1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the AF_INET socket handler. 8 * 9 * Version: @(#)sock.h 1.0.4 05/13/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Florian La Roche <flla@stud.uni-sb.de> 15 * 16 * Fixes: 17 * Alan Cox : Volatiles in skbuff pointers. See 18 * skbuff comments. May be overdone, 19 * better to prove they can be removed 20 * than the reverse. 21 * Alan Cox : Added a zapped field for tcp to note 22 * a socket is reset and must stay shut up 23 * Alan Cox : New fields for options 24 * Pauline Middelink : identd support 25 * Alan Cox : Eliminate low level recv/recvfrom 26 * David S. Miller : New socket lookup architecture. 27 * Steve Whitehouse: Default routines for sock_ops 28 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made 29 * protinfo be just a void pointer, as the 30 * protocol specific parts were moved to 31 * respective headers and ipv4/v6, etc now 32 * use private slabcaches for its socks 33 * Pedro Hortas : New flags field for socket options 34 */ 35 #ifndef _SOCK_H 36 #define _SOCK_H 37 38 #include <linux/hardirq.h> 39 #include <linux/kernel.h> 40 #include <linux/list.h> 41 #include <linux/list_nulls.h> 42 #include <linux/timer.h> 43 #include <linux/cache.h> 44 #include <linux/bitops.h> 45 #include <linux/lockdep.h> 46 #include <linux/netdevice.h> 47 #include <linux/skbuff.h> /* struct sk_buff */ 48 #include <linux/mm.h> 49 #include <linux/security.h> 50 #include <linux/slab.h> 51 #include <linux/uaccess.h> 52 #include <linux/page_counter.h> 53 #include <linux/memcontrol.h> 54 #include <linux/static_key.h> 55 #include <linux/sched.h> 56 #include <linux/wait.h> 57 #include <linux/cgroup-defs.h> 58 #include <linux/rbtree.h> 59 #include <linux/rculist_nulls.h> 60 #include <linux/poll.h> 61 #include <linux/sockptr.h> 62 #include <linux/indirect_call_wrapper.h> 63 #include <linux/atomic.h> 64 #include <linux/refcount.h> 65 #include <linux/llist.h> 66 #include <net/dst.h> 67 #include <net/checksum.h> 68 #include <net/tcp_states.h> 69 #include <linux/net_tstamp.h> 70 #include <net/l3mdev.h> 71 #include <uapi/linux/socket.h> 72 73 /* 74 * This structure really needs to be cleaned up. 75 * Most of it is for TCP, and not used by any of 76 * the other protocols. 77 */ 78 79 /* This is the per-socket lock. The spinlock provides a synchronization 80 * between user contexts and software interrupt processing, whereas the 81 * mini-semaphore synchronizes multiple users amongst themselves. 82 */ 83 typedef struct { 84 spinlock_t slock; 85 int owned; 86 wait_queue_head_t wq; 87 /* 88 * We express the mutex-alike socket_lock semantics 89 * to the lock validator by explicitly managing 90 * the slock as a lock variant (in addition to 91 * the slock itself): 92 */ 93 #ifdef CONFIG_DEBUG_LOCK_ALLOC 94 struct lockdep_map dep_map; 95 #endif 96 } socket_lock_t; 97 98 struct sock; 99 struct proto; 100 struct net; 101 102 typedef __u32 __bitwise __portpair; 103 typedef __u64 __bitwise __addrpair; 104 105 /** 106 * struct sock_common - minimal network layer representation of sockets 107 * @skc_daddr: Foreign IPv4 addr 108 * @skc_rcv_saddr: Bound local IPv4 addr 109 * @skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr 110 * @skc_hash: hash value used with various protocol lookup tables 111 * @skc_u16hashes: two u16 hash values used by UDP lookup tables 112 * @skc_dport: placeholder for inet_dport/tw_dport 113 * @skc_num: placeholder for inet_num/tw_num 114 * @skc_portpair: __u32 union of @skc_dport & @skc_num 115 * @skc_family: network address family 116 * @skc_state: Connection state 117 * @skc_reuse: %SO_REUSEADDR setting 118 * @skc_reuseport: %SO_REUSEPORT setting 119 * @skc_ipv6only: socket is IPV6 only 120 * @skc_net_refcnt: socket is using net ref counting 121 * @skc_bound_dev_if: bound device index if != 0 122 * @skc_bind_node: bind hash linkage for various protocol lookup tables 123 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol 124 * @skc_prot: protocol handlers inside a network family 125 * @skc_net: reference to the network namespace of this socket 126 * @skc_v6_daddr: IPV6 destination address 127 * @skc_v6_rcv_saddr: IPV6 source address 128 * @skc_cookie: socket's cookie value 129 * @skc_node: main hash linkage for various protocol lookup tables 130 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol 131 * @skc_tx_queue_mapping: tx queue number for this connection 132 * @skc_rx_queue_mapping: rx queue number for this connection 133 * @skc_flags: place holder for sk_flags 134 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, 135 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings 136 * @skc_listener: connection request listener socket (aka rsk_listener) 137 * [union with @skc_flags] 138 * @skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row 139 * [union with @skc_flags] 140 * @skc_incoming_cpu: record/match cpu processing incoming packets 141 * @skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled) 142 * [union with @skc_incoming_cpu] 143 * @skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number 144 * [union with @skc_incoming_cpu] 145 * @skc_refcnt: reference count 146 * 147 * This is the minimal network layer representation of sockets, the header 148 * for struct sock and struct inet_timewait_sock. 149 */ 150 struct sock_common { 151 union { 152 __addrpair skc_addrpair; 153 struct { 154 __be32 skc_daddr; 155 __be32 skc_rcv_saddr; 156 }; 157 }; 158 union { 159 unsigned int skc_hash; 160 __u16 skc_u16hashes[2]; 161 }; 162 /* skc_dport && skc_num must be grouped as well */ 163 union { 164 __portpair skc_portpair; 165 struct { 166 __be16 skc_dport; 167 __u16 skc_num; 168 }; 169 }; 170 171 unsigned short skc_family; 172 volatile unsigned char skc_state; 173 unsigned char skc_reuse:4; 174 unsigned char skc_reuseport:1; 175 unsigned char skc_ipv6only:1; 176 unsigned char skc_net_refcnt:1; 177 int skc_bound_dev_if; 178 union { 179 struct hlist_node skc_bind_node; 180 struct hlist_node skc_portaddr_node; 181 }; 182 struct proto *skc_prot; 183 possible_net_t skc_net; 184 185 #if IS_ENABLED(CONFIG_IPV6) 186 struct in6_addr skc_v6_daddr; 187 struct in6_addr skc_v6_rcv_saddr; 188 #endif 189 190 atomic64_t skc_cookie; 191 192 /* following fields are padding to force 193 * offset(struct sock, sk_refcnt) == 128 on 64bit arches 194 * assuming IPV6 is enabled. We use this padding differently 195 * for different kind of 'sockets' 196 */ 197 union { 198 unsigned long skc_flags; 199 struct sock *skc_listener; /* request_sock */ 200 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */ 201 }; 202 /* 203 * fields between dontcopy_begin/dontcopy_end 204 * are not copied in sock_copy() 205 */ 206 /* private: */ 207 int skc_dontcopy_begin[0]; 208 /* public: */ 209 union { 210 struct hlist_node skc_node; 211 struct hlist_nulls_node skc_nulls_node; 212 }; 213 unsigned short skc_tx_queue_mapping; 214 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 215 unsigned short skc_rx_queue_mapping; 216 #endif 217 union { 218 int skc_incoming_cpu; 219 u32 skc_rcv_wnd; 220 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */ 221 }; 222 223 refcount_t skc_refcnt; 224 /* private: */ 225 int skc_dontcopy_end[0]; 226 union { 227 u32 skc_rxhash; 228 u32 skc_window_clamp; 229 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */ 230 }; 231 /* public: */ 232 }; 233 234 struct bpf_local_storage; 235 struct sk_filter; 236 237 /** 238 * struct sock - network layer representation of sockets 239 * @__sk_common: shared layout with inet_timewait_sock 240 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN 241 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings 242 * @sk_lock: synchronizer 243 * @sk_kern_sock: True if sock is using kernel lock classes 244 * @sk_rcvbuf: size of receive buffer in bytes 245 * @sk_wq: sock wait queue and async head 246 * @sk_rx_dst: receive input route used by early demux 247 * @sk_rx_dst_ifindex: ifindex for @sk_rx_dst 248 * @sk_rx_dst_cookie: cookie for @sk_rx_dst 249 * @sk_dst_cache: destination cache 250 * @sk_dst_pending_confirm: need to confirm neighbour 251 * @sk_policy: flow policy 252 * @sk_receive_queue: incoming packets 253 * @sk_wmem_alloc: transmit queue bytes committed 254 * @sk_tsq_flags: TCP Small Queues flags 255 * @sk_write_queue: Packet sending queue 256 * @sk_omem_alloc: "o" is "option" or "other" 257 * @sk_wmem_queued: persistent queue size 258 * @sk_forward_alloc: space allocated forward 259 * @sk_reserved_mem: space reserved and non-reclaimable for the socket 260 * @sk_napi_id: id of the last napi context to receive data for sk 261 * @sk_ll_usec: usecs to busypoll when there is no data 262 * @sk_allocation: allocation mode 263 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler) 264 * @sk_pacing_status: Pacing status (requested, handled by sch_fq) 265 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE) 266 * @sk_sndbuf: size of send buffer in bytes 267 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets 268 * @sk_no_check_rx: allow zero checksum in RX packets 269 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) 270 * @sk_gso_disabled: if set, NETIF_F_GSO_MASK is forbidden. 271 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4) 272 * @sk_gso_max_size: Maximum GSO segment size to build 273 * @sk_gso_max_segs: Maximum number of GSO segments 274 * @sk_pacing_shift: scaling factor for TCP Small Queues 275 * @sk_lingertime: %SO_LINGER l_linger setting 276 * @sk_backlog: always used with the per-socket spinlock held 277 * @sk_callback_lock: used with the callbacks in the end of this struct 278 * @sk_error_queue: rarely used 279 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, 280 * IPV6_ADDRFORM for instance) 281 * @sk_err: last error 282 * @sk_err_soft: errors that don't cause failure but are the cause of a 283 * persistent failure not just 'timed out' 284 * @sk_drops: raw/udp drops counter 285 * @sk_ack_backlog: current listen backlog 286 * @sk_max_ack_backlog: listen backlog set in listen() 287 * @sk_uid: user id of owner 288 * @sk_prefer_busy_poll: prefer busypolling over softirq processing 289 * @sk_busy_poll_budget: napi processing budget when busypolling 290 * @sk_priority: %SO_PRIORITY setting 291 * @sk_type: socket type (%SOCK_STREAM, etc) 292 * @sk_protocol: which protocol this socket belongs in this network family 293 * @sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred 294 * @sk_peer_pid: &struct pid for this socket's peer 295 * @sk_peer_cred: %SO_PEERCRED setting 296 * @sk_rcvlowat: %SO_RCVLOWAT setting 297 * @sk_rcvtimeo: %SO_RCVTIMEO setting 298 * @sk_sndtimeo: %SO_SNDTIMEO setting 299 * @sk_txhash: computed flow hash for use on transmit 300 * @sk_txrehash: enable TX hash rethink 301 * @sk_filter: socket filtering instructions 302 * @sk_timer: sock cleanup timer 303 * @sk_stamp: time stamp of last packet received 304 * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only 305 * @sk_tsflags: SO_TIMESTAMPING flags 306 * @sk_bpf_cb_flags: used in bpf_setsockopt() 307 * @sk_use_task_frag: allow sk_page_frag() to use current->task_frag. 308 * Sockets that can be used under memory reclaim should 309 * set this to false. 310 * @sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock 311 * for timestamping 312 * @sk_tskey: counter to disambiguate concurrent tstamp requests 313 * @sk_zckey: counter to order MSG_ZEROCOPY notifications 314 * @sk_socket: Identd and reporting IO signals 315 * @sk_user_data: RPC layer private data. Write-protected by @sk_callback_lock. 316 * @sk_frag: cached page frag 317 * @sk_peek_off: current peek_offset value 318 * @sk_send_head: front of stuff to transmit 319 * @tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head] 320 * @sk_security: used by security modules 321 * @sk_mark: generic packet mark 322 * @sk_cgrp_data: cgroup data for this cgroup 323 * @sk_memcg: this socket's memory cgroup association 324 * @sk_write_pending: a write to stream socket waits to start 325 * @sk_disconnects: number of disconnect operations performed on this sock 326 * @sk_state_change: callback to indicate change in the state of the sock 327 * @sk_data_ready: callback to indicate there is data to be processed 328 * @sk_write_space: callback to indicate there is bf sending space available 329 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) 330 * @sk_backlog_rcv: callback to process the backlog 331 * @sk_validate_xmit_skb: ptr to an optional validate function 332 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 333 * @sk_reuseport_cb: reuseport group container 334 * @sk_bpf_storage: ptr to cache and control for bpf_sk_storage 335 * @sk_rcu: used during RCU grace period 336 * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME) 337 * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME 338 * @sk_txtime_report_errors: set report errors mode for SO_TXTIME 339 * @sk_txtime_unused: unused txtime flags 340 * @ns_tracker: tracker for netns reference 341 * @sk_user_frags: xarray of pages the user is holding a reference on. 342 */ 343 struct sock { 344 /* 345 * Now struct inet_timewait_sock also uses sock_common, so please just 346 * don't add nothing before this first member (__sk_common) --acme 347 */ 348 struct sock_common __sk_common; 349 #define sk_node __sk_common.skc_node 350 #define sk_nulls_node __sk_common.skc_nulls_node 351 #define sk_refcnt __sk_common.skc_refcnt 352 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping 353 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 354 #define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping 355 #endif 356 357 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin 358 #define sk_dontcopy_end __sk_common.skc_dontcopy_end 359 #define sk_hash __sk_common.skc_hash 360 #define sk_portpair __sk_common.skc_portpair 361 #define sk_num __sk_common.skc_num 362 #define sk_dport __sk_common.skc_dport 363 #define sk_addrpair __sk_common.skc_addrpair 364 #define sk_daddr __sk_common.skc_daddr 365 #define sk_rcv_saddr __sk_common.skc_rcv_saddr 366 #define sk_family __sk_common.skc_family 367 #define sk_state __sk_common.skc_state 368 #define sk_reuse __sk_common.skc_reuse 369 #define sk_reuseport __sk_common.skc_reuseport 370 #define sk_ipv6only __sk_common.skc_ipv6only 371 #define sk_net_refcnt __sk_common.skc_net_refcnt 372 #define sk_bound_dev_if __sk_common.skc_bound_dev_if 373 #define sk_bind_node __sk_common.skc_bind_node 374 #define sk_prot __sk_common.skc_prot 375 #define sk_net __sk_common.skc_net 376 #define sk_v6_daddr __sk_common.skc_v6_daddr 377 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr 378 #define sk_cookie __sk_common.skc_cookie 379 #define sk_incoming_cpu __sk_common.skc_incoming_cpu 380 #define sk_flags __sk_common.skc_flags 381 #define sk_rxhash __sk_common.skc_rxhash 382 383 __cacheline_group_begin(sock_write_rx); 384 385 atomic_t sk_drops; 386 __s32 sk_peek_off; 387 struct sk_buff_head sk_error_queue; 388 struct sk_buff_head sk_receive_queue; 389 /* 390 * The backlog queue is special, it is always used with 391 * the per-socket spinlock held and requires low latency 392 * access. Therefore we special case it's implementation. 393 * Note : rmem_alloc is in this structure to fill a hole 394 * on 64bit arches, not because its logically part of 395 * backlog. 396 */ 397 struct { 398 atomic_t rmem_alloc; 399 int len; 400 struct sk_buff *head; 401 struct sk_buff *tail; 402 } sk_backlog; 403 #define sk_rmem_alloc sk_backlog.rmem_alloc 404 405 __cacheline_group_end(sock_write_rx); 406 407 __cacheline_group_begin(sock_read_rx); 408 /* early demux fields */ 409 struct dst_entry __rcu *sk_rx_dst; 410 int sk_rx_dst_ifindex; 411 u32 sk_rx_dst_cookie; 412 413 #ifdef CONFIG_NET_RX_BUSY_POLL 414 unsigned int sk_ll_usec; 415 unsigned int sk_napi_id; 416 u16 sk_busy_poll_budget; 417 u8 sk_prefer_busy_poll; 418 #endif 419 u8 sk_userlocks; 420 int sk_rcvbuf; 421 422 struct sk_filter __rcu *sk_filter; 423 union { 424 struct socket_wq __rcu *sk_wq; 425 /* private: */ 426 struct socket_wq *sk_wq_raw; 427 /* public: */ 428 }; 429 430 void (*sk_data_ready)(struct sock *sk); 431 long sk_rcvtimeo; 432 int sk_rcvlowat; 433 __cacheline_group_end(sock_read_rx); 434 435 __cacheline_group_begin(sock_read_rxtx); 436 int sk_err; 437 struct socket *sk_socket; 438 struct mem_cgroup *sk_memcg; 439 #ifdef CONFIG_XFRM 440 struct xfrm_policy __rcu *sk_policy[2]; 441 #endif 442 __cacheline_group_end(sock_read_rxtx); 443 444 __cacheline_group_begin(sock_write_rxtx); 445 socket_lock_t sk_lock; 446 u32 sk_reserved_mem; 447 int sk_forward_alloc; 448 u32 sk_tsflags; 449 __cacheline_group_end(sock_write_rxtx); 450 451 __cacheline_group_begin(sock_write_tx); 452 int sk_write_pending; 453 atomic_t sk_omem_alloc; 454 int sk_sndbuf; 455 456 int sk_wmem_queued; 457 refcount_t sk_wmem_alloc; 458 unsigned long sk_tsq_flags; 459 union { 460 struct sk_buff *sk_send_head; 461 struct rb_root tcp_rtx_queue; 462 }; 463 struct sk_buff_head sk_write_queue; 464 u32 sk_dst_pending_confirm; 465 u32 sk_pacing_status; /* see enum sk_pacing */ 466 struct page_frag sk_frag; 467 struct timer_list sk_timer; 468 469 unsigned long sk_pacing_rate; /* bytes per second */ 470 atomic_t sk_zckey; 471 atomic_t sk_tskey; 472 __cacheline_group_end(sock_write_tx); 473 474 __cacheline_group_begin(sock_read_tx); 475 unsigned long sk_max_pacing_rate; 476 long sk_sndtimeo; 477 u32 sk_priority; 478 u32 sk_mark; 479 struct dst_entry __rcu *sk_dst_cache; 480 netdev_features_t sk_route_caps; 481 #ifdef CONFIG_SOCK_VALIDATE_XMIT 482 struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk, 483 struct net_device *dev, 484 struct sk_buff *skb); 485 #endif 486 u16 sk_gso_type; 487 u16 sk_gso_max_segs; 488 unsigned int sk_gso_max_size; 489 gfp_t sk_allocation; 490 u32 sk_txhash; 491 u8 sk_pacing_shift; 492 bool sk_use_task_frag; 493 __cacheline_group_end(sock_read_tx); 494 495 /* 496 * Because of non atomicity rules, all 497 * changes are protected by socket lock. 498 */ 499 u8 sk_gso_disabled : 1, 500 sk_kern_sock : 1, 501 sk_no_check_tx : 1, 502 sk_no_check_rx : 1; 503 u8 sk_shutdown; 504 u16 sk_type; 505 u16 sk_protocol; 506 unsigned long sk_lingertime; 507 struct proto *sk_prot_creator; 508 rwlock_t sk_callback_lock; 509 int sk_err_soft; 510 u32 sk_ack_backlog; 511 u32 sk_max_ack_backlog; 512 kuid_t sk_uid; 513 spinlock_t sk_peer_lock; 514 int sk_bind_phc; 515 struct pid *sk_peer_pid; 516 const struct cred *sk_peer_cred; 517 518 ktime_t sk_stamp; 519 #if BITS_PER_LONG==32 520 seqlock_t sk_stamp_seq; 521 #endif 522 int sk_disconnects; 523 524 u8 sk_txrehash; 525 u8 sk_clockid; 526 u8 sk_txtime_deadline_mode : 1, 527 sk_txtime_report_errors : 1, 528 sk_txtime_unused : 6; 529 #define SK_BPF_CB_FLAG_TEST(SK, FLAG) ((SK)->sk_bpf_cb_flags & (FLAG)) 530 u8 sk_bpf_cb_flags; 531 532 void *sk_user_data; 533 #ifdef CONFIG_SECURITY 534 void *sk_security; 535 #endif 536 struct sock_cgroup_data sk_cgrp_data; 537 void (*sk_state_change)(struct sock *sk); 538 void (*sk_write_space)(struct sock *sk); 539 void (*sk_error_report)(struct sock *sk); 540 int (*sk_backlog_rcv)(struct sock *sk, 541 struct sk_buff *skb); 542 void (*sk_destruct)(struct sock *sk); 543 struct sock_reuseport __rcu *sk_reuseport_cb; 544 #ifdef CONFIG_BPF_SYSCALL 545 struct bpf_local_storage __rcu *sk_bpf_storage; 546 #endif 547 struct rcu_head sk_rcu; 548 netns_tracker ns_tracker; 549 struct xarray sk_user_frags; 550 }; 551 552 struct sock_bh_locked { 553 struct sock *sock; 554 local_lock_t bh_lock; 555 }; 556 557 enum sk_pacing { 558 SK_PACING_NONE = 0, 559 SK_PACING_NEEDED = 1, 560 SK_PACING_FQ = 2, 561 }; 562 563 /* flag bits in sk_user_data 564 * 565 * - SK_USER_DATA_NOCOPY: Pointer stored in sk_user_data might 566 * not be suitable for copying when cloning the socket. For instance, 567 * it can point to a reference counted object. sk_user_data bottom 568 * bit is set if pointer must not be copied. 569 * 570 * - SK_USER_DATA_BPF: Mark whether sk_user_data field is 571 * managed/owned by a BPF reuseport array. This bit should be set 572 * when sk_user_data's sk is added to the bpf's reuseport_array. 573 * 574 * - SK_USER_DATA_PSOCK: Mark whether pointer stored in 575 * sk_user_data points to psock type. This bit should be set 576 * when sk_user_data is assigned to a psock object. 577 */ 578 #define SK_USER_DATA_NOCOPY 1UL 579 #define SK_USER_DATA_BPF 2UL 580 #define SK_USER_DATA_PSOCK 4UL 581 #define SK_USER_DATA_PTRMASK ~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF |\ 582 SK_USER_DATA_PSOCK) 583 584 /** 585 * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied 586 * @sk: socket 587 */ 588 static inline bool sk_user_data_is_nocopy(const struct sock *sk) 589 { 590 return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY); 591 } 592 593 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data))) 594 595 /** 596 * __locked_read_sk_user_data_with_flags - return the pointer 597 * only if argument flags all has been set in sk_user_data. Otherwise 598 * return NULL 599 * 600 * @sk: socket 601 * @flags: flag bits 602 * 603 * The caller must be holding sk->sk_callback_lock. 604 */ 605 static inline void * 606 __locked_read_sk_user_data_with_flags(const struct sock *sk, 607 uintptr_t flags) 608 { 609 uintptr_t sk_user_data = 610 (uintptr_t)rcu_dereference_check(__sk_user_data(sk), 611 lockdep_is_held(&sk->sk_callback_lock)); 612 613 WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK); 614 615 if ((sk_user_data & flags) == flags) 616 return (void *)(sk_user_data & SK_USER_DATA_PTRMASK); 617 return NULL; 618 } 619 620 /** 621 * __rcu_dereference_sk_user_data_with_flags - return the pointer 622 * only if argument flags all has been set in sk_user_data. Otherwise 623 * return NULL 624 * 625 * @sk: socket 626 * @flags: flag bits 627 */ 628 static inline void * 629 __rcu_dereference_sk_user_data_with_flags(const struct sock *sk, 630 uintptr_t flags) 631 { 632 uintptr_t sk_user_data = (uintptr_t)rcu_dereference(__sk_user_data(sk)); 633 634 WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK); 635 636 if ((sk_user_data & flags) == flags) 637 return (void *)(sk_user_data & SK_USER_DATA_PTRMASK); 638 return NULL; 639 } 640 641 #define rcu_dereference_sk_user_data(sk) \ 642 __rcu_dereference_sk_user_data_with_flags(sk, 0) 643 #define __rcu_assign_sk_user_data_with_flags(sk, ptr, flags) \ 644 ({ \ 645 uintptr_t __tmp1 = (uintptr_t)(ptr), \ 646 __tmp2 = (uintptr_t)(flags); \ 647 WARN_ON_ONCE(__tmp1 & ~SK_USER_DATA_PTRMASK); \ 648 WARN_ON_ONCE(__tmp2 & SK_USER_DATA_PTRMASK); \ 649 rcu_assign_pointer(__sk_user_data((sk)), \ 650 __tmp1 | __tmp2); \ 651 }) 652 #define rcu_assign_sk_user_data(sk, ptr) \ 653 __rcu_assign_sk_user_data_with_flags(sk, ptr, 0) 654 655 static inline 656 struct net *sock_net(const struct sock *sk) 657 { 658 return read_pnet(&sk->sk_net); 659 } 660 661 static inline 662 void sock_net_set(struct sock *sk, struct net *net) 663 { 664 write_pnet(&sk->sk_net, net); 665 } 666 667 /* 668 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK 669 * or not whether his port will be reused by someone else. SK_FORCE_REUSE 670 * on a socket means that the socket will reuse everybody else's port 671 * without looking at the other's sk_reuse value. 672 */ 673 674 #define SK_NO_REUSE 0 675 #define SK_CAN_REUSE 1 676 #define SK_FORCE_REUSE 2 677 678 int sk_set_peek_off(struct sock *sk, int val); 679 680 static inline int sk_peek_offset(const struct sock *sk, int flags) 681 { 682 if (unlikely(flags & MSG_PEEK)) { 683 return READ_ONCE(sk->sk_peek_off); 684 } 685 686 return 0; 687 } 688 689 static inline void sk_peek_offset_bwd(struct sock *sk, int val) 690 { 691 s32 off = READ_ONCE(sk->sk_peek_off); 692 693 if (unlikely(off >= 0)) { 694 off = max_t(s32, off - val, 0); 695 WRITE_ONCE(sk->sk_peek_off, off); 696 } 697 } 698 699 static inline void sk_peek_offset_fwd(struct sock *sk, int val) 700 { 701 sk_peek_offset_bwd(sk, -val); 702 } 703 704 /* 705 * Hashed lists helper routines 706 */ 707 static inline struct sock *sk_entry(const struct hlist_node *node) 708 { 709 return hlist_entry(node, struct sock, sk_node); 710 } 711 712 static inline struct sock *__sk_head(const struct hlist_head *head) 713 { 714 return hlist_entry(head->first, struct sock, sk_node); 715 } 716 717 static inline struct sock *sk_head(const struct hlist_head *head) 718 { 719 return hlist_empty(head) ? NULL : __sk_head(head); 720 } 721 722 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head) 723 { 724 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node); 725 } 726 727 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head) 728 { 729 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head); 730 } 731 732 static inline struct sock *sk_next(const struct sock *sk) 733 { 734 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node); 735 } 736 737 static inline struct sock *sk_nulls_next(const struct sock *sk) 738 { 739 return (!is_a_nulls(sk->sk_nulls_node.next)) ? 740 hlist_nulls_entry(sk->sk_nulls_node.next, 741 struct sock, sk_nulls_node) : 742 NULL; 743 } 744 745 static inline bool sk_unhashed(const struct sock *sk) 746 { 747 return hlist_unhashed(&sk->sk_node); 748 } 749 750 static inline bool sk_hashed(const struct sock *sk) 751 { 752 return !sk_unhashed(sk); 753 } 754 755 static inline void sk_node_init(struct hlist_node *node) 756 { 757 node->pprev = NULL; 758 } 759 760 static inline void __sk_del_node(struct sock *sk) 761 { 762 __hlist_del(&sk->sk_node); 763 } 764 765 /* NB: equivalent to hlist_del_init_rcu */ 766 static inline bool __sk_del_node_init(struct sock *sk) 767 { 768 if (sk_hashed(sk)) { 769 __sk_del_node(sk); 770 sk_node_init(&sk->sk_node); 771 return true; 772 } 773 return false; 774 } 775 776 /* Grab socket reference count. This operation is valid only 777 when sk is ALREADY grabbed f.e. it is found in hash table 778 or a list and the lookup is made under lock preventing hash table 779 modifications. 780 */ 781 782 static __always_inline void sock_hold(struct sock *sk) 783 { 784 refcount_inc(&sk->sk_refcnt); 785 } 786 787 /* Ungrab socket in the context, which assumes that socket refcnt 788 cannot hit zero, f.e. it is true in context of any socketcall. 789 */ 790 static __always_inline void __sock_put(struct sock *sk) 791 { 792 refcount_dec(&sk->sk_refcnt); 793 } 794 795 static inline bool sk_del_node_init(struct sock *sk) 796 { 797 bool rc = __sk_del_node_init(sk); 798 799 if (rc) { 800 /* paranoid for a while -acme */ 801 WARN_ON(refcount_read(&sk->sk_refcnt) == 1); 802 __sock_put(sk); 803 } 804 return rc; 805 } 806 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk) 807 808 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk) 809 { 810 if (sk_hashed(sk)) { 811 hlist_nulls_del_init_rcu(&sk->sk_nulls_node); 812 return true; 813 } 814 return false; 815 } 816 817 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk) 818 { 819 bool rc = __sk_nulls_del_node_init_rcu(sk); 820 821 if (rc) { 822 /* paranoid for a while -acme */ 823 WARN_ON(refcount_read(&sk->sk_refcnt) == 1); 824 __sock_put(sk); 825 } 826 return rc; 827 } 828 829 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list) 830 { 831 hlist_add_head(&sk->sk_node, list); 832 } 833 834 static inline void sk_add_node(struct sock *sk, struct hlist_head *list) 835 { 836 sock_hold(sk); 837 __sk_add_node(sk, list); 838 } 839 840 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list) 841 { 842 sock_hold(sk); 843 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 844 sk->sk_family == AF_INET6) 845 hlist_add_tail_rcu(&sk->sk_node, list); 846 else 847 hlist_add_head_rcu(&sk->sk_node, list); 848 } 849 850 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list) 851 { 852 sock_hold(sk); 853 hlist_add_tail_rcu(&sk->sk_node, list); 854 } 855 856 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 857 { 858 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list); 859 } 860 861 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list) 862 { 863 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list); 864 } 865 866 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 867 { 868 sock_hold(sk); 869 __sk_nulls_add_node_rcu(sk, list); 870 } 871 872 static inline void __sk_del_bind_node(struct sock *sk) 873 { 874 __hlist_del(&sk->sk_bind_node); 875 } 876 877 static inline void sk_add_bind_node(struct sock *sk, 878 struct hlist_head *list) 879 { 880 hlist_add_head(&sk->sk_bind_node, list); 881 } 882 883 #define sk_for_each(__sk, list) \ 884 hlist_for_each_entry(__sk, list, sk_node) 885 #define sk_for_each_rcu(__sk, list) \ 886 hlist_for_each_entry_rcu(__sk, list, sk_node) 887 #define sk_nulls_for_each(__sk, node, list) \ 888 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node) 889 #define sk_nulls_for_each_rcu(__sk, node, list) \ 890 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node) 891 #define sk_for_each_from(__sk) \ 892 hlist_for_each_entry_from(__sk, sk_node) 893 #define sk_nulls_for_each_from(__sk, node) \ 894 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \ 895 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node) 896 #define sk_for_each_safe(__sk, tmp, list) \ 897 hlist_for_each_entry_safe(__sk, tmp, list, sk_node) 898 #define sk_for_each_bound(__sk, list) \ 899 hlist_for_each_entry(__sk, list, sk_bind_node) 900 #define sk_for_each_bound_safe(__sk, tmp, list) \ 901 hlist_for_each_entry_safe(__sk, tmp, list, sk_bind_node) 902 903 /** 904 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset 905 * @tpos: the type * to use as a loop cursor. 906 * @pos: the &struct hlist_node to use as a loop cursor. 907 * @head: the head for your list. 908 * @offset: offset of hlist_node within the struct. 909 * 910 */ 911 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \ 912 for (pos = rcu_dereference(hlist_first_rcu(head)); \ 913 pos != NULL && \ 914 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \ 915 pos = rcu_dereference(hlist_next_rcu(pos))) 916 917 static inline struct user_namespace *sk_user_ns(const struct sock *sk) 918 { 919 /* Careful only use this in a context where these parameters 920 * can not change and must all be valid, such as recvmsg from 921 * userspace. 922 */ 923 return sk->sk_socket->file->f_cred->user_ns; 924 } 925 926 /* Sock flags */ 927 enum sock_flags { 928 SOCK_DEAD, 929 SOCK_DONE, 930 SOCK_URGINLINE, 931 SOCK_KEEPOPEN, 932 SOCK_LINGER, 933 SOCK_DESTROY, 934 SOCK_BROADCAST, 935 SOCK_TIMESTAMP, 936 SOCK_ZAPPED, 937 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ 938 SOCK_DBG, /* %SO_DEBUG setting */ 939 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ 940 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */ 941 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ 942 SOCK_MEMALLOC, /* VM depends on this socket for swapping */ 943 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */ 944 SOCK_FASYNC, /* fasync() active */ 945 SOCK_RXQ_OVFL, 946 SOCK_ZEROCOPY, /* buffers from userspace */ 947 SOCK_WIFI_STATUS, /* push wifi status to userspace */ 948 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS. 949 * Will use last 4 bytes of packet sent from 950 * user-space instead. 951 */ 952 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */ 953 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */ 954 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */ 955 SOCK_TXTIME, 956 SOCK_XDP, /* XDP is attached */ 957 SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */ 958 SOCK_RCVMARK, /* Receive SO_MARK ancillary data with packet */ 959 SOCK_RCVPRIORITY, /* Receive SO_PRIORITY ancillary data with packet */ 960 SOCK_TIMESTAMPING_ANY, /* Copy of sk_tsflags & TSFLAGS_ANY */ 961 }; 962 963 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)) 964 /* 965 * The highest bit of sk_tsflags is reserved for kernel-internal 966 * SOCKCM_FLAG_TS_OPT_ID. There is a check in core/sock.c to control that 967 * SOF_TIMESTAMPING* values do not reach this reserved area 968 */ 969 #define SOCKCM_FLAG_TS_OPT_ID BIT(31) 970 971 static inline void sock_copy_flags(struct sock *nsk, const struct sock *osk) 972 { 973 nsk->sk_flags = osk->sk_flags; 974 } 975 976 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) 977 { 978 __set_bit(flag, &sk->sk_flags); 979 } 980 981 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) 982 { 983 __clear_bit(flag, &sk->sk_flags); 984 } 985 986 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit, 987 int valbool) 988 { 989 if (valbool) 990 sock_set_flag(sk, bit); 991 else 992 sock_reset_flag(sk, bit); 993 } 994 995 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag) 996 { 997 return test_bit(flag, &sk->sk_flags); 998 } 999 1000 #ifdef CONFIG_NET 1001 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key); 1002 static inline int sk_memalloc_socks(void) 1003 { 1004 return static_branch_unlikely(&memalloc_socks_key); 1005 } 1006 1007 void __receive_sock(struct file *file); 1008 #else 1009 1010 static inline int sk_memalloc_socks(void) 1011 { 1012 return 0; 1013 } 1014 1015 static inline void __receive_sock(struct file *file) 1016 { } 1017 #endif 1018 1019 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask) 1020 { 1021 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC); 1022 } 1023 1024 static inline void sk_acceptq_removed(struct sock *sk) 1025 { 1026 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1); 1027 } 1028 1029 static inline void sk_acceptq_added(struct sock *sk) 1030 { 1031 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1); 1032 } 1033 1034 /* Note: If you think the test should be: 1035 * return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog); 1036 * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.") 1037 */ 1038 static inline bool sk_acceptq_is_full(const struct sock *sk) 1039 { 1040 return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog); 1041 } 1042 1043 /* 1044 * Compute minimal free write space needed to queue new packets. 1045 */ 1046 static inline int sk_stream_min_wspace(const struct sock *sk) 1047 { 1048 return READ_ONCE(sk->sk_wmem_queued) >> 1; 1049 } 1050 1051 static inline int sk_stream_wspace(const struct sock *sk) 1052 { 1053 return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued); 1054 } 1055 1056 static inline void sk_wmem_queued_add(struct sock *sk, int val) 1057 { 1058 WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val); 1059 } 1060 1061 static inline void sk_forward_alloc_add(struct sock *sk, int val) 1062 { 1063 /* Paired with lockless reads of sk->sk_forward_alloc */ 1064 WRITE_ONCE(sk->sk_forward_alloc, sk->sk_forward_alloc + val); 1065 } 1066 1067 void sk_stream_write_space(struct sock *sk); 1068 1069 /* OOB backlog add */ 1070 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb) 1071 { 1072 /* dont let skb dst not refcounted, we are going to leave rcu lock */ 1073 skb_dst_force(skb); 1074 1075 if (!sk->sk_backlog.tail) 1076 WRITE_ONCE(sk->sk_backlog.head, skb); 1077 else 1078 sk->sk_backlog.tail->next = skb; 1079 1080 WRITE_ONCE(sk->sk_backlog.tail, skb); 1081 skb->next = NULL; 1082 } 1083 1084 /* 1085 * Take into account size of receive queue and backlog queue 1086 * Do not take into account this skb truesize, 1087 * to allow even a single big packet to come. 1088 */ 1089 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit) 1090 { 1091 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc); 1092 1093 return qsize > limit; 1094 } 1095 1096 /* The per-socket spinlock must be held here. */ 1097 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb, 1098 unsigned int limit) 1099 { 1100 if (sk_rcvqueues_full(sk, limit)) 1101 return -ENOBUFS; 1102 1103 /* 1104 * If the skb was allocated from pfmemalloc reserves, only 1105 * allow SOCK_MEMALLOC sockets to use it as this socket is 1106 * helping free memory 1107 */ 1108 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) 1109 return -ENOMEM; 1110 1111 __sk_add_backlog(sk, skb); 1112 sk->sk_backlog.len += skb->truesize; 1113 return 0; 1114 } 1115 1116 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb); 1117 1118 INDIRECT_CALLABLE_DECLARE(int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)); 1119 INDIRECT_CALLABLE_DECLARE(int tcp_v6_do_rcv(struct sock *sk, struct sk_buff *skb)); 1120 1121 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 1122 { 1123 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) 1124 return __sk_backlog_rcv(sk, skb); 1125 1126 return INDIRECT_CALL_INET(sk->sk_backlog_rcv, 1127 tcp_v6_do_rcv, 1128 tcp_v4_do_rcv, 1129 sk, skb); 1130 } 1131 1132 static inline void sk_incoming_cpu_update(struct sock *sk) 1133 { 1134 int cpu = raw_smp_processor_id(); 1135 1136 if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu)) 1137 WRITE_ONCE(sk->sk_incoming_cpu, cpu); 1138 } 1139 1140 1141 static inline void sock_rps_save_rxhash(struct sock *sk, 1142 const struct sk_buff *skb) 1143 { 1144 #ifdef CONFIG_RPS 1145 /* The following WRITE_ONCE() is paired with the READ_ONCE() 1146 * here, and another one in sock_rps_record_flow(). 1147 */ 1148 if (unlikely(READ_ONCE(sk->sk_rxhash) != skb->hash)) 1149 WRITE_ONCE(sk->sk_rxhash, skb->hash); 1150 #endif 1151 } 1152 1153 static inline void sock_rps_reset_rxhash(struct sock *sk) 1154 { 1155 #ifdef CONFIG_RPS 1156 /* Paired with READ_ONCE() in sock_rps_record_flow() */ 1157 WRITE_ONCE(sk->sk_rxhash, 0); 1158 #endif 1159 } 1160 1161 #define sk_wait_event(__sk, __timeo, __condition, __wait) \ 1162 ({ int __rc, __dis = __sk->sk_disconnects; \ 1163 release_sock(__sk); \ 1164 __rc = __condition; \ 1165 if (!__rc) { \ 1166 *(__timeo) = wait_woken(__wait, \ 1167 TASK_INTERRUPTIBLE, \ 1168 *(__timeo)); \ 1169 } \ 1170 sched_annotate_sleep(); \ 1171 lock_sock(__sk); \ 1172 __rc = __dis == __sk->sk_disconnects ? __condition : -EPIPE; \ 1173 __rc; \ 1174 }) 1175 1176 int sk_stream_wait_connect(struct sock *sk, long *timeo_p); 1177 int sk_stream_wait_memory(struct sock *sk, long *timeo_p); 1178 void sk_stream_wait_close(struct sock *sk, long timeo_p); 1179 int sk_stream_error(struct sock *sk, int flags, int err); 1180 void sk_stream_kill_queues(struct sock *sk); 1181 void sk_set_memalloc(struct sock *sk); 1182 void sk_clear_memalloc(struct sock *sk); 1183 1184 void __sk_flush_backlog(struct sock *sk); 1185 1186 static inline bool sk_flush_backlog(struct sock *sk) 1187 { 1188 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) { 1189 __sk_flush_backlog(sk); 1190 return true; 1191 } 1192 return false; 1193 } 1194 1195 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb); 1196 1197 struct request_sock_ops; 1198 struct timewait_sock_ops; 1199 struct inet_hashinfo; 1200 struct raw_hashinfo; 1201 struct smc_hashinfo; 1202 struct module; 1203 struct sk_psock; 1204 1205 /* 1206 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes 1207 * un-modified. Special care is taken when initializing object to zero. 1208 */ 1209 static inline void sk_prot_clear_nulls(struct sock *sk, int size) 1210 { 1211 if (offsetof(struct sock, sk_node.next) != 0) 1212 memset(sk, 0, offsetof(struct sock, sk_node.next)); 1213 memset(&sk->sk_node.pprev, 0, 1214 size - offsetof(struct sock, sk_node.pprev)); 1215 } 1216 1217 struct proto_accept_arg { 1218 int flags; 1219 int err; 1220 int is_empty; 1221 bool kern; 1222 }; 1223 1224 /* Networking protocol blocks we attach to sockets. 1225 * socket layer -> transport layer interface 1226 */ 1227 struct proto { 1228 void (*close)(struct sock *sk, 1229 long timeout); 1230 int (*pre_connect)(struct sock *sk, 1231 struct sockaddr *uaddr, 1232 int addr_len); 1233 int (*connect)(struct sock *sk, 1234 struct sockaddr *uaddr, 1235 int addr_len); 1236 int (*disconnect)(struct sock *sk, int flags); 1237 1238 struct sock * (*accept)(struct sock *sk, 1239 struct proto_accept_arg *arg); 1240 1241 int (*ioctl)(struct sock *sk, int cmd, 1242 int *karg); 1243 int (*init)(struct sock *sk); 1244 void (*destroy)(struct sock *sk); 1245 void (*shutdown)(struct sock *sk, int how); 1246 int (*setsockopt)(struct sock *sk, int level, 1247 int optname, sockptr_t optval, 1248 unsigned int optlen); 1249 int (*getsockopt)(struct sock *sk, int level, 1250 int optname, char __user *optval, 1251 int __user *option); 1252 void (*keepalive)(struct sock *sk, int valbool); 1253 #ifdef CONFIG_COMPAT 1254 int (*compat_ioctl)(struct sock *sk, 1255 unsigned int cmd, unsigned long arg); 1256 #endif 1257 int (*sendmsg)(struct sock *sk, struct msghdr *msg, 1258 size_t len); 1259 int (*recvmsg)(struct sock *sk, struct msghdr *msg, 1260 size_t len, int flags, int *addr_len); 1261 void (*splice_eof)(struct socket *sock); 1262 int (*bind)(struct sock *sk, 1263 struct sockaddr *addr, int addr_len); 1264 int (*bind_add)(struct sock *sk, 1265 struct sockaddr *addr, int addr_len); 1266 1267 int (*backlog_rcv) (struct sock *sk, 1268 struct sk_buff *skb); 1269 bool (*bpf_bypass_getsockopt)(int level, 1270 int optname); 1271 1272 void (*release_cb)(struct sock *sk); 1273 1274 /* Keeping track of sk's, looking them up, and port selection methods. */ 1275 int (*hash)(struct sock *sk); 1276 void (*unhash)(struct sock *sk); 1277 void (*rehash)(struct sock *sk); 1278 int (*get_port)(struct sock *sk, unsigned short snum); 1279 void (*put_port)(struct sock *sk); 1280 #ifdef CONFIG_BPF_SYSCALL 1281 int (*psock_update_sk_prot)(struct sock *sk, 1282 struct sk_psock *psock, 1283 bool restore); 1284 #endif 1285 1286 /* Keeping track of sockets in use */ 1287 #ifdef CONFIG_PROC_FS 1288 unsigned int inuse_idx; 1289 #endif 1290 1291 bool (*stream_memory_free)(const struct sock *sk, int wake); 1292 bool (*sock_is_readable)(struct sock *sk); 1293 /* Memory pressure */ 1294 void (*enter_memory_pressure)(struct sock *sk); 1295 void (*leave_memory_pressure)(struct sock *sk); 1296 atomic_long_t *memory_allocated; /* Current allocated memory. */ 1297 int __percpu *per_cpu_fw_alloc; 1298 struct percpu_counter *sockets_allocated; /* Current number of sockets. */ 1299 1300 /* 1301 * Pressure flag: try to collapse. 1302 * Technical note: it is used by multiple contexts non atomically. 1303 * Make sure to use READ_ONCE()/WRITE_ONCE() for all reads/writes. 1304 * All the __sk_mem_schedule() is of this nature: accounting 1305 * is strict, actions are advisory and have some latency. 1306 */ 1307 unsigned long *memory_pressure; 1308 long *sysctl_mem; 1309 1310 int *sysctl_wmem; 1311 int *sysctl_rmem; 1312 u32 sysctl_wmem_offset; 1313 u32 sysctl_rmem_offset; 1314 1315 int max_header; 1316 bool no_autobind; 1317 1318 struct kmem_cache *slab; 1319 unsigned int obj_size; 1320 unsigned int ipv6_pinfo_offset; 1321 slab_flags_t slab_flags; 1322 unsigned int useroffset; /* Usercopy region offset */ 1323 unsigned int usersize; /* Usercopy region size */ 1324 1325 unsigned int __percpu *orphan_count; 1326 1327 struct request_sock_ops *rsk_prot; 1328 struct timewait_sock_ops *twsk_prot; 1329 1330 union { 1331 struct inet_hashinfo *hashinfo; 1332 struct udp_table *udp_table; 1333 struct raw_hashinfo *raw_hash; 1334 struct smc_hashinfo *smc_hash; 1335 } h; 1336 1337 struct module *owner; 1338 1339 char name[32]; 1340 1341 struct list_head node; 1342 int (*diag_destroy)(struct sock *sk, int err); 1343 } __randomize_layout; 1344 1345 int proto_register(struct proto *prot, int alloc_slab); 1346 void proto_unregister(struct proto *prot); 1347 int sock_load_diag_module(int family, int protocol); 1348 1349 INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake)); 1350 1351 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake) 1352 { 1353 if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf)) 1354 return false; 1355 1356 return sk->sk_prot->stream_memory_free ? 1357 INDIRECT_CALL_INET_1(sk->sk_prot->stream_memory_free, 1358 tcp_stream_memory_free, sk, wake) : true; 1359 } 1360 1361 static inline bool sk_stream_memory_free(const struct sock *sk) 1362 { 1363 return __sk_stream_memory_free(sk, 0); 1364 } 1365 1366 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake) 1367 { 1368 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) && 1369 __sk_stream_memory_free(sk, wake); 1370 } 1371 1372 static inline bool sk_stream_is_writeable(const struct sock *sk) 1373 { 1374 return __sk_stream_is_writeable(sk, 0); 1375 } 1376 1377 static inline int sk_under_cgroup_hierarchy(struct sock *sk, 1378 struct cgroup *ancestor) 1379 { 1380 #ifdef CONFIG_SOCK_CGROUP_DATA 1381 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data), 1382 ancestor); 1383 #else 1384 return -ENOTSUPP; 1385 #endif 1386 } 1387 1388 #define SK_ALLOC_PERCPU_COUNTER_BATCH 16 1389 1390 static inline void sk_sockets_allocated_dec(struct sock *sk) 1391 { 1392 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1, 1393 SK_ALLOC_PERCPU_COUNTER_BATCH); 1394 } 1395 1396 static inline void sk_sockets_allocated_inc(struct sock *sk) 1397 { 1398 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1, 1399 SK_ALLOC_PERCPU_COUNTER_BATCH); 1400 } 1401 1402 static inline u64 1403 sk_sockets_allocated_read_positive(struct sock *sk) 1404 { 1405 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated); 1406 } 1407 1408 static inline int 1409 proto_sockets_allocated_sum_positive(struct proto *prot) 1410 { 1411 return percpu_counter_sum_positive(prot->sockets_allocated); 1412 } 1413 1414 #ifdef CONFIG_PROC_FS 1415 #define PROTO_INUSE_NR 64 /* should be enough for the first time */ 1416 struct prot_inuse { 1417 int all; 1418 int val[PROTO_INUSE_NR]; 1419 }; 1420 1421 static inline void sock_prot_inuse_add(const struct net *net, 1422 const struct proto *prot, int val) 1423 { 1424 this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val); 1425 } 1426 1427 static inline void sock_inuse_add(const struct net *net, int val) 1428 { 1429 this_cpu_add(net->core.prot_inuse->all, val); 1430 } 1431 1432 int sock_prot_inuse_get(struct net *net, struct proto *proto); 1433 int sock_inuse_get(struct net *net); 1434 #else 1435 static inline void sock_prot_inuse_add(const struct net *net, 1436 const struct proto *prot, int val) 1437 { 1438 } 1439 1440 static inline void sock_inuse_add(const struct net *net, int val) 1441 { 1442 } 1443 #endif 1444 1445 1446 /* With per-bucket locks this operation is not-atomic, so that 1447 * this version is not worse. 1448 */ 1449 static inline int __sk_prot_rehash(struct sock *sk) 1450 { 1451 sk->sk_prot->unhash(sk); 1452 return sk->sk_prot->hash(sk); 1453 } 1454 1455 /* About 10 seconds */ 1456 #define SOCK_DESTROY_TIME (10*HZ) 1457 1458 /* Sockets 0-1023 can't be bound to unless you are superuser */ 1459 #define PROT_SOCK 1024 1460 1461 #define SHUTDOWN_MASK 3 1462 #define RCV_SHUTDOWN 1 1463 #define SEND_SHUTDOWN 2 1464 1465 #define SOCK_BINDADDR_LOCK 4 1466 #define SOCK_BINDPORT_LOCK 8 1467 1468 struct socket_alloc { 1469 struct socket socket; 1470 struct inode vfs_inode; 1471 }; 1472 1473 static inline struct socket *SOCKET_I(struct inode *inode) 1474 { 1475 return &container_of(inode, struct socket_alloc, vfs_inode)->socket; 1476 } 1477 1478 static inline struct inode *SOCK_INODE(struct socket *socket) 1479 { 1480 return &container_of(socket, struct socket_alloc, socket)->vfs_inode; 1481 } 1482 1483 /* 1484 * Functions for memory accounting 1485 */ 1486 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind); 1487 int __sk_mem_schedule(struct sock *sk, int size, int kind); 1488 void __sk_mem_reduce_allocated(struct sock *sk, int amount); 1489 void __sk_mem_reclaim(struct sock *sk, int amount); 1490 1491 #define SK_MEM_SEND 0 1492 #define SK_MEM_RECV 1 1493 1494 /* sysctl_mem values are in pages */ 1495 static inline long sk_prot_mem_limits(const struct sock *sk, int index) 1496 { 1497 return READ_ONCE(sk->sk_prot->sysctl_mem[index]); 1498 } 1499 1500 static inline int sk_mem_pages(int amt) 1501 { 1502 return (amt + PAGE_SIZE - 1) >> PAGE_SHIFT; 1503 } 1504 1505 static inline bool sk_has_account(struct sock *sk) 1506 { 1507 /* return true if protocol supports memory accounting */ 1508 return !!sk->sk_prot->memory_allocated; 1509 } 1510 1511 static inline bool sk_wmem_schedule(struct sock *sk, int size) 1512 { 1513 int delta; 1514 1515 if (!sk_has_account(sk)) 1516 return true; 1517 delta = size - sk->sk_forward_alloc; 1518 return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_SEND); 1519 } 1520 1521 static inline bool 1522 __sk_rmem_schedule(struct sock *sk, int size, bool pfmemalloc) 1523 { 1524 int delta; 1525 1526 if (!sk_has_account(sk)) 1527 return true; 1528 delta = size - sk->sk_forward_alloc; 1529 return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_RECV) || 1530 pfmemalloc; 1531 } 1532 1533 static inline bool 1534 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size) 1535 { 1536 return __sk_rmem_schedule(sk, size, skb_pfmemalloc(skb)); 1537 } 1538 1539 static inline int sk_unused_reserved_mem(const struct sock *sk) 1540 { 1541 int unused_mem; 1542 1543 if (likely(!sk->sk_reserved_mem)) 1544 return 0; 1545 1546 unused_mem = sk->sk_reserved_mem - sk->sk_wmem_queued - 1547 atomic_read(&sk->sk_rmem_alloc); 1548 1549 return unused_mem > 0 ? unused_mem : 0; 1550 } 1551 1552 static inline void sk_mem_reclaim(struct sock *sk) 1553 { 1554 int reclaimable; 1555 1556 if (!sk_has_account(sk)) 1557 return; 1558 1559 reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk); 1560 1561 if (reclaimable >= (int)PAGE_SIZE) 1562 __sk_mem_reclaim(sk, reclaimable); 1563 } 1564 1565 static inline void sk_mem_reclaim_final(struct sock *sk) 1566 { 1567 sk->sk_reserved_mem = 0; 1568 sk_mem_reclaim(sk); 1569 } 1570 1571 static inline void sk_mem_charge(struct sock *sk, int size) 1572 { 1573 if (!sk_has_account(sk)) 1574 return; 1575 sk_forward_alloc_add(sk, -size); 1576 } 1577 1578 static inline void sk_mem_uncharge(struct sock *sk, int size) 1579 { 1580 if (!sk_has_account(sk)) 1581 return; 1582 sk_forward_alloc_add(sk, size); 1583 sk_mem_reclaim(sk); 1584 } 1585 1586 /* 1587 * Macro so as to not evaluate some arguments when 1588 * lockdep is not enabled. 1589 * 1590 * Mark both the sk_lock and the sk_lock.slock as a 1591 * per-address-family lock class. 1592 */ 1593 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \ 1594 do { \ 1595 sk->sk_lock.owned = 0; \ 1596 init_waitqueue_head(&sk->sk_lock.wq); \ 1597 spin_lock_init(&(sk)->sk_lock.slock); \ 1598 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \ 1599 sizeof((sk)->sk_lock)); \ 1600 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \ 1601 (skey), (sname)); \ 1602 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \ 1603 } while (0) 1604 1605 static inline bool lockdep_sock_is_held(const struct sock *sk) 1606 { 1607 return lockdep_is_held(&sk->sk_lock) || 1608 lockdep_is_held(&sk->sk_lock.slock); 1609 } 1610 1611 void lock_sock_nested(struct sock *sk, int subclass); 1612 1613 static inline void lock_sock(struct sock *sk) 1614 { 1615 lock_sock_nested(sk, 0); 1616 } 1617 1618 void __lock_sock(struct sock *sk); 1619 void __release_sock(struct sock *sk); 1620 void release_sock(struct sock *sk); 1621 1622 /* BH context may only use the following locking interface. */ 1623 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) 1624 #define bh_lock_sock_nested(__sk) \ 1625 spin_lock_nested(&((__sk)->sk_lock.slock), \ 1626 SINGLE_DEPTH_NESTING) 1627 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) 1628 1629 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock); 1630 1631 /** 1632 * lock_sock_fast - fast version of lock_sock 1633 * @sk: socket 1634 * 1635 * This version should be used for very small section, where process won't block 1636 * return false if fast path is taken: 1637 * 1638 * sk_lock.slock locked, owned = 0, BH disabled 1639 * 1640 * return true if slow path is taken: 1641 * 1642 * sk_lock.slock unlocked, owned = 1, BH enabled 1643 */ 1644 static inline bool lock_sock_fast(struct sock *sk) 1645 { 1646 /* The sk_lock has mutex_lock() semantics here. */ 1647 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_); 1648 1649 return __lock_sock_fast(sk); 1650 } 1651 1652 /* fast socket lock variant for caller already holding a [different] socket lock */ 1653 static inline bool lock_sock_fast_nested(struct sock *sk) 1654 { 1655 mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_); 1656 1657 return __lock_sock_fast(sk); 1658 } 1659 1660 /** 1661 * unlock_sock_fast - complement of lock_sock_fast 1662 * @sk: socket 1663 * @slow: slow mode 1664 * 1665 * fast unlock socket for user context. 1666 * If slow mode is on, we call regular release_sock() 1667 */ 1668 static inline void unlock_sock_fast(struct sock *sk, bool slow) 1669 __releases(&sk->sk_lock.slock) 1670 { 1671 if (slow) { 1672 release_sock(sk); 1673 __release(&sk->sk_lock.slock); 1674 } else { 1675 mutex_release(&sk->sk_lock.dep_map, _RET_IP_); 1676 spin_unlock_bh(&sk->sk_lock.slock); 1677 } 1678 } 1679 1680 void sockopt_lock_sock(struct sock *sk); 1681 void sockopt_release_sock(struct sock *sk); 1682 bool sockopt_ns_capable(struct user_namespace *ns, int cap); 1683 bool sockopt_capable(int cap); 1684 1685 /* Used by processes to "lock" a socket state, so that 1686 * interrupts and bottom half handlers won't change it 1687 * from under us. It essentially blocks any incoming 1688 * packets, so that we won't get any new data or any 1689 * packets that change the state of the socket. 1690 * 1691 * While locked, BH processing will add new packets to 1692 * the backlog queue. This queue is processed by the 1693 * owner of the socket lock right before it is released. 1694 * 1695 * Since ~2.3.5 it is also exclusive sleep lock serializing 1696 * accesses from user process context. 1697 */ 1698 1699 static inline void sock_owned_by_me(const struct sock *sk) 1700 { 1701 #ifdef CONFIG_LOCKDEP 1702 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks); 1703 #endif 1704 } 1705 1706 static inline void sock_not_owned_by_me(const struct sock *sk) 1707 { 1708 #ifdef CONFIG_LOCKDEP 1709 WARN_ON_ONCE(lockdep_sock_is_held(sk) && debug_locks); 1710 #endif 1711 } 1712 1713 static inline bool sock_owned_by_user(const struct sock *sk) 1714 { 1715 sock_owned_by_me(sk); 1716 return sk->sk_lock.owned; 1717 } 1718 1719 static inline bool sock_owned_by_user_nocheck(const struct sock *sk) 1720 { 1721 return sk->sk_lock.owned; 1722 } 1723 1724 static inline void sock_release_ownership(struct sock *sk) 1725 { 1726 DEBUG_NET_WARN_ON_ONCE(!sock_owned_by_user_nocheck(sk)); 1727 sk->sk_lock.owned = 0; 1728 1729 /* The sk_lock has mutex_unlock() semantics: */ 1730 mutex_release(&sk->sk_lock.dep_map, _RET_IP_); 1731 } 1732 1733 /* no reclassification while locks are held */ 1734 static inline bool sock_allow_reclassification(const struct sock *csk) 1735 { 1736 struct sock *sk = (struct sock *)csk; 1737 1738 return !sock_owned_by_user_nocheck(sk) && 1739 !spin_is_locked(&sk->sk_lock.slock); 1740 } 1741 1742 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1743 struct proto *prot, int kern); 1744 void sk_free(struct sock *sk); 1745 void sk_net_refcnt_upgrade(struct sock *sk); 1746 void sk_destruct(struct sock *sk); 1747 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority); 1748 void sk_free_unlock_clone(struct sock *sk); 1749 1750 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 1751 gfp_t priority); 1752 void __sock_wfree(struct sk_buff *skb); 1753 void sock_wfree(struct sk_buff *skb); 1754 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, 1755 gfp_t priority); 1756 void skb_orphan_partial(struct sk_buff *skb); 1757 void sock_rfree(struct sk_buff *skb); 1758 void sock_efree(struct sk_buff *skb); 1759 #ifdef CONFIG_INET 1760 void sock_edemux(struct sk_buff *skb); 1761 void sock_pfree(struct sk_buff *skb); 1762 1763 static inline void skb_set_owner_edemux(struct sk_buff *skb, struct sock *sk) 1764 { 1765 skb_orphan(skb); 1766 if (refcount_inc_not_zero(&sk->sk_refcnt)) { 1767 skb->sk = sk; 1768 skb->destructor = sock_edemux; 1769 } 1770 } 1771 #else 1772 #define sock_edemux sock_efree 1773 #endif 1774 1775 int sk_setsockopt(struct sock *sk, int level, int optname, 1776 sockptr_t optval, unsigned int optlen); 1777 int sock_setsockopt(struct socket *sock, int level, int op, 1778 sockptr_t optval, unsigned int optlen); 1779 int do_sock_setsockopt(struct socket *sock, bool compat, int level, 1780 int optname, sockptr_t optval, int optlen); 1781 int do_sock_getsockopt(struct socket *sock, bool compat, int level, 1782 int optname, sockptr_t optval, sockptr_t optlen); 1783 1784 int sk_getsockopt(struct sock *sk, int level, int optname, 1785 sockptr_t optval, sockptr_t optlen); 1786 int sock_gettstamp(struct socket *sock, void __user *userstamp, 1787 bool timeval, bool time32); 1788 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 1789 unsigned long data_len, int noblock, 1790 int *errcode, int max_page_order); 1791 1792 static inline struct sk_buff *sock_alloc_send_skb(struct sock *sk, 1793 unsigned long size, 1794 int noblock, int *errcode) 1795 { 1796 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0); 1797 } 1798 1799 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority); 1800 void *sock_kmemdup(struct sock *sk, const void *src, 1801 int size, gfp_t priority); 1802 void sock_kfree_s(struct sock *sk, void *mem, int size); 1803 void sock_kzfree_s(struct sock *sk, void *mem, int size); 1804 void sk_send_sigurg(struct sock *sk); 1805 1806 static inline void sock_replace_proto(struct sock *sk, struct proto *proto) 1807 { 1808 if (sk->sk_socket) 1809 clear_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 1810 WRITE_ONCE(sk->sk_prot, proto); 1811 } 1812 1813 struct sockcm_cookie { 1814 u64 transmit_time; 1815 u32 mark; 1816 u32 tsflags; 1817 u32 ts_opt_id; 1818 u32 priority; 1819 }; 1820 1821 static inline void sockcm_init(struct sockcm_cookie *sockc, 1822 const struct sock *sk) 1823 { 1824 *sockc = (struct sockcm_cookie) { 1825 .mark = READ_ONCE(sk->sk_mark), 1826 .tsflags = READ_ONCE(sk->sk_tsflags), 1827 .priority = READ_ONCE(sk->sk_priority), 1828 }; 1829 } 1830 1831 int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg, 1832 struct sockcm_cookie *sockc); 1833 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 1834 struct sockcm_cookie *sockc); 1835 1836 /* 1837 * Functions to fill in entries in struct proto_ops when a protocol 1838 * does not implement a particular function. 1839 */ 1840 int sock_no_bind(struct socket *, struct sockaddr *, int); 1841 int sock_no_connect(struct socket *, struct sockaddr *, int, int); 1842 int sock_no_socketpair(struct socket *, struct socket *); 1843 int sock_no_accept(struct socket *, struct socket *, struct proto_accept_arg *); 1844 int sock_no_getname(struct socket *, struct sockaddr *, int); 1845 int sock_no_ioctl(struct socket *, unsigned int, unsigned long); 1846 int sock_no_listen(struct socket *, int); 1847 int sock_no_shutdown(struct socket *, int); 1848 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t); 1849 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len); 1850 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int); 1851 int sock_no_mmap(struct file *file, struct socket *sock, 1852 struct vm_area_struct *vma); 1853 1854 /* 1855 * Functions to fill in entries in struct proto_ops when a protocol 1856 * uses the inet style. 1857 */ 1858 int sock_common_getsockopt(struct socket *sock, int level, int optname, 1859 char __user *optval, int __user *optlen); 1860 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 1861 int flags); 1862 int sock_common_setsockopt(struct socket *sock, int level, int optname, 1863 sockptr_t optval, unsigned int optlen); 1864 1865 void sk_common_release(struct sock *sk); 1866 1867 /* 1868 * Default socket callbacks and setup code 1869 */ 1870 1871 /* Initialise core socket variables using an explicit uid. */ 1872 void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid); 1873 1874 /* Initialise core socket variables. 1875 * Assumes struct socket *sock is embedded in a struct socket_alloc. 1876 */ 1877 void sock_init_data(struct socket *sock, struct sock *sk); 1878 1879 /* 1880 * Socket reference counting postulates. 1881 * 1882 * * Each user of socket SHOULD hold a reference count. 1883 * * Each access point to socket (an hash table bucket, reference from a list, 1884 * running timer, skb in flight MUST hold a reference count. 1885 * * When reference count hits 0, it means it will never increase back. 1886 * * When reference count hits 0, it means that no references from 1887 * outside exist to this socket and current process on current CPU 1888 * is last user and may/should destroy this socket. 1889 * * sk_free is called from any context: process, BH, IRQ. When 1890 * it is called, socket has no references from outside -> sk_free 1891 * may release descendant resources allocated by the socket, but 1892 * to the time when it is called, socket is NOT referenced by any 1893 * hash tables, lists etc. 1894 * * Packets, delivered from outside (from network or from another process) 1895 * and enqueued on receive/error queues SHOULD NOT grab reference count, 1896 * when they sit in queue. Otherwise, packets will leak to hole, when 1897 * socket is looked up by one cpu and unhasing is made by another CPU. 1898 * It is true for udp/raw, netlink (leak to receive and error queues), tcp 1899 * (leak to backlog). Packet socket does all the processing inside 1900 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets 1901 * use separate SMP lock, so that they are prone too. 1902 */ 1903 1904 /* Ungrab socket and destroy it, if it was the last reference. */ 1905 static inline void sock_put(struct sock *sk) 1906 { 1907 if (refcount_dec_and_test(&sk->sk_refcnt)) 1908 sk_free(sk); 1909 } 1910 /* Generic version of sock_put(), dealing with all sockets 1911 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...) 1912 */ 1913 void sock_gen_put(struct sock *sk); 1914 1915 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested, 1916 unsigned int trim_cap, bool refcounted); 1917 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb, 1918 const int nested) 1919 { 1920 return __sk_receive_skb(sk, skb, nested, 1, true); 1921 } 1922 1923 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue) 1924 { 1925 /* sk_tx_queue_mapping accept only upto a 16-bit value */ 1926 if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX)) 1927 return; 1928 /* Paired with READ_ONCE() in sk_tx_queue_get() and 1929 * other WRITE_ONCE() because socket lock might be not held. 1930 */ 1931 WRITE_ONCE(sk->sk_tx_queue_mapping, tx_queue); 1932 } 1933 1934 #define NO_QUEUE_MAPPING USHRT_MAX 1935 1936 static inline void sk_tx_queue_clear(struct sock *sk) 1937 { 1938 /* Paired with READ_ONCE() in sk_tx_queue_get() and 1939 * other WRITE_ONCE() because socket lock might be not held. 1940 */ 1941 WRITE_ONCE(sk->sk_tx_queue_mapping, NO_QUEUE_MAPPING); 1942 } 1943 1944 static inline int sk_tx_queue_get(const struct sock *sk) 1945 { 1946 if (sk) { 1947 /* Paired with WRITE_ONCE() in sk_tx_queue_clear() 1948 * and sk_tx_queue_set(). 1949 */ 1950 int val = READ_ONCE(sk->sk_tx_queue_mapping); 1951 1952 if (val != NO_QUEUE_MAPPING) 1953 return val; 1954 } 1955 return -1; 1956 } 1957 1958 static inline void __sk_rx_queue_set(struct sock *sk, 1959 const struct sk_buff *skb, 1960 bool force_set) 1961 { 1962 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 1963 if (skb_rx_queue_recorded(skb)) { 1964 u16 rx_queue = skb_get_rx_queue(skb); 1965 1966 if (force_set || 1967 unlikely(READ_ONCE(sk->sk_rx_queue_mapping) != rx_queue)) 1968 WRITE_ONCE(sk->sk_rx_queue_mapping, rx_queue); 1969 } 1970 #endif 1971 } 1972 1973 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb) 1974 { 1975 __sk_rx_queue_set(sk, skb, true); 1976 } 1977 1978 static inline void sk_rx_queue_update(struct sock *sk, const struct sk_buff *skb) 1979 { 1980 __sk_rx_queue_set(sk, skb, false); 1981 } 1982 1983 static inline void sk_rx_queue_clear(struct sock *sk) 1984 { 1985 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 1986 WRITE_ONCE(sk->sk_rx_queue_mapping, NO_QUEUE_MAPPING); 1987 #endif 1988 } 1989 1990 static inline int sk_rx_queue_get(const struct sock *sk) 1991 { 1992 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 1993 if (sk) { 1994 int res = READ_ONCE(sk->sk_rx_queue_mapping); 1995 1996 if (res != NO_QUEUE_MAPPING) 1997 return res; 1998 } 1999 #endif 2000 2001 return -1; 2002 } 2003 2004 static inline void sk_set_socket(struct sock *sk, struct socket *sock) 2005 { 2006 sk->sk_socket = sock; 2007 } 2008 2009 static inline wait_queue_head_t *sk_sleep(struct sock *sk) 2010 { 2011 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0); 2012 return &rcu_dereference_raw(sk->sk_wq)->wait; 2013 } 2014 /* Detach socket from process context. 2015 * Announce socket dead, detach it from wait queue and inode. 2016 * Note that parent inode held reference count on this struct sock, 2017 * we do not release it in this function, because protocol 2018 * probably wants some additional cleanups or even continuing 2019 * to work with this socket (TCP). 2020 */ 2021 static inline void sock_orphan(struct sock *sk) 2022 { 2023 write_lock_bh(&sk->sk_callback_lock); 2024 sock_set_flag(sk, SOCK_DEAD); 2025 sk_set_socket(sk, NULL); 2026 sk->sk_wq = NULL; 2027 write_unlock_bh(&sk->sk_callback_lock); 2028 } 2029 2030 static inline void sock_graft(struct sock *sk, struct socket *parent) 2031 { 2032 WARN_ON(parent->sk); 2033 write_lock_bh(&sk->sk_callback_lock); 2034 rcu_assign_pointer(sk->sk_wq, &parent->wq); 2035 parent->sk = sk; 2036 sk_set_socket(sk, parent); 2037 sk->sk_uid = SOCK_INODE(parent)->i_uid; 2038 security_sock_graft(sk, parent); 2039 write_unlock_bh(&sk->sk_callback_lock); 2040 } 2041 2042 kuid_t sock_i_uid(struct sock *sk); 2043 unsigned long __sock_i_ino(struct sock *sk); 2044 unsigned long sock_i_ino(struct sock *sk); 2045 2046 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk) 2047 { 2048 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0); 2049 } 2050 2051 static inline u32 net_tx_rndhash(void) 2052 { 2053 u32 v = get_random_u32(); 2054 2055 return v ?: 1; 2056 } 2057 2058 static inline void sk_set_txhash(struct sock *sk) 2059 { 2060 /* This pairs with READ_ONCE() in skb_set_hash_from_sk() */ 2061 WRITE_ONCE(sk->sk_txhash, net_tx_rndhash()); 2062 } 2063 2064 static inline bool sk_rethink_txhash(struct sock *sk) 2065 { 2066 if (sk->sk_txhash && sk->sk_txrehash == SOCK_TXREHASH_ENABLED) { 2067 sk_set_txhash(sk); 2068 return true; 2069 } 2070 return false; 2071 } 2072 2073 static inline struct dst_entry * 2074 __sk_dst_get(const struct sock *sk) 2075 { 2076 return rcu_dereference_check(sk->sk_dst_cache, 2077 lockdep_sock_is_held(sk)); 2078 } 2079 2080 static inline struct dst_entry * 2081 sk_dst_get(const struct sock *sk) 2082 { 2083 struct dst_entry *dst; 2084 2085 rcu_read_lock(); 2086 dst = rcu_dereference(sk->sk_dst_cache); 2087 if (dst && !rcuref_get(&dst->__rcuref)) 2088 dst = NULL; 2089 rcu_read_unlock(); 2090 return dst; 2091 } 2092 2093 static inline void __dst_negative_advice(struct sock *sk) 2094 { 2095 struct dst_entry *dst = __sk_dst_get(sk); 2096 2097 if (dst && dst->ops->negative_advice) 2098 dst->ops->negative_advice(sk, dst); 2099 } 2100 2101 static inline void dst_negative_advice(struct sock *sk) 2102 { 2103 sk_rethink_txhash(sk); 2104 __dst_negative_advice(sk); 2105 } 2106 2107 static inline void 2108 __sk_dst_set(struct sock *sk, struct dst_entry *dst) 2109 { 2110 struct dst_entry *old_dst; 2111 2112 sk_tx_queue_clear(sk); 2113 WRITE_ONCE(sk->sk_dst_pending_confirm, 0); 2114 old_dst = rcu_dereference_protected(sk->sk_dst_cache, 2115 lockdep_sock_is_held(sk)); 2116 rcu_assign_pointer(sk->sk_dst_cache, dst); 2117 dst_release(old_dst); 2118 } 2119 2120 static inline void 2121 sk_dst_set(struct sock *sk, struct dst_entry *dst) 2122 { 2123 struct dst_entry *old_dst; 2124 2125 sk_tx_queue_clear(sk); 2126 WRITE_ONCE(sk->sk_dst_pending_confirm, 0); 2127 old_dst = unrcu_pointer(xchg(&sk->sk_dst_cache, RCU_INITIALIZER(dst))); 2128 dst_release(old_dst); 2129 } 2130 2131 static inline void 2132 __sk_dst_reset(struct sock *sk) 2133 { 2134 __sk_dst_set(sk, NULL); 2135 } 2136 2137 static inline void 2138 sk_dst_reset(struct sock *sk) 2139 { 2140 sk_dst_set(sk, NULL); 2141 } 2142 2143 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); 2144 2145 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); 2146 2147 static inline void sk_dst_confirm(struct sock *sk) 2148 { 2149 if (!READ_ONCE(sk->sk_dst_pending_confirm)) 2150 WRITE_ONCE(sk->sk_dst_pending_confirm, 1); 2151 } 2152 2153 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n) 2154 { 2155 if (skb_get_dst_pending_confirm(skb)) { 2156 struct sock *sk = skb->sk; 2157 2158 if (sk && READ_ONCE(sk->sk_dst_pending_confirm)) 2159 WRITE_ONCE(sk->sk_dst_pending_confirm, 0); 2160 neigh_confirm(n); 2161 } 2162 } 2163 2164 bool sk_mc_loop(const struct sock *sk); 2165 2166 static inline bool sk_can_gso(const struct sock *sk) 2167 { 2168 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type); 2169 } 2170 2171 void sk_setup_caps(struct sock *sk, struct dst_entry *dst); 2172 2173 static inline void sk_gso_disable(struct sock *sk) 2174 { 2175 sk->sk_gso_disabled = 1; 2176 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 2177 } 2178 2179 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb, 2180 struct iov_iter *from, char *to, 2181 int copy, int offset) 2182 { 2183 if (skb->ip_summed == CHECKSUM_NONE) { 2184 __wsum csum = 0; 2185 if (!csum_and_copy_from_iter_full(to, copy, &csum, from)) 2186 return -EFAULT; 2187 skb->csum = csum_block_add(skb->csum, csum, offset); 2188 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 2189 if (!copy_from_iter_full_nocache(to, copy, from)) 2190 return -EFAULT; 2191 } else if (!copy_from_iter_full(to, copy, from)) 2192 return -EFAULT; 2193 2194 return 0; 2195 } 2196 2197 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb, 2198 struct iov_iter *from, int copy) 2199 { 2200 int err, offset = skb->len; 2201 2202 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy), 2203 copy, offset); 2204 if (err) 2205 __skb_trim(skb, offset); 2206 2207 return err; 2208 } 2209 2210 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from, 2211 struct sk_buff *skb, 2212 struct page *page, 2213 int off, int copy) 2214 { 2215 int err; 2216 2217 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off, 2218 copy, skb->len); 2219 if (err) 2220 return err; 2221 2222 skb_len_add(skb, copy); 2223 sk_wmem_queued_add(sk, copy); 2224 sk_mem_charge(sk, copy); 2225 return 0; 2226 } 2227 2228 /** 2229 * sk_wmem_alloc_get - returns write allocations 2230 * @sk: socket 2231 * 2232 * Return: sk_wmem_alloc minus initial offset of one 2233 */ 2234 static inline int sk_wmem_alloc_get(const struct sock *sk) 2235 { 2236 return refcount_read(&sk->sk_wmem_alloc) - 1; 2237 } 2238 2239 /** 2240 * sk_rmem_alloc_get - returns read allocations 2241 * @sk: socket 2242 * 2243 * Return: sk_rmem_alloc 2244 */ 2245 static inline int sk_rmem_alloc_get(const struct sock *sk) 2246 { 2247 return atomic_read(&sk->sk_rmem_alloc); 2248 } 2249 2250 /** 2251 * sk_has_allocations - check if allocations are outstanding 2252 * @sk: socket 2253 * 2254 * Return: true if socket has write or read allocations 2255 */ 2256 static inline bool sk_has_allocations(const struct sock *sk) 2257 { 2258 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk); 2259 } 2260 2261 /** 2262 * skwq_has_sleeper - check if there are any waiting processes 2263 * @wq: struct socket_wq 2264 * 2265 * Return: true if socket_wq has waiting processes 2266 * 2267 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory 2268 * barrier call. They were added due to the race found within the tcp code. 2269 * 2270 * Consider following tcp code paths:: 2271 * 2272 * CPU1 CPU2 2273 * sys_select receive packet 2274 * ... ... 2275 * __add_wait_queue update tp->rcv_nxt 2276 * ... ... 2277 * tp->rcv_nxt check sock_def_readable 2278 * ... { 2279 * schedule rcu_read_lock(); 2280 * wq = rcu_dereference(sk->sk_wq); 2281 * if (wq && waitqueue_active(&wq->wait)) 2282 * wake_up_interruptible(&wq->wait) 2283 * ... 2284 * } 2285 * 2286 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay 2287 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1 2288 * could then endup calling schedule and sleep forever if there are no more 2289 * data on the socket. 2290 * 2291 */ 2292 static inline bool skwq_has_sleeper(struct socket_wq *wq) 2293 { 2294 return wq && wq_has_sleeper(&wq->wait); 2295 } 2296 2297 /** 2298 * sock_poll_wait - wrapper for the poll_wait call. 2299 * @filp: file 2300 * @sock: socket to wait on 2301 * @p: poll_table 2302 * 2303 * See the comments in the wq_has_sleeper function. 2304 */ 2305 static inline void sock_poll_wait(struct file *filp, struct socket *sock, 2306 poll_table *p) 2307 { 2308 /* Provides a barrier we need to be sure we are in sync 2309 * with the socket flags modification. 2310 * 2311 * This memory barrier is paired in the wq_has_sleeper. 2312 */ 2313 poll_wait(filp, &sock->wq.wait, p); 2314 } 2315 2316 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk) 2317 { 2318 /* This pairs with WRITE_ONCE() in sk_set_txhash() */ 2319 u32 txhash = READ_ONCE(sk->sk_txhash); 2320 2321 if (txhash) { 2322 skb->l4_hash = 1; 2323 skb->hash = txhash; 2324 } 2325 } 2326 2327 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk); 2328 2329 /* 2330 * Queue a received datagram if it will fit. Stream and sequenced 2331 * protocols can't normally use this as they need to fit buffers in 2332 * and play with them. 2333 * 2334 * Inlined as it's very short and called for pretty much every 2335 * packet ever received. 2336 */ 2337 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 2338 { 2339 skb_orphan(skb); 2340 skb->sk = sk; 2341 skb->destructor = sock_rfree; 2342 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 2343 sk_mem_charge(sk, skb->truesize); 2344 } 2345 2346 static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk) 2347 { 2348 if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) { 2349 skb_orphan(skb); 2350 skb->destructor = sock_efree; 2351 skb->sk = sk; 2352 return true; 2353 } 2354 return false; 2355 } 2356 2357 static inline struct sk_buff *skb_clone_and_charge_r(struct sk_buff *skb, struct sock *sk) 2358 { 2359 skb = skb_clone(skb, sk_gfp_mask(sk, GFP_ATOMIC)); 2360 if (skb) { 2361 if (sk_rmem_schedule(sk, skb, skb->truesize)) { 2362 skb_set_owner_r(skb, sk); 2363 return skb; 2364 } 2365 __kfree_skb(skb); 2366 } 2367 return NULL; 2368 } 2369 2370 static inline void skb_prepare_for_gro(struct sk_buff *skb) 2371 { 2372 if (skb->destructor != sock_wfree) { 2373 skb_orphan(skb); 2374 return; 2375 } 2376 skb->slow_gro = 1; 2377 } 2378 2379 void sk_reset_timer(struct sock *sk, struct timer_list *timer, 2380 unsigned long expires); 2381 2382 void sk_stop_timer(struct sock *sk, struct timer_list *timer); 2383 2384 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer); 2385 2386 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue, 2387 struct sk_buff *skb, unsigned int flags, 2388 void (*destructor)(struct sock *sk, 2389 struct sk_buff *skb)); 2390 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 2391 2392 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb, 2393 enum skb_drop_reason *reason); 2394 2395 static inline int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 2396 { 2397 return sock_queue_rcv_skb_reason(sk, skb, NULL); 2398 } 2399 2400 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb); 2401 struct sk_buff *sock_dequeue_err_skb(struct sock *sk); 2402 2403 /* 2404 * Recover an error report and clear atomically 2405 */ 2406 2407 static inline int sock_error(struct sock *sk) 2408 { 2409 int err; 2410 2411 /* Avoid an atomic operation for the common case. 2412 * This is racy since another cpu/thread can change sk_err under us. 2413 */ 2414 if (likely(data_race(!sk->sk_err))) 2415 return 0; 2416 2417 err = xchg(&sk->sk_err, 0); 2418 return -err; 2419 } 2420 2421 void sk_error_report(struct sock *sk); 2422 2423 static inline unsigned long sock_wspace(struct sock *sk) 2424 { 2425 int amt = 0; 2426 2427 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 2428 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc); 2429 if (amt < 0) 2430 amt = 0; 2431 } 2432 return amt; 2433 } 2434 2435 /* Note: 2436 * We use sk->sk_wq_raw, from contexts knowing this 2437 * pointer is not NULL and cannot disappear/change. 2438 */ 2439 static inline void sk_set_bit(int nr, struct sock *sk) 2440 { 2441 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && 2442 !sock_flag(sk, SOCK_FASYNC)) 2443 return; 2444 2445 set_bit(nr, &sk->sk_wq_raw->flags); 2446 } 2447 2448 static inline void sk_clear_bit(int nr, struct sock *sk) 2449 { 2450 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && 2451 !sock_flag(sk, SOCK_FASYNC)) 2452 return; 2453 2454 clear_bit(nr, &sk->sk_wq_raw->flags); 2455 } 2456 2457 static inline void sk_wake_async(const struct sock *sk, int how, int band) 2458 { 2459 if (sock_flag(sk, SOCK_FASYNC)) { 2460 rcu_read_lock(); 2461 sock_wake_async(rcu_dereference(sk->sk_wq), how, band); 2462 rcu_read_unlock(); 2463 } 2464 } 2465 2466 static inline void sk_wake_async_rcu(const struct sock *sk, int how, int band) 2467 { 2468 if (unlikely(sock_flag(sk, SOCK_FASYNC))) 2469 sock_wake_async(rcu_dereference(sk->sk_wq), how, band); 2470 } 2471 2472 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might 2473 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak. 2474 * Note: for send buffers, TCP works better if we can build two skbs at 2475 * minimum. 2476 */ 2477 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff))) 2478 2479 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2) 2480 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE 2481 2482 static inline void sk_stream_moderate_sndbuf(struct sock *sk) 2483 { 2484 u32 val; 2485 2486 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 2487 return; 2488 2489 val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1); 2490 val = max_t(u32, val, sk_unused_reserved_mem(sk)); 2491 2492 WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF)); 2493 } 2494 2495 /** 2496 * sk_page_frag - return an appropriate page_frag 2497 * @sk: socket 2498 * 2499 * Use the per task page_frag instead of the per socket one for 2500 * optimization when we know that we're in process context and own 2501 * everything that's associated with %current. 2502 * 2503 * Both direct reclaim and page faults can nest inside other 2504 * socket operations and end up recursing into sk_page_frag() 2505 * while it's already in use: explicitly avoid task page_frag 2506 * when users disable sk_use_task_frag. 2507 * 2508 * Return: a per task page_frag if context allows that, 2509 * otherwise a per socket one. 2510 */ 2511 static inline struct page_frag *sk_page_frag(struct sock *sk) 2512 { 2513 if (sk->sk_use_task_frag) 2514 return ¤t->task_frag; 2515 2516 return &sk->sk_frag; 2517 } 2518 2519 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag); 2520 2521 /* 2522 * Default write policy as shown to user space via poll/select/SIGIO 2523 */ 2524 static inline bool sock_writeable(const struct sock *sk) 2525 { 2526 return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1); 2527 } 2528 2529 static inline gfp_t gfp_any(void) 2530 { 2531 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; 2532 } 2533 2534 static inline gfp_t gfp_memcg_charge(void) 2535 { 2536 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; 2537 } 2538 2539 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock) 2540 { 2541 return noblock ? 0 : sk->sk_rcvtimeo; 2542 } 2543 2544 static inline long sock_sndtimeo(const struct sock *sk, bool noblock) 2545 { 2546 return noblock ? 0 : sk->sk_sndtimeo; 2547 } 2548 2549 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) 2550 { 2551 int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len); 2552 2553 return v ?: 1; 2554 } 2555 2556 /* Alas, with timeout socket operations are not restartable. 2557 * Compare this to poll(). 2558 */ 2559 static inline int sock_intr_errno(long timeo) 2560 { 2561 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; 2562 } 2563 2564 struct sock_skb_cb { 2565 u32 dropcount; 2566 }; 2567 2568 /* Store sock_skb_cb at the end of skb->cb[] so protocol families 2569 * using skb->cb[] would keep using it directly and utilize its 2570 * alignment guarantee. 2571 */ 2572 #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \ 2573 sizeof(struct sock_skb_cb))) 2574 2575 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \ 2576 SOCK_SKB_CB_OFFSET)) 2577 2578 #define sock_skb_cb_check_size(size) \ 2579 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET) 2580 2581 static inline void 2582 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb) 2583 { 2584 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ? 2585 atomic_read(&sk->sk_drops) : 0; 2586 } 2587 2588 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb) 2589 { 2590 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 2591 2592 atomic_add(segs, &sk->sk_drops); 2593 } 2594 2595 static inline ktime_t sock_read_timestamp(struct sock *sk) 2596 { 2597 #if BITS_PER_LONG==32 2598 unsigned int seq; 2599 ktime_t kt; 2600 2601 do { 2602 seq = read_seqbegin(&sk->sk_stamp_seq); 2603 kt = sk->sk_stamp; 2604 } while (read_seqretry(&sk->sk_stamp_seq, seq)); 2605 2606 return kt; 2607 #else 2608 return READ_ONCE(sk->sk_stamp); 2609 #endif 2610 } 2611 2612 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt) 2613 { 2614 #if BITS_PER_LONG==32 2615 write_seqlock(&sk->sk_stamp_seq); 2616 sk->sk_stamp = kt; 2617 write_sequnlock(&sk->sk_stamp_seq); 2618 #else 2619 WRITE_ONCE(sk->sk_stamp, kt); 2620 #endif 2621 } 2622 2623 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 2624 struct sk_buff *skb); 2625 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 2626 struct sk_buff *skb); 2627 2628 static inline void 2629 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) 2630 { 2631 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); 2632 u32 tsflags = READ_ONCE(sk->sk_tsflags); 2633 ktime_t kt = skb->tstamp; 2634 /* 2635 * generate control messages if 2636 * - receive time stamping in software requested 2637 * - software time stamp available and wanted 2638 * - hardware time stamps available and wanted 2639 */ 2640 if (sock_flag(sk, SOCK_RCVTSTAMP) || 2641 (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) || 2642 (kt && tsflags & SOF_TIMESTAMPING_SOFTWARE) || 2643 (hwtstamps->hwtstamp && 2644 (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE))) 2645 __sock_recv_timestamp(msg, sk, skb); 2646 else 2647 sock_write_timestamp(sk, kt); 2648 2649 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb_wifi_acked_valid(skb)) 2650 __sock_recv_wifi_status(msg, sk, skb); 2651 } 2652 2653 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk, 2654 struct sk_buff *skb); 2655 2656 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC) 2657 static inline void sock_recv_cmsgs(struct msghdr *msg, struct sock *sk, 2658 struct sk_buff *skb) 2659 { 2660 #define FLAGS_RECV_CMSGS ((1UL << SOCK_RXQ_OVFL) | \ 2661 (1UL << SOCK_RCVTSTAMP) | \ 2662 (1UL << SOCK_RCVMARK) | \ 2663 (1UL << SOCK_RCVPRIORITY) | \ 2664 (1UL << SOCK_TIMESTAMPING_ANY)) 2665 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \ 2666 SOF_TIMESTAMPING_RAW_HARDWARE) 2667 2668 if (READ_ONCE(sk->sk_flags) & FLAGS_RECV_CMSGS) 2669 __sock_recv_cmsgs(msg, sk, skb); 2670 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP))) 2671 sock_write_timestamp(sk, skb->tstamp); 2672 else if (unlikely(sock_read_timestamp(sk) == SK_DEFAULT_STAMP)) 2673 sock_write_timestamp(sk, 0); 2674 } 2675 2676 void __sock_tx_timestamp(__u32 tsflags, __u8 *tx_flags); 2677 2678 /** 2679 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped 2680 * @sk: socket sending this packet 2681 * @sockc: pointer to socket cmsg cookie to get timestamping info 2682 * @tx_flags: completed with instructions for time stamping 2683 * @tskey: filled in with next sk_tskey (not for TCP, which uses seqno) 2684 * 2685 * Note: callers should take care of initial ``*tx_flags`` value (usually 0) 2686 */ 2687 static inline void _sock_tx_timestamp(struct sock *sk, 2688 const struct sockcm_cookie *sockc, 2689 __u8 *tx_flags, __u32 *tskey) 2690 { 2691 __u32 tsflags = sockc->tsflags; 2692 2693 if (unlikely(tsflags)) { 2694 __sock_tx_timestamp(tsflags, tx_flags); 2695 if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey && 2696 tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) { 2697 if (tsflags & SOCKCM_FLAG_TS_OPT_ID) 2698 *tskey = sockc->ts_opt_id; 2699 else 2700 *tskey = atomic_inc_return(&sk->sk_tskey) - 1; 2701 } 2702 } 2703 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS))) 2704 *tx_flags |= SKBTX_WIFI_STATUS; 2705 } 2706 2707 static inline void sock_tx_timestamp(struct sock *sk, 2708 const struct sockcm_cookie *sockc, 2709 __u8 *tx_flags) 2710 { 2711 _sock_tx_timestamp(sk, sockc, tx_flags, NULL); 2712 } 2713 2714 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, 2715 const struct sockcm_cookie *sockc) 2716 { 2717 _sock_tx_timestamp(skb->sk, sockc, &skb_shinfo(skb)->tx_flags, 2718 &skb_shinfo(skb)->tskey); 2719 } 2720 2721 static inline bool sk_is_inet(const struct sock *sk) 2722 { 2723 int family = READ_ONCE(sk->sk_family); 2724 2725 return family == AF_INET || family == AF_INET6; 2726 } 2727 2728 static inline bool sk_is_tcp(const struct sock *sk) 2729 { 2730 return sk_is_inet(sk) && 2731 sk->sk_type == SOCK_STREAM && 2732 sk->sk_protocol == IPPROTO_TCP; 2733 } 2734 2735 static inline bool sk_is_udp(const struct sock *sk) 2736 { 2737 return sk_is_inet(sk) && 2738 sk->sk_type == SOCK_DGRAM && 2739 sk->sk_protocol == IPPROTO_UDP; 2740 } 2741 2742 static inline bool sk_is_stream_unix(const struct sock *sk) 2743 { 2744 return sk->sk_family == AF_UNIX && sk->sk_type == SOCK_STREAM; 2745 } 2746 2747 static inline bool sk_is_vsock(const struct sock *sk) 2748 { 2749 return sk->sk_family == AF_VSOCK; 2750 } 2751 2752 /** 2753 * sk_eat_skb - Release a skb if it is no longer needed 2754 * @sk: socket to eat this skb from 2755 * @skb: socket buffer to eat 2756 * 2757 * This routine must be called with interrupts disabled or with the socket 2758 * locked so that the sk_buff queue operation is ok. 2759 */ 2760 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb) 2761 { 2762 __skb_unlink(skb, &sk->sk_receive_queue); 2763 __kfree_skb(skb); 2764 } 2765 2766 static inline bool 2767 skb_sk_is_prefetched(struct sk_buff *skb) 2768 { 2769 #ifdef CONFIG_INET 2770 return skb->destructor == sock_pfree; 2771 #else 2772 return false; 2773 #endif /* CONFIG_INET */ 2774 } 2775 2776 /* This helper checks if a socket is a full socket, 2777 * ie _not_ a timewait or request socket. 2778 */ 2779 static inline bool sk_fullsock(const struct sock *sk) 2780 { 2781 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV); 2782 } 2783 2784 static inline bool 2785 sk_is_refcounted(struct sock *sk) 2786 { 2787 /* Only full sockets have sk->sk_flags. */ 2788 return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE); 2789 } 2790 2791 /* Checks if this SKB belongs to an HW offloaded socket 2792 * and whether any SW fallbacks are required based on dev. 2793 * Check decrypted mark in case skb_orphan() cleared socket. 2794 */ 2795 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb, 2796 struct net_device *dev) 2797 { 2798 #ifdef CONFIG_SOCK_VALIDATE_XMIT 2799 struct sock *sk = skb->sk; 2800 2801 if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) { 2802 skb = sk->sk_validate_xmit_skb(sk, dev, skb); 2803 } else if (unlikely(skb_is_decrypted(skb))) { 2804 pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n"); 2805 kfree_skb(skb); 2806 skb = NULL; 2807 } 2808 #endif 2809 2810 return skb; 2811 } 2812 2813 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV 2814 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE) 2815 */ 2816 static inline bool sk_listener(const struct sock *sk) 2817 { 2818 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV); 2819 } 2820 2821 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV or TIME_WAIT 2822 * TCP SYNACK messages can be attached to LISTEN or NEW_SYN_RECV (depending on SYNCOOKIE) 2823 * TCP RST and ACK can be attached to TIME_WAIT. 2824 */ 2825 static inline bool sk_listener_or_tw(const struct sock *sk) 2826 { 2827 return (1 << READ_ONCE(sk->sk_state)) & 2828 (TCPF_LISTEN | TCPF_NEW_SYN_RECV | TCPF_TIME_WAIT); 2829 } 2830 2831 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag); 2832 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level, 2833 int type); 2834 2835 bool sk_ns_capable(const struct sock *sk, 2836 struct user_namespace *user_ns, int cap); 2837 bool sk_capable(const struct sock *sk, int cap); 2838 bool sk_net_capable(const struct sock *sk, int cap); 2839 2840 void sk_get_meminfo(const struct sock *sk, u32 *meminfo); 2841 2842 /* Take into consideration the size of the struct sk_buff overhead in the 2843 * determination of these values, since that is non-constant across 2844 * platforms. This makes socket queueing behavior and performance 2845 * not depend upon such differences. 2846 */ 2847 #define _SK_MEM_PACKETS 256 2848 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256) 2849 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 2850 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 2851 2852 extern __u32 sysctl_wmem_max; 2853 extern __u32 sysctl_rmem_max; 2854 2855 extern __u32 sysctl_wmem_default; 2856 extern __u32 sysctl_rmem_default; 2857 2858 #define SKB_FRAG_PAGE_ORDER get_order(32768) 2859 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key); 2860 2861 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto) 2862 { 2863 /* Does this proto have per netns sysctl_wmem ? */ 2864 if (proto->sysctl_wmem_offset) 2865 return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset)); 2866 2867 return READ_ONCE(*proto->sysctl_wmem); 2868 } 2869 2870 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto) 2871 { 2872 /* Does this proto have per netns sysctl_rmem ? */ 2873 if (proto->sysctl_rmem_offset) 2874 return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset)); 2875 2876 return READ_ONCE(*proto->sysctl_rmem); 2877 } 2878 2879 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10) 2880 * Some wifi drivers need to tweak it to get more chunks. 2881 * They can use this helper from their ndo_start_xmit() 2882 */ 2883 static inline void sk_pacing_shift_update(struct sock *sk, int val) 2884 { 2885 if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val) 2886 return; 2887 WRITE_ONCE(sk->sk_pacing_shift, val); 2888 } 2889 2890 /* if a socket is bound to a device, check that the given device 2891 * index is either the same or that the socket is bound to an L3 2892 * master device and the given device index is also enslaved to 2893 * that L3 master 2894 */ 2895 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif) 2896 { 2897 int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if); 2898 int mdif; 2899 2900 if (!bound_dev_if || bound_dev_if == dif) 2901 return true; 2902 2903 mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif); 2904 if (mdif && mdif == bound_dev_if) 2905 return true; 2906 2907 return false; 2908 } 2909 2910 void sock_def_readable(struct sock *sk); 2911 2912 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk); 2913 void sock_set_timestamp(struct sock *sk, int optname, bool valbool); 2914 int sock_set_timestamping(struct sock *sk, int optname, 2915 struct so_timestamping timestamping); 2916 2917 void sock_enable_timestamps(struct sock *sk); 2918 #if defined(CONFIG_CGROUP_BPF) 2919 void bpf_skops_tx_timestamping(struct sock *sk, struct sk_buff *skb, int op); 2920 #else 2921 static inline void bpf_skops_tx_timestamping(struct sock *sk, struct sk_buff *skb, int op) 2922 { 2923 } 2924 #endif 2925 void sock_no_linger(struct sock *sk); 2926 void sock_set_keepalive(struct sock *sk); 2927 void sock_set_priority(struct sock *sk, u32 priority); 2928 void sock_set_rcvbuf(struct sock *sk, int val); 2929 void sock_set_mark(struct sock *sk, u32 val); 2930 void sock_set_reuseaddr(struct sock *sk); 2931 void sock_set_reuseport(struct sock *sk); 2932 void sock_set_sndtimeo(struct sock *sk, s64 secs); 2933 2934 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len); 2935 2936 int sock_get_timeout(long timeo, void *optval, bool old_timeval); 2937 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv, 2938 sockptr_t optval, int optlen, bool old_timeval); 2939 2940 int sock_ioctl_inout(struct sock *sk, unsigned int cmd, 2941 void __user *arg, void *karg, size_t size); 2942 int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg); 2943 static inline bool sk_is_readable(struct sock *sk) 2944 { 2945 if (sk->sk_prot->sock_is_readable) 2946 return sk->sk_prot->sock_is_readable(sk); 2947 return false; 2948 } 2949 #endif /* _SOCK_H */ 2950