xref: /linux/include/net/sock.h (revision 110e6f26af80dfd90b6e5c645b1aed7228aa580d)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the AF_INET socket handler.
7  *
8  * Version:	@(#)sock.h	1.0.4	05/13/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche <flla@stud.uni-sb.de>
14  *
15  * Fixes:
16  *		Alan Cox	:	Volatiles in skbuff pointers. See
17  *					skbuff comments. May be overdone,
18  *					better to prove they can be removed
19  *					than the reverse.
20  *		Alan Cox	:	Added a zapped field for tcp to note
21  *					a socket is reset and must stay shut up
22  *		Alan Cox	:	New fields for options
23  *	Pauline Middelink	:	identd support
24  *		Alan Cox	:	Eliminate low level recv/recvfrom
25  *		David S. Miller	:	New socket lookup architecture.
26  *              Steve Whitehouse:       Default routines for sock_ops
27  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
28  *              			protinfo be just a void pointer, as the
29  *              			protocol specific parts were moved to
30  *              			respective headers and ipv4/v6, etc now
31  *              			use private slabcaches for its socks
32  *              Pedro Hortas	:	New flags field for socket options
33  *
34  *
35  *		This program is free software; you can redistribute it and/or
36  *		modify it under the terms of the GNU General Public License
37  *		as published by the Free Software Foundation; either version
38  *		2 of the License, or (at your option) any later version.
39  */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42 
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h>	/* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/page_counter.h>
58 #include <linux/memcontrol.h>
59 #include <linux/static_key.h>
60 #include <linux/sched.h>
61 #include <linux/wait.h>
62 #include <linux/cgroup-defs.h>
63 
64 #include <linux/filter.h>
65 #include <linux/rculist_nulls.h>
66 #include <linux/poll.h>
67 
68 #include <linux/atomic.h>
69 #include <net/dst.h>
70 #include <net/checksum.h>
71 #include <net/tcp_states.h>
72 #include <linux/net_tstamp.h>
73 
74 /*
75  * This structure really needs to be cleaned up.
76  * Most of it is for TCP, and not used by any of
77  * the other protocols.
78  */
79 
80 /* Define this to get the SOCK_DBG debugging facility. */
81 #define SOCK_DEBUGGING
82 #ifdef SOCK_DEBUGGING
83 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
84 					printk(KERN_DEBUG msg); } while (0)
85 #else
86 /* Validate arguments and do nothing */
87 static inline __printf(2, 3)
88 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
89 {
90 }
91 #endif
92 
93 /* This is the per-socket lock.  The spinlock provides a synchronization
94  * between user contexts and software interrupt processing, whereas the
95  * mini-semaphore synchronizes multiple users amongst themselves.
96  */
97 typedef struct {
98 	spinlock_t		slock;
99 	int			owned;
100 	wait_queue_head_t	wq;
101 	/*
102 	 * We express the mutex-alike socket_lock semantics
103 	 * to the lock validator by explicitly managing
104 	 * the slock as a lock variant (in addition to
105 	 * the slock itself):
106 	 */
107 #ifdef CONFIG_DEBUG_LOCK_ALLOC
108 	struct lockdep_map dep_map;
109 #endif
110 } socket_lock_t;
111 
112 struct sock;
113 struct proto;
114 struct net;
115 
116 typedef __u32 __bitwise __portpair;
117 typedef __u64 __bitwise __addrpair;
118 
119 /**
120  *	struct sock_common - minimal network layer representation of sockets
121  *	@skc_daddr: Foreign IPv4 addr
122  *	@skc_rcv_saddr: Bound local IPv4 addr
123  *	@skc_hash: hash value used with various protocol lookup tables
124  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
125  *	@skc_dport: placeholder for inet_dport/tw_dport
126  *	@skc_num: placeholder for inet_num/tw_num
127  *	@skc_family: network address family
128  *	@skc_state: Connection state
129  *	@skc_reuse: %SO_REUSEADDR setting
130  *	@skc_reuseport: %SO_REUSEPORT setting
131  *	@skc_bound_dev_if: bound device index if != 0
132  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
133  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
134  *	@skc_prot: protocol handlers inside a network family
135  *	@skc_net: reference to the network namespace of this socket
136  *	@skc_node: main hash linkage for various protocol lookup tables
137  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
138  *	@skc_tx_queue_mapping: tx queue number for this connection
139  *	@skc_flags: place holder for sk_flags
140  *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
141  *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
142  *	@skc_incoming_cpu: record/match cpu processing incoming packets
143  *	@skc_refcnt: reference count
144  *
145  *	This is the minimal network layer representation of sockets, the header
146  *	for struct sock and struct inet_timewait_sock.
147  */
148 struct sock_common {
149 	/* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
150 	 * address on 64bit arches : cf INET_MATCH()
151 	 */
152 	union {
153 		__addrpair	skc_addrpair;
154 		struct {
155 			__be32	skc_daddr;
156 			__be32	skc_rcv_saddr;
157 		};
158 	};
159 	union  {
160 		unsigned int	skc_hash;
161 		__u16		skc_u16hashes[2];
162 	};
163 	/* skc_dport && skc_num must be grouped as well */
164 	union {
165 		__portpair	skc_portpair;
166 		struct {
167 			__be16	skc_dport;
168 			__u16	skc_num;
169 		};
170 	};
171 
172 	unsigned short		skc_family;
173 	volatile unsigned char	skc_state;
174 	unsigned char		skc_reuse:4;
175 	unsigned char		skc_reuseport:1;
176 	unsigned char		skc_ipv6only:1;
177 	unsigned char		skc_net_refcnt:1;
178 	int			skc_bound_dev_if;
179 	union {
180 		struct hlist_node	skc_bind_node;
181 		struct hlist_nulls_node skc_portaddr_node;
182 	};
183 	struct proto		*skc_prot;
184 	possible_net_t		skc_net;
185 
186 #if IS_ENABLED(CONFIG_IPV6)
187 	struct in6_addr		skc_v6_daddr;
188 	struct in6_addr		skc_v6_rcv_saddr;
189 #endif
190 
191 	atomic64_t		skc_cookie;
192 
193 	/* following fields are padding to force
194 	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
195 	 * assuming IPV6 is enabled. We use this padding differently
196 	 * for different kind of 'sockets'
197 	 */
198 	union {
199 		unsigned long	skc_flags;
200 		struct sock	*skc_listener; /* request_sock */
201 		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
202 	};
203 	/*
204 	 * fields between dontcopy_begin/dontcopy_end
205 	 * are not copied in sock_copy()
206 	 */
207 	/* private: */
208 	int			skc_dontcopy_begin[0];
209 	/* public: */
210 	union {
211 		struct hlist_node	skc_node;
212 		struct hlist_nulls_node skc_nulls_node;
213 	};
214 	int			skc_tx_queue_mapping;
215 	union {
216 		int		skc_incoming_cpu;
217 		u32		skc_rcv_wnd;
218 		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
219 	};
220 
221 	atomic_t		skc_refcnt;
222 	/* private: */
223 	int                     skc_dontcopy_end[0];
224 	union {
225 		u32		skc_rxhash;
226 		u32		skc_window_clamp;
227 		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
228 	};
229 	/* public: */
230 };
231 
232 /**
233   *	struct sock - network layer representation of sockets
234   *	@__sk_common: shared layout with inet_timewait_sock
235   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
236   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
237   *	@sk_lock:	synchronizer
238   *	@sk_rcvbuf: size of receive buffer in bytes
239   *	@sk_wq: sock wait queue and async head
240   *	@sk_rx_dst: receive input route used by early demux
241   *	@sk_dst_cache: destination cache
242   *	@sk_policy: flow policy
243   *	@sk_receive_queue: incoming packets
244   *	@sk_wmem_alloc: transmit queue bytes committed
245   *	@sk_write_queue: Packet sending queue
246   *	@sk_omem_alloc: "o" is "option" or "other"
247   *	@sk_wmem_queued: persistent queue size
248   *	@sk_forward_alloc: space allocated forward
249   *	@sk_napi_id: id of the last napi context to receive data for sk
250   *	@sk_ll_usec: usecs to busypoll when there is no data
251   *	@sk_allocation: allocation mode
252   *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
253   *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
254   *	@sk_sndbuf: size of send buffer in bytes
255   *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
256   *	@sk_no_check_rx: allow zero checksum in RX packets
257   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
258   *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
259   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
260   *	@sk_gso_max_size: Maximum GSO segment size to build
261   *	@sk_gso_max_segs: Maximum number of GSO segments
262   *	@sk_lingertime: %SO_LINGER l_linger setting
263   *	@sk_backlog: always used with the per-socket spinlock held
264   *	@sk_callback_lock: used with the callbacks in the end of this struct
265   *	@sk_error_queue: rarely used
266   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
267   *			  IPV6_ADDRFORM for instance)
268   *	@sk_err: last error
269   *	@sk_err_soft: errors that don't cause failure but are the cause of a
270   *		      persistent failure not just 'timed out'
271   *	@sk_drops: raw/udp drops counter
272   *	@sk_ack_backlog: current listen backlog
273   *	@sk_max_ack_backlog: listen backlog set in listen()
274   *	@sk_priority: %SO_PRIORITY setting
275   *	@sk_type: socket type (%SOCK_STREAM, etc)
276   *	@sk_protocol: which protocol this socket belongs in this network family
277   *	@sk_peer_pid: &struct pid for this socket's peer
278   *	@sk_peer_cred: %SO_PEERCRED setting
279   *	@sk_rcvlowat: %SO_RCVLOWAT setting
280   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
281   *	@sk_sndtimeo: %SO_SNDTIMEO setting
282   *	@sk_txhash: computed flow hash for use on transmit
283   *	@sk_filter: socket filtering instructions
284   *	@sk_timer: sock cleanup timer
285   *	@sk_stamp: time stamp of last packet received
286   *	@sk_tsflags: SO_TIMESTAMPING socket options
287   *	@sk_tskey: counter to disambiguate concurrent tstamp requests
288   *	@sk_socket: Identd and reporting IO signals
289   *	@sk_user_data: RPC layer private data
290   *	@sk_frag: cached page frag
291   *	@sk_peek_off: current peek_offset value
292   *	@sk_send_head: front of stuff to transmit
293   *	@sk_security: used by security modules
294   *	@sk_mark: generic packet mark
295   *	@sk_cgrp_data: cgroup data for this cgroup
296   *	@sk_memcg: this socket's memory cgroup association
297   *	@sk_write_pending: a write to stream socket waits to start
298   *	@sk_state_change: callback to indicate change in the state of the sock
299   *	@sk_data_ready: callback to indicate there is data to be processed
300   *	@sk_write_space: callback to indicate there is bf sending space available
301   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
302   *	@sk_backlog_rcv: callback to process the backlog
303   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
304   *	@sk_reuseport_cb: reuseport group container
305  */
306 struct sock {
307 	/*
308 	 * Now struct inet_timewait_sock also uses sock_common, so please just
309 	 * don't add nothing before this first member (__sk_common) --acme
310 	 */
311 	struct sock_common	__sk_common;
312 #define sk_node			__sk_common.skc_node
313 #define sk_nulls_node		__sk_common.skc_nulls_node
314 #define sk_refcnt		__sk_common.skc_refcnt
315 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
316 
317 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
318 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
319 #define sk_hash			__sk_common.skc_hash
320 #define sk_portpair		__sk_common.skc_portpair
321 #define sk_num			__sk_common.skc_num
322 #define sk_dport		__sk_common.skc_dport
323 #define sk_addrpair		__sk_common.skc_addrpair
324 #define sk_daddr		__sk_common.skc_daddr
325 #define sk_rcv_saddr		__sk_common.skc_rcv_saddr
326 #define sk_family		__sk_common.skc_family
327 #define sk_state		__sk_common.skc_state
328 #define sk_reuse		__sk_common.skc_reuse
329 #define sk_reuseport		__sk_common.skc_reuseport
330 #define sk_ipv6only		__sk_common.skc_ipv6only
331 #define sk_net_refcnt		__sk_common.skc_net_refcnt
332 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
333 #define sk_bind_node		__sk_common.skc_bind_node
334 #define sk_prot			__sk_common.skc_prot
335 #define sk_net			__sk_common.skc_net
336 #define sk_v6_daddr		__sk_common.skc_v6_daddr
337 #define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
338 #define sk_cookie		__sk_common.skc_cookie
339 #define sk_incoming_cpu		__sk_common.skc_incoming_cpu
340 #define sk_flags		__sk_common.skc_flags
341 #define sk_rxhash		__sk_common.skc_rxhash
342 
343 	socket_lock_t		sk_lock;
344 	struct sk_buff_head	sk_receive_queue;
345 	/*
346 	 * The backlog queue is special, it is always used with
347 	 * the per-socket spinlock held and requires low latency
348 	 * access. Therefore we special case it's implementation.
349 	 * Note : rmem_alloc is in this structure to fill a hole
350 	 * on 64bit arches, not because its logically part of
351 	 * backlog.
352 	 */
353 	struct {
354 		atomic_t	rmem_alloc;
355 		int		len;
356 		struct sk_buff	*head;
357 		struct sk_buff	*tail;
358 	} sk_backlog;
359 #define sk_rmem_alloc sk_backlog.rmem_alloc
360 	int			sk_forward_alloc;
361 
362 	__u32			sk_txhash;
363 #ifdef CONFIG_NET_RX_BUSY_POLL
364 	unsigned int		sk_napi_id;
365 	unsigned int		sk_ll_usec;
366 #endif
367 	atomic_t		sk_drops;
368 	int			sk_rcvbuf;
369 
370 	struct sk_filter __rcu	*sk_filter;
371 	union {
372 		struct socket_wq __rcu	*sk_wq;
373 		struct socket_wq	*sk_wq_raw;
374 	};
375 #ifdef CONFIG_XFRM
376 	struct xfrm_policy __rcu *sk_policy[2];
377 #endif
378 	struct dst_entry	*sk_rx_dst;
379 	struct dst_entry __rcu	*sk_dst_cache;
380 	/* Note: 32bit hole on 64bit arches */
381 	atomic_t		sk_wmem_alloc;
382 	atomic_t		sk_omem_alloc;
383 	int			sk_sndbuf;
384 	struct sk_buff_head	sk_write_queue;
385 	kmemcheck_bitfield_begin(flags);
386 	unsigned int		sk_shutdown  : 2,
387 				sk_no_check_tx : 1,
388 				sk_no_check_rx : 1,
389 				sk_userlocks : 4,
390 				sk_protocol  : 8,
391 				sk_type      : 16;
392 #define SK_PROTOCOL_MAX U8_MAX
393 	kmemcheck_bitfield_end(flags);
394 	int			sk_wmem_queued;
395 	gfp_t			sk_allocation;
396 	u32			sk_pacing_rate; /* bytes per second */
397 	u32			sk_max_pacing_rate;
398 	netdev_features_t	sk_route_caps;
399 	netdev_features_t	sk_route_nocaps;
400 	int			sk_gso_type;
401 	unsigned int		sk_gso_max_size;
402 	u16			sk_gso_max_segs;
403 	int			sk_rcvlowat;
404 	unsigned long	        sk_lingertime;
405 	struct sk_buff_head	sk_error_queue;
406 	struct proto		*sk_prot_creator;
407 	rwlock_t		sk_callback_lock;
408 	int			sk_err,
409 				sk_err_soft;
410 	u32			sk_ack_backlog;
411 	u32			sk_max_ack_backlog;
412 	__u32			sk_priority;
413 	__u32			sk_mark;
414 	struct pid		*sk_peer_pid;
415 	const struct cred	*sk_peer_cred;
416 	long			sk_rcvtimeo;
417 	long			sk_sndtimeo;
418 	struct timer_list	sk_timer;
419 	ktime_t			sk_stamp;
420 	u16			sk_tsflags;
421 	u32			sk_tskey;
422 	struct socket		*sk_socket;
423 	void			*sk_user_data;
424 	struct page_frag	sk_frag;
425 	struct sk_buff		*sk_send_head;
426 	__s32			sk_peek_off;
427 	int			sk_write_pending;
428 #ifdef CONFIG_SECURITY
429 	void			*sk_security;
430 #endif
431 	struct sock_cgroup_data	sk_cgrp_data;
432 	struct mem_cgroup	*sk_memcg;
433 	void			(*sk_state_change)(struct sock *sk);
434 	void			(*sk_data_ready)(struct sock *sk);
435 	void			(*sk_write_space)(struct sock *sk);
436 	void			(*sk_error_report)(struct sock *sk);
437 	int			(*sk_backlog_rcv)(struct sock *sk,
438 						  struct sk_buff *skb);
439 	void                    (*sk_destruct)(struct sock *sk);
440 	struct sock_reuseport __rcu	*sk_reuseport_cb;
441 };
442 
443 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
444 
445 #define rcu_dereference_sk_user_data(sk)	rcu_dereference(__sk_user_data((sk)))
446 #define rcu_assign_sk_user_data(sk, ptr)	rcu_assign_pointer(__sk_user_data((sk)), ptr)
447 
448 /*
449  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
450  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
451  * on a socket means that the socket will reuse everybody else's port
452  * without looking at the other's sk_reuse value.
453  */
454 
455 #define SK_NO_REUSE	0
456 #define SK_CAN_REUSE	1
457 #define SK_FORCE_REUSE	2
458 
459 static inline int sk_peek_offset(struct sock *sk, int flags)
460 {
461 	if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0))
462 		return sk->sk_peek_off;
463 	else
464 		return 0;
465 }
466 
467 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
468 {
469 	if (sk->sk_peek_off >= 0) {
470 		if (sk->sk_peek_off >= val)
471 			sk->sk_peek_off -= val;
472 		else
473 			sk->sk_peek_off = 0;
474 	}
475 }
476 
477 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
478 {
479 	if (sk->sk_peek_off >= 0)
480 		sk->sk_peek_off += val;
481 }
482 
483 /*
484  * Hashed lists helper routines
485  */
486 static inline struct sock *sk_entry(const struct hlist_node *node)
487 {
488 	return hlist_entry(node, struct sock, sk_node);
489 }
490 
491 static inline struct sock *__sk_head(const struct hlist_head *head)
492 {
493 	return hlist_entry(head->first, struct sock, sk_node);
494 }
495 
496 static inline struct sock *sk_head(const struct hlist_head *head)
497 {
498 	return hlist_empty(head) ? NULL : __sk_head(head);
499 }
500 
501 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
502 {
503 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
504 }
505 
506 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
507 {
508 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
509 }
510 
511 static inline struct sock *sk_next(const struct sock *sk)
512 {
513 	return sk->sk_node.next ?
514 		hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
515 }
516 
517 static inline struct sock *sk_nulls_next(const struct sock *sk)
518 {
519 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
520 		hlist_nulls_entry(sk->sk_nulls_node.next,
521 				  struct sock, sk_nulls_node) :
522 		NULL;
523 }
524 
525 static inline bool sk_unhashed(const struct sock *sk)
526 {
527 	return hlist_unhashed(&sk->sk_node);
528 }
529 
530 static inline bool sk_hashed(const struct sock *sk)
531 {
532 	return !sk_unhashed(sk);
533 }
534 
535 static inline void sk_node_init(struct hlist_node *node)
536 {
537 	node->pprev = NULL;
538 }
539 
540 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
541 {
542 	node->pprev = NULL;
543 }
544 
545 static inline void __sk_del_node(struct sock *sk)
546 {
547 	__hlist_del(&sk->sk_node);
548 }
549 
550 /* NB: equivalent to hlist_del_init_rcu */
551 static inline bool __sk_del_node_init(struct sock *sk)
552 {
553 	if (sk_hashed(sk)) {
554 		__sk_del_node(sk);
555 		sk_node_init(&sk->sk_node);
556 		return true;
557 	}
558 	return false;
559 }
560 
561 /* Grab socket reference count. This operation is valid only
562    when sk is ALREADY grabbed f.e. it is found in hash table
563    or a list and the lookup is made under lock preventing hash table
564    modifications.
565  */
566 
567 static inline void sock_hold(struct sock *sk)
568 {
569 	atomic_inc(&sk->sk_refcnt);
570 }
571 
572 /* Ungrab socket in the context, which assumes that socket refcnt
573    cannot hit zero, f.e. it is true in context of any socketcall.
574  */
575 static inline void __sock_put(struct sock *sk)
576 {
577 	atomic_dec(&sk->sk_refcnt);
578 }
579 
580 static inline bool sk_del_node_init(struct sock *sk)
581 {
582 	bool rc = __sk_del_node_init(sk);
583 
584 	if (rc) {
585 		/* paranoid for a while -acme */
586 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
587 		__sock_put(sk);
588 	}
589 	return rc;
590 }
591 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
592 
593 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
594 {
595 	if (sk_hashed(sk)) {
596 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
597 		return true;
598 	}
599 	return false;
600 }
601 
602 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
603 {
604 	bool rc = __sk_nulls_del_node_init_rcu(sk);
605 
606 	if (rc) {
607 		/* paranoid for a while -acme */
608 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
609 		__sock_put(sk);
610 	}
611 	return rc;
612 }
613 
614 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
615 {
616 	hlist_add_head(&sk->sk_node, list);
617 }
618 
619 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
620 {
621 	sock_hold(sk);
622 	__sk_add_node(sk, list);
623 }
624 
625 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
626 {
627 	sock_hold(sk);
628 	hlist_add_head_rcu(&sk->sk_node, list);
629 }
630 
631 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
632 {
633 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
634 }
635 
636 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
637 {
638 	sock_hold(sk);
639 	__sk_nulls_add_node_rcu(sk, list);
640 }
641 
642 static inline void __sk_del_bind_node(struct sock *sk)
643 {
644 	__hlist_del(&sk->sk_bind_node);
645 }
646 
647 static inline void sk_add_bind_node(struct sock *sk,
648 					struct hlist_head *list)
649 {
650 	hlist_add_head(&sk->sk_bind_node, list);
651 }
652 
653 #define sk_for_each(__sk, list) \
654 	hlist_for_each_entry(__sk, list, sk_node)
655 #define sk_for_each_rcu(__sk, list) \
656 	hlist_for_each_entry_rcu(__sk, list, sk_node)
657 #define sk_nulls_for_each(__sk, node, list) \
658 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
659 #define sk_nulls_for_each_rcu(__sk, node, list) \
660 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
661 #define sk_for_each_from(__sk) \
662 	hlist_for_each_entry_from(__sk, sk_node)
663 #define sk_nulls_for_each_from(__sk, node) \
664 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
665 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
666 #define sk_for_each_safe(__sk, tmp, list) \
667 	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
668 #define sk_for_each_bound(__sk, list) \
669 	hlist_for_each_entry(__sk, list, sk_bind_node)
670 
671 /**
672  * sk_nulls_for_each_entry_offset - iterate over a list at a given struct offset
673  * @tpos:	the type * to use as a loop cursor.
674  * @pos:	the &struct hlist_node to use as a loop cursor.
675  * @head:	the head for your list.
676  * @offset:	offset of hlist_node within the struct.
677  *
678  */
679 #define sk_nulls_for_each_entry_offset(tpos, pos, head, offset)		       \
680 	for (pos = (head)->first;					       \
681 	     (!is_a_nulls(pos)) &&					       \
682 		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
683 	     pos = pos->next)
684 
685 static inline struct user_namespace *sk_user_ns(struct sock *sk)
686 {
687 	/* Careful only use this in a context where these parameters
688 	 * can not change and must all be valid, such as recvmsg from
689 	 * userspace.
690 	 */
691 	return sk->sk_socket->file->f_cred->user_ns;
692 }
693 
694 /* Sock flags */
695 enum sock_flags {
696 	SOCK_DEAD,
697 	SOCK_DONE,
698 	SOCK_URGINLINE,
699 	SOCK_KEEPOPEN,
700 	SOCK_LINGER,
701 	SOCK_DESTROY,
702 	SOCK_BROADCAST,
703 	SOCK_TIMESTAMP,
704 	SOCK_ZAPPED,
705 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
706 	SOCK_DBG, /* %SO_DEBUG setting */
707 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
708 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
709 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
710 	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
711 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
712 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
713 	SOCK_FASYNC, /* fasync() active */
714 	SOCK_RXQ_OVFL,
715 	SOCK_ZEROCOPY, /* buffers from userspace */
716 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
717 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
718 		     * Will use last 4 bytes of packet sent from
719 		     * user-space instead.
720 		     */
721 	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
722 	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
723 };
724 
725 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
726 
727 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
728 {
729 	nsk->sk_flags = osk->sk_flags;
730 }
731 
732 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
733 {
734 	__set_bit(flag, &sk->sk_flags);
735 }
736 
737 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
738 {
739 	__clear_bit(flag, &sk->sk_flags);
740 }
741 
742 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
743 {
744 	return test_bit(flag, &sk->sk_flags);
745 }
746 
747 #ifdef CONFIG_NET
748 extern struct static_key memalloc_socks;
749 static inline int sk_memalloc_socks(void)
750 {
751 	return static_key_false(&memalloc_socks);
752 }
753 #else
754 
755 static inline int sk_memalloc_socks(void)
756 {
757 	return 0;
758 }
759 
760 #endif
761 
762 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
763 {
764 	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
765 }
766 
767 static inline void sk_acceptq_removed(struct sock *sk)
768 {
769 	sk->sk_ack_backlog--;
770 }
771 
772 static inline void sk_acceptq_added(struct sock *sk)
773 {
774 	sk->sk_ack_backlog++;
775 }
776 
777 static inline bool sk_acceptq_is_full(const struct sock *sk)
778 {
779 	return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
780 }
781 
782 /*
783  * Compute minimal free write space needed to queue new packets.
784  */
785 static inline int sk_stream_min_wspace(const struct sock *sk)
786 {
787 	return sk->sk_wmem_queued >> 1;
788 }
789 
790 static inline int sk_stream_wspace(const struct sock *sk)
791 {
792 	return sk->sk_sndbuf - sk->sk_wmem_queued;
793 }
794 
795 void sk_stream_write_space(struct sock *sk);
796 
797 /* OOB backlog add */
798 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
799 {
800 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
801 	skb_dst_force_safe(skb);
802 
803 	if (!sk->sk_backlog.tail)
804 		sk->sk_backlog.head = skb;
805 	else
806 		sk->sk_backlog.tail->next = skb;
807 
808 	sk->sk_backlog.tail = skb;
809 	skb->next = NULL;
810 }
811 
812 /*
813  * Take into account size of receive queue and backlog queue
814  * Do not take into account this skb truesize,
815  * to allow even a single big packet to come.
816  */
817 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
818 {
819 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
820 
821 	return qsize > limit;
822 }
823 
824 /* The per-socket spinlock must be held here. */
825 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
826 					      unsigned int limit)
827 {
828 	if (sk_rcvqueues_full(sk, limit))
829 		return -ENOBUFS;
830 
831 	/*
832 	 * If the skb was allocated from pfmemalloc reserves, only
833 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
834 	 * helping free memory
835 	 */
836 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
837 		return -ENOMEM;
838 
839 	__sk_add_backlog(sk, skb);
840 	sk->sk_backlog.len += skb->truesize;
841 	return 0;
842 }
843 
844 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
845 
846 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
847 {
848 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
849 		return __sk_backlog_rcv(sk, skb);
850 
851 	return sk->sk_backlog_rcv(sk, skb);
852 }
853 
854 static inline void sk_incoming_cpu_update(struct sock *sk)
855 {
856 	sk->sk_incoming_cpu = raw_smp_processor_id();
857 }
858 
859 static inline void sock_rps_record_flow_hash(__u32 hash)
860 {
861 #ifdef CONFIG_RPS
862 	struct rps_sock_flow_table *sock_flow_table;
863 
864 	rcu_read_lock();
865 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
866 	rps_record_sock_flow(sock_flow_table, hash);
867 	rcu_read_unlock();
868 #endif
869 }
870 
871 static inline void sock_rps_record_flow(const struct sock *sk)
872 {
873 #ifdef CONFIG_RPS
874 	sock_rps_record_flow_hash(sk->sk_rxhash);
875 #endif
876 }
877 
878 static inline void sock_rps_save_rxhash(struct sock *sk,
879 					const struct sk_buff *skb)
880 {
881 #ifdef CONFIG_RPS
882 	if (unlikely(sk->sk_rxhash != skb->hash))
883 		sk->sk_rxhash = skb->hash;
884 #endif
885 }
886 
887 static inline void sock_rps_reset_rxhash(struct sock *sk)
888 {
889 #ifdef CONFIG_RPS
890 	sk->sk_rxhash = 0;
891 #endif
892 }
893 
894 #define sk_wait_event(__sk, __timeo, __condition)			\
895 	({	int __rc;						\
896 		release_sock(__sk);					\
897 		__rc = __condition;					\
898 		if (!__rc) {						\
899 			*(__timeo) = schedule_timeout(*(__timeo));	\
900 		}							\
901 		sched_annotate_sleep();						\
902 		lock_sock(__sk);					\
903 		__rc = __condition;					\
904 		__rc;							\
905 	})
906 
907 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
908 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
909 void sk_stream_wait_close(struct sock *sk, long timeo_p);
910 int sk_stream_error(struct sock *sk, int flags, int err);
911 void sk_stream_kill_queues(struct sock *sk);
912 void sk_set_memalloc(struct sock *sk);
913 void sk_clear_memalloc(struct sock *sk);
914 
915 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
916 
917 struct request_sock_ops;
918 struct timewait_sock_ops;
919 struct inet_hashinfo;
920 struct raw_hashinfo;
921 struct module;
922 
923 /*
924  * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
925  * un-modified. Special care is taken when initializing object to zero.
926  */
927 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
928 {
929 	if (offsetof(struct sock, sk_node.next) != 0)
930 		memset(sk, 0, offsetof(struct sock, sk_node.next));
931 	memset(&sk->sk_node.pprev, 0,
932 	       size - offsetof(struct sock, sk_node.pprev));
933 }
934 
935 /* Networking protocol blocks we attach to sockets.
936  * socket layer -> transport layer interface
937  */
938 struct proto {
939 	void			(*close)(struct sock *sk,
940 					long timeout);
941 	int			(*connect)(struct sock *sk,
942 					struct sockaddr *uaddr,
943 					int addr_len);
944 	int			(*disconnect)(struct sock *sk, int flags);
945 
946 	struct sock *		(*accept)(struct sock *sk, int flags, int *err);
947 
948 	int			(*ioctl)(struct sock *sk, int cmd,
949 					 unsigned long arg);
950 	int			(*init)(struct sock *sk);
951 	void			(*destroy)(struct sock *sk);
952 	void			(*shutdown)(struct sock *sk, int how);
953 	int			(*setsockopt)(struct sock *sk, int level,
954 					int optname, char __user *optval,
955 					unsigned int optlen);
956 	int			(*getsockopt)(struct sock *sk, int level,
957 					int optname, char __user *optval,
958 					int __user *option);
959 #ifdef CONFIG_COMPAT
960 	int			(*compat_setsockopt)(struct sock *sk,
961 					int level,
962 					int optname, char __user *optval,
963 					unsigned int optlen);
964 	int			(*compat_getsockopt)(struct sock *sk,
965 					int level,
966 					int optname, char __user *optval,
967 					int __user *option);
968 	int			(*compat_ioctl)(struct sock *sk,
969 					unsigned int cmd, unsigned long arg);
970 #endif
971 	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
972 					   size_t len);
973 	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
974 					   size_t len, int noblock, int flags,
975 					   int *addr_len);
976 	int			(*sendpage)(struct sock *sk, struct page *page,
977 					int offset, size_t size, int flags);
978 	int			(*bind)(struct sock *sk,
979 					struct sockaddr *uaddr, int addr_len);
980 
981 	int			(*backlog_rcv) (struct sock *sk,
982 						struct sk_buff *skb);
983 
984 	void		(*release_cb)(struct sock *sk);
985 
986 	/* Keeping track of sk's, looking them up, and port selection methods. */
987 	int			(*hash)(struct sock *sk);
988 	void			(*unhash)(struct sock *sk);
989 	void			(*rehash)(struct sock *sk);
990 	int			(*get_port)(struct sock *sk, unsigned short snum);
991 	void			(*clear_sk)(struct sock *sk, int size);
992 
993 	/* Keeping track of sockets in use */
994 #ifdef CONFIG_PROC_FS
995 	unsigned int		inuse_idx;
996 #endif
997 
998 	bool			(*stream_memory_free)(const struct sock *sk);
999 	/* Memory pressure */
1000 	void			(*enter_memory_pressure)(struct sock *sk);
1001 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1002 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1003 	/*
1004 	 * Pressure flag: try to collapse.
1005 	 * Technical note: it is used by multiple contexts non atomically.
1006 	 * All the __sk_mem_schedule() is of this nature: accounting
1007 	 * is strict, actions are advisory and have some latency.
1008 	 */
1009 	int			*memory_pressure;
1010 	long			*sysctl_mem;
1011 	int			*sysctl_wmem;
1012 	int			*sysctl_rmem;
1013 	int			max_header;
1014 	bool			no_autobind;
1015 
1016 	struct kmem_cache	*slab;
1017 	unsigned int		obj_size;
1018 	int			slab_flags;
1019 
1020 	struct percpu_counter	*orphan_count;
1021 
1022 	struct request_sock_ops	*rsk_prot;
1023 	struct timewait_sock_ops *twsk_prot;
1024 
1025 	union {
1026 		struct inet_hashinfo	*hashinfo;
1027 		struct udp_table	*udp_table;
1028 		struct raw_hashinfo	*raw_hash;
1029 	} h;
1030 
1031 	struct module		*owner;
1032 
1033 	char			name[32];
1034 
1035 	struct list_head	node;
1036 #ifdef SOCK_REFCNT_DEBUG
1037 	atomic_t		socks;
1038 #endif
1039 	int			(*diag_destroy)(struct sock *sk, int err);
1040 };
1041 
1042 int proto_register(struct proto *prot, int alloc_slab);
1043 void proto_unregister(struct proto *prot);
1044 
1045 #ifdef SOCK_REFCNT_DEBUG
1046 static inline void sk_refcnt_debug_inc(struct sock *sk)
1047 {
1048 	atomic_inc(&sk->sk_prot->socks);
1049 }
1050 
1051 static inline void sk_refcnt_debug_dec(struct sock *sk)
1052 {
1053 	atomic_dec(&sk->sk_prot->socks);
1054 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1055 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1056 }
1057 
1058 static inline void sk_refcnt_debug_release(const struct sock *sk)
1059 {
1060 	if (atomic_read(&sk->sk_refcnt) != 1)
1061 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1062 		       sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1063 }
1064 #else /* SOCK_REFCNT_DEBUG */
1065 #define sk_refcnt_debug_inc(sk) do { } while (0)
1066 #define sk_refcnt_debug_dec(sk) do { } while (0)
1067 #define sk_refcnt_debug_release(sk) do { } while (0)
1068 #endif /* SOCK_REFCNT_DEBUG */
1069 
1070 static inline bool sk_stream_memory_free(const struct sock *sk)
1071 {
1072 	if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1073 		return false;
1074 
1075 	return sk->sk_prot->stream_memory_free ?
1076 		sk->sk_prot->stream_memory_free(sk) : true;
1077 }
1078 
1079 static inline bool sk_stream_is_writeable(const struct sock *sk)
1080 {
1081 	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1082 	       sk_stream_memory_free(sk);
1083 }
1084 
1085 
1086 static inline bool sk_has_memory_pressure(const struct sock *sk)
1087 {
1088 	return sk->sk_prot->memory_pressure != NULL;
1089 }
1090 
1091 static inline bool sk_under_memory_pressure(const struct sock *sk)
1092 {
1093 	if (!sk->sk_prot->memory_pressure)
1094 		return false;
1095 
1096 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1097 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
1098 		return true;
1099 
1100 	return !!*sk->sk_prot->memory_pressure;
1101 }
1102 
1103 static inline void sk_leave_memory_pressure(struct sock *sk)
1104 {
1105 	int *memory_pressure = sk->sk_prot->memory_pressure;
1106 
1107 	if (!memory_pressure)
1108 		return;
1109 
1110 	if (*memory_pressure)
1111 		*memory_pressure = 0;
1112 }
1113 
1114 static inline void sk_enter_memory_pressure(struct sock *sk)
1115 {
1116 	if (!sk->sk_prot->enter_memory_pressure)
1117 		return;
1118 
1119 	sk->sk_prot->enter_memory_pressure(sk);
1120 }
1121 
1122 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1123 {
1124 	return sk->sk_prot->sysctl_mem[index];
1125 }
1126 
1127 static inline long
1128 sk_memory_allocated(const struct sock *sk)
1129 {
1130 	return atomic_long_read(sk->sk_prot->memory_allocated);
1131 }
1132 
1133 static inline long
1134 sk_memory_allocated_add(struct sock *sk, int amt)
1135 {
1136 	return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1137 }
1138 
1139 static inline void
1140 sk_memory_allocated_sub(struct sock *sk, int amt)
1141 {
1142 	atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1143 }
1144 
1145 static inline void sk_sockets_allocated_dec(struct sock *sk)
1146 {
1147 	percpu_counter_dec(sk->sk_prot->sockets_allocated);
1148 }
1149 
1150 static inline void sk_sockets_allocated_inc(struct sock *sk)
1151 {
1152 	percpu_counter_inc(sk->sk_prot->sockets_allocated);
1153 }
1154 
1155 static inline int
1156 sk_sockets_allocated_read_positive(struct sock *sk)
1157 {
1158 	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1159 }
1160 
1161 static inline int
1162 proto_sockets_allocated_sum_positive(struct proto *prot)
1163 {
1164 	return percpu_counter_sum_positive(prot->sockets_allocated);
1165 }
1166 
1167 static inline long
1168 proto_memory_allocated(struct proto *prot)
1169 {
1170 	return atomic_long_read(prot->memory_allocated);
1171 }
1172 
1173 static inline bool
1174 proto_memory_pressure(struct proto *prot)
1175 {
1176 	if (!prot->memory_pressure)
1177 		return false;
1178 	return !!*prot->memory_pressure;
1179 }
1180 
1181 
1182 #ifdef CONFIG_PROC_FS
1183 /* Called with local bh disabled */
1184 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1185 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1186 #else
1187 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1188 		int inc)
1189 {
1190 }
1191 #endif
1192 
1193 
1194 /* With per-bucket locks this operation is not-atomic, so that
1195  * this version is not worse.
1196  */
1197 static inline int __sk_prot_rehash(struct sock *sk)
1198 {
1199 	sk->sk_prot->unhash(sk);
1200 	return sk->sk_prot->hash(sk);
1201 }
1202 
1203 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1204 
1205 /* About 10 seconds */
1206 #define SOCK_DESTROY_TIME (10*HZ)
1207 
1208 /* Sockets 0-1023 can't be bound to unless you are superuser */
1209 #define PROT_SOCK	1024
1210 
1211 #define SHUTDOWN_MASK	3
1212 #define RCV_SHUTDOWN	1
1213 #define SEND_SHUTDOWN	2
1214 
1215 #define SOCK_SNDBUF_LOCK	1
1216 #define SOCK_RCVBUF_LOCK	2
1217 #define SOCK_BINDADDR_LOCK	4
1218 #define SOCK_BINDPORT_LOCK	8
1219 
1220 struct socket_alloc {
1221 	struct socket socket;
1222 	struct inode vfs_inode;
1223 };
1224 
1225 static inline struct socket *SOCKET_I(struct inode *inode)
1226 {
1227 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1228 }
1229 
1230 static inline struct inode *SOCK_INODE(struct socket *socket)
1231 {
1232 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1233 }
1234 
1235 /*
1236  * Functions for memory accounting
1237  */
1238 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1239 void __sk_mem_reclaim(struct sock *sk, int amount);
1240 
1241 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1242 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1243 #define SK_MEM_SEND	0
1244 #define SK_MEM_RECV	1
1245 
1246 static inline int sk_mem_pages(int amt)
1247 {
1248 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1249 }
1250 
1251 static inline bool sk_has_account(struct sock *sk)
1252 {
1253 	/* return true if protocol supports memory accounting */
1254 	return !!sk->sk_prot->memory_allocated;
1255 }
1256 
1257 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1258 {
1259 	if (!sk_has_account(sk))
1260 		return true;
1261 	return size <= sk->sk_forward_alloc ||
1262 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1263 }
1264 
1265 static inline bool
1266 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1267 {
1268 	if (!sk_has_account(sk))
1269 		return true;
1270 	return size<= sk->sk_forward_alloc ||
1271 		__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1272 		skb_pfmemalloc(skb);
1273 }
1274 
1275 static inline void sk_mem_reclaim(struct sock *sk)
1276 {
1277 	if (!sk_has_account(sk))
1278 		return;
1279 	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1280 		__sk_mem_reclaim(sk, sk->sk_forward_alloc);
1281 }
1282 
1283 static inline void sk_mem_reclaim_partial(struct sock *sk)
1284 {
1285 	if (!sk_has_account(sk))
1286 		return;
1287 	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1288 		__sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1289 }
1290 
1291 static inline void sk_mem_charge(struct sock *sk, int size)
1292 {
1293 	if (!sk_has_account(sk))
1294 		return;
1295 	sk->sk_forward_alloc -= size;
1296 }
1297 
1298 static inline void sk_mem_uncharge(struct sock *sk, int size)
1299 {
1300 	if (!sk_has_account(sk))
1301 		return;
1302 	sk->sk_forward_alloc += size;
1303 }
1304 
1305 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1306 {
1307 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1308 	sk->sk_wmem_queued -= skb->truesize;
1309 	sk_mem_uncharge(sk, skb->truesize);
1310 	__kfree_skb(skb);
1311 }
1312 
1313 /* Used by processes to "lock" a socket state, so that
1314  * interrupts and bottom half handlers won't change it
1315  * from under us. It essentially blocks any incoming
1316  * packets, so that we won't get any new data or any
1317  * packets that change the state of the socket.
1318  *
1319  * While locked, BH processing will add new packets to
1320  * the backlog queue.  This queue is processed by the
1321  * owner of the socket lock right before it is released.
1322  *
1323  * Since ~2.3.5 it is also exclusive sleep lock serializing
1324  * accesses from user process context.
1325  */
1326 #define sock_owned_by_user(sk)	((sk)->sk_lock.owned)
1327 
1328 static inline void sock_release_ownership(struct sock *sk)
1329 {
1330 	sk->sk_lock.owned = 0;
1331 }
1332 
1333 /*
1334  * Macro so as to not evaluate some arguments when
1335  * lockdep is not enabled.
1336  *
1337  * Mark both the sk_lock and the sk_lock.slock as a
1338  * per-address-family lock class.
1339  */
1340 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1341 do {									\
1342 	sk->sk_lock.owned = 0;						\
1343 	init_waitqueue_head(&sk->sk_lock.wq);				\
1344 	spin_lock_init(&(sk)->sk_lock.slock);				\
1345 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1346 			sizeof((sk)->sk_lock));				\
1347 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1348 				(skey), (sname));				\
1349 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1350 } while (0)
1351 
1352 void lock_sock_nested(struct sock *sk, int subclass);
1353 
1354 static inline void lock_sock(struct sock *sk)
1355 {
1356 	lock_sock_nested(sk, 0);
1357 }
1358 
1359 void release_sock(struct sock *sk);
1360 
1361 /* BH context may only use the following locking interface. */
1362 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1363 #define bh_lock_sock_nested(__sk) \
1364 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1365 				SINGLE_DEPTH_NESTING)
1366 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1367 
1368 bool lock_sock_fast(struct sock *sk);
1369 /**
1370  * unlock_sock_fast - complement of lock_sock_fast
1371  * @sk: socket
1372  * @slow: slow mode
1373  *
1374  * fast unlock socket for user context.
1375  * If slow mode is on, we call regular release_sock()
1376  */
1377 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1378 {
1379 	if (slow)
1380 		release_sock(sk);
1381 	else
1382 		spin_unlock_bh(&sk->sk_lock.slock);
1383 }
1384 
1385 
1386 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1387 		      struct proto *prot, int kern);
1388 void sk_free(struct sock *sk);
1389 void sk_destruct(struct sock *sk);
1390 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1391 
1392 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1393 			     gfp_t priority);
1394 void sock_wfree(struct sk_buff *skb);
1395 void skb_orphan_partial(struct sk_buff *skb);
1396 void sock_rfree(struct sk_buff *skb);
1397 void sock_efree(struct sk_buff *skb);
1398 #ifdef CONFIG_INET
1399 void sock_edemux(struct sk_buff *skb);
1400 #else
1401 #define sock_edemux(skb) sock_efree(skb)
1402 #endif
1403 
1404 int sock_setsockopt(struct socket *sock, int level, int op,
1405 		    char __user *optval, unsigned int optlen);
1406 
1407 int sock_getsockopt(struct socket *sock, int level, int op,
1408 		    char __user *optval, int __user *optlen);
1409 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1410 				    int noblock, int *errcode);
1411 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1412 				     unsigned long data_len, int noblock,
1413 				     int *errcode, int max_page_order);
1414 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1415 void sock_kfree_s(struct sock *sk, void *mem, int size);
1416 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1417 void sk_send_sigurg(struct sock *sk);
1418 
1419 struct sockcm_cookie {
1420 	u32 mark;
1421 };
1422 
1423 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1424 		   struct sockcm_cookie *sockc);
1425 
1426 /*
1427  * Functions to fill in entries in struct proto_ops when a protocol
1428  * does not implement a particular function.
1429  */
1430 int sock_no_bind(struct socket *, struct sockaddr *, int);
1431 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1432 int sock_no_socketpair(struct socket *, struct socket *);
1433 int sock_no_accept(struct socket *, struct socket *, int);
1434 int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
1435 unsigned int sock_no_poll(struct file *, struct socket *,
1436 			  struct poll_table_struct *);
1437 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1438 int sock_no_listen(struct socket *, int);
1439 int sock_no_shutdown(struct socket *, int);
1440 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1441 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1442 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1443 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1444 int sock_no_mmap(struct file *file, struct socket *sock,
1445 		 struct vm_area_struct *vma);
1446 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1447 			 size_t size, int flags);
1448 
1449 /*
1450  * Functions to fill in entries in struct proto_ops when a protocol
1451  * uses the inet style.
1452  */
1453 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1454 				  char __user *optval, int __user *optlen);
1455 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1456 			int flags);
1457 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1458 				  char __user *optval, unsigned int optlen);
1459 int compat_sock_common_getsockopt(struct socket *sock, int level,
1460 		int optname, char __user *optval, int __user *optlen);
1461 int compat_sock_common_setsockopt(struct socket *sock, int level,
1462 		int optname, char __user *optval, unsigned int optlen);
1463 
1464 void sk_common_release(struct sock *sk);
1465 
1466 /*
1467  *	Default socket callbacks and setup code
1468  */
1469 
1470 /* Initialise core socket variables */
1471 void sock_init_data(struct socket *sock, struct sock *sk);
1472 
1473 /*
1474  * Socket reference counting postulates.
1475  *
1476  * * Each user of socket SHOULD hold a reference count.
1477  * * Each access point to socket (an hash table bucket, reference from a list,
1478  *   running timer, skb in flight MUST hold a reference count.
1479  * * When reference count hits 0, it means it will never increase back.
1480  * * When reference count hits 0, it means that no references from
1481  *   outside exist to this socket and current process on current CPU
1482  *   is last user and may/should destroy this socket.
1483  * * sk_free is called from any context: process, BH, IRQ. When
1484  *   it is called, socket has no references from outside -> sk_free
1485  *   may release descendant resources allocated by the socket, but
1486  *   to the time when it is called, socket is NOT referenced by any
1487  *   hash tables, lists etc.
1488  * * Packets, delivered from outside (from network or from another process)
1489  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1490  *   when they sit in queue. Otherwise, packets will leak to hole, when
1491  *   socket is looked up by one cpu and unhasing is made by another CPU.
1492  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1493  *   (leak to backlog). Packet socket does all the processing inside
1494  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1495  *   use separate SMP lock, so that they are prone too.
1496  */
1497 
1498 /* Ungrab socket and destroy it, if it was the last reference. */
1499 static inline void sock_put(struct sock *sk)
1500 {
1501 	if (atomic_dec_and_test(&sk->sk_refcnt))
1502 		sk_free(sk);
1503 }
1504 /* Generic version of sock_put(), dealing with all sockets
1505  * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1506  */
1507 void sock_gen_put(struct sock *sk);
1508 
1509 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested);
1510 
1511 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1512 {
1513 	sk->sk_tx_queue_mapping = tx_queue;
1514 }
1515 
1516 static inline void sk_tx_queue_clear(struct sock *sk)
1517 {
1518 	sk->sk_tx_queue_mapping = -1;
1519 }
1520 
1521 static inline int sk_tx_queue_get(const struct sock *sk)
1522 {
1523 	return sk ? sk->sk_tx_queue_mapping : -1;
1524 }
1525 
1526 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1527 {
1528 	sk_tx_queue_clear(sk);
1529 	sk->sk_socket = sock;
1530 }
1531 
1532 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1533 {
1534 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1535 	return &rcu_dereference_raw(sk->sk_wq)->wait;
1536 }
1537 /* Detach socket from process context.
1538  * Announce socket dead, detach it from wait queue and inode.
1539  * Note that parent inode held reference count on this struct sock,
1540  * we do not release it in this function, because protocol
1541  * probably wants some additional cleanups or even continuing
1542  * to work with this socket (TCP).
1543  */
1544 static inline void sock_orphan(struct sock *sk)
1545 {
1546 	write_lock_bh(&sk->sk_callback_lock);
1547 	sock_set_flag(sk, SOCK_DEAD);
1548 	sk_set_socket(sk, NULL);
1549 	sk->sk_wq  = NULL;
1550 	write_unlock_bh(&sk->sk_callback_lock);
1551 }
1552 
1553 static inline void sock_graft(struct sock *sk, struct socket *parent)
1554 {
1555 	write_lock_bh(&sk->sk_callback_lock);
1556 	sk->sk_wq = parent->wq;
1557 	parent->sk = sk;
1558 	sk_set_socket(sk, parent);
1559 	security_sock_graft(sk, parent);
1560 	write_unlock_bh(&sk->sk_callback_lock);
1561 }
1562 
1563 kuid_t sock_i_uid(struct sock *sk);
1564 unsigned long sock_i_ino(struct sock *sk);
1565 
1566 static inline u32 net_tx_rndhash(void)
1567 {
1568 	u32 v = prandom_u32();
1569 
1570 	return v ?: 1;
1571 }
1572 
1573 static inline void sk_set_txhash(struct sock *sk)
1574 {
1575 	sk->sk_txhash = net_tx_rndhash();
1576 }
1577 
1578 static inline void sk_rethink_txhash(struct sock *sk)
1579 {
1580 	if (sk->sk_txhash)
1581 		sk_set_txhash(sk);
1582 }
1583 
1584 static inline struct dst_entry *
1585 __sk_dst_get(struct sock *sk)
1586 {
1587 	return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1588 						       lockdep_is_held(&sk->sk_lock.slock));
1589 }
1590 
1591 static inline struct dst_entry *
1592 sk_dst_get(struct sock *sk)
1593 {
1594 	struct dst_entry *dst;
1595 
1596 	rcu_read_lock();
1597 	dst = rcu_dereference(sk->sk_dst_cache);
1598 	if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1599 		dst = NULL;
1600 	rcu_read_unlock();
1601 	return dst;
1602 }
1603 
1604 static inline void dst_negative_advice(struct sock *sk)
1605 {
1606 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1607 
1608 	sk_rethink_txhash(sk);
1609 
1610 	if (dst && dst->ops->negative_advice) {
1611 		ndst = dst->ops->negative_advice(dst);
1612 
1613 		if (ndst != dst) {
1614 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
1615 			sk_tx_queue_clear(sk);
1616 		}
1617 	}
1618 }
1619 
1620 static inline void
1621 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1622 {
1623 	struct dst_entry *old_dst;
1624 
1625 	sk_tx_queue_clear(sk);
1626 	/*
1627 	 * This can be called while sk is owned by the caller only,
1628 	 * with no state that can be checked in a rcu_dereference_check() cond
1629 	 */
1630 	old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1631 	rcu_assign_pointer(sk->sk_dst_cache, dst);
1632 	dst_release(old_dst);
1633 }
1634 
1635 static inline void
1636 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1637 {
1638 	struct dst_entry *old_dst;
1639 
1640 	sk_tx_queue_clear(sk);
1641 	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1642 	dst_release(old_dst);
1643 }
1644 
1645 static inline void
1646 __sk_dst_reset(struct sock *sk)
1647 {
1648 	__sk_dst_set(sk, NULL);
1649 }
1650 
1651 static inline void
1652 sk_dst_reset(struct sock *sk)
1653 {
1654 	sk_dst_set(sk, NULL);
1655 }
1656 
1657 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1658 
1659 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1660 
1661 bool sk_mc_loop(struct sock *sk);
1662 
1663 static inline bool sk_can_gso(const struct sock *sk)
1664 {
1665 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1666 }
1667 
1668 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1669 
1670 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1671 {
1672 	sk->sk_route_nocaps |= flags;
1673 	sk->sk_route_caps &= ~flags;
1674 }
1675 
1676 static inline bool sk_check_csum_caps(struct sock *sk)
1677 {
1678 	return (sk->sk_route_caps & NETIF_F_HW_CSUM) ||
1679 	       (sk->sk_family == PF_INET &&
1680 		(sk->sk_route_caps & NETIF_F_IP_CSUM)) ||
1681 	       (sk->sk_family == PF_INET6 &&
1682 		(sk->sk_route_caps & NETIF_F_IPV6_CSUM));
1683 }
1684 
1685 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1686 					   struct iov_iter *from, char *to,
1687 					   int copy, int offset)
1688 {
1689 	if (skb->ip_summed == CHECKSUM_NONE) {
1690 		__wsum csum = 0;
1691 		if (csum_and_copy_from_iter(to, copy, &csum, from) != copy)
1692 			return -EFAULT;
1693 		skb->csum = csum_block_add(skb->csum, csum, offset);
1694 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1695 		if (copy_from_iter_nocache(to, copy, from) != copy)
1696 			return -EFAULT;
1697 	} else if (copy_from_iter(to, copy, from) != copy)
1698 		return -EFAULT;
1699 
1700 	return 0;
1701 }
1702 
1703 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1704 				       struct iov_iter *from, int copy)
1705 {
1706 	int err, offset = skb->len;
1707 
1708 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1709 				       copy, offset);
1710 	if (err)
1711 		__skb_trim(skb, offset);
1712 
1713 	return err;
1714 }
1715 
1716 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1717 					   struct sk_buff *skb,
1718 					   struct page *page,
1719 					   int off, int copy)
1720 {
1721 	int err;
1722 
1723 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1724 				       copy, skb->len);
1725 	if (err)
1726 		return err;
1727 
1728 	skb->len	     += copy;
1729 	skb->data_len	     += copy;
1730 	skb->truesize	     += copy;
1731 	sk->sk_wmem_queued   += copy;
1732 	sk_mem_charge(sk, copy);
1733 	return 0;
1734 }
1735 
1736 /**
1737  * sk_wmem_alloc_get - returns write allocations
1738  * @sk: socket
1739  *
1740  * Returns sk_wmem_alloc minus initial offset of one
1741  */
1742 static inline int sk_wmem_alloc_get(const struct sock *sk)
1743 {
1744 	return atomic_read(&sk->sk_wmem_alloc) - 1;
1745 }
1746 
1747 /**
1748  * sk_rmem_alloc_get - returns read allocations
1749  * @sk: socket
1750  *
1751  * Returns sk_rmem_alloc
1752  */
1753 static inline int sk_rmem_alloc_get(const struct sock *sk)
1754 {
1755 	return atomic_read(&sk->sk_rmem_alloc);
1756 }
1757 
1758 /**
1759  * sk_has_allocations - check if allocations are outstanding
1760  * @sk: socket
1761  *
1762  * Returns true if socket has write or read allocations
1763  */
1764 static inline bool sk_has_allocations(const struct sock *sk)
1765 {
1766 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1767 }
1768 
1769 /**
1770  * skwq_has_sleeper - check if there are any waiting processes
1771  * @wq: struct socket_wq
1772  *
1773  * Returns true if socket_wq has waiting processes
1774  *
1775  * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
1776  * barrier call. They were added due to the race found within the tcp code.
1777  *
1778  * Consider following tcp code paths:
1779  *
1780  * CPU1                  CPU2
1781  *
1782  * sys_select            receive packet
1783  *   ...                 ...
1784  *   __add_wait_queue    update tp->rcv_nxt
1785  *   ...                 ...
1786  *   tp->rcv_nxt check   sock_def_readable
1787  *   ...                 {
1788  *   schedule               rcu_read_lock();
1789  *                          wq = rcu_dereference(sk->sk_wq);
1790  *                          if (wq && waitqueue_active(&wq->wait))
1791  *                              wake_up_interruptible(&wq->wait)
1792  *                          ...
1793  *                       }
1794  *
1795  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1796  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
1797  * could then endup calling schedule and sleep forever if there are no more
1798  * data on the socket.
1799  *
1800  */
1801 static inline bool skwq_has_sleeper(struct socket_wq *wq)
1802 {
1803 	return wq && wq_has_sleeper(&wq->wait);
1804 }
1805 
1806 /**
1807  * sock_poll_wait - place memory barrier behind the poll_wait call.
1808  * @filp:           file
1809  * @wait_address:   socket wait queue
1810  * @p:              poll_table
1811  *
1812  * See the comments in the wq_has_sleeper function.
1813  */
1814 static inline void sock_poll_wait(struct file *filp,
1815 		wait_queue_head_t *wait_address, poll_table *p)
1816 {
1817 	if (!poll_does_not_wait(p) && wait_address) {
1818 		poll_wait(filp, wait_address, p);
1819 		/* We need to be sure we are in sync with the
1820 		 * socket flags modification.
1821 		 *
1822 		 * This memory barrier is paired in the wq_has_sleeper.
1823 		 */
1824 		smp_mb();
1825 	}
1826 }
1827 
1828 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
1829 {
1830 	if (sk->sk_txhash) {
1831 		skb->l4_hash = 1;
1832 		skb->hash = sk->sk_txhash;
1833 	}
1834 }
1835 
1836 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
1837 
1838 /*
1839  *	Queue a received datagram if it will fit. Stream and sequenced
1840  *	protocols can't normally use this as they need to fit buffers in
1841  *	and play with them.
1842  *
1843  *	Inlined as it's very short and called for pretty much every
1844  *	packet ever received.
1845  */
1846 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1847 {
1848 	skb_orphan(skb);
1849 	skb->sk = sk;
1850 	skb->destructor = sock_rfree;
1851 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1852 	sk_mem_charge(sk, skb->truesize);
1853 }
1854 
1855 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
1856 		    unsigned long expires);
1857 
1858 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
1859 
1860 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1861 
1862 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1863 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
1864 
1865 /*
1866  *	Recover an error report and clear atomically
1867  */
1868 
1869 static inline int sock_error(struct sock *sk)
1870 {
1871 	int err;
1872 	if (likely(!sk->sk_err))
1873 		return 0;
1874 	err = xchg(&sk->sk_err, 0);
1875 	return -err;
1876 }
1877 
1878 static inline unsigned long sock_wspace(struct sock *sk)
1879 {
1880 	int amt = 0;
1881 
1882 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1883 		amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1884 		if (amt < 0)
1885 			amt = 0;
1886 	}
1887 	return amt;
1888 }
1889 
1890 /* Note:
1891  *  We use sk->sk_wq_raw, from contexts knowing this
1892  *  pointer is not NULL and cannot disappear/change.
1893  */
1894 static inline void sk_set_bit(int nr, struct sock *sk)
1895 {
1896 	set_bit(nr, &sk->sk_wq_raw->flags);
1897 }
1898 
1899 static inline void sk_clear_bit(int nr, struct sock *sk)
1900 {
1901 	clear_bit(nr, &sk->sk_wq_raw->flags);
1902 }
1903 
1904 static inline void sk_wake_async(const struct sock *sk, int how, int band)
1905 {
1906 	if (sock_flag(sk, SOCK_FASYNC)) {
1907 		rcu_read_lock();
1908 		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
1909 		rcu_read_unlock();
1910 	}
1911 }
1912 
1913 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
1914  * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
1915  * Note: for send buffers, TCP works better if we can build two skbs at
1916  * minimum.
1917  */
1918 #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
1919 
1920 #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
1921 #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
1922 
1923 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
1924 {
1925 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
1926 		sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
1927 		sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
1928 	}
1929 }
1930 
1931 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
1932 				    bool force_schedule);
1933 
1934 /**
1935  * sk_page_frag - return an appropriate page_frag
1936  * @sk: socket
1937  *
1938  * If socket allocation mode allows current thread to sleep, it means its
1939  * safe to use the per task page_frag instead of the per socket one.
1940  */
1941 static inline struct page_frag *sk_page_frag(struct sock *sk)
1942 {
1943 	if (gfpflags_allow_blocking(sk->sk_allocation))
1944 		return &current->task_frag;
1945 
1946 	return &sk->sk_frag;
1947 }
1948 
1949 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
1950 
1951 /*
1952  *	Default write policy as shown to user space via poll/select/SIGIO
1953  */
1954 static inline bool sock_writeable(const struct sock *sk)
1955 {
1956 	return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
1957 }
1958 
1959 static inline gfp_t gfp_any(void)
1960 {
1961 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
1962 }
1963 
1964 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
1965 {
1966 	return noblock ? 0 : sk->sk_rcvtimeo;
1967 }
1968 
1969 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
1970 {
1971 	return noblock ? 0 : sk->sk_sndtimeo;
1972 }
1973 
1974 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
1975 {
1976 	return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
1977 }
1978 
1979 /* Alas, with timeout socket operations are not restartable.
1980  * Compare this to poll().
1981  */
1982 static inline int sock_intr_errno(long timeo)
1983 {
1984 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
1985 }
1986 
1987 struct sock_skb_cb {
1988 	u32 dropcount;
1989 };
1990 
1991 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
1992  * using skb->cb[] would keep using it directly and utilize its
1993  * alignement guarantee.
1994  */
1995 #define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
1996 			    sizeof(struct sock_skb_cb)))
1997 
1998 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
1999 			    SOCK_SKB_CB_OFFSET))
2000 
2001 #define sock_skb_cb_check_size(size) \
2002 	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2003 
2004 static inline void
2005 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2006 {
2007 	SOCK_SKB_CB(skb)->dropcount = atomic_read(&sk->sk_drops);
2008 }
2009 
2010 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2011 			   struct sk_buff *skb);
2012 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2013 			     struct sk_buff *skb);
2014 
2015 static inline void
2016 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2017 {
2018 	ktime_t kt = skb->tstamp;
2019 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2020 
2021 	/*
2022 	 * generate control messages if
2023 	 * - receive time stamping in software requested
2024 	 * - software time stamp available and wanted
2025 	 * - hardware time stamps available and wanted
2026 	 */
2027 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2028 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2029 	    (kt.tv64 && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2030 	    (hwtstamps->hwtstamp.tv64 &&
2031 	     (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2032 		__sock_recv_timestamp(msg, sk, skb);
2033 	else
2034 		sk->sk_stamp = kt;
2035 
2036 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2037 		__sock_recv_wifi_status(msg, sk, skb);
2038 }
2039 
2040 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2041 			      struct sk_buff *skb);
2042 
2043 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2044 					  struct sk_buff *skb)
2045 {
2046 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2047 			   (1UL << SOCK_RCVTSTAMP))
2048 #define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2049 			   SOF_TIMESTAMPING_RAW_HARDWARE)
2050 
2051 	if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2052 		__sock_recv_ts_and_drops(msg, sk, skb);
2053 	else
2054 		sk->sk_stamp = skb->tstamp;
2055 }
2056 
2057 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags);
2058 
2059 /**
2060  * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2061  * @sk:		socket sending this packet
2062  * @tx_flags:	completed with instructions for time stamping
2063  *
2064  * Note : callers should take care of initial *tx_flags value (usually 0)
2065  */
2066 static inline void sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
2067 {
2068 	if (unlikely(sk->sk_tsflags))
2069 		__sock_tx_timestamp(sk, tx_flags);
2070 	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2071 		*tx_flags |= SKBTX_WIFI_STATUS;
2072 }
2073 
2074 /**
2075  * sk_eat_skb - Release a skb if it is no longer needed
2076  * @sk: socket to eat this skb from
2077  * @skb: socket buffer to eat
2078  *
2079  * This routine must be called with interrupts disabled or with the socket
2080  * locked so that the sk_buff queue operation is ok.
2081 */
2082 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2083 {
2084 	__skb_unlink(skb, &sk->sk_receive_queue);
2085 	__kfree_skb(skb);
2086 }
2087 
2088 static inline
2089 struct net *sock_net(const struct sock *sk)
2090 {
2091 	return read_pnet(&sk->sk_net);
2092 }
2093 
2094 static inline
2095 void sock_net_set(struct sock *sk, struct net *net)
2096 {
2097 	write_pnet(&sk->sk_net, net);
2098 }
2099 
2100 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2101 {
2102 	if (skb->sk) {
2103 		struct sock *sk = skb->sk;
2104 
2105 		skb->destructor = NULL;
2106 		skb->sk = NULL;
2107 		return sk;
2108 	}
2109 	return NULL;
2110 }
2111 
2112 /* This helper checks if a socket is a full socket,
2113  * ie _not_ a timewait or request socket.
2114  */
2115 static inline bool sk_fullsock(const struct sock *sk)
2116 {
2117 	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2118 }
2119 
2120 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2121  * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2122  */
2123 static inline bool sk_listener(const struct sock *sk)
2124 {
2125 	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2126 }
2127 
2128 /**
2129  * sk_state_load - read sk->sk_state for lockless contexts
2130  * @sk: socket pointer
2131  *
2132  * Paired with sk_state_store(). Used in places we do not hold socket lock :
2133  * tcp_diag_get_info(), tcp_get_info(), tcp_poll(), get_tcp4_sock() ...
2134  */
2135 static inline int sk_state_load(const struct sock *sk)
2136 {
2137 	return smp_load_acquire(&sk->sk_state);
2138 }
2139 
2140 /**
2141  * sk_state_store - update sk->sk_state
2142  * @sk: socket pointer
2143  * @newstate: new state
2144  *
2145  * Paired with sk_state_load(). Should be used in contexts where
2146  * state change might impact lockless readers.
2147  */
2148 static inline void sk_state_store(struct sock *sk, int newstate)
2149 {
2150 	smp_store_release(&sk->sk_state, newstate);
2151 }
2152 
2153 void sock_enable_timestamp(struct sock *sk, int flag);
2154 int sock_get_timestamp(struct sock *, struct timeval __user *);
2155 int sock_get_timestampns(struct sock *, struct timespec __user *);
2156 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2157 		       int type);
2158 
2159 bool sk_ns_capable(const struct sock *sk,
2160 		   struct user_namespace *user_ns, int cap);
2161 bool sk_capable(const struct sock *sk, int cap);
2162 bool sk_net_capable(const struct sock *sk, int cap);
2163 
2164 extern __u32 sysctl_wmem_max;
2165 extern __u32 sysctl_rmem_max;
2166 
2167 extern int sysctl_tstamp_allow_data;
2168 extern int sysctl_optmem_max;
2169 
2170 extern __u32 sysctl_wmem_default;
2171 extern __u32 sysctl_rmem_default;
2172 
2173 #endif	/* _SOCK_H */
2174