xref: /linux/include/net/sock.h (revision 08ec212c0f92cbf30e3ecc7349f18151714041d6)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the AF_INET socket handler.
7  *
8  * Version:	@(#)sock.h	1.0.4	05/13/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche <flla@stud.uni-sb.de>
14  *
15  * Fixes:
16  *		Alan Cox	:	Volatiles in skbuff pointers. See
17  *					skbuff comments. May be overdone,
18  *					better to prove they can be removed
19  *					than the reverse.
20  *		Alan Cox	:	Added a zapped field for tcp to note
21  *					a socket is reset and must stay shut up
22  *		Alan Cox	:	New fields for options
23  *	Pauline Middelink	:	identd support
24  *		Alan Cox	:	Eliminate low level recv/recvfrom
25  *		David S. Miller	:	New socket lookup architecture.
26  *              Steve Whitehouse:       Default routines for sock_ops
27  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
28  *              			protinfo be just a void pointer, as the
29  *              			protocol specific parts were moved to
30  *              			respective headers and ipv4/v6, etc now
31  *              			use private slabcaches for its socks
32  *              Pedro Hortas	:	New flags field for socket options
33  *
34  *
35  *		This program is free software; you can redistribute it and/or
36  *		modify it under the terms of the GNU General Public License
37  *		as published by the Free Software Foundation; either version
38  *		2 of the License, or (at your option) any later version.
39  */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42 
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h>	/* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/memcontrol.h>
58 #include <linux/res_counter.h>
59 #include <linux/static_key.h>
60 #include <linux/aio.h>
61 #include <linux/sched.h>
62 
63 #include <linux/filter.h>
64 #include <linux/rculist_nulls.h>
65 #include <linux/poll.h>
66 
67 #include <linux/atomic.h>
68 #include <net/dst.h>
69 #include <net/checksum.h>
70 
71 struct cgroup;
72 struct cgroup_subsys;
73 #ifdef CONFIG_NET
74 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss);
75 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg);
76 #else
77 static inline
78 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
79 {
80 	return 0;
81 }
82 static inline
83 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
84 {
85 }
86 #endif
87 /*
88  * This structure really needs to be cleaned up.
89  * Most of it is for TCP, and not used by any of
90  * the other protocols.
91  */
92 
93 /* Define this to get the SOCK_DBG debugging facility. */
94 #define SOCK_DEBUGGING
95 #ifdef SOCK_DEBUGGING
96 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
97 					printk(KERN_DEBUG msg); } while (0)
98 #else
99 /* Validate arguments and do nothing */
100 static inline __printf(2, 3)
101 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
102 {
103 }
104 #endif
105 
106 /* This is the per-socket lock.  The spinlock provides a synchronization
107  * between user contexts and software interrupt processing, whereas the
108  * mini-semaphore synchronizes multiple users amongst themselves.
109  */
110 typedef struct {
111 	spinlock_t		slock;
112 	int			owned;
113 	wait_queue_head_t	wq;
114 	/*
115 	 * We express the mutex-alike socket_lock semantics
116 	 * to the lock validator by explicitly managing
117 	 * the slock as a lock variant (in addition to
118 	 * the slock itself):
119 	 */
120 #ifdef CONFIG_DEBUG_LOCK_ALLOC
121 	struct lockdep_map dep_map;
122 #endif
123 } socket_lock_t;
124 
125 struct sock;
126 struct proto;
127 struct net;
128 
129 /**
130  *	struct sock_common - minimal network layer representation of sockets
131  *	@skc_daddr: Foreign IPv4 addr
132  *	@skc_rcv_saddr: Bound local IPv4 addr
133  *	@skc_hash: hash value used with various protocol lookup tables
134  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
135  *	@skc_family: network address family
136  *	@skc_state: Connection state
137  *	@skc_reuse: %SO_REUSEADDR setting
138  *	@skc_bound_dev_if: bound device index if != 0
139  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
140  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
141  *	@skc_prot: protocol handlers inside a network family
142  *	@skc_net: reference to the network namespace of this socket
143  *	@skc_node: main hash linkage for various protocol lookup tables
144  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
145  *	@skc_tx_queue_mapping: tx queue number for this connection
146  *	@skc_refcnt: reference count
147  *
148  *	This is the minimal network layer representation of sockets, the header
149  *	for struct sock and struct inet_timewait_sock.
150  */
151 struct sock_common {
152 	/* skc_daddr and skc_rcv_saddr must be grouped :
153 	 * cf INET_MATCH() and INET_TW_MATCH()
154 	 */
155 	__be32			skc_daddr;
156 	__be32			skc_rcv_saddr;
157 
158 	union  {
159 		unsigned int	skc_hash;
160 		__u16		skc_u16hashes[2];
161 	};
162 	unsigned short		skc_family;
163 	volatile unsigned char	skc_state;
164 	unsigned char		skc_reuse;
165 	int			skc_bound_dev_if;
166 	union {
167 		struct hlist_node	skc_bind_node;
168 		struct hlist_nulls_node skc_portaddr_node;
169 	};
170 	struct proto		*skc_prot;
171 #ifdef CONFIG_NET_NS
172 	struct net	 	*skc_net;
173 #endif
174 	/*
175 	 * fields between dontcopy_begin/dontcopy_end
176 	 * are not copied in sock_copy()
177 	 */
178 	/* private: */
179 	int			skc_dontcopy_begin[0];
180 	/* public: */
181 	union {
182 		struct hlist_node	skc_node;
183 		struct hlist_nulls_node skc_nulls_node;
184 	};
185 	int			skc_tx_queue_mapping;
186 	atomic_t		skc_refcnt;
187 	/* private: */
188 	int                     skc_dontcopy_end[0];
189 	/* public: */
190 };
191 
192 struct cg_proto;
193 /**
194   *	struct sock - network layer representation of sockets
195   *	@__sk_common: shared layout with inet_timewait_sock
196   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
197   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
198   *	@sk_lock:	synchronizer
199   *	@sk_rcvbuf: size of receive buffer in bytes
200   *	@sk_wq: sock wait queue and async head
201   *	@sk_rx_dst: receive input route used by early tcp demux
202   *	@sk_dst_cache: destination cache
203   *	@sk_dst_lock: destination cache lock
204   *	@sk_policy: flow policy
205   *	@sk_receive_queue: incoming packets
206   *	@sk_wmem_alloc: transmit queue bytes committed
207   *	@sk_write_queue: Packet sending queue
208   *	@sk_async_wait_queue: DMA copied packets
209   *	@sk_omem_alloc: "o" is "option" or "other"
210   *	@sk_wmem_queued: persistent queue size
211   *	@sk_forward_alloc: space allocated forward
212   *	@sk_allocation: allocation mode
213   *	@sk_sndbuf: size of send buffer in bytes
214   *	@sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
215   *		   %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
216   *	@sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
217   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
218   *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
219   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
220   *	@sk_gso_max_size: Maximum GSO segment size to build
221   *	@sk_gso_max_segs: Maximum number of GSO segments
222   *	@sk_lingertime: %SO_LINGER l_linger setting
223   *	@sk_backlog: always used with the per-socket spinlock held
224   *	@sk_callback_lock: used with the callbacks in the end of this struct
225   *	@sk_error_queue: rarely used
226   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
227   *			  IPV6_ADDRFORM for instance)
228   *	@sk_err: last error
229   *	@sk_err_soft: errors that don't cause failure but are the cause of a
230   *		      persistent failure not just 'timed out'
231   *	@sk_drops: raw/udp drops counter
232   *	@sk_ack_backlog: current listen backlog
233   *	@sk_max_ack_backlog: listen backlog set in listen()
234   *	@sk_priority: %SO_PRIORITY setting
235   *	@sk_cgrp_prioidx: socket group's priority map index
236   *	@sk_type: socket type (%SOCK_STREAM, etc)
237   *	@sk_protocol: which protocol this socket belongs in this network family
238   *	@sk_peer_pid: &struct pid for this socket's peer
239   *	@sk_peer_cred: %SO_PEERCRED setting
240   *	@sk_rcvlowat: %SO_RCVLOWAT setting
241   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
242   *	@sk_sndtimeo: %SO_SNDTIMEO setting
243   *	@sk_rxhash: flow hash received from netif layer
244   *	@sk_filter: socket filtering instructions
245   *	@sk_protinfo: private area, net family specific, when not using slab
246   *	@sk_timer: sock cleanup timer
247   *	@sk_stamp: time stamp of last packet received
248   *	@sk_socket: Identd and reporting IO signals
249   *	@sk_user_data: RPC layer private data
250   *	@sk_frag: cached page frag
251   *	@sk_peek_off: current peek_offset value
252   *	@sk_send_head: front of stuff to transmit
253   *	@sk_security: used by security modules
254   *	@sk_mark: generic packet mark
255   *	@sk_classid: this socket's cgroup classid
256   *	@sk_cgrp: this socket's cgroup-specific proto data
257   *	@sk_write_pending: a write to stream socket waits to start
258   *	@sk_state_change: callback to indicate change in the state of the sock
259   *	@sk_data_ready: callback to indicate there is data to be processed
260   *	@sk_write_space: callback to indicate there is bf sending space available
261   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
262   *	@sk_backlog_rcv: callback to process the backlog
263   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
264  */
265 struct sock {
266 	/*
267 	 * Now struct inet_timewait_sock also uses sock_common, so please just
268 	 * don't add nothing before this first member (__sk_common) --acme
269 	 */
270 	struct sock_common	__sk_common;
271 #define sk_node			__sk_common.skc_node
272 #define sk_nulls_node		__sk_common.skc_nulls_node
273 #define sk_refcnt		__sk_common.skc_refcnt
274 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
275 
276 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
277 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
278 #define sk_hash			__sk_common.skc_hash
279 #define sk_family		__sk_common.skc_family
280 #define sk_state		__sk_common.skc_state
281 #define sk_reuse		__sk_common.skc_reuse
282 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
283 #define sk_bind_node		__sk_common.skc_bind_node
284 #define sk_prot			__sk_common.skc_prot
285 #define sk_net			__sk_common.skc_net
286 	socket_lock_t		sk_lock;
287 	struct sk_buff_head	sk_receive_queue;
288 	/*
289 	 * The backlog queue is special, it is always used with
290 	 * the per-socket spinlock held and requires low latency
291 	 * access. Therefore we special case it's implementation.
292 	 * Note : rmem_alloc is in this structure to fill a hole
293 	 * on 64bit arches, not because its logically part of
294 	 * backlog.
295 	 */
296 	struct {
297 		atomic_t	rmem_alloc;
298 		int		len;
299 		struct sk_buff	*head;
300 		struct sk_buff	*tail;
301 	} sk_backlog;
302 #define sk_rmem_alloc sk_backlog.rmem_alloc
303 	int			sk_forward_alloc;
304 #ifdef CONFIG_RPS
305 	__u32			sk_rxhash;
306 #endif
307 	atomic_t		sk_drops;
308 	int			sk_rcvbuf;
309 
310 	struct sk_filter __rcu	*sk_filter;
311 	struct socket_wq __rcu	*sk_wq;
312 
313 #ifdef CONFIG_NET_DMA
314 	struct sk_buff_head	sk_async_wait_queue;
315 #endif
316 
317 #ifdef CONFIG_XFRM
318 	struct xfrm_policy	*sk_policy[2];
319 #endif
320 	unsigned long 		sk_flags;
321 	struct dst_entry	*sk_rx_dst;
322 	struct dst_entry	*sk_dst_cache;
323 	spinlock_t		sk_dst_lock;
324 	atomic_t		sk_wmem_alloc;
325 	atomic_t		sk_omem_alloc;
326 	int			sk_sndbuf;
327 	struct sk_buff_head	sk_write_queue;
328 	kmemcheck_bitfield_begin(flags);
329 	unsigned int		sk_shutdown  : 2,
330 				sk_no_check  : 2,
331 				sk_userlocks : 4,
332 				sk_protocol  : 8,
333 				sk_type      : 16;
334 	kmemcheck_bitfield_end(flags);
335 	int			sk_wmem_queued;
336 	gfp_t			sk_allocation;
337 	netdev_features_t	sk_route_caps;
338 	netdev_features_t	sk_route_nocaps;
339 	int			sk_gso_type;
340 	unsigned int		sk_gso_max_size;
341 	u16			sk_gso_max_segs;
342 	int			sk_rcvlowat;
343 	unsigned long	        sk_lingertime;
344 	struct sk_buff_head	sk_error_queue;
345 	struct proto		*sk_prot_creator;
346 	rwlock_t		sk_callback_lock;
347 	int			sk_err,
348 				sk_err_soft;
349 	unsigned short		sk_ack_backlog;
350 	unsigned short		sk_max_ack_backlog;
351 	__u32			sk_priority;
352 #ifdef CONFIG_CGROUPS
353 	__u32			sk_cgrp_prioidx;
354 #endif
355 	struct pid		*sk_peer_pid;
356 	const struct cred	*sk_peer_cred;
357 	long			sk_rcvtimeo;
358 	long			sk_sndtimeo;
359 	void			*sk_protinfo;
360 	struct timer_list	sk_timer;
361 	ktime_t			sk_stamp;
362 	struct socket		*sk_socket;
363 	void			*sk_user_data;
364 	struct page_frag	sk_frag;
365 	struct sk_buff		*sk_send_head;
366 	__s32			sk_peek_off;
367 	int			sk_write_pending;
368 #ifdef CONFIG_SECURITY
369 	void			*sk_security;
370 #endif
371 	__u32			sk_mark;
372 	u32			sk_classid;
373 	struct cg_proto		*sk_cgrp;
374 	void			(*sk_state_change)(struct sock *sk);
375 	void			(*sk_data_ready)(struct sock *sk, int bytes);
376 	void			(*sk_write_space)(struct sock *sk);
377 	void			(*sk_error_report)(struct sock *sk);
378 	int			(*sk_backlog_rcv)(struct sock *sk,
379 						  struct sk_buff *skb);
380 	void                    (*sk_destruct)(struct sock *sk);
381 };
382 
383 /*
384  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
385  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
386  * on a socket means that the socket will reuse everybody else's port
387  * without looking at the other's sk_reuse value.
388  */
389 
390 #define SK_NO_REUSE	0
391 #define SK_CAN_REUSE	1
392 #define SK_FORCE_REUSE	2
393 
394 static inline int sk_peek_offset(struct sock *sk, int flags)
395 {
396 	if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0))
397 		return sk->sk_peek_off;
398 	else
399 		return 0;
400 }
401 
402 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
403 {
404 	if (sk->sk_peek_off >= 0) {
405 		if (sk->sk_peek_off >= val)
406 			sk->sk_peek_off -= val;
407 		else
408 			sk->sk_peek_off = 0;
409 	}
410 }
411 
412 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
413 {
414 	if (sk->sk_peek_off >= 0)
415 		sk->sk_peek_off += val;
416 }
417 
418 /*
419  * Hashed lists helper routines
420  */
421 static inline struct sock *sk_entry(const struct hlist_node *node)
422 {
423 	return hlist_entry(node, struct sock, sk_node);
424 }
425 
426 static inline struct sock *__sk_head(const struct hlist_head *head)
427 {
428 	return hlist_entry(head->first, struct sock, sk_node);
429 }
430 
431 static inline struct sock *sk_head(const struct hlist_head *head)
432 {
433 	return hlist_empty(head) ? NULL : __sk_head(head);
434 }
435 
436 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
437 {
438 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
439 }
440 
441 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
442 {
443 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
444 }
445 
446 static inline struct sock *sk_next(const struct sock *sk)
447 {
448 	return sk->sk_node.next ?
449 		hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
450 }
451 
452 static inline struct sock *sk_nulls_next(const struct sock *sk)
453 {
454 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
455 		hlist_nulls_entry(sk->sk_nulls_node.next,
456 				  struct sock, sk_nulls_node) :
457 		NULL;
458 }
459 
460 static inline bool sk_unhashed(const struct sock *sk)
461 {
462 	return hlist_unhashed(&sk->sk_node);
463 }
464 
465 static inline bool sk_hashed(const struct sock *sk)
466 {
467 	return !sk_unhashed(sk);
468 }
469 
470 static inline void sk_node_init(struct hlist_node *node)
471 {
472 	node->pprev = NULL;
473 }
474 
475 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
476 {
477 	node->pprev = NULL;
478 }
479 
480 static inline void __sk_del_node(struct sock *sk)
481 {
482 	__hlist_del(&sk->sk_node);
483 }
484 
485 /* NB: equivalent to hlist_del_init_rcu */
486 static inline bool __sk_del_node_init(struct sock *sk)
487 {
488 	if (sk_hashed(sk)) {
489 		__sk_del_node(sk);
490 		sk_node_init(&sk->sk_node);
491 		return true;
492 	}
493 	return false;
494 }
495 
496 /* Grab socket reference count. This operation is valid only
497    when sk is ALREADY grabbed f.e. it is found in hash table
498    or a list and the lookup is made under lock preventing hash table
499    modifications.
500  */
501 
502 static inline void sock_hold(struct sock *sk)
503 {
504 	atomic_inc(&sk->sk_refcnt);
505 }
506 
507 /* Ungrab socket in the context, which assumes that socket refcnt
508    cannot hit zero, f.e. it is true in context of any socketcall.
509  */
510 static inline void __sock_put(struct sock *sk)
511 {
512 	atomic_dec(&sk->sk_refcnt);
513 }
514 
515 static inline bool sk_del_node_init(struct sock *sk)
516 {
517 	bool rc = __sk_del_node_init(sk);
518 
519 	if (rc) {
520 		/* paranoid for a while -acme */
521 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
522 		__sock_put(sk);
523 	}
524 	return rc;
525 }
526 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
527 
528 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
529 {
530 	if (sk_hashed(sk)) {
531 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
532 		return true;
533 	}
534 	return false;
535 }
536 
537 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
538 {
539 	bool rc = __sk_nulls_del_node_init_rcu(sk);
540 
541 	if (rc) {
542 		/* paranoid for a while -acme */
543 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
544 		__sock_put(sk);
545 	}
546 	return rc;
547 }
548 
549 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
550 {
551 	hlist_add_head(&sk->sk_node, list);
552 }
553 
554 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
555 {
556 	sock_hold(sk);
557 	__sk_add_node(sk, list);
558 }
559 
560 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
561 {
562 	sock_hold(sk);
563 	hlist_add_head_rcu(&sk->sk_node, list);
564 }
565 
566 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
567 {
568 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
569 }
570 
571 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
572 {
573 	sock_hold(sk);
574 	__sk_nulls_add_node_rcu(sk, list);
575 }
576 
577 static inline void __sk_del_bind_node(struct sock *sk)
578 {
579 	__hlist_del(&sk->sk_bind_node);
580 }
581 
582 static inline void sk_add_bind_node(struct sock *sk,
583 					struct hlist_head *list)
584 {
585 	hlist_add_head(&sk->sk_bind_node, list);
586 }
587 
588 #define sk_for_each(__sk, node, list) \
589 	hlist_for_each_entry(__sk, node, list, sk_node)
590 #define sk_for_each_rcu(__sk, node, list) \
591 	hlist_for_each_entry_rcu(__sk, node, list, sk_node)
592 #define sk_nulls_for_each(__sk, node, list) \
593 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
594 #define sk_nulls_for_each_rcu(__sk, node, list) \
595 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
596 #define sk_for_each_from(__sk, node) \
597 	if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
598 		hlist_for_each_entry_from(__sk, node, sk_node)
599 #define sk_nulls_for_each_from(__sk, node) \
600 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
601 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
602 #define sk_for_each_safe(__sk, node, tmp, list) \
603 	hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
604 #define sk_for_each_bound(__sk, node, list) \
605 	hlist_for_each_entry(__sk, node, list, sk_bind_node)
606 
607 static inline struct user_namespace *sk_user_ns(struct sock *sk)
608 {
609 	/* Careful only use this in a context where these parameters
610 	 * can not change and must all be valid, such as recvmsg from
611 	 * userspace.
612 	 */
613 	return sk->sk_socket->file->f_cred->user_ns;
614 }
615 
616 /* Sock flags */
617 enum sock_flags {
618 	SOCK_DEAD,
619 	SOCK_DONE,
620 	SOCK_URGINLINE,
621 	SOCK_KEEPOPEN,
622 	SOCK_LINGER,
623 	SOCK_DESTROY,
624 	SOCK_BROADCAST,
625 	SOCK_TIMESTAMP,
626 	SOCK_ZAPPED,
627 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
628 	SOCK_DBG, /* %SO_DEBUG setting */
629 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
630 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
631 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
632 	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
633 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
634 	SOCK_TIMESTAMPING_TX_HARDWARE,  /* %SOF_TIMESTAMPING_TX_HARDWARE */
635 	SOCK_TIMESTAMPING_TX_SOFTWARE,  /* %SOF_TIMESTAMPING_TX_SOFTWARE */
636 	SOCK_TIMESTAMPING_RX_HARDWARE,  /* %SOF_TIMESTAMPING_RX_HARDWARE */
637 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
638 	SOCK_TIMESTAMPING_SOFTWARE,     /* %SOF_TIMESTAMPING_SOFTWARE */
639 	SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
640 	SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
641 	SOCK_FASYNC, /* fasync() active */
642 	SOCK_RXQ_OVFL,
643 	SOCK_ZEROCOPY, /* buffers from userspace */
644 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
645 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
646 		     * Will use last 4 bytes of packet sent from
647 		     * user-space instead.
648 		     */
649 };
650 
651 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
652 {
653 	nsk->sk_flags = osk->sk_flags;
654 }
655 
656 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
657 {
658 	__set_bit(flag, &sk->sk_flags);
659 }
660 
661 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
662 {
663 	__clear_bit(flag, &sk->sk_flags);
664 }
665 
666 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
667 {
668 	return test_bit(flag, &sk->sk_flags);
669 }
670 
671 #ifdef CONFIG_NET
672 extern struct static_key memalloc_socks;
673 static inline int sk_memalloc_socks(void)
674 {
675 	return static_key_false(&memalloc_socks);
676 }
677 #else
678 
679 static inline int sk_memalloc_socks(void)
680 {
681 	return 0;
682 }
683 
684 #endif
685 
686 static inline gfp_t sk_gfp_atomic(struct sock *sk, gfp_t gfp_mask)
687 {
688 	return GFP_ATOMIC | (sk->sk_allocation & __GFP_MEMALLOC);
689 }
690 
691 static inline void sk_acceptq_removed(struct sock *sk)
692 {
693 	sk->sk_ack_backlog--;
694 }
695 
696 static inline void sk_acceptq_added(struct sock *sk)
697 {
698 	sk->sk_ack_backlog++;
699 }
700 
701 static inline bool sk_acceptq_is_full(const struct sock *sk)
702 {
703 	return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
704 }
705 
706 /*
707  * Compute minimal free write space needed to queue new packets.
708  */
709 static inline int sk_stream_min_wspace(const struct sock *sk)
710 {
711 	return sk->sk_wmem_queued >> 1;
712 }
713 
714 static inline int sk_stream_wspace(const struct sock *sk)
715 {
716 	return sk->sk_sndbuf - sk->sk_wmem_queued;
717 }
718 
719 extern void sk_stream_write_space(struct sock *sk);
720 
721 static inline bool sk_stream_memory_free(const struct sock *sk)
722 {
723 	return sk->sk_wmem_queued < sk->sk_sndbuf;
724 }
725 
726 /* OOB backlog add */
727 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
728 {
729 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
730 	skb_dst_force(skb);
731 
732 	if (!sk->sk_backlog.tail)
733 		sk->sk_backlog.head = skb;
734 	else
735 		sk->sk_backlog.tail->next = skb;
736 
737 	sk->sk_backlog.tail = skb;
738 	skb->next = NULL;
739 }
740 
741 /*
742  * Take into account size of receive queue and backlog queue
743  * Do not take into account this skb truesize,
744  * to allow even a single big packet to come.
745  */
746 static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb,
747 				     unsigned int limit)
748 {
749 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
750 
751 	return qsize > limit;
752 }
753 
754 /* The per-socket spinlock must be held here. */
755 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
756 					      unsigned int limit)
757 {
758 	if (sk_rcvqueues_full(sk, skb, limit))
759 		return -ENOBUFS;
760 
761 	__sk_add_backlog(sk, skb);
762 	sk->sk_backlog.len += skb->truesize;
763 	return 0;
764 }
765 
766 extern int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
767 
768 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
769 {
770 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
771 		return __sk_backlog_rcv(sk, skb);
772 
773 	return sk->sk_backlog_rcv(sk, skb);
774 }
775 
776 static inline void sock_rps_record_flow(const struct sock *sk)
777 {
778 #ifdef CONFIG_RPS
779 	struct rps_sock_flow_table *sock_flow_table;
780 
781 	rcu_read_lock();
782 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
783 	rps_record_sock_flow(sock_flow_table, sk->sk_rxhash);
784 	rcu_read_unlock();
785 #endif
786 }
787 
788 static inline void sock_rps_reset_flow(const struct sock *sk)
789 {
790 #ifdef CONFIG_RPS
791 	struct rps_sock_flow_table *sock_flow_table;
792 
793 	rcu_read_lock();
794 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
795 	rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash);
796 	rcu_read_unlock();
797 #endif
798 }
799 
800 static inline void sock_rps_save_rxhash(struct sock *sk,
801 					const struct sk_buff *skb)
802 {
803 #ifdef CONFIG_RPS
804 	if (unlikely(sk->sk_rxhash != skb->rxhash)) {
805 		sock_rps_reset_flow(sk);
806 		sk->sk_rxhash = skb->rxhash;
807 	}
808 #endif
809 }
810 
811 static inline void sock_rps_reset_rxhash(struct sock *sk)
812 {
813 #ifdef CONFIG_RPS
814 	sock_rps_reset_flow(sk);
815 	sk->sk_rxhash = 0;
816 #endif
817 }
818 
819 #define sk_wait_event(__sk, __timeo, __condition)			\
820 	({	int __rc;						\
821 		release_sock(__sk);					\
822 		__rc = __condition;					\
823 		if (!__rc) {						\
824 			*(__timeo) = schedule_timeout(*(__timeo));	\
825 		}							\
826 		lock_sock(__sk);					\
827 		__rc = __condition;					\
828 		__rc;							\
829 	})
830 
831 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
832 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
833 extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
834 extern int sk_stream_error(struct sock *sk, int flags, int err);
835 extern void sk_stream_kill_queues(struct sock *sk);
836 extern void sk_set_memalloc(struct sock *sk);
837 extern void sk_clear_memalloc(struct sock *sk);
838 
839 extern int sk_wait_data(struct sock *sk, long *timeo);
840 
841 struct request_sock_ops;
842 struct timewait_sock_ops;
843 struct inet_hashinfo;
844 struct raw_hashinfo;
845 struct module;
846 
847 /* Networking protocol blocks we attach to sockets.
848  * socket layer -> transport layer interface
849  * transport -> network interface is defined by struct inet_proto
850  */
851 struct proto {
852 	void			(*close)(struct sock *sk,
853 					long timeout);
854 	int			(*connect)(struct sock *sk,
855 					struct sockaddr *uaddr,
856 					int addr_len);
857 	int			(*disconnect)(struct sock *sk, int flags);
858 
859 	struct sock *		(*accept)(struct sock *sk, int flags, int *err);
860 
861 	int			(*ioctl)(struct sock *sk, int cmd,
862 					 unsigned long arg);
863 	int			(*init)(struct sock *sk);
864 	void			(*destroy)(struct sock *sk);
865 	void			(*shutdown)(struct sock *sk, int how);
866 	int			(*setsockopt)(struct sock *sk, int level,
867 					int optname, char __user *optval,
868 					unsigned int optlen);
869 	int			(*getsockopt)(struct sock *sk, int level,
870 					int optname, char __user *optval,
871 					int __user *option);
872 #ifdef CONFIG_COMPAT
873 	int			(*compat_setsockopt)(struct sock *sk,
874 					int level,
875 					int optname, char __user *optval,
876 					unsigned int optlen);
877 	int			(*compat_getsockopt)(struct sock *sk,
878 					int level,
879 					int optname, char __user *optval,
880 					int __user *option);
881 	int			(*compat_ioctl)(struct sock *sk,
882 					unsigned int cmd, unsigned long arg);
883 #endif
884 	int			(*sendmsg)(struct kiocb *iocb, struct sock *sk,
885 					   struct msghdr *msg, size_t len);
886 	int			(*recvmsg)(struct kiocb *iocb, struct sock *sk,
887 					   struct msghdr *msg,
888 					   size_t len, int noblock, int flags,
889 					   int *addr_len);
890 	int			(*sendpage)(struct sock *sk, struct page *page,
891 					int offset, size_t size, int flags);
892 	int			(*bind)(struct sock *sk,
893 					struct sockaddr *uaddr, int addr_len);
894 
895 	int			(*backlog_rcv) (struct sock *sk,
896 						struct sk_buff *skb);
897 
898 	void		(*release_cb)(struct sock *sk);
899 	void		(*mtu_reduced)(struct sock *sk);
900 
901 	/* Keeping track of sk's, looking them up, and port selection methods. */
902 	void			(*hash)(struct sock *sk);
903 	void			(*unhash)(struct sock *sk);
904 	void			(*rehash)(struct sock *sk);
905 	int			(*get_port)(struct sock *sk, unsigned short snum);
906 	void			(*clear_sk)(struct sock *sk, int size);
907 
908 	/* Keeping track of sockets in use */
909 #ifdef CONFIG_PROC_FS
910 	unsigned int		inuse_idx;
911 #endif
912 
913 	/* Memory pressure */
914 	void			(*enter_memory_pressure)(struct sock *sk);
915 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
916 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
917 	/*
918 	 * Pressure flag: try to collapse.
919 	 * Technical note: it is used by multiple contexts non atomically.
920 	 * All the __sk_mem_schedule() is of this nature: accounting
921 	 * is strict, actions are advisory and have some latency.
922 	 */
923 	int			*memory_pressure;
924 	long			*sysctl_mem;
925 	int			*sysctl_wmem;
926 	int			*sysctl_rmem;
927 	int			max_header;
928 	bool			no_autobind;
929 
930 	struct kmem_cache	*slab;
931 	unsigned int		obj_size;
932 	int			slab_flags;
933 
934 	struct percpu_counter	*orphan_count;
935 
936 	struct request_sock_ops	*rsk_prot;
937 	struct timewait_sock_ops *twsk_prot;
938 
939 	union {
940 		struct inet_hashinfo	*hashinfo;
941 		struct udp_table	*udp_table;
942 		struct raw_hashinfo	*raw_hash;
943 	} h;
944 
945 	struct module		*owner;
946 
947 	char			name[32];
948 
949 	struct list_head	node;
950 #ifdef SOCK_REFCNT_DEBUG
951 	atomic_t		socks;
952 #endif
953 #ifdef CONFIG_MEMCG_KMEM
954 	/*
955 	 * cgroup specific init/deinit functions. Called once for all
956 	 * protocols that implement it, from cgroups populate function.
957 	 * This function has to setup any files the protocol want to
958 	 * appear in the kmem cgroup filesystem.
959 	 */
960 	int			(*init_cgroup)(struct mem_cgroup *memcg,
961 					       struct cgroup_subsys *ss);
962 	void			(*destroy_cgroup)(struct mem_cgroup *memcg);
963 	struct cg_proto		*(*proto_cgroup)(struct mem_cgroup *memcg);
964 #endif
965 };
966 
967 /*
968  * Bits in struct cg_proto.flags
969  */
970 enum cg_proto_flags {
971 	/* Currently active and new sockets should be assigned to cgroups */
972 	MEMCG_SOCK_ACTIVE,
973 	/* It was ever activated; we must disarm static keys on destruction */
974 	MEMCG_SOCK_ACTIVATED,
975 };
976 
977 struct cg_proto {
978 	void			(*enter_memory_pressure)(struct sock *sk);
979 	struct res_counter	*memory_allocated;	/* Current allocated memory. */
980 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
981 	int			*memory_pressure;
982 	long			*sysctl_mem;
983 	unsigned long		flags;
984 	/*
985 	 * memcg field is used to find which memcg we belong directly
986 	 * Each memcg struct can hold more than one cg_proto, so container_of
987 	 * won't really cut.
988 	 *
989 	 * The elegant solution would be having an inverse function to
990 	 * proto_cgroup in struct proto, but that means polluting the structure
991 	 * for everybody, instead of just for memcg users.
992 	 */
993 	struct mem_cgroup	*memcg;
994 };
995 
996 extern int proto_register(struct proto *prot, int alloc_slab);
997 extern void proto_unregister(struct proto *prot);
998 
999 static inline bool memcg_proto_active(struct cg_proto *cg_proto)
1000 {
1001 	return test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags);
1002 }
1003 
1004 static inline bool memcg_proto_activated(struct cg_proto *cg_proto)
1005 {
1006 	return test_bit(MEMCG_SOCK_ACTIVATED, &cg_proto->flags);
1007 }
1008 
1009 #ifdef SOCK_REFCNT_DEBUG
1010 static inline void sk_refcnt_debug_inc(struct sock *sk)
1011 {
1012 	atomic_inc(&sk->sk_prot->socks);
1013 }
1014 
1015 static inline void sk_refcnt_debug_dec(struct sock *sk)
1016 {
1017 	atomic_dec(&sk->sk_prot->socks);
1018 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1019 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1020 }
1021 
1022 inline void sk_refcnt_debug_release(const struct sock *sk)
1023 {
1024 	if (atomic_read(&sk->sk_refcnt) != 1)
1025 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1026 		       sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1027 }
1028 #else /* SOCK_REFCNT_DEBUG */
1029 #define sk_refcnt_debug_inc(sk) do { } while (0)
1030 #define sk_refcnt_debug_dec(sk) do { } while (0)
1031 #define sk_refcnt_debug_release(sk) do { } while (0)
1032 #endif /* SOCK_REFCNT_DEBUG */
1033 
1034 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET)
1035 extern struct static_key memcg_socket_limit_enabled;
1036 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1037 					       struct cg_proto *cg_proto)
1038 {
1039 	return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg));
1040 }
1041 #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled)
1042 #else
1043 #define mem_cgroup_sockets_enabled 0
1044 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1045 					       struct cg_proto *cg_proto)
1046 {
1047 	return NULL;
1048 }
1049 #endif
1050 
1051 
1052 static inline bool sk_has_memory_pressure(const struct sock *sk)
1053 {
1054 	return sk->sk_prot->memory_pressure != NULL;
1055 }
1056 
1057 static inline bool sk_under_memory_pressure(const struct sock *sk)
1058 {
1059 	if (!sk->sk_prot->memory_pressure)
1060 		return false;
1061 
1062 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1063 		return !!*sk->sk_cgrp->memory_pressure;
1064 
1065 	return !!*sk->sk_prot->memory_pressure;
1066 }
1067 
1068 static inline void sk_leave_memory_pressure(struct sock *sk)
1069 {
1070 	int *memory_pressure = sk->sk_prot->memory_pressure;
1071 
1072 	if (!memory_pressure)
1073 		return;
1074 
1075 	if (*memory_pressure)
1076 		*memory_pressure = 0;
1077 
1078 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1079 		struct cg_proto *cg_proto = sk->sk_cgrp;
1080 		struct proto *prot = sk->sk_prot;
1081 
1082 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1083 			if (*cg_proto->memory_pressure)
1084 				*cg_proto->memory_pressure = 0;
1085 	}
1086 
1087 }
1088 
1089 static inline void sk_enter_memory_pressure(struct sock *sk)
1090 {
1091 	if (!sk->sk_prot->enter_memory_pressure)
1092 		return;
1093 
1094 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1095 		struct cg_proto *cg_proto = sk->sk_cgrp;
1096 		struct proto *prot = sk->sk_prot;
1097 
1098 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1099 			cg_proto->enter_memory_pressure(sk);
1100 	}
1101 
1102 	sk->sk_prot->enter_memory_pressure(sk);
1103 }
1104 
1105 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1106 {
1107 	long *prot = sk->sk_prot->sysctl_mem;
1108 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1109 		prot = sk->sk_cgrp->sysctl_mem;
1110 	return prot[index];
1111 }
1112 
1113 static inline void memcg_memory_allocated_add(struct cg_proto *prot,
1114 					      unsigned long amt,
1115 					      int *parent_status)
1116 {
1117 	struct res_counter *fail;
1118 	int ret;
1119 
1120 	ret = res_counter_charge_nofail(prot->memory_allocated,
1121 					amt << PAGE_SHIFT, &fail);
1122 	if (ret < 0)
1123 		*parent_status = OVER_LIMIT;
1124 }
1125 
1126 static inline void memcg_memory_allocated_sub(struct cg_proto *prot,
1127 					      unsigned long amt)
1128 {
1129 	res_counter_uncharge(prot->memory_allocated, amt << PAGE_SHIFT);
1130 }
1131 
1132 static inline u64 memcg_memory_allocated_read(struct cg_proto *prot)
1133 {
1134 	u64 ret;
1135 	ret = res_counter_read_u64(prot->memory_allocated, RES_USAGE);
1136 	return ret >> PAGE_SHIFT;
1137 }
1138 
1139 static inline long
1140 sk_memory_allocated(const struct sock *sk)
1141 {
1142 	struct proto *prot = sk->sk_prot;
1143 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1144 		return memcg_memory_allocated_read(sk->sk_cgrp);
1145 
1146 	return atomic_long_read(prot->memory_allocated);
1147 }
1148 
1149 static inline long
1150 sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status)
1151 {
1152 	struct proto *prot = sk->sk_prot;
1153 
1154 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1155 		memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status);
1156 		/* update the root cgroup regardless */
1157 		atomic_long_add_return(amt, prot->memory_allocated);
1158 		return memcg_memory_allocated_read(sk->sk_cgrp);
1159 	}
1160 
1161 	return atomic_long_add_return(amt, prot->memory_allocated);
1162 }
1163 
1164 static inline void
1165 sk_memory_allocated_sub(struct sock *sk, int amt)
1166 {
1167 	struct proto *prot = sk->sk_prot;
1168 
1169 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1170 		memcg_memory_allocated_sub(sk->sk_cgrp, amt);
1171 
1172 	atomic_long_sub(amt, prot->memory_allocated);
1173 }
1174 
1175 static inline void sk_sockets_allocated_dec(struct sock *sk)
1176 {
1177 	struct proto *prot = sk->sk_prot;
1178 
1179 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1180 		struct cg_proto *cg_proto = sk->sk_cgrp;
1181 
1182 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1183 			percpu_counter_dec(cg_proto->sockets_allocated);
1184 	}
1185 
1186 	percpu_counter_dec(prot->sockets_allocated);
1187 }
1188 
1189 static inline void sk_sockets_allocated_inc(struct sock *sk)
1190 {
1191 	struct proto *prot = sk->sk_prot;
1192 
1193 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1194 		struct cg_proto *cg_proto = sk->sk_cgrp;
1195 
1196 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1197 			percpu_counter_inc(cg_proto->sockets_allocated);
1198 	}
1199 
1200 	percpu_counter_inc(prot->sockets_allocated);
1201 }
1202 
1203 static inline int
1204 sk_sockets_allocated_read_positive(struct sock *sk)
1205 {
1206 	struct proto *prot = sk->sk_prot;
1207 
1208 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1209 		return percpu_counter_read_positive(sk->sk_cgrp->sockets_allocated);
1210 
1211 	return percpu_counter_read_positive(prot->sockets_allocated);
1212 }
1213 
1214 static inline int
1215 proto_sockets_allocated_sum_positive(struct proto *prot)
1216 {
1217 	return percpu_counter_sum_positive(prot->sockets_allocated);
1218 }
1219 
1220 static inline long
1221 proto_memory_allocated(struct proto *prot)
1222 {
1223 	return atomic_long_read(prot->memory_allocated);
1224 }
1225 
1226 static inline bool
1227 proto_memory_pressure(struct proto *prot)
1228 {
1229 	if (!prot->memory_pressure)
1230 		return false;
1231 	return !!*prot->memory_pressure;
1232 }
1233 
1234 
1235 #ifdef CONFIG_PROC_FS
1236 /* Called with local bh disabled */
1237 extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1238 extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
1239 #else
1240 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1241 		int inc)
1242 {
1243 }
1244 #endif
1245 
1246 
1247 /* With per-bucket locks this operation is not-atomic, so that
1248  * this version is not worse.
1249  */
1250 static inline void __sk_prot_rehash(struct sock *sk)
1251 {
1252 	sk->sk_prot->unhash(sk);
1253 	sk->sk_prot->hash(sk);
1254 }
1255 
1256 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1257 
1258 /* About 10 seconds */
1259 #define SOCK_DESTROY_TIME (10*HZ)
1260 
1261 /* Sockets 0-1023 can't be bound to unless you are superuser */
1262 #define PROT_SOCK	1024
1263 
1264 #define SHUTDOWN_MASK	3
1265 #define RCV_SHUTDOWN	1
1266 #define SEND_SHUTDOWN	2
1267 
1268 #define SOCK_SNDBUF_LOCK	1
1269 #define SOCK_RCVBUF_LOCK	2
1270 #define SOCK_BINDADDR_LOCK	4
1271 #define SOCK_BINDPORT_LOCK	8
1272 
1273 /* sock_iocb: used to kick off async processing of socket ios */
1274 struct sock_iocb {
1275 	struct list_head	list;
1276 
1277 	int			flags;
1278 	int			size;
1279 	struct socket		*sock;
1280 	struct sock		*sk;
1281 	struct scm_cookie	*scm;
1282 	struct msghdr		*msg, async_msg;
1283 	struct kiocb		*kiocb;
1284 };
1285 
1286 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
1287 {
1288 	return (struct sock_iocb *)iocb->private;
1289 }
1290 
1291 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
1292 {
1293 	return si->kiocb;
1294 }
1295 
1296 struct socket_alloc {
1297 	struct socket socket;
1298 	struct inode vfs_inode;
1299 };
1300 
1301 static inline struct socket *SOCKET_I(struct inode *inode)
1302 {
1303 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1304 }
1305 
1306 static inline struct inode *SOCK_INODE(struct socket *socket)
1307 {
1308 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1309 }
1310 
1311 /*
1312  * Functions for memory accounting
1313  */
1314 extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
1315 extern void __sk_mem_reclaim(struct sock *sk);
1316 
1317 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1318 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1319 #define SK_MEM_SEND	0
1320 #define SK_MEM_RECV	1
1321 
1322 static inline int sk_mem_pages(int amt)
1323 {
1324 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1325 }
1326 
1327 static inline bool sk_has_account(struct sock *sk)
1328 {
1329 	/* return true if protocol supports memory accounting */
1330 	return !!sk->sk_prot->memory_allocated;
1331 }
1332 
1333 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1334 {
1335 	if (!sk_has_account(sk))
1336 		return true;
1337 	return size <= sk->sk_forward_alloc ||
1338 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1339 }
1340 
1341 static inline bool
1342 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1343 {
1344 	if (!sk_has_account(sk))
1345 		return true;
1346 	return size<= sk->sk_forward_alloc ||
1347 		__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1348 		skb_pfmemalloc(skb);
1349 }
1350 
1351 static inline void sk_mem_reclaim(struct sock *sk)
1352 {
1353 	if (!sk_has_account(sk))
1354 		return;
1355 	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1356 		__sk_mem_reclaim(sk);
1357 }
1358 
1359 static inline void sk_mem_reclaim_partial(struct sock *sk)
1360 {
1361 	if (!sk_has_account(sk))
1362 		return;
1363 	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1364 		__sk_mem_reclaim(sk);
1365 }
1366 
1367 static inline void sk_mem_charge(struct sock *sk, int size)
1368 {
1369 	if (!sk_has_account(sk))
1370 		return;
1371 	sk->sk_forward_alloc -= size;
1372 }
1373 
1374 static inline void sk_mem_uncharge(struct sock *sk, int size)
1375 {
1376 	if (!sk_has_account(sk))
1377 		return;
1378 	sk->sk_forward_alloc += size;
1379 }
1380 
1381 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1382 {
1383 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1384 	sk->sk_wmem_queued -= skb->truesize;
1385 	sk_mem_uncharge(sk, skb->truesize);
1386 	__kfree_skb(skb);
1387 }
1388 
1389 /* Used by processes to "lock" a socket state, so that
1390  * interrupts and bottom half handlers won't change it
1391  * from under us. It essentially blocks any incoming
1392  * packets, so that we won't get any new data or any
1393  * packets that change the state of the socket.
1394  *
1395  * While locked, BH processing will add new packets to
1396  * the backlog queue.  This queue is processed by the
1397  * owner of the socket lock right before it is released.
1398  *
1399  * Since ~2.3.5 it is also exclusive sleep lock serializing
1400  * accesses from user process context.
1401  */
1402 #define sock_owned_by_user(sk)	((sk)->sk_lock.owned)
1403 
1404 /*
1405  * Macro so as to not evaluate some arguments when
1406  * lockdep is not enabled.
1407  *
1408  * Mark both the sk_lock and the sk_lock.slock as a
1409  * per-address-family lock class.
1410  */
1411 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1412 do {									\
1413 	sk->sk_lock.owned = 0;						\
1414 	init_waitqueue_head(&sk->sk_lock.wq);				\
1415 	spin_lock_init(&(sk)->sk_lock.slock);				\
1416 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1417 			sizeof((sk)->sk_lock));				\
1418 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1419 				(skey), (sname));				\
1420 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1421 } while (0)
1422 
1423 extern void lock_sock_nested(struct sock *sk, int subclass);
1424 
1425 static inline void lock_sock(struct sock *sk)
1426 {
1427 	lock_sock_nested(sk, 0);
1428 }
1429 
1430 extern void release_sock(struct sock *sk);
1431 
1432 /* BH context may only use the following locking interface. */
1433 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1434 #define bh_lock_sock_nested(__sk) \
1435 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1436 				SINGLE_DEPTH_NESTING)
1437 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1438 
1439 extern bool lock_sock_fast(struct sock *sk);
1440 /**
1441  * unlock_sock_fast - complement of lock_sock_fast
1442  * @sk: socket
1443  * @slow: slow mode
1444  *
1445  * fast unlock socket for user context.
1446  * If slow mode is on, we call regular release_sock()
1447  */
1448 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1449 {
1450 	if (slow)
1451 		release_sock(sk);
1452 	else
1453 		spin_unlock_bh(&sk->sk_lock.slock);
1454 }
1455 
1456 
1457 extern struct sock		*sk_alloc(struct net *net, int family,
1458 					  gfp_t priority,
1459 					  struct proto *prot);
1460 extern void			sk_free(struct sock *sk);
1461 extern void			sk_release_kernel(struct sock *sk);
1462 extern struct sock		*sk_clone_lock(const struct sock *sk,
1463 					       const gfp_t priority);
1464 
1465 extern struct sk_buff		*sock_wmalloc(struct sock *sk,
1466 					      unsigned long size, int force,
1467 					      gfp_t priority);
1468 extern struct sk_buff		*sock_rmalloc(struct sock *sk,
1469 					      unsigned long size, int force,
1470 					      gfp_t priority);
1471 extern void			sock_wfree(struct sk_buff *skb);
1472 extern void			sock_rfree(struct sk_buff *skb);
1473 extern void			sock_edemux(struct sk_buff *skb);
1474 
1475 extern int			sock_setsockopt(struct socket *sock, int level,
1476 						int op, char __user *optval,
1477 						unsigned int optlen);
1478 
1479 extern int			sock_getsockopt(struct socket *sock, int level,
1480 						int op, char __user *optval,
1481 						int __user *optlen);
1482 extern struct sk_buff		*sock_alloc_send_skb(struct sock *sk,
1483 						     unsigned long size,
1484 						     int noblock,
1485 						     int *errcode);
1486 extern struct sk_buff		*sock_alloc_send_pskb(struct sock *sk,
1487 						      unsigned long header_len,
1488 						      unsigned long data_len,
1489 						      int noblock,
1490 						      int *errcode);
1491 extern void *sock_kmalloc(struct sock *sk, int size,
1492 			  gfp_t priority);
1493 extern void sock_kfree_s(struct sock *sk, void *mem, int size);
1494 extern void sk_send_sigurg(struct sock *sk);
1495 
1496 /*
1497  * Functions to fill in entries in struct proto_ops when a protocol
1498  * does not implement a particular function.
1499  */
1500 extern int                      sock_no_bind(struct socket *,
1501 					     struct sockaddr *, int);
1502 extern int                      sock_no_connect(struct socket *,
1503 						struct sockaddr *, int, int);
1504 extern int                      sock_no_socketpair(struct socket *,
1505 						   struct socket *);
1506 extern int                      sock_no_accept(struct socket *,
1507 					       struct socket *, int);
1508 extern int                      sock_no_getname(struct socket *,
1509 						struct sockaddr *, int *, int);
1510 extern unsigned int             sock_no_poll(struct file *, struct socket *,
1511 					     struct poll_table_struct *);
1512 extern int                      sock_no_ioctl(struct socket *, unsigned int,
1513 					      unsigned long);
1514 extern int			sock_no_listen(struct socket *, int);
1515 extern int                      sock_no_shutdown(struct socket *, int);
1516 extern int			sock_no_getsockopt(struct socket *, int , int,
1517 						   char __user *, int __user *);
1518 extern int			sock_no_setsockopt(struct socket *, int, int,
1519 						   char __user *, unsigned int);
1520 extern int                      sock_no_sendmsg(struct kiocb *, struct socket *,
1521 						struct msghdr *, size_t);
1522 extern int                      sock_no_recvmsg(struct kiocb *, struct socket *,
1523 						struct msghdr *, size_t, int);
1524 extern int			sock_no_mmap(struct file *file,
1525 					     struct socket *sock,
1526 					     struct vm_area_struct *vma);
1527 extern ssize_t			sock_no_sendpage(struct socket *sock,
1528 						struct page *page,
1529 						int offset, size_t size,
1530 						int flags);
1531 
1532 /*
1533  * Functions to fill in entries in struct proto_ops when a protocol
1534  * uses the inet style.
1535  */
1536 extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
1537 				  char __user *optval, int __user *optlen);
1538 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1539 			       struct msghdr *msg, size_t size, int flags);
1540 extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
1541 				  char __user *optval, unsigned int optlen);
1542 extern int compat_sock_common_getsockopt(struct socket *sock, int level,
1543 		int optname, char __user *optval, int __user *optlen);
1544 extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1545 		int optname, char __user *optval, unsigned int optlen);
1546 
1547 extern void sk_common_release(struct sock *sk);
1548 
1549 /*
1550  *	Default socket callbacks and setup code
1551  */
1552 
1553 /* Initialise core socket variables */
1554 extern void sock_init_data(struct socket *sock, struct sock *sk);
1555 
1556 extern void sk_filter_release_rcu(struct rcu_head *rcu);
1557 
1558 /**
1559  *	sk_filter_release - release a socket filter
1560  *	@fp: filter to remove
1561  *
1562  *	Remove a filter from a socket and release its resources.
1563  */
1564 
1565 static inline void sk_filter_release(struct sk_filter *fp)
1566 {
1567 	if (atomic_dec_and_test(&fp->refcnt))
1568 		call_rcu(&fp->rcu, sk_filter_release_rcu);
1569 }
1570 
1571 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1572 {
1573 	unsigned int size = sk_filter_len(fp);
1574 
1575 	atomic_sub(size, &sk->sk_omem_alloc);
1576 	sk_filter_release(fp);
1577 }
1578 
1579 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1580 {
1581 	atomic_inc(&fp->refcnt);
1582 	atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
1583 }
1584 
1585 /*
1586  * Socket reference counting postulates.
1587  *
1588  * * Each user of socket SHOULD hold a reference count.
1589  * * Each access point to socket (an hash table bucket, reference from a list,
1590  *   running timer, skb in flight MUST hold a reference count.
1591  * * When reference count hits 0, it means it will never increase back.
1592  * * When reference count hits 0, it means that no references from
1593  *   outside exist to this socket and current process on current CPU
1594  *   is last user and may/should destroy this socket.
1595  * * sk_free is called from any context: process, BH, IRQ. When
1596  *   it is called, socket has no references from outside -> sk_free
1597  *   may release descendant resources allocated by the socket, but
1598  *   to the time when it is called, socket is NOT referenced by any
1599  *   hash tables, lists etc.
1600  * * Packets, delivered from outside (from network or from another process)
1601  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1602  *   when they sit in queue. Otherwise, packets will leak to hole, when
1603  *   socket is looked up by one cpu and unhasing is made by another CPU.
1604  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1605  *   (leak to backlog). Packet socket does all the processing inside
1606  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1607  *   use separate SMP lock, so that they are prone too.
1608  */
1609 
1610 /* Ungrab socket and destroy it, if it was the last reference. */
1611 static inline void sock_put(struct sock *sk)
1612 {
1613 	if (atomic_dec_and_test(&sk->sk_refcnt))
1614 		sk_free(sk);
1615 }
1616 
1617 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1618 			  const int nested);
1619 
1620 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1621 {
1622 	sk->sk_tx_queue_mapping = tx_queue;
1623 }
1624 
1625 static inline void sk_tx_queue_clear(struct sock *sk)
1626 {
1627 	sk->sk_tx_queue_mapping = -1;
1628 }
1629 
1630 static inline int sk_tx_queue_get(const struct sock *sk)
1631 {
1632 	return sk ? sk->sk_tx_queue_mapping : -1;
1633 }
1634 
1635 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1636 {
1637 	sk_tx_queue_clear(sk);
1638 	sk->sk_socket = sock;
1639 }
1640 
1641 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1642 {
1643 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1644 	return &rcu_dereference_raw(sk->sk_wq)->wait;
1645 }
1646 /* Detach socket from process context.
1647  * Announce socket dead, detach it from wait queue and inode.
1648  * Note that parent inode held reference count on this struct sock,
1649  * we do not release it in this function, because protocol
1650  * probably wants some additional cleanups or even continuing
1651  * to work with this socket (TCP).
1652  */
1653 static inline void sock_orphan(struct sock *sk)
1654 {
1655 	write_lock_bh(&sk->sk_callback_lock);
1656 	sock_set_flag(sk, SOCK_DEAD);
1657 	sk_set_socket(sk, NULL);
1658 	sk->sk_wq  = NULL;
1659 	write_unlock_bh(&sk->sk_callback_lock);
1660 }
1661 
1662 static inline void sock_graft(struct sock *sk, struct socket *parent)
1663 {
1664 	write_lock_bh(&sk->sk_callback_lock);
1665 	sk->sk_wq = parent->wq;
1666 	parent->sk = sk;
1667 	sk_set_socket(sk, parent);
1668 	security_sock_graft(sk, parent);
1669 	write_unlock_bh(&sk->sk_callback_lock);
1670 }
1671 
1672 extern kuid_t sock_i_uid(struct sock *sk);
1673 extern unsigned long sock_i_ino(struct sock *sk);
1674 
1675 static inline struct dst_entry *
1676 __sk_dst_get(struct sock *sk)
1677 {
1678 	return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1679 						       lockdep_is_held(&sk->sk_lock.slock));
1680 }
1681 
1682 static inline struct dst_entry *
1683 sk_dst_get(struct sock *sk)
1684 {
1685 	struct dst_entry *dst;
1686 
1687 	rcu_read_lock();
1688 	dst = rcu_dereference(sk->sk_dst_cache);
1689 	if (dst)
1690 		dst_hold(dst);
1691 	rcu_read_unlock();
1692 	return dst;
1693 }
1694 
1695 extern void sk_reset_txq(struct sock *sk);
1696 
1697 static inline void dst_negative_advice(struct sock *sk)
1698 {
1699 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1700 
1701 	if (dst && dst->ops->negative_advice) {
1702 		ndst = dst->ops->negative_advice(dst);
1703 
1704 		if (ndst != dst) {
1705 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
1706 			sk_reset_txq(sk);
1707 		}
1708 	}
1709 }
1710 
1711 static inline void
1712 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1713 {
1714 	struct dst_entry *old_dst;
1715 
1716 	sk_tx_queue_clear(sk);
1717 	/*
1718 	 * This can be called while sk is owned by the caller only,
1719 	 * with no state that can be checked in a rcu_dereference_check() cond
1720 	 */
1721 	old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1722 	rcu_assign_pointer(sk->sk_dst_cache, dst);
1723 	dst_release(old_dst);
1724 }
1725 
1726 static inline void
1727 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1728 {
1729 	spin_lock(&sk->sk_dst_lock);
1730 	__sk_dst_set(sk, dst);
1731 	spin_unlock(&sk->sk_dst_lock);
1732 }
1733 
1734 static inline void
1735 __sk_dst_reset(struct sock *sk)
1736 {
1737 	__sk_dst_set(sk, NULL);
1738 }
1739 
1740 static inline void
1741 sk_dst_reset(struct sock *sk)
1742 {
1743 	spin_lock(&sk->sk_dst_lock);
1744 	__sk_dst_reset(sk);
1745 	spin_unlock(&sk->sk_dst_lock);
1746 }
1747 
1748 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1749 
1750 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1751 
1752 static inline bool sk_can_gso(const struct sock *sk)
1753 {
1754 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1755 }
1756 
1757 extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1758 
1759 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1760 {
1761 	sk->sk_route_nocaps |= flags;
1762 	sk->sk_route_caps &= ~flags;
1763 }
1764 
1765 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1766 					   char __user *from, char *to,
1767 					   int copy, int offset)
1768 {
1769 	if (skb->ip_summed == CHECKSUM_NONE) {
1770 		int err = 0;
1771 		__wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err);
1772 		if (err)
1773 			return err;
1774 		skb->csum = csum_block_add(skb->csum, csum, offset);
1775 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1776 		if (!access_ok(VERIFY_READ, from, copy) ||
1777 		    __copy_from_user_nocache(to, from, copy))
1778 			return -EFAULT;
1779 	} else if (copy_from_user(to, from, copy))
1780 		return -EFAULT;
1781 
1782 	return 0;
1783 }
1784 
1785 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1786 				       char __user *from, int copy)
1787 {
1788 	int err, offset = skb->len;
1789 
1790 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1791 				       copy, offset);
1792 	if (err)
1793 		__skb_trim(skb, offset);
1794 
1795 	return err;
1796 }
1797 
1798 static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from,
1799 					   struct sk_buff *skb,
1800 					   struct page *page,
1801 					   int off, int copy)
1802 {
1803 	int err;
1804 
1805 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1806 				       copy, skb->len);
1807 	if (err)
1808 		return err;
1809 
1810 	skb->len	     += copy;
1811 	skb->data_len	     += copy;
1812 	skb->truesize	     += copy;
1813 	sk->sk_wmem_queued   += copy;
1814 	sk_mem_charge(sk, copy);
1815 	return 0;
1816 }
1817 
1818 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1819 				   struct sk_buff *skb, struct page *page,
1820 				   int off, int copy)
1821 {
1822 	if (skb->ip_summed == CHECKSUM_NONE) {
1823 		int err = 0;
1824 		__wsum csum = csum_and_copy_from_user(from,
1825 						     page_address(page) + off,
1826 							    copy, 0, &err);
1827 		if (err)
1828 			return err;
1829 		skb->csum = csum_block_add(skb->csum, csum, skb->len);
1830 	} else if (copy_from_user(page_address(page) + off, from, copy))
1831 		return -EFAULT;
1832 
1833 	skb->len	     += copy;
1834 	skb->data_len	     += copy;
1835 	skb->truesize	     += copy;
1836 	sk->sk_wmem_queued   += copy;
1837 	sk_mem_charge(sk, copy);
1838 	return 0;
1839 }
1840 
1841 /**
1842  * sk_wmem_alloc_get - returns write allocations
1843  * @sk: socket
1844  *
1845  * Returns sk_wmem_alloc minus initial offset of one
1846  */
1847 static inline int sk_wmem_alloc_get(const struct sock *sk)
1848 {
1849 	return atomic_read(&sk->sk_wmem_alloc) - 1;
1850 }
1851 
1852 /**
1853  * sk_rmem_alloc_get - returns read allocations
1854  * @sk: socket
1855  *
1856  * Returns sk_rmem_alloc
1857  */
1858 static inline int sk_rmem_alloc_get(const struct sock *sk)
1859 {
1860 	return atomic_read(&sk->sk_rmem_alloc);
1861 }
1862 
1863 /**
1864  * sk_has_allocations - check if allocations are outstanding
1865  * @sk: socket
1866  *
1867  * Returns true if socket has write or read allocations
1868  */
1869 static inline bool sk_has_allocations(const struct sock *sk)
1870 {
1871 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1872 }
1873 
1874 /**
1875  * wq_has_sleeper - check if there are any waiting processes
1876  * @wq: struct socket_wq
1877  *
1878  * Returns true if socket_wq has waiting processes
1879  *
1880  * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1881  * barrier call. They were added due to the race found within the tcp code.
1882  *
1883  * Consider following tcp code paths:
1884  *
1885  * CPU1                  CPU2
1886  *
1887  * sys_select            receive packet
1888  *   ...                 ...
1889  *   __add_wait_queue    update tp->rcv_nxt
1890  *   ...                 ...
1891  *   tp->rcv_nxt check   sock_def_readable
1892  *   ...                 {
1893  *   schedule               rcu_read_lock();
1894  *                          wq = rcu_dereference(sk->sk_wq);
1895  *                          if (wq && waitqueue_active(&wq->wait))
1896  *                              wake_up_interruptible(&wq->wait)
1897  *                          ...
1898  *                       }
1899  *
1900  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1901  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
1902  * could then endup calling schedule and sleep forever if there are no more
1903  * data on the socket.
1904  *
1905  */
1906 static inline bool wq_has_sleeper(struct socket_wq *wq)
1907 {
1908 	/* We need to be sure we are in sync with the
1909 	 * add_wait_queue modifications to the wait queue.
1910 	 *
1911 	 * This memory barrier is paired in the sock_poll_wait.
1912 	 */
1913 	smp_mb();
1914 	return wq && waitqueue_active(&wq->wait);
1915 }
1916 
1917 /**
1918  * sock_poll_wait - place memory barrier behind the poll_wait call.
1919  * @filp:           file
1920  * @wait_address:   socket wait queue
1921  * @p:              poll_table
1922  *
1923  * See the comments in the wq_has_sleeper function.
1924  */
1925 static inline void sock_poll_wait(struct file *filp,
1926 		wait_queue_head_t *wait_address, poll_table *p)
1927 {
1928 	if (!poll_does_not_wait(p) && wait_address) {
1929 		poll_wait(filp, wait_address, p);
1930 		/* We need to be sure we are in sync with the
1931 		 * socket flags modification.
1932 		 *
1933 		 * This memory barrier is paired in the wq_has_sleeper.
1934 		 */
1935 		smp_mb();
1936 	}
1937 }
1938 
1939 /*
1940  *	Queue a received datagram if it will fit. Stream and sequenced
1941  *	protocols can't normally use this as they need to fit buffers in
1942  *	and play with them.
1943  *
1944  *	Inlined as it's very short and called for pretty much every
1945  *	packet ever received.
1946  */
1947 
1948 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1949 {
1950 	skb_orphan(skb);
1951 	skb->sk = sk;
1952 	skb->destructor = sock_wfree;
1953 	/*
1954 	 * We used to take a refcount on sk, but following operation
1955 	 * is enough to guarantee sk_free() wont free this sock until
1956 	 * all in-flight packets are completed
1957 	 */
1958 	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1959 }
1960 
1961 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1962 {
1963 	skb_orphan(skb);
1964 	skb->sk = sk;
1965 	skb->destructor = sock_rfree;
1966 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1967 	sk_mem_charge(sk, skb->truesize);
1968 }
1969 
1970 extern void sk_reset_timer(struct sock *sk, struct timer_list *timer,
1971 			   unsigned long expires);
1972 
1973 extern void sk_stop_timer(struct sock *sk, struct timer_list *timer);
1974 
1975 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1976 
1977 extern int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1978 
1979 /*
1980  *	Recover an error report and clear atomically
1981  */
1982 
1983 static inline int sock_error(struct sock *sk)
1984 {
1985 	int err;
1986 	if (likely(!sk->sk_err))
1987 		return 0;
1988 	err = xchg(&sk->sk_err, 0);
1989 	return -err;
1990 }
1991 
1992 static inline unsigned long sock_wspace(struct sock *sk)
1993 {
1994 	int amt = 0;
1995 
1996 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1997 		amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1998 		if (amt < 0)
1999 			amt = 0;
2000 	}
2001 	return amt;
2002 }
2003 
2004 static inline void sk_wake_async(struct sock *sk, int how, int band)
2005 {
2006 	if (sock_flag(sk, SOCK_FASYNC))
2007 		sock_wake_async(sk->sk_socket, how, band);
2008 }
2009 
2010 #define SOCK_MIN_SNDBUF 2048
2011 /*
2012  * Since sk_rmem_alloc sums skb->truesize, even a small frame might need
2013  * sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak
2014  */
2015 #define SOCK_MIN_RCVBUF (2048 + sizeof(struct sk_buff))
2016 
2017 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2018 {
2019 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2020 		sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2021 		sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2022 	}
2023 }
2024 
2025 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
2026 
2027 /**
2028  * sk_page_frag - return an appropriate page_frag
2029  * @sk: socket
2030  *
2031  * If socket allocation mode allows current thread to sleep, it means its
2032  * safe to use the per task page_frag instead of the per socket one.
2033  */
2034 static inline struct page_frag *sk_page_frag(struct sock *sk)
2035 {
2036 	if (sk->sk_allocation & __GFP_WAIT)
2037 		return &current->task_frag;
2038 
2039 	return &sk->sk_frag;
2040 }
2041 
2042 extern bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2043 
2044 /*
2045  *	Default write policy as shown to user space via poll/select/SIGIO
2046  */
2047 static inline bool sock_writeable(const struct sock *sk)
2048 {
2049 	return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2050 }
2051 
2052 static inline gfp_t gfp_any(void)
2053 {
2054 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2055 }
2056 
2057 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2058 {
2059 	return noblock ? 0 : sk->sk_rcvtimeo;
2060 }
2061 
2062 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2063 {
2064 	return noblock ? 0 : sk->sk_sndtimeo;
2065 }
2066 
2067 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2068 {
2069 	return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2070 }
2071 
2072 /* Alas, with timeout socket operations are not restartable.
2073  * Compare this to poll().
2074  */
2075 static inline int sock_intr_errno(long timeo)
2076 {
2077 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2078 }
2079 
2080 extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2081 	struct sk_buff *skb);
2082 extern void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2083 	struct sk_buff *skb);
2084 
2085 static inline void
2086 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2087 {
2088 	ktime_t kt = skb->tstamp;
2089 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2090 
2091 	/*
2092 	 * generate control messages if
2093 	 * - receive time stamping in software requested (SOCK_RCVTSTAMP
2094 	 *   or SOCK_TIMESTAMPING_RX_SOFTWARE)
2095 	 * - software time stamp available and wanted
2096 	 *   (SOCK_TIMESTAMPING_SOFTWARE)
2097 	 * - hardware time stamps available and wanted
2098 	 *   (SOCK_TIMESTAMPING_SYS_HARDWARE or
2099 	 *   SOCK_TIMESTAMPING_RAW_HARDWARE)
2100 	 */
2101 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2102 	    sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
2103 	    (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
2104 	    (hwtstamps->hwtstamp.tv64 &&
2105 	     sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
2106 	    (hwtstamps->syststamp.tv64 &&
2107 	     sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
2108 		__sock_recv_timestamp(msg, sk, skb);
2109 	else
2110 		sk->sk_stamp = kt;
2111 
2112 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2113 		__sock_recv_wifi_status(msg, sk, skb);
2114 }
2115 
2116 extern void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2117 				     struct sk_buff *skb);
2118 
2119 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2120 					  struct sk_buff *skb)
2121 {
2122 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2123 			   (1UL << SOCK_RCVTSTAMP)			| \
2124 			   (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)	| \
2125 			   (1UL << SOCK_TIMESTAMPING_SOFTWARE)		| \
2126 			   (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE)	| \
2127 			   (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE))
2128 
2129 	if (sk->sk_flags & FLAGS_TS_OR_DROPS)
2130 		__sock_recv_ts_and_drops(msg, sk, skb);
2131 	else
2132 		sk->sk_stamp = skb->tstamp;
2133 }
2134 
2135 /**
2136  * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2137  * @sk:		socket sending this packet
2138  * @tx_flags:	filled with instructions for time stamping
2139  *
2140  * Currently only depends on SOCK_TIMESTAMPING* flags. Returns error code if
2141  * parameters are invalid.
2142  */
2143 extern int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags);
2144 
2145 /**
2146  * sk_eat_skb - Release a skb if it is no longer needed
2147  * @sk: socket to eat this skb from
2148  * @skb: socket buffer to eat
2149  * @copied_early: flag indicating whether DMA operations copied this data early
2150  *
2151  * This routine must be called with interrupts disabled or with the socket
2152  * locked so that the sk_buff queue operation is ok.
2153 */
2154 #ifdef CONFIG_NET_DMA
2155 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
2156 {
2157 	__skb_unlink(skb, &sk->sk_receive_queue);
2158 	if (!copied_early)
2159 		__kfree_skb(skb);
2160 	else
2161 		__skb_queue_tail(&sk->sk_async_wait_queue, skb);
2162 }
2163 #else
2164 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
2165 {
2166 	__skb_unlink(skb, &sk->sk_receive_queue);
2167 	__kfree_skb(skb);
2168 }
2169 #endif
2170 
2171 static inline
2172 struct net *sock_net(const struct sock *sk)
2173 {
2174 	return read_pnet(&sk->sk_net);
2175 }
2176 
2177 static inline
2178 void sock_net_set(struct sock *sk, struct net *net)
2179 {
2180 	write_pnet(&sk->sk_net, net);
2181 }
2182 
2183 /*
2184  * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
2185  * They should not hold a reference to a namespace in order to allow
2186  * to stop it.
2187  * Sockets after sk_change_net should be released using sk_release_kernel
2188  */
2189 static inline void sk_change_net(struct sock *sk, struct net *net)
2190 {
2191 	put_net(sock_net(sk));
2192 	sock_net_set(sk, hold_net(net));
2193 }
2194 
2195 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2196 {
2197 	if (skb->sk) {
2198 		struct sock *sk = skb->sk;
2199 
2200 		skb->destructor = NULL;
2201 		skb->sk = NULL;
2202 		return sk;
2203 	}
2204 	return NULL;
2205 }
2206 
2207 extern void sock_enable_timestamp(struct sock *sk, int flag);
2208 extern int sock_get_timestamp(struct sock *, struct timeval __user *);
2209 extern int sock_get_timestampns(struct sock *, struct timespec __user *);
2210 
2211 /*
2212  *	Enable debug/info messages
2213  */
2214 extern int net_msg_warn;
2215 #define NETDEBUG(fmt, args...) \
2216 	do { if (net_msg_warn) printk(fmt,##args); } while (0)
2217 
2218 #define LIMIT_NETDEBUG(fmt, args...) \
2219 	do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
2220 
2221 extern __u32 sysctl_wmem_max;
2222 extern __u32 sysctl_rmem_max;
2223 
2224 extern int sysctl_optmem_max;
2225 
2226 extern __u32 sysctl_wmem_default;
2227 extern __u32 sysctl_rmem_default;
2228 
2229 #endif	/* _SOCK_H */
2230