlock must be held here. */ 825 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb, 826 unsigned int limit) 827 { 828 if (sk_rcvqueues_full(sk, limit)) 829 return -ENOBUFS; 830 831 /* 832 * If the skb was allocated from pfmemalloc reserves, only 833 * allow SOCK_MEMALLOC sockets to use it as this socket is 834 * helping free memory 835 */ 836 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) 837 return -ENOMEM; 838 839 __sk_add_backlog(sk, skb); 840 sk->sk_backlog.len += skb->truesize; 841 return 0; 842 } 843 844 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb); 845 846 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 847 { 848 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) 849 return __sk_backlog_rcv(sk, skb); 850 851 return sk->sk_backlog_rcv(sk, skb); 852 } 853 854 static inline void sk_incoming_cpu_update(struct sock *sk) 855 { 856 sk->sk_incoming_cpu = raw_smp_processor_id(); 857 } 858 859 static inline void sock_rps_record_flow_hash(__u32 hash) 860 { 861 #ifdef CONFIG_RPS 862 struct rps_sock_flow_table *sock_flow_table; 863 864 rcu_read_lock(); 865 sock_flow_table = rcu_dereference(rps_sock_flow_table); 866 rps_record_sock_flow(sock_flow_table, hash); 867 rcu_read_unlock(); 868 #endif 869 } 870 871 static inline void sock_rps_record_flow(const struct sock *sk) 872 { 873 #ifdef CONFIG_RPS 874 sock_rps_record_flow_hash(sk->sk_rxhash); 875 #endif 876 } 877 878 static inline void sock_rps_save_rxhash(struct sock *sk, 879 const struct sk_buff *skb) 880 { 881 #ifdef CONFIG_RPS 882 if (unlikely(sk->sk_rxhash != skb->hash)) 883 sk->sk_rxhash = skb->hash; 884 #endif 885 } 886 887 static inline void sock_rps_reset_rxhash(struct sock *sk) 888 { 889 #ifdef CONFIG_RPS 890 sk->sk_rxhash = 0; 891 #endif 892 } 893 894 #define sk_wait_event(__sk, __timeo, __condition) \ 895 ({ int __rc; \ 896 release_sock(__sk); \ 897 __rc = __condition; \ 898 if (!__rc) { \ 899 *(__timeo) = schedule_timeout(*(__timeo)); \ 900 } \ 901 sched_annotate_sleep(); \ 902 lock_sock(__sk); \ 903 __rc = __condition; \ 904 __rc; \ 905 }) 906 907 int sk_stream_wait_connect(struct sock *sk, long *timeo_p); 908 int sk_stream_wait_memory(struct sock *sk, long *timeo_p); 909 void sk_stream_wait_close(struct sock *sk, long timeo_p); 910 int sk_stream_error(struct sock *sk, int flags, int err); 911 void sk_stream_kill_queues(struct sock *sk); 912 void sk_set_memalloc(struct sock *sk); 913 void sk_clear_memalloc(struct sock *sk); 914 915 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb); 916 917 struct request_sock_ops; 918 struct timewait_sock_ops; 919 struct inet_hashinfo; 920 struct raw_hashinfo; 921 struct module; 922 923 /* 924 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes 925 * un-modified. Special care is taken when initializing object to zero. 926 */ 927 static inline void sk_prot_clear_nulls(struct sock *sk, int size) 928 { 929 if (offsetof(struct sock, sk_node.next) != 0) 930 memset(sk, 0, offsetof(struct sock, sk_node.next)); 931 memset(&sk->sk_node.pprev, 0, 932 size - offsetof(struct sock, sk_node.pprev)); 933 } 934 935 /* Networking protocol blocks we attach to sockets. 936 * socket layer -> transport layer interface 937 */ 938 struct proto { 939 void (*close)(struct sock *sk, 940 long timeout); 941 int (*connect)(struct sock *sk, 942 struct sockaddr *uaddr, 943 int addr_len); 944 int (*disconnect)(struct sock *sk, int flags); 945 946 struct sock * (*accept)(struct sock *sk, int flags, int *err); 947 948 int (*ioctl)(struct sock *sk, int cmd, 949 unsigned long arg); 950 int (*init)(struct sock *sk); 951 void (*destroy)(struct sock *sk); 952 void (*shutdown)(struct sock *sk, int how); 953 int (*setsockopt)(struct sock *sk, int level, 954 int optname, char __user *optval, 955 unsigned int optlen); 956 int (*getsockopt)(struct sock *sk, int level, 957 int optname, char __user *optval, 958 int __user *option); 959 #ifdef CONFIG_COMPAT 960 int (*compat_setsockopt)(struct sock *sk, 961 int level, 962 int optname, char __user *optval, 963 unsigned int optlen); 964 int (*compat_getsockopt)(struct sock *sk, 965 int level, 966 int optname, char __user *optval, 967 int __user *option); 968 int (*compat_ioctl)(struct sock *sk, 969 unsigned int cmd, unsigned long arg); 970 #endif 971 int (*sendmsg)(struct sock *sk, struct msghdr *msg, 972 size_t len); 973 int (*recvmsg)(struct sock *sk, struct msghdr *msg, 974 size_t len, int noblock, int flags, 975 int *addr_len); 976 int (*sendpage)(struct sock *sk, struct page *page, 977 int offset, size_t size, int flags); 978 int (*bind)(struct sock *sk, 979 struct sockaddr *uaddr, int addr_len); 980 981 int (*backlog_rcv) (struct sock *sk, 982 struct sk_buff *skb); 983 984 void (*release_cb)(struct sock *sk); 985 986 /* Keeping track of sk's, looking them up, and port selection methods. */ 987 int (*hash)(struct sock *sk); 988 void (*unhash)(struct sock *sk); 989 void (*rehash)(struct sock *sk); 990 int (*get_port)(struct sock *sk, unsigned short snum); 991 void (*clear_sk)(struct sock *sk, int size); 992 993 /* Keeping track of sockets in use */ 994 #ifdef CONFIG_PROC_FS 995 unsigned int inuse_idx; 996 #endif 997 998 bool (*stream_memory_free)(const struct sock *sk); 999 /* Memory pressure */ 1000 void (*enter_memory_pressure)(struct sock *sk); 1001 atomic_long_t *memory_allocated; /* Current allocated memory. */ 1002 struct percpu_counter *sockets_allocated; /* Current number of sockets. */ 1003 /* 1004 * Pressure flag: try to collapse. 1005 * Technical note: it is used by multiple contexts non atomically. 1006 * All the __sk_mem_schedule() is of this nature: accounting 1007 * is strict, actions are advisory and have some latency. 1008 */ 1009 int *memory_pressure; 1010 long *sysctl_mem; 1011 int *sysctl_wmem; 1012 int *sysctl_rmem; 1013 int max_header; 1014 bool no_autobind; 1015 1016 struct kmem_cache *slab; 1017 unsigned int obj_size; 1018 int slab_flags; 1019 1020 struct percpu_counter *orphan_count; 1021 1022 struct request_sock_ops *rsk_prot; 1023 struct timewait_sock_ops *twsk_prot; 1024 1025 union { 1026 struct inet_hashinfo *hashinfo; 1027 struct udp_table *udp_table; 1028 struct raw_hashinfo *raw_hash; 1029 } h; 1030 1031 struct module *owner; 1032 1033 char name[32]; 1034 1035 struct list_head node; 1036 #ifdef SOCK_REFCNT_DEBUG 1037 atomic_t socks; 1038 #endif 1039 int (*diag_destroy)(struct sock *sk, int err); 1040 }; 1041 1042 int proto_register(struct proto *prot, int alloc_slab); 1043 void proto_unregister(struct proto *prot); 1044 1045 #ifdef SOCK_REFCNT_DEBUG 1046 static inline void sk_refcnt_debug_inc(struct sock *sk) 1047 { 1048 atomic_inc(&sk->sk_prot->socks); 1049 } 1050 1051 static inline void sk_refcnt_debug_dec(struct sock *sk) 1052 { 1053 atomic_dec(&sk->sk_prot->socks); 1054 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n", 1055 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks)); 1056 } 1057 1058 static inline void sk_refcnt_debug_release(const struct sock *sk) 1059 { 1060 if (atomic_read(&sk->sk_refcnt) != 1) 1061 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n", 1062 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt)); 1063 } 1064 #else /* SOCK_REFCNT_DEBUG */ 1065 #define sk_refcnt_debug_inc(sk) do { } while (0) 1066 #define sk_refcnt_debug_dec(sk) do { } while (0) 1067 #define sk_refcnt_debug_release(sk) do { } while (0) 1068 #endif /* SOCK_REFCNT_DEBUG */ 1069 1070 static inline bool sk_stream_memory_free(const struct sock *sk) 1071 { 1072 if (sk->sk_wmem_queued >= sk->sk_sndbuf) 1073 return false; 1074 1075 return sk->sk_prot->stream_memory_free ? 1076 sk->sk_prot->stream_memory_free(sk) : true; 1077 } 1078 1079 static inline bool sk_stream_is_writeable(const struct sock *sk) 1080 { 1081 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) && 1082 sk_stream_memory_free(sk); 1083 } 1084 1085 1086 static inline bool sk_has_memory_pressure(const struct sock *sk) 1087 { 1088 return sk->sk_prot->memory_pressure != NULL; 1089 } 1090 1091 static inline bool sk_under_memory_pressure(const struct sock *sk) 1092 { 1093 if (!sk->sk_prot->memory_pressure) 1094 return false; 1095 1096 if (mem_cgroup_sockets_enabled && sk->sk_memcg && 1097 mem_cgroup_under_socket_pressure(sk->sk_memcg)) 1098 return true; 1099 1100 return !!*sk->sk_prot->memory_pressure; 1101 } 1102 1103 static inline void sk_leave_memory_pressure(struct sock *sk) 1104 { 1105 int *memory_pressure = sk->sk_prot->memory_pressure; 1106 1107 if (!memory_pressure) 1108 return; 1109 1110 if (*memory_pressure) 1111 *memory_pressure = 0; 1112 } 1113 1114 static inline void sk_enter_memory_pressure(struct sock *sk) 1115 { 1116 if (!sk->sk_prot->enter_memory_pressure) 1117 return; 1118 1119 sk->sk_prot->enter_memory_pressure(sk); 1120 } 1121 1122 static inline long sk_prot_mem_limits(const struct sock *sk, int index) 1123 { 1124 return sk->sk_prot->sysctl_mem[index]; 1125 } 1126 1127 static inline long 1128 sk_memory_allocated(const struct sock *sk) 1129 { 1130 return atomic_long_read(sk->sk_prot->memory_allocated); 1131 } 1132 1133 static inline long 1134 sk_memory_allocated_add(struct sock *sk, int amt) 1135 { 1136 return atomic_long_add_return(amt, sk->sk_prot->memory_allocated); 1137 } 1138 1139 static inline void 1140 sk_memory_allocated_sub(struct sock *sk, int amt) 1141 { 1142 atomic_long_sub(amt, sk->sk_prot->memory_allocated); 1143 } 1144 1145 static inline void sk_sockets_allocated_dec(struct sock *sk) 1146 { 1147 percpu_counter_dec(sk->sk_prot->sockets_allocated); 1148 } 1149 1150 static inline void sk_sockets_allocated_inc(struct sock *sk) 1151 { 1152 percpu_counter_inc(sk->sk_prot->sockets_allocated); 1153 } 1154 1155 static inline int 1156 sk_sockets_allocated_read_positive(struct sock *sk) 1157 { 1158 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated); 1159 } 1160 1161 static inline int 1162 proto_sockets_allocated_sum_positive(struct proto *prot) 1163 { 1164 return percpu_counter_sum_positive(prot->sockets_allocated); 1165 } 1166 1167 static inline long 1168 proto_memory_allocated(struct proto *prot) 1169 { 1170 return atomic_long_read(prot->memory_allocated); 1171 } 1172 1173 static inline bool 1174 proto_memory_pressure(struct proto *prot) 1175 { 1176 if (!prot->memory_pressure) 1177 return false; 1178 return !!*prot->memory_pressure; 1179 } 1180 1181 1182 #ifdef CONFIG_PROC_FS 1183 /* Called with local bh disabled */ 1184 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc); 1185 int sock_prot_inuse_get(struct net *net, struct proto *proto); 1186 #else 1187 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot, 1188 int inc) 1189 { 1190 } 1191 #endif 1192 1193 1194 /* With per-bucket locks this operation is not-atomic, so that 1195 * this version is not worse. 1196 */ 1197 static inline int __sk_prot_rehash(struct sock *sk) 1198 { 1199 sk->sk_prot->unhash(sk); 1200 return sk->sk_prot->hash(sk); 1201 } 1202 1203 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size); 1204 1205 /* About 10 seconds */ 1206 #define SOCK_DESTROY_TIME (10*HZ) 1207 1208 /* Sockets 0-1023 can't be bound to unless you are superuser */ 1209 #define PROT_SOCK 1024 1210 1211 #define SHUTDOWN_MASK 3 1212 #define RCV_SHUTDOWN 1 1213 #define SEND_SHUTDOWN 2 1214 1215 #define SOCK_SNDBUF_LOCK 1 1216 #define SOCK_RCVBUF_LOCK 2 1217 #define SOCK_BINDADDR_LOCK 4 1218 #define SOCK_BINDPORT_LOCK 8 1219 1220 struct socket_alloc { 1221 struct socket socket; 1222 struct inode vfs_inode; 1223 }; 1224 1225 static inline struct socket *SOCKET_I(struct inode *inode) 1226 { 1227 return &container_of(inode, struct socket_alloc, vfs_inode)->socket; 1228 } 1229 1230 static inline struct inode *SOCK_INODE(struct socket *socket) 1231 { 1232 return &container_of(socket, struct socket_alloc, socket)->vfs_inode; 1233 } 1234 1235 /* 1236 * Functions for memory accounting 1237 */ 1238 int __sk_mem_schedule(struct sock *sk, int size, int kind); 1239 void __sk_mem_reclaim(struct sock *sk, int amount); 1240 1241 #define SK_MEM_QUANTUM ((int)PAGE_SIZE) 1242 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM) 1243 #define SK_MEM_SEND 0 1244 #define SK_MEM_RECV 1 1245 1246 static inline int sk_mem_pages(int amt) 1247 { 1248 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT; 1249 } 1250 1251 static inline bool sk_has_account(struct sock *sk) 1252 { 1253 /* return true if protocol supports memory accounting */ 1254 return !!sk->sk_prot->memory_allocated; 1255 } 1256 1257 static inline bool sk_wmem_schedule(struct sock *sk, int size) 1258 { 1259 if (!sk_has_account(sk)) 1260 return true; 1261 return size <= sk->sk_forward_alloc || 1262 __sk_mem_schedule(sk, size, SK_MEM_SEND); 1263 } 1264 1265 static inline bool 1266 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size) 1267 { 1268 if (!sk_has_account(sk)) 1269 return true; 1270 return size<= sk->sk_forward_alloc || 1271 __sk_mem_schedule(sk, size, SK_MEM_RECV) || 1272 skb_pfmemalloc(skb); 1273 } 1274 1275 static inline void sk_mem_reclaim(struct sock *sk) 1276 { 1277 if (!sk_has_account(sk)) 1278 return; 1279 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM) 1280 __sk_mem_reclaim(sk, sk->sk_forward_alloc); 1281 } 1282 1283 static inline void sk_mem_reclaim_partial(struct sock *sk) 1284 { 1285 if (!sk_has_account(sk)) 1286 return; 1287 if (sk->sk_forward_alloc > SK_MEM_QUANTUM) 1288 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1); 1289 } 1290 1291 static inline void sk_mem_charge(struct sock *sk, int size) 1292 { 1293 if (!sk_has_account(sk)) 1294 return; 1295 sk->sk_forward_alloc -= size; 1296 } 1297 1298 static inline void sk_mem_uncharge(struct sock *sk, int size) 1299 { 1300 if (!sk_has_account(sk)) 1301 return; 1302 sk->sk_forward_alloc += size; 1303 } 1304 1305 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb) 1306 { 1307 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1308 sk->sk_wmem_queued -= skb->truesize; 1309 sk_mem_uncharge(sk, skb->truesize); 1310 __kfree_skb(skb); 1311 } 1312 1313 /* Used by processes to "lock" a socket state, so that 1314 * interrupts and bottom half handlers won't change it 1315 * from under us. It essentially blocks any incoming 1316 * packets, so that we won't get any new data or any 1317 * packets that change the state of the socket. 1318 * 1319 * While locked, BH processing will add new packets to 1320 * the backlog queue. This queue is processed by the 1321 * owner of the socket lock right before it is released. 1322 * 1323 * Since ~2.3.5 it is also exclusive sleep lock serializing 1324 * accesses from user process context. 1325 */ 1326 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned) 1327 1328 static inline void sock_release_ownership(struct sock *sk) 1329 { 1330 sk->sk_lock.owned = 0; 1331 } 1332 1333 /* 1334 * Macro so as to not evaluate some arguments when 1335 * lockdep is not enabled. 1336 * 1337 * Mark both the sk_lock and the sk_lock.slock as a 1338 * per-address-family lock class. 1339 */ 1340 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \ 1341 do { \ 1342 sk->sk_lock.owned = 0; \ 1343 init_waitqueue_head(&sk->sk_lock.wq); \ 1344 spin_lock_init(&(sk)->sk_lock.slock); \ 1345 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \ 1346 sizeof((sk)->sk_lock)); \ 1347 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \ 1348 (skey), (sname)); \ 1349 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \ 1350 } while (0) 1351 1352 void lock_sock_nested(struct sock *sk, int subclass); 1353 1354 static inline void lock_sock(struct sock *sk) 1355 { 1356 lock_sock_nested(sk, 0); 1357 } 1358 1359 void release_sock(struct sock *sk); 1360 1361 /* BH context may only use the following locking interface. */ 1362 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) 1363 #define bh_lock_sock_nested(__sk) \ 1364 spin_lock_nested(&((__sk)->sk_lock.slock), \ 1365 SINGLE_DEPTH_NESTING) 1366 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) 1367 1368 bool lock_sock_fast(struct sock *sk); 1369 /** 1370 * unlock_sock_fast - complement of lock_sock_fast 1371 * @sk: socket 1372 * @slow: slow mode 1373 * 1374 * fast unlock socket for user context. 1375 * If slow mode is on, we call regular release_sock() 1376 */ 1377 static inline void unlock_sock_fast(struct sock *sk, bool slow) 1378 { 1379 if (slow) 1380 release_sock(sk); 1381 else 1382 spin_unlock_bh(&sk->sk_lock.slock); 1383 } 1384 1385 1386 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1387 struct proto *prot, int kern); 1388 void sk_free(struct sock *sk); 1389 void sk_destruct(struct sock *sk); 1390 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority); 1391 1392 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 1393 gfp_t priority); 1394 void sock_wfree(struct sk_buff *skb); 1395 void skb_orphan_partial(struct sk_buff *skb); 1396 void sock_rfree(struct sk_buff *skb); 1397 void sock_efree(struct sk_buff *skb); 1398 #ifdef CONFIG_INET 1399 void sock_edemux(struct sk_buff *skb); 1400 #else 1401 #define sock_edemux(skb) sock_efree(skb) 1402 #endif 1403 1404 int sock_setsockopt(struct socket *sock, int level, int op, 1405 char __user *optval, unsigned int optlen); 1406 1407 int sock_getsockopt(struct socket *sock, int level, int op, 1408 char __user *optval, int __user *optlen); 1409 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 1410 int noblock, int *errcode); 1411 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 1412 unsigned long data_len, int noblock, 1413 int *errcode, int max_page_order); 1414 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority); 1415 void sock_kfree_s(struct sock *sk, void *mem, int size); 1416 void sock_kzfree_s(struct sock *sk, void *mem, int size); 1417 void sk_send_sigurg(struct sock *sk); 1418 1419 struct sockcm_cookie { 1420 u32 mark; 1421 }; 1422 1423 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 1424 struct sockcm_cookie *sockc); 1425 1426 /* 1427 * Functions to fill in entries in struct proto_ops when a protocol 1428 * does not implement a particular function. 1429 */ 1430 int sock_no_bind(struct socket *, struct sockaddr *, int); 1431 int sock_no_connect(struct socket *, struct sockaddr *, int, int); 1432 int sock_no_socketpair(struct socket *, struct socket *); 1433 int sock_no_accept(struct socket *, struct socket *, int); 1434 int sock_no_getname(struct socket *, struct sockaddr *, int *, int); 1435 unsigned int sock_no_poll(struct file *, struct socket *, 1436 struct poll_table_struct *); 1437 int sock_no_ioctl(struct socket *, unsigned int, unsigned long); 1438 int sock_no_listen(struct socket *, int); 1439 int sock_no_shutdown(struct socket *, int); 1440 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *); 1441 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int); 1442 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t); 1443 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int); 1444 int sock_no_mmap(struct file *file, struct socket *sock, 1445 struct vm_area_struct *vma); 1446 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, 1447 size_t size, int flags); 1448 1449 /* 1450 * Functions to fill in entries in struct proto_ops when a protocol 1451 * uses the inet style. 1452 */ 1453 int sock_common_getsockopt(struct socket *sock, int level, int optname, 1454 char __user *optval, int __user *optlen); 1455 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 1456 int flags); 1457 int sock_common_setsockopt(struct socket *sock, int level, int optname, 1458 char __user *optval, unsigned int optlen); 1459 int compat_sock_common_getsockopt(struct socket *sock, int level, 1460 int optname, char __user *optval, int __user *optlen); 1461 int compat_sock_common_setsockopt(struct socket *sock, int level, 1462 int optname, char __user *optval, unsigned int optlen); 1463 1464 void sk_common_release(struct sock *sk); 1465 1466 /* 1467 * Default socket callbacks and setup code 1468 */ 1469 1470 /* Initialise core socket variables */ 1471 void sock_init_data(struct socket *sock, struct sock *sk); 1472 1473 /* 1474 * Socket reference counting postulates. 1475 * 1476 * * Each user of socket SHOULD hold a reference count. 1477 * * Each access point to socket (an hash table bucket, reference from a list, 1478 * running timer, skb in flight MUST hold a reference count. 1479 * * When reference count hits 0, it means it will never increase back. 1480 * * When reference count hits 0, it means that no references from 1481 * outside exist to this socket and current process on current CPU 1482 * is last user and may/should destroy this socket. 1483 * * sk_free is called from any context: process, BH, IRQ. When 1484 * it is called, socket has no references from outside -> sk_free 1485 * may release descendant resources allocated by the socket, but 1486 * to the time when it is called, socket is NOT referenced by any 1487 * hash tables, lists etc. 1488 * * Packets, delivered from outside (from network or from another process) 1489 * and enqueued on receive/error queues SHOULD NOT grab reference count, 1490 * when they sit in queue. Otherwise, packets will leak to hole, when 1491 * socket is looked up by one cpu and unhasing is made by another CPU. 1492 * It is true for udp/raw, netlink (leak to receive and error queues), tcp 1493 * (leak to backlog). Packet socket does all the processing inside 1494 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets 1495 * use separate SMP lock, so that they are prone too. 1496 */ 1497 1498 /* Ungrab socket and destroy it, if it was the last reference. */ 1499 static inline void sock_put(struct sock *sk) 1500 { 1501 if (atomic_dec_and_test(&sk->sk_refcnt)) 1502 sk_free(sk); 1503 } 1504 /* Generic version of sock_put(), dealing with all sockets 1505 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...) 1506 */ 1507 void sock_gen_put(struct sock *sk); 1508 1509 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested); 1510 1511 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue) 1512 { 1513 sk->sk_tx_queue_mapping = tx_queue; 1514 } 1515 1516 static inline void sk_tx_queue_clear(struct sock *sk) 1517 { 1518 sk->sk_tx_queue_mapping = -1; 1519 } 1520 1521 static inline int sk_tx_queue_get(const struct sock *sk) 1522 { 1523 return sk ? sk->sk_tx_queue_mapping : -1; 1524 } 1525 1526 static inline void sk_set_socket(struct sock *sk, struct socket *sock) 1527 { 1528 sk_tx_queue_clear(sk); 1529 sk->sk_socket = sock; 1530 } 1531 1532 static inline wait_queue_head_t *sk_sleep(struct sock *sk) 1533 { 1534 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0); 1535 return &rcu_dereference_raw(sk->sk_wq)->wait; 1536 } 1537 /* Detach socket from process context. 1538 * Announce socket dead, detach it from wait queue and inode. 1539 * Note that parent inode held reference count on this struct sock, 1540 * we do not release it in this function, because protocol 1541 * probably wants some additional cleanups or even continuing 1542 * to work with this socket (TCP). 1543 */ 1544 static inline void sock_orphan(struct sock *sk) 1545 { 1546 write_lock_bh(&sk->sk_callback_lock); 1547 sock_set_flag(sk, SOCK_DEAD); 1548 sk_set_socket(sk, NULL); 1549 sk->sk_wq = NULL; 1550 write_unlock_bh(&sk->sk_callback_lock); 1551 } 1552 1553 static inline void sock_graft(struct sock *sk, struct socket *parent) 1554 { 1555 write_lock_bh(&sk->sk_callback_lock); 1556 sk->sk_wq = parent->wq; 1557 parent->sk = sk; 1558 sk_set_socket(sk, parent); 1559 security_sock_graft(sk, parent); 1560 write_unlock_bh(&sk->sk_callback_lock); 1561 } 1562 1563 kuid_t sock_i_uid(struct sock *sk); 1564 unsigned long sock_i_ino(struct sock *sk); 1565 1566 static inline u32 net_tx_rndhash(void) 1567 { 1568 u32 v = prandom_u32(); 1569 1570 return v ?: 1; 1571 } 1572 1573 static inline void sk_set_txhash(struct sock *sk) 1574 { 1575 sk->sk_txhash = net_tx_rndhash(); 1576 } 1577 1578 static inline void sk_rethink_txhash(struct sock *sk) 1579 { 1580 if (sk->sk_txhash) 1581 sk_set_txhash(sk); 1582 } 1583 1584 static inline struct dst_entry * 1585 __sk_dst_get(struct sock *sk) 1586 { 1587 return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) || 1588 lockdep_is_held(&sk->sk_lock.slock)); 1589 } 1590 1591 static inline struct dst_entry * 1592 sk_dst_get(struct sock *sk) 1593 { 1594 struct dst_entry *dst; 1595 1596 rcu_read_lock(); 1597 dst = rcu_dereference(sk->sk_dst_cache); 1598 if (dst && !atomic_inc_not_zero(&dst->__refcnt)) 1599 dst = NULL; 1600 rcu_read_unlock(); 1601 return dst; 1602 } 1603 1604 static inline void dst_negative_advice(struct sock *sk) 1605 { 1606 struct dst_entry *ndst, *dst = __sk_dst_get(sk); 1607 1608 sk_rethink_txhash(sk); 1609 1610 if (dst && dst->ops->negative_advice) { 1611 ndst = dst->ops->negative_advice(dst); 1612 1613 if (ndst != dst) { 1614 rcu_assign_pointer(sk->sk_dst_cache, ndst); 1615 sk_tx_queue_clear(sk); 1616 } 1617 } 1618 } 1619 1620 static inline void 1621 __sk_dst_set(struct sock *sk, struct dst_entry *dst) 1622 { 1623 struct dst_entry *old_dst; 1624 1625 sk_tx_queue_clear(sk); 1626 /* 1627 * This can be called while sk is owned by the caller only, 1628 * with no state that can be checked in a rcu_dereference_check() cond 1629 */ 1630 old_dst = rcu_dereference_raw(sk->sk_dst_cache); 1631 rcu_assign_pointer(sk->sk_dst_cache, dst); 1632 dst_release(old_dst); 1633 } 1634 1635 static inline void 1636 sk_dst_set(struct sock *sk, struct dst_entry *dst) 1637 { 1638 struct dst_entry *old_dst; 1639 1640 sk_tx_queue_clear(sk); 1641 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst); 1642 dst_release(old_dst); 1643 } 1644 1645 static inline void 1646 __sk_dst_reset(struct sock *sk) 1647 { 1648 __sk_dst_set(sk, NULL); 1649 } 1650 1651 static inline void 1652 sk_dst_reset(struct sock *sk) 1653 { 1654 sk_dst_set(sk, NULL); 1655 } 1656 1657 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); 1658 1659 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); 1660 1661 bool sk_mc_loop(struct sock *sk); 1662 1663 static inline bool sk_can_gso(const struct sock *sk) 1664 { 1665 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type); 1666 } 1667 1668 void sk_setup_caps(struct sock *sk, struct dst_entry *dst); 1669 1670 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags) 1671 { 1672 sk->sk_route_nocaps |= flags; 1673 sk->sk_route_caps &= ~flags; 1674 } 1675 1676 static inline bool sk_check_csum_caps(struct sock *sk) 1677 { 1678 return (sk->sk_route_caps & NETIF_F_HW_CSUM) || 1679 (sk->sk_family == PF_INET && 1680 (sk->sk_route_caps & NETIF_F_IP_CSUM)) || 1681 (sk->sk_family == PF_INET6 && 1682 (sk->sk_route_caps & NETIF_F_IPV6_CSUM)); 1683 } 1684 1685 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb, 1686 struct iov_iter *from, char *to, 1687 int copy, int offset) 1688 { 1689 if (skb->ip_summed == CHECKSUM_NONE) { 1690 __wsum csum = 0; 1691 if (csum_and_copy_from_iter(to, copy, &csum, from) != copy) 1692 return -EFAULT; 1693 skb->csum = csum_block_add(skb->csum, csum, offset); 1694 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 1695 if (copy_from_iter_nocache(to, copy, from) != copy) 1696 return -EFAULT; 1697 } else if (copy_from_iter(to, copy, from) != copy) 1698 return -EFAULT; 1699 1700 return 0; 1701 } 1702 1703 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb, 1704 struct iov_iter *from, int copy) 1705 { 1706 int err, offset = skb->len; 1707 1708 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy), 1709 copy, offset); 1710 if (err) 1711 __skb_trim(skb, offset); 1712 1713 return err; 1714 } 1715 1716 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from, 1717 struct sk_buff *skb, 1718 struct page *page, 1719 int off, int copy) 1720 { 1721 int err; 1722 1723 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off, 1724 copy, skb->len); 1725 if (err) 1726 return err; 1727 1728 skb->len += copy; 1729 skb->data_len += copy; 1730 skb->truesize += copy; 1731 sk->sk_wmem_queued += copy; 1732 sk_mem_charge(sk, copy); 1733 return 0; 1734 } 1735 1736 /** 1737 * sk_wmem_alloc_get - returns write allocations 1738 * @sk: socket 1739 * 1740 * Returns sk_wmem_alloc minus initial offset of one 1741 */ 1742 static inline int sk_wmem_alloc_get(const struct sock *sk) 1743 { 1744 return atomic_read(&sk->sk_wmem_alloc) - 1; 1745 } 1746 1747 /** 1748 * sk_rmem_alloc_get - returns read allocations 1749 * @sk: socket 1750 * 1751 * Returns sk_rmem_alloc 1752 */ 1753 static inline int sk_rmem_alloc_get(const struct sock *sk) 1754 { 1755 return atomic_read(&sk->sk_rmem_alloc); 1756 } 1757 1758 /** 1759 * sk_has_allocations - check if allocations are outstanding 1760 * @sk: socket 1761 * 1762 * Returns true if socket has write or read allocations 1763 */ 1764 static inline bool sk_has_allocations(const struct sock *sk) 1765 { 1766 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk); 1767 } 1768 1769 /** 1770 * skwq_has_sleeper - check if there are any waiting processes 1771 * @wq: struct socket_wq 1772 * 1773 * Returns true if socket_wq has waiting processes 1774 * 1775 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory 1776 * barrier call. They were added due to the race found within the tcp code. 1777 * 1778 * Consider following tcp code paths: 1779 * 1780 * CPU1 CPU2 1781 * 1782 * sys_select receive packet 1783 * ... ... 1784 * __add_wait_queue update tp->rcv_nxt 1785 * ... ... 1786 * tp->rcv_nxt check sock_def_readable 1787 * ... { 1788 * schedule rcu_read_lock(); 1789 * wq = rcu_dereference(sk->sk_wq); 1790 * if (wq && waitqueue_active(&wq->wait)) 1791 * wake_up_interruptible(&wq->wait) 1792 * ... 1793 * } 1794 * 1795 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay 1796 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1 1797 * could then endup calling schedule and sleep forever if there are no more 1798 * data on the socket. 1799 * 1800 */ 1801 static inline bool skwq_has_sleeper(struct socket_wq *wq) 1802 { 1803 return wq && wq_has_sleeper(&wq->wait); 1804 } 1805 1806 /** 1807 * sock_poll_wait - place memory barrier behind the poll_wait call. 1808 * @filp: file 1809 * @wait_address: socket wait queue 1810 * @p: poll_table 1811 * 1812 * See the comments in the wq_has_sleeper function. 1813 */ 1814 static inline void sock_poll_wait(struct file *filp, 1815 wait_queue_head_t *wait_address, poll_table *p) 1816 { 1817 if (!poll_does_not_wait(p) && wait_address) { 1818 poll_wait(filp, wait_address, p); 1819 /* We need to be sure we are in sync with the 1820 * socket flags modification. 1821 * 1822 * This memory barrier is paired in the wq_has_sleeper. 1823 */ 1824 smp_mb(); 1825 } 1826 } 1827 1828 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk) 1829 { 1830 if (sk->sk_txhash) { 1831 skb->l4_hash = 1; 1832 skb->hash = sk->sk_txhash; 1833 } 1834 } 1835 1836 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk); 1837 1838 /* 1839 * Queue a received datagram if it will fit. Stream and sequenced 1840 * protocols can't normally use this as they need to fit buffers in 1841 * and play with them. 1842 * 1843 * Inlined as it's very short and called for pretty much every 1844 * packet ever received. 1845 */ 1846 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 1847 { 1848 skb_orphan(skb); 1849 skb->sk = sk; 1850 skb->destructor = sock_rfree; 1851 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 1852 sk_mem_charge(sk, skb->truesize); 1853 } 1854 1855 void sk_reset_timer(struct sock *sk, struct timer_list *timer, 1856 unsigned long expires); 1857 1858 void sk_stop_timer(struct sock *sk, struct timer_list *timer); 1859 1860 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 1861 1862 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb); 1863 struct sk_buff *sock_dequeue_err_skb(struct sock *sk); 1864 1865 /* 1866 * Recover an error report and clear atomically 1867 */ 1868 1869 static inline int sock_error(struct sock *sk) 1870 { 1871 int err; 1872 if (likely(!sk->sk_err)) 1873 return 0; 1874 err = xchg(&sk->sk_err, 0); 1875 return -err; 1876 } 1877 1878 static inline unsigned long sock_wspace(struct sock *sk) 1879 { 1880 int amt = 0; 1881 1882 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 1883 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); 1884 if (amt < 0) 1885 amt = 0; 1886 } 1887 return amt; 1888 } 1889 1890 /* Note: 1891 * We use sk->sk_wq_raw, from contexts knowing this 1892 * pointer is not NULL and cannot disappear/change. 1893 */ 1894 static inline void sk_set_bit(int nr, struct sock *sk) 1895 { 1896 set_bit(nr, &sk->sk_wq_raw->flags); 1897 } 1898 1899 static inline void sk_clear_bit(int nr, struct sock *sk) 1900 { 1901 clear_bit(nr, &sk->sk_wq_raw->flags); 1902 } 1903 1904 static inline void sk_wake_async(const struct sock *sk, int how, int band) 1905 { 1906 if (sock_flag(sk, SOCK_FASYNC)) { 1907 rcu_read_lock(); 1908 sock_wake_async(rcu_dereference(sk->sk_wq), how, band); 1909 rcu_read_unlock(); 1910 } 1911 } 1912 1913 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might 1914 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak. 1915 * Note: for send buffers, TCP works better if we can build two skbs at 1916 * minimum. 1917 */ 1918 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff))) 1919 1920 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2) 1921 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE 1922 1923 static inline void sk_stream_moderate_sndbuf(struct sock *sk) 1924 { 1925 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) { 1926 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1); 1927 sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF); 1928 } 1929 } 1930 1931 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 1932 bool force_schedule); 1933 1934 /** 1935 * sk_page_frag - return an appropriate page_frag 1936 * @sk: socket 1937 * 1938 * If socket allocation mode allows current thread to sleep, it means its 1939 * safe to use the per task page_frag instead of the per socket one. 1940 */ 1941 static inline struct page_frag *sk_page_frag(struct sock *sk) 1942 { 1943 if (gfpflags_allow_blocking(sk->sk_allocation)) 1944 return ¤t->task_frag; 1945 1946 return &sk->sk_frag; 1947 } 1948 1949 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag); 1950 1951 /* 1952 * Default write policy as shown to user space via poll/select/SIGIO 1953 */ 1954 static inline bool sock_writeable(const struct sock *sk) 1955 { 1956 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1); 1957 } 1958 1959 static inline gfp_t gfp_any(void) 1960 { 1961 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; 1962 } 1963 1964 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock) 1965 { 1966 return noblock ? 0 : sk->sk_rcvtimeo; 1967 } 1968 1969 static inline long sock_sndtimeo(const struct sock *sk, bool noblock) 1970 { 1971 return noblock ? 0 : sk->sk_sndtimeo; 1972 } 1973 1974 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) 1975 { 1976 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1; 1977 } 1978 1979 /* Alas, with timeout socket operations are not restartable. 1980 * Compare this to poll(). 1981 */ 1982 static inline int sock_intr_errno(long timeo) 1983 { 1984 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; 1985 } 1986 1987 struct sock_skb_cb { 1988 u32 dropcount; 1989 }; 1990 1991 /* Store sock_skb_cb at the end of skb->cb[] so protocol families 1992 * using skb->cb[] would keep using it directly and utilize its 1993 * alignement guarantee. 1994 */ 1995 #define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \ 1996 sizeof(struct sock_skb_cb))) 1997 1998 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \ 1999 SOCK_SKB_CB_OFFSET)) 2000 2001 #define sock_skb_cb_check_size(size) \ 2002 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET) 2003 2004 static inline void 2005 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb) 2006 { 2007 SOCK_SKB_CB(skb)->dropcount = atomic_read(&sk->sk_drops); 2008 } 2009 2010 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 2011 struct sk_buff *skb); 2012 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 2013 struct sk_buff *skb); 2014 2015 static inline void 2016 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) 2017 { 2018 ktime_t kt = skb->tstamp; 2019 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); 2020 2021 /* 2022 * generate control messages if 2023 * - receive time stamping in software requested 2024 * - software time stamp available and wanted 2025 * - hardware time stamps available and wanted 2026 */ 2027 if (sock_flag(sk, SOCK_RCVTSTAMP) || 2028 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) || 2029 (kt.tv64 && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) || 2030 (hwtstamps->hwtstamp.tv64 && 2031 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE))) 2032 __sock_recv_timestamp(msg, sk, skb); 2033 else 2034 sk->sk_stamp = kt; 2035 2036 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid) 2037 __sock_recv_wifi_status(msg, sk, skb); 2038 } 2039 2040 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2041 struct sk_buff *skb); 2042 2043 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2044 struct sk_buff *skb) 2045 { 2046 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \ 2047 (1UL << SOCK_RCVTSTAMP)) 2048 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \ 2049 SOF_TIMESTAMPING_RAW_HARDWARE) 2050 2051 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY) 2052 __sock_recv_ts_and_drops(msg, sk, skb); 2053 else 2054 sk->sk_stamp = skb->tstamp; 2055 } 2056 2057 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags); 2058 2059 /** 2060 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped 2061 * @sk: socket sending this packet 2062 * @tx_flags: completed with instructions for time stamping 2063 * 2064 * Note : callers should take care of initial *tx_flags value (usually 0) 2065 */ 2066 static inline void sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags) 2067 { 2068 if (unlikely(sk->sk_tsflags)) 2069 __sock_tx_timestamp(sk, tx_flags); 2070 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS))) 2071 *tx_flags |= SKBTX_WIFI_STATUS; 2072 } 2073 2074 /** 2075 * sk_eat_skb - Release a skb if it is no longer needed 2076 * @sk: socket to eat this skb from 2077 * @skb: socket buffer to eat 2078 * 2079 * This routine must be called with interrupts disabled or with the socket 2080 * locked so that the sk_buff queue operation is ok. 2081 */ 2082 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb) 2083 { 2084 __skb_unlink(skb, &sk->sk_receive_queue); 2085 __kfree_skb(skb); 2086 } 2087 2088 static inline 2089 struct net *sock_net(const struct sock *sk) 2090 { 2091 return read_pnet(&sk->sk_net); 2092 } 2093 2094 static inline 2095 void sock_net_set(struct sock *sk, struct net *net) 2096 { 2097 write_pnet(&sk->sk_net, net); 2098 } 2099 2100 static inline struct sock *skb_steal_sock(struct sk_buff *skb) 2101 { 2102 if (skb->sk) { 2103 struct sock *sk = skb->sk; 2104 2105 skb->destructor = NULL; 2106 skb->sk = NULL; 2107 return sk; 2108 } 2109 return NULL; 2110 } 2111 2112 /* This helper checks if a socket is a full socket, 2113 * ie _not_ a timewait or request socket. 2114 */ 2115 static inline bool sk_fullsock(const struct sock *sk) 2116 { 2117 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV); 2118 } 2119 2120 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV 2121 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE) 2122 */ 2123 static inline bool sk_listener(const struct sock *sk) 2124 { 2125 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV); 2126 } 2127 2128 /** 2129 * sk_state_load - read sk->sk_state for lockless contexts 2130 * @sk: socket pointer 2131 * 2132 * Paired with sk_state_store(). Used in places we do not hold socket lock : 2133 * tcp_diag_get_info(), tcp_get_info(), tcp_poll(), get_tcp4_sock() ... 2134 */ 2135 static inline int sk_state_load(const struct sock *sk) 2136 { 2137 return smp_load_acquire(&sk->sk_state); 2138 } 2139 2140 /** 2141 * sk_state_store - update sk->sk_state 2142 * @sk: socket pointer 2143 * @newstate: new state 2144 * 2145 * Paired with sk_state_load(). Should be used in contexts where 2146 * state change might impact lockless readers. 2147 */ 2148 static inline void sk_state_store(struct sock *sk, int newstate) 2149 { 2150 smp_store_release(&sk->sk_state, newstate); 2151 } 2152 2153 void sock_enable_timestamp(struct sock *sk, int flag); 2154 int sock_get_timestamp(struct sock *, struct timeval __user *); 2155 int sock_get_timestampns(struct sock *, struct timespec __user *); 2156 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level, 2157 int type); 2158 2159 bool sk_ns_capable(const struct sock *sk, 2160 struct user_namespace *user_ns, int cap); 2161 bool sk_capable(const struct sock *sk, int cap); 2162 bool sk_net_capable(const struct sock *sk, int cap); 2163 2164 extern __u32 sysctl_wmem_max; 2165 extern __u32 sysctl_rmem_max; 2166 2167 extern int sysctl_tstamp_allow_data; 2168 extern int sysctl_optmem_max; 2169 2170 extern __u32 sysctl_wmem_default; 2171 extern __u32 sysctl_rmem_default; 2172 2173 #endif /* _SOCK_H */ 2174