1 /* SPDX-License-Identifier: GPL-2.0 2 * 3 * page_pool/helpers.h 4 * Author: Jesper Dangaard Brouer <netoptimizer@brouer.com> 5 * Copyright (C) 2016 Red Hat, Inc. 6 */ 7 8 /** 9 * DOC: page_pool allocator 10 * 11 * The page_pool allocator is optimized for recycling page or page fragment used 12 * by skb packet and xdp frame. 13 * 14 * Basic use involves replacing any alloc_pages() calls with page_pool_alloc(), 15 * which allocate memory with or without page splitting depending on the 16 * requested memory size. 17 * 18 * If the driver knows that it always requires full pages or its allocations are 19 * always smaller than half a page, it can use one of the more specific API 20 * calls: 21 * 22 * 1. page_pool_alloc_pages(): allocate memory without page splitting when 23 * driver knows that the memory it need is always bigger than half of the page 24 * allocated from page pool. There is no cache line dirtying for 'struct page' 25 * when a page is recycled back to the page pool. 26 * 27 * 2. page_pool_alloc_frag(): allocate memory with page splitting when driver 28 * knows that the memory it need is always smaller than or equal to half of the 29 * page allocated from page pool. Page splitting enables memory saving and thus 30 * avoids TLB/cache miss for data access, but there also is some cost to 31 * implement page splitting, mainly some cache line dirtying/bouncing for 32 * 'struct page' and atomic operation for page->pp_ref_count. 33 * 34 * The API keeps track of in-flight pages, in order to let API users know when 35 * it is safe to free a page_pool object, the API users must call 36 * page_pool_put_page() or page_pool_free_va() to free the page_pool object, or 37 * attach the page_pool object to a page_pool-aware object like skbs marked with 38 * skb_mark_for_recycle(). 39 * 40 * page_pool_put_page() may be called multiple times on the same page if a page 41 * is split into multiple fragments. For the last fragment, it will either 42 * recycle the page, or in case of page->_refcount > 1, it will release the DMA 43 * mapping and in-flight state accounting. 44 * 45 * dma_sync_single_range_for_device() is only called for the last fragment when 46 * page_pool is created with PP_FLAG_DMA_SYNC_DEV flag, so it depends on the 47 * last freed fragment to do the sync_for_device operation for all fragments in 48 * the same page when a page is split. The API user must setup pool->p.max_len 49 * and pool->p.offset correctly and ensure that page_pool_put_page() is called 50 * with dma_sync_size being -1 for fragment API. 51 */ 52 #ifndef _NET_PAGE_POOL_HELPERS_H 53 #define _NET_PAGE_POOL_HELPERS_H 54 55 #include <linux/dma-mapping.h> 56 57 #include <net/page_pool/types.h> 58 #include <net/net_debug.h> 59 #include <net/netmem.h> 60 61 #ifdef CONFIG_PAGE_POOL_STATS 62 /* Deprecated driver-facing API, use netlink instead */ 63 int page_pool_ethtool_stats_get_count(void); 64 u8 *page_pool_ethtool_stats_get_strings(u8 *data); 65 u64 *page_pool_ethtool_stats_get(u64 *data, const void *stats); 66 67 bool page_pool_get_stats(const struct page_pool *pool, 68 struct page_pool_stats *stats); 69 #else 70 static inline int page_pool_ethtool_stats_get_count(void) 71 { 72 return 0; 73 } 74 75 static inline u8 *page_pool_ethtool_stats_get_strings(u8 *data) 76 { 77 return data; 78 } 79 80 static inline u64 *page_pool_ethtool_stats_get(u64 *data, const void *stats) 81 { 82 return data; 83 } 84 #endif 85 86 /** 87 * page_pool_dev_alloc_pages() - allocate a page. 88 * @pool: pool from which to allocate 89 * 90 * Get a page from the page allocator or page_pool caches. 91 */ 92 static inline struct page *page_pool_dev_alloc_pages(struct page_pool *pool) 93 { 94 gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN); 95 96 return page_pool_alloc_pages(pool, gfp); 97 } 98 99 /** 100 * page_pool_dev_alloc_frag() - allocate a page fragment. 101 * @pool: pool from which to allocate 102 * @offset: offset to the allocated page 103 * @size: requested size 104 * 105 * Get a page fragment from the page allocator or page_pool caches. 106 * 107 * Return: 108 * Return allocated page fragment, otherwise return NULL. 109 */ 110 static inline struct page *page_pool_dev_alloc_frag(struct page_pool *pool, 111 unsigned int *offset, 112 unsigned int size) 113 { 114 gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN); 115 116 return page_pool_alloc_frag(pool, offset, size, gfp); 117 } 118 119 static inline struct page *page_pool_alloc(struct page_pool *pool, 120 unsigned int *offset, 121 unsigned int *size, gfp_t gfp) 122 { 123 unsigned int max_size = PAGE_SIZE << pool->p.order; 124 struct page *page; 125 126 if ((*size << 1) > max_size) { 127 *size = max_size; 128 *offset = 0; 129 return page_pool_alloc_pages(pool, gfp); 130 } 131 132 page = page_pool_alloc_frag(pool, offset, *size, gfp); 133 if (unlikely(!page)) 134 return NULL; 135 136 /* There is very likely not enough space for another fragment, so append 137 * the remaining size to the current fragment to avoid truesize 138 * underestimate problem. 139 */ 140 if (pool->frag_offset + *size > max_size) { 141 *size = max_size - *offset; 142 pool->frag_offset = max_size; 143 } 144 145 return page; 146 } 147 148 /** 149 * page_pool_dev_alloc() - allocate a page or a page fragment. 150 * @pool: pool from which to allocate 151 * @offset: offset to the allocated page 152 * @size: in as the requested size, out as the allocated size 153 * 154 * Get a page or a page fragment from the page allocator or page_pool caches 155 * depending on the requested size in order to allocate memory with least memory 156 * utilization and performance penalty. 157 * 158 * Return: 159 * Return allocated page or page fragment, otherwise return NULL. 160 */ 161 static inline struct page *page_pool_dev_alloc(struct page_pool *pool, 162 unsigned int *offset, 163 unsigned int *size) 164 { 165 gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN); 166 167 return page_pool_alloc(pool, offset, size, gfp); 168 } 169 170 static inline void *page_pool_alloc_va(struct page_pool *pool, 171 unsigned int *size, gfp_t gfp) 172 { 173 unsigned int offset; 174 struct page *page; 175 176 /* Mask off __GFP_HIGHMEM to ensure we can use page_address() */ 177 page = page_pool_alloc(pool, &offset, size, gfp & ~__GFP_HIGHMEM); 178 if (unlikely(!page)) 179 return NULL; 180 181 return page_address(page) + offset; 182 } 183 184 /** 185 * page_pool_dev_alloc_va() - allocate a page or a page fragment and return its 186 * va. 187 * @pool: pool from which to allocate 188 * @size: in as the requested size, out as the allocated size 189 * 190 * This is just a thin wrapper around the page_pool_alloc() API, and 191 * it returns va of the allocated page or page fragment. 192 * 193 * Return: 194 * Return the va for the allocated page or page fragment, otherwise return NULL. 195 */ 196 static inline void *page_pool_dev_alloc_va(struct page_pool *pool, 197 unsigned int *size) 198 { 199 gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN); 200 201 return page_pool_alloc_va(pool, size, gfp); 202 } 203 204 /** 205 * page_pool_get_dma_dir() - Retrieve the stored DMA direction. 206 * @pool: pool from which page was allocated 207 * 208 * Get the stored dma direction. A driver might decide to store this locally 209 * and avoid the extra cache line from page_pool to determine the direction. 210 */ 211 static inline enum dma_data_direction 212 page_pool_get_dma_dir(const struct page_pool *pool) 213 { 214 return pool->p.dma_dir; 215 } 216 217 static inline void page_pool_fragment_netmem(netmem_ref netmem, long nr) 218 { 219 atomic_long_set(netmem_get_pp_ref_count_ref(netmem), nr); 220 } 221 222 /** 223 * page_pool_fragment_page() - split a fresh page into fragments 224 * @page: page to split 225 * @nr: references to set 226 * 227 * pp_ref_count represents the number of outstanding references to the page, 228 * which will be freed using page_pool APIs (rather than page allocator APIs 229 * like put_page()). Such references are usually held by page_pool-aware 230 * objects like skbs marked for page pool recycling. 231 * 232 * This helper allows the caller to take (set) multiple references to a 233 * freshly allocated page. The page must be freshly allocated (have a 234 * pp_ref_count of 1). This is commonly done by drivers and 235 * "fragment allocators" to save atomic operations - either when they know 236 * upfront how many references they will need; or to take MAX references and 237 * return the unused ones with a single atomic dec(), instead of performing 238 * multiple atomic inc() operations. 239 */ 240 static inline void page_pool_fragment_page(struct page *page, long nr) 241 { 242 page_pool_fragment_netmem(page_to_netmem(page), nr); 243 } 244 245 static inline long page_pool_unref_netmem(netmem_ref netmem, long nr) 246 { 247 atomic_long_t *pp_ref_count = netmem_get_pp_ref_count_ref(netmem); 248 long ret; 249 250 /* If nr == pp_ref_count then we have cleared all remaining 251 * references to the page: 252 * 1. 'n == 1': no need to actually overwrite it. 253 * 2. 'n != 1': overwrite it with one, which is the rare case 254 * for pp_ref_count draining. 255 * 256 * The main advantage to doing this is that not only we avoid a atomic 257 * update, as an atomic_read is generally a much cheaper operation than 258 * an atomic update, especially when dealing with a page that may be 259 * referenced by only 2 or 3 users; but also unify the pp_ref_count 260 * handling by ensuring all pages have partitioned into only 1 piece 261 * initially, and only overwrite it when the page is partitioned into 262 * more than one piece. 263 */ 264 if (atomic_long_read(pp_ref_count) == nr) { 265 /* As we have ensured nr is always one for constant case using 266 * the BUILD_BUG_ON(), only need to handle the non-constant case 267 * here for pp_ref_count draining, which is a rare case. 268 */ 269 BUILD_BUG_ON(__builtin_constant_p(nr) && nr != 1); 270 if (!__builtin_constant_p(nr)) 271 atomic_long_set(pp_ref_count, 1); 272 273 return 0; 274 } 275 276 ret = atomic_long_sub_return(nr, pp_ref_count); 277 WARN_ON(ret < 0); 278 279 /* We are the last user here too, reset pp_ref_count back to 1 to 280 * ensure all pages have been partitioned into 1 piece initially, 281 * this should be the rare case when the last two fragment users call 282 * page_pool_unref_page() currently. 283 */ 284 if (unlikely(!ret)) 285 atomic_long_set(pp_ref_count, 1); 286 287 return ret; 288 } 289 290 static inline long page_pool_unref_page(struct page *page, long nr) 291 { 292 return page_pool_unref_netmem(page_to_netmem(page), nr); 293 } 294 295 static inline void page_pool_ref_netmem(netmem_ref netmem) 296 { 297 atomic_long_inc(netmem_get_pp_ref_count_ref(netmem)); 298 } 299 300 static inline void page_pool_ref_page(struct page *page) 301 { 302 page_pool_ref_netmem(page_to_netmem(page)); 303 } 304 305 static inline bool page_pool_is_last_ref(netmem_ref netmem) 306 { 307 /* If page_pool_unref_page() returns 0, we were the last user */ 308 return page_pool_unref_netmem(netmem, 1) == 0; 309 } 310 311 static inline void page_pool_put_netmem(struct page_pool *pool, 312 netmem_ref netmem, 313 unsigned int dma_sync_size, 314 bool allow_direct) 315 { 316 /* When page_pool isn't compiled-in, net/core/xdp.c doesn't 317 * allow registering MEM_TYPE_PAGE_POOL, but shield linker. 318 */ 319 #ifdef CONFIG_PAGE_POOL 320 if (!page_pool_is_last_ref(netmem)) 321 return; 322 323 page_pool_put_unrefed_netmem(pool, netmem, dma_sync_size, allow_direct); 324 #endif 325 } 326 327 /** 328 * page_pool_put_page() - release a reference to a page pool page 329 * @pool: pool from which page was allocated 330 * @page: page to release a reference on 331 * @dma_sync_size: how much of the page may have been touched by the device 332 * @allow_direct: released by the consumer, allow lockless caching 333 * 334 * The outcome of this depends on the page refcnt. If the driver bumps 335 * the refcnt > 1 this will unmap the page. If the page refcnt is 1 336 * the allocator owns the page and will try to recycle it in one of the pool 337 * caches. If PP_FLAG_DMA_SYNC_DEV is set, the page will be synced for_device 338 * using dma_sync_single_range_for_device(). 339 */ 340 static inline void page_pool_put_page(struct page_pool *pool, 341 struct page *page, 342 unsigned int dma_sync_size, 343 bool allow_direct) 344 { 345 page_pool_put_netmem(pool, page_to_netmem(page), dma_sync_size, 346 allow_direct); 347 } 348 349 static inline void page_pool_put_full_netmem(struct page_pool *pool, 350 netmem_ref netmem, 351 bool allow_direct) 352 { 353 page_pool_put_netmem(pool, netmem, -1, allow_direct); 354 } 355 356 /** 357 * page_pool_put_full_page() - release a reference on a page pool page 358 * @pool: pool from which page was allocated 359 * @page: page to release a reference on 360 * @allow_direct: released by the consumer, allow lockless caching 361 * 362 * Similar to page_pool_put_page(), but will DMA sync the entire memory area 363 * as configured in &page_pool_params.max_len. 364 */ 365 static inline void page_pool_put_full_page(struct page_pool *pool, 366 struct page *page, bool allow_direct) 367 { 368 page_pool_put_netmem(pool, page_to_netmem(page), -1, allow_direct); 369 } 370 371 /** 372 * page_pool_recycle_direct() - release a reference on a page pool page 373 * @pool: pool from which page was allocated 374 * @page: page to release a reference on 375 * 376 * Similar to page_pool_put_full_page() but caller must guarantee safe context 377 * (e.g NAPI), since it will recycle the page directly into the pool fast cache. 378 */ 379 static inline void page_pool_recycle_direct(struct page_pool *pool, 380 struct page *page) 381 { 382 page_pool_put_full_page(pool, page, true); 383 } 384 385 #define PAGE_POOL_32BIT_ARCH_WITH_64BIT_DMA \ 386 (sizeof(dma_addr_t) > sizeof(unsigned long)) 387 388 /** 389 * page_pool_free_va() - free a va into the page_pool 390 * @pool: pool from which va was allocated 391 * @va: va to be freed 392 * @allow_direct: freed by the consumer, allow lockless caching 393 * 394 * Free a va allocated from page_pool_allo_va(). 395 */ 396 static inline void page_pool_free_va(struct page_pool *pool, void *va, 397 bool allow_direct) 398 { 399 page_pool_put_page(pool, virt_to_head_page(va), -1, allow_direct); 400 } 401 402 static inline dma_addr_t page_pool_get_dma_addr_netmem(netmem_ref netmem) 403 { 404 dma_addr_t ret = netmem_get_dma_addr(netmem); 405 406 if (PAGE_POOL_32BIT_ARCH_WITH_64BIT_DMA) 407 ret <<= PAGE_SHIFT; 408 409 return ret; 410 } 411 412 /** 413 * page_pool_get_dma_addr() - Retrieve the stored DMA address. 414 * @page: page allocated from a page pool 415 * 416 * Fetch the DMA address of the page. The page pool to which the page belongs 417 * must had been created with PP_FLAG_DMA_MAP. 418 */ 419 static inline dma_addr_t page_pool_get_dma_addr(const struct page *page) 420 { 421 return page_pool_get_dma_addr_netmem(page_to_netmem((struct page *)page)); 422 } 423 424 /** 425 * page_pool_dma_sync_for_cpu - sync Rx page for CPU after it's written by HW 426 * @pool: &page_pool the @page belongs to 427 * @page: page to sync 428 * @offset: offset from page start to "hard" start if using PP frags 429 * @dma_sync_size: size of the data written to the page 430 * 431 * Can be used as a shorthand to sync Rx pages before accessing them in the 432 * driver. Caller must ensure the pool was created with ``PP_FLAG_DMA_MAP``. 433 * Note that this version performs DMA sync unconditionally, even if the 434 * associated PP doesn't perform sync-for-device. 435 */ 436 static inline void page_pool_dma_sync_for_cpu(const struct page_pool *pool, 437 const struct page *page, 438 u32 offset, u32 dma_sync_size) 439 { 440 dma_sync_single_range_for_cpu(pool->p.dev, 441 page_pool_get_dma_addr(page), 442 offset + pool->p.offset, dma_sync_size, 443 page_pool_get_dma_dir(pool)); 444 } 445 446 static inline bool page_pool_put(struct page_pool *pool) 447 { 448 return refcount_dec_and_test(&pool->user_cnt); 449 } 450 451 static inline void page_pool_nid_changed(struct page_pool *pool, int new_nid) 452 { 453 if (unlikely(pool->p.nid != new_nid)) 454 page_pool_update_nid(pool, new_nid); 455 } 456 457 #endif /* _NET_PAGE_POOL_HELPERS_H */ 458