xref: /linux/include/net/page_pool/helpers.h (revision c72004aac60a9ffdf4bc29b1e7ff0798a7eab3c2)
1 /* SPDX-License-Identifier: GPL-2.0
2  *
3  * page_pool/helpers.h
4  *	Author:	Jesper Dangaard Brouer <netoptimizer@brouer.com>
5  *	Copyright (C) 2016 Red Hat, Inc.
6  */
7 
8 /**
9  * DOC: page_pool allocator
10  *
11  * The page_pool allocator is optimized for recycling page or page fragment used
12  * by skb packet and xdp frame.
13  *
14  * Basic use involves replacing any alloc_pages() calls with page_pool_alloc(),
15  * which allocate memory with or without page splitting depending on the
16  * requested memory size.
17  *
18  * If the driver knows that it always requires full pages or its allocations are
19  * always smaller than half a page, it can use one of the more specific API
20  * calls:
21  *
22  * 1. page_pool_alloc_pages(): allocate memory without page splitting when
23  * driver knows that the memory it need is always bigger than half of the page
24  * allocated from page pool. There is no cache line dirtying for 'struct page'
25  * when a page is recycled back to the page pool.
26  *
27  * 2. page_pool_alloc_frag(): allocate memory with page splitting when driver
28  * knows that the memory it need is always smaller than or equal to half of the
29  * page allocated from page pool. Page splitting enables memory saving and thus
30  * avoids TLB/cache miss for data access, but there also is some cost to
31  * implement page splitting, mainly some cache line dirtying/bouncing for
32  * 'struct page' and atomic operation for page->pp_ref_count.
33  *
34  * The API keeps track of in-flight pages, in order to let API users know when
35  * it is safe to free a page_pool object, the API users must call
36  * page_pool_put_page() or page_pool_free_va() to free the page_pool object, or
37  * attach the page_pool object to a page_pool-aware object like skbs marked with
38  * skb_mark_for_recycle().
39  *
40  * page_pool_put_page() may be called multiple times on the same page if a page
41  * is split into multiple fragments. For the last fragment, it will either
42  * recycle the page, or in case of page->_refcount > 1, it will release the DMA
43  * mapping and in-flight state accounting.
44  *
45  * dma_sync_single_range_for_device() is only called for the last fragment when
46  * page_pool is created with PP_FLAG_DMA_SYNC_DEV flag, so it depends on the
47  * last freed fragment to do the sync_for_device operation for all fragments in
48  * the same page when a page is split. The API user must setup pool->p.max_len
49  * and pool->p.offset correctly and ensure that page_pool_put_page() is called
50  * with dma_sync_size being -1 for fragment API.
51  */
52 #ifndef _NET_PAGE_POOL_HELPERS_H
53 #define _NET_PAGE_POOL_HELPERS_H
54 
55 #include <linux/dma-mapping.h>
56 
57 #include <net/page_pool/types.h>
58 #include <net/net_debug.h>
59 #include <net/netmem.h>
60 
61 #ifdef CONFIG_PAGE_POOL_STATS
62 /* Deprecated driver-facing API, use netlink instead */
63 int page_pool_ethtool_stats_get_count(void);
64 u8 *page_pool_ethtool_stats_get_strings(u8 *data);
65 u64 *page_pool_ethtool_stats_get(u64 *data, const void *stats);
66 
67 bool page_pool_get_stats(const struct page_pool *pool,
68 			 struct page_pool_stats *stats);
69 #else
70 static inline int page_pool_ethtool_stats_get_count(void)
71 {
72 	return 0;
73 }
74 
75 static inline u8 *page_pool_ethtool_stats_get_strings(u8 *data)
76 {
77 	return data;
78 }
79 
80 static inline u64 *page_pool_ethtool_stats_get(u64 *data, const void *stats)
81 {
82 	return data;
83 }
84 #endif
85 
86 /**
87  * page_pool_dev_alloc_pages() - allocate a page.
88  * @pool:	pool from which to allocate
89  *
90  * Get a page from the page allocator or page_pool caches.
91  */
92 static inline struct page *page_pool_dev_alloc_pages(struct page_pool *pool)
93 {
94 	gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
95 
96 	return page_pool_alloc_pages(pool, gfp);
97 }
98 
99 /**
100  * page_pool_dev_alloc_frag() - allocate a page fragment.
101  * @pool: pool from which to allocate
102  * @offset: offset to the allocated page
103  * @size: requested size
104  *
105  * Get a page fragment from the page allocator or page_pool caches.
106  *
107  * Return: allocated page fragment, otherwise return NULL.
108  */
109 static inline struct page *page_pool_dev_alloc_frag(struct page_pool *pool,
110 						    unsigned int *offset,
111 						    unsigned int size)
112 {
113 	gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
114 
115 	return page_pool_alloc_frag(pool, offset, size, gfp);
116 }
117 
118 static inline netmem_ref page_pool_alloc_netmem(struct page_pool *pool,
119 						unsigned int *offset,
120 						unsigned int *size, gfp_t gfp)
121 {
122 	unsigned int max_size = PAGE_SIZE << pool->p.order;
123 	netmem_ref netmem;
124 
125 	if ((*size << 1) > max_size) {
126 		*size = max_size;
127 		*offset = 0;
128 		return page_pool_alloc_netmems(pool, gfp);
129 	}
130 
131 	netmem = page_pool_alloc_frag_netmem(pool, offset, *size, gfp);
132 	if (unlikely(!netmem))
133 		return 0;
134 
135 	/* There is very likely not enough space for another fragment, so append
136 	 * the remaining size to the current fragment to avoid truesize
137 	 * underestimate problem.
138 	 */
139 	if (pool->frag_offset + *size > max_size) {
140 		*size = max_size - *offset;
141 		pool->frag_offset = max_size;
142 	}
143 
144 	return netmem;
145 }
146 
147 static inline struct page *page_pool_alloc(struct page_pool *pool,
148 					   unsigned int *offset,
149 					   unsigned int *size, gfp_t gfp)
150 {
151 	return netmem_to_page(page_pool_alloc_netmem(pool, offset, size, gfp));
152 }
153 
154 /**
155  * page_pool_dev_alloc() - allocate a page or a page fragment.
156  * @pool: pool from which to allocate
157  * @offset: offset to the allocated page
158  * @size: in as the requested size, out as the allocated size
159  *
160  * Get a page or a page fragment from the page allocator or page_pool caches
161  * depending on the requested size in order to allocate memory with least memory
162  * utilization and performance penalty.
163  *
164  * Return: allocated page or page fragment, otherwise return NULL.
165  */
166 static inline struct page *page_pool_dev_alloc(struct page_pool *pool,
167 					       unsigned int *offset,
168 					       unsigned int *size)
169 {
170 	gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
171 
172 	return page_pool_alloc(pool, offset, size, gfp);
173 }
174 
175 static inline void *page_pool_alloc_va(struct page_pool *pool,
176 				       unsigned int *size, gfp_t gfp)
177 {
178 	unsigned int offset;
179 	struct page *page;
180 
181 	/* Mask off __GFP_HIGHMEM to ensure we can use page_address() */
182 	page = page_pool_alloc(pool, &offset, size, gfp & ~__GFP_HIGHMEM);
183 	if (unlikely(!page))
184 		return NULL;
185 
186 	return page_address(page) + offset;
187 }
188 
189 /**
190  * page_pool_dev_alloc_va() - allocate a page or a page fragment and return its
191  *			      va.
192  * @pool: pool from which to allocate
193  * @size: in as the requested size, out as the allocated size
194  *
195  * This is just a thin wrapper around the page_pool_alloc() API, and
196  * it returns va of the allocated page or page fragment.
197  *
198  * Return: the va for the allocated page or page fragment, otherwise return NULL.
199  */
200 static inline void *page_pool_dev_alloc_va(struct page_pool *pool,
201 					   unsigned int *size)
202 {
203 	gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
204 
205 	return page_pool_alloc_va(pool, size, gfp);
206 }
207 
208 /**
209  * page_pool_get_dma_dir() - Retrieve the stored DMA direction.
210  * @pool:	pool from which page was allocated
211  *
212  * Get the stored dma direction. A driver might decide to store this locally
213  * and avoid the extra cache line from page_pool to determine the direction.
214  */
215 static inline enum dma_data_direction
216 page_pool_get_dma_dir(const struct page_pool *pool)
217 {
218 	return pool->p.dma_dir;
219 }
220 
221 static inline void page_pool_fragment_netmem(netmem_ref netmem, long nr)
222 {
223 	atomic_long_set(netmem_get_pp_ref_count_ref(netmem), nr);
224 }
225 
226 /**
227  * page_pool_fragment_page() - split a fresh page into fragments
228  * @page:	page to split
229  * @nr:		references to set
230  *
231  * pp_ref_count represents the number of outstanding references to the page,
232  * which will be freed using page_pool APIs (rather than page allocator APIs
233  * like put_page()). Such references are usually held by page_pool-aware
234  * objects like skbs marked for page pool recycling.
235  *
236  * This helper allows the caller to take (set) multiple references to a
237  * freshly allocated page. The page must be freshly allocated (have a
238  * pp_ref_count of 1). This is commonly done by drivers and
239  * "fragment allocators" to save atomic operations - either when they know
240  * upfront how many references they will need; or to take MAX references and
241  * return the unused ones with a single atomic dec(), instead of performing
242  * multiple atomic inc() operations.
243  */
244 static inline void page_pool_fragment_page(struct page *page, long nr)
245 {
246 	page_pool_fragment_netmem(page_to_netmem(page), nr);
247 }
248 
249 static inline long page_pool_unref_netmem(netmem_ref netmem, long nr)
250 {
251 	atomic_long_t *pp_ref_count = netmem_get_pp_ref_count_ref(netmem);
252 	long ret;
253 
254 	/* If nr == pp_ref_count then we have cleared all remaining
255 	 * references to the page:
256 	 * 1. 'n == 1': no need to actually overwrite it.
257 	 * 2. 'n != 1': overwrite it with one, which is the rare case
258 	 *              for pp_ref_count draining.
259 	 *
260 	 * The main advantage to doing this is that not only we avoid a atomic
261 	 * update, as an atomic_read is generally a much cheaper operation than
262 	 * an atomic update, especially when dealing with a page that may be
263 	 * referenced by only 2 or 3 users; but also unify the pp_ref_count
264 	 * handling by ensuring all pages have partitioned into only 1 piece
265 	 * initially, and only overwrite it when the page is partitioned into
266 	 * more than one piece.
267 	 */
268 	if (atomic_long_read(pp_ref_count) == nr) {
269 		/* As we have ensured nr is always one for constant case using
270 		 * the BUILD_BUG_ON(), only need to handle the non-constant case
271 		 * here for pp_ref_count draining, which is a rare case.
272 		 */
273 		BUILD_BUG_ON(__builtin_constant_p(nr) && nr != 1);
274 		if (!__builtin_constant_p(nr))
275 			atomic_long_set(pp_ref_count, 1);
276 
277 		return 0;
278 	}
279 
280 	ret = atomic_long_sub_return(nr, pp_ref_count);
281 	WARN_ON(ret < 0);
282 
283 	/* We are the last user here too, reset pp_ref_count back to 1 to
284 	 * ensure all pages have been partitioned into 1 piece initially,
285 	 * this should be the rare case when the last two fragment users call
286 	 * page_pool_unref_page() currently.
287 	 */
288 	if (unlikely(!ret))
289 		atomic_long_set(pp_ref_count, 1);
290 
291 	return ret;
292 }
293 
294 static inline long page_pool_unref_page(struct page *page, long nr)
295 {
296 	return page_pool_unref_netmem(page_to_netmem(page), nr);
297 }
298 
299 static inline void page_pool_ref_netmem(netmem_ref netmem)
300 {
301 	atomic_long_inc(&netmem_to_page(netmem)->pp_ref_count);
302 }
303 
304 static inline void page_pool_ref_page(struct page *page)
305 {
306 	page_pool_ref_netmem(page_to_netmem(page));
307 }
308 
309 static inline bool page_pool_unref_and_test(netmem_ref netmem)
310 {
311 	/* If page_pool_unref_page() returns 0, we were the last user */
312 	return page_pool_unref_netmem(netmem, 1) == 0;
313 }
314 
315 static inline void page_pool_put_netmem(struct page_pool *pool,
316 					netmem_ref netmem,
317 					unsigned int dma_sync_size,
318 					bool allow_direct)
319 {
320 	/* When page_pool isn't compiled-in, net/core/xdp.c doesn't
321 	 * allow registering MEM_TYPE_PAGE_POOL, but shield linker.
322 	 */
323 #ifdef CONFIG_PAGE_POOL
324 	if (!page_pool_unref_and_test(netmem))
325 		return;
326 
327 	page_pool_put_unrefed_netmem(pool, netmem, dma_sync_size, allow_direct);
328 #endif
329 }
330 
331 /**
332  * page_pool_put_page() - release a reference to a page pool page
333  * @pool:	pool from which page was allocated
334  * @page:	page to release a reference on
335  * @dma_sync_size: how much of the page may have been touched by the device
336  * @allow_direct: released by the consumer, allow lockless caching
337  *
338  * The outcome of this depends on the page refcnt. If the driver bumps
339  * the refcnt > 1 this will unmap the page. If the page refcnt is 1
340  * the allocator owns the page and will try to recycle it in one of the pool
341  * caches. If PP_FLAG_DMA_SYNC_DEV is set, the page will be synced for_device
342  * using dma_sync_single_range_for_device().
343  */
344 static inline void page_pool_put_page(struct page_pool *pool,
345 				      struct page *page,
346 				      unsigned int dma_sync_size,
347 				      bool allow_direct)
348 {
349 	page_pool_put_netmem(pool, page_to_netmem(page), dma_sync_size,
350 			     allow_direct);
351 }
352 
353 static inline void page_pool_put_full_netmem(struct page_pool *pool,
354 					     netmem_ref netmem,
355 					     bool allow_direct)
356 {
357 	page_pool_put_netmem(pool, netmem, -1, allow_direct);
358 }
359 
360 /**
361  * page_pool_put_full_page() - release a reference on a page pool page
362  * @pool:	pool from which page was allocated
363  * @page:	page to release a reference on
364  * @allow_direct: released by the consumer, allow lockless caching
365  *
366  * Similar to page_pool_put_page(), but will DMA sync the entire memory area
367  * as configured in &page_pool_params.max_len.
368  */
369 static inline void page_pool_put_full_page(struct page_pool *pool,
370 					   struct page *page, bool allow_direct)
371 {
372 	page_pool_put_netmem(pool, page_to_netmem(page), -1, allow_direct);
373 }
374 
375 /**
376  * page_pool_recycle_direct() - release a reference on a page pool page
377  * @pool:	pool from which page was allocated
378  * @page:	page to release a reference on
379  *
380  * Similar to page_pool_put_full_page() but caller must guarantee safe context
381  * (e.g NAPI), since it will recycle the page directly into the pool fast cache.
382  */
383 static inline void page_pool_recycle_direct(struct page_pool *pool,
384 					    struct page *page)
385 {
386 	page_pool_put_full_page(pool, page, true);
387 }
388 
389 #define PAGE_POOL_32BIT_ARCH_WITH_64BIT_DMA	\
390 		(sizeof(dma_addr_t) > sizeof(unsigned long))
391 
392 /**
393  * page_pool_free_va() - free a va into the page_pool
394  * @pool: pool from which va was allocated
395  * @va: va to be freed
396  * @allow_direct: freed by the consumer, allow lockless caching
397  *
398  * Free a va allocated from page_pool_allo_va().
399  */
400 static inline void page_pool_free_va(struct page_pool *pool, void *va,
401 				     bool allow_direct)
402 {
403 	page_pool_put_page(pool, virt_to_head_page(va), -1, allow_direct);
404 }
405 
406 static inline dma_addr_t page_pool_get_dma_addr_netmem(netmem_ref netmem)
407 {
408 	dma_addr_t ret = netmem_get_dma_addr(netmem);
409 
410 	if (PAGE_POOL_32BIT_ARCH_WITH_64BIT_DMA)
411 		ret <<= PAGE_SHIFT;
412 
413 	return ret;
414 }
415 
416 /**
417  * page_pool_get_dma_addr() - Retrieve the stored DMA address.
418  * @page:	page allocated from a page pool
419  *
420  * Fetch the DMA address of the page. The page pool to which the page belongs
421  * must had been created with PP_FLAG_DMA_MAP.
422  */
423 static inline dma_addr_t page_pool_get_dma_addr(const struct page *page)
424 {
425 	dma_addr_t ret = page->dma_addr;
426 
427 	if (PAGE_POOL_32BIT_ARCH_WITH_64BIT_DMA)
428 		ret <<= PAGE_SHIFT;
429 
430 	return ret;
431 }
432 
433 static inline void __page_pool_dma_sync_for_cpu(const struct page_pool *pool,
434 						const dma_addr_t dma_addr,
435 						u32 offset, u32 dma_sync_size)
436 {
437 	dma_sync_single_range_for_cpu(pool->p.dev, dma_addr,
438 				      offset + pool->p.offset, dma_sync_size,
439 				      page_pool_get_dma_dir(pool));
440 }
441 
442 /**
443  * page_pool_dma_sync_for_cpu - sync Rx page for CPU after it's written by HW
444  * @pool: &page_pool the @page belongs to
445  * @page: page to sync
446  * @offset: offset from page start to "hard" start if using PP frags
447  * @dma_sync_size: size of the data written to the page
448  *
449  * Can be used as a shorthand to sync Rx pages before accessing them in the
450  * driver. Caller must ensure the pool was created with ``PP_FLAG_DMA_MAP``.
451  * Note that this version performs DMA sync unconditionally, even if the
452  * associated PP doesn't perform sync-for-device.
453  */
454 static inline void page_pool_dma_sync_for_cpu(const struct page_pool *pool,
455 					      const struct page *page,
456 					      u32 offset, u32 dma_sync_size)
457 {
458 	__page_pool_dma_sync_for_cpu(pool, page_pool_get_dma_addr(page), offset,
459 				     dma_sync_size);
460 }
461 
462 static inline void
463 page_pool_dma_sync_netmem_for_cpu(const struct page_pool *pool,
464 				  const netmem_ref netmem, u32 offset,
465 				  u32 dma_sync_size)
466 {
467 	if (!pool->dma_sync_for_cpu)
468 		return;
469 
470 	__page_pool_dma_sync_for_cpu(pool,
471 				     page_pool_get_dma_addr_netmem(netmem),
472 				     offset, dma_sync_size);
473 }
474 
475 static inline bool page_pool_put(struct page_pool *pool)
476 {
477 	return refcount_dec_and_test(&pool->user_cnt);
478 }
479 
480 static inline void page_pool_nid_changed(struct page_pool *pool, int new_nid)
481 {
482 	if (unlikely(pool->p.nid != new_nid))
483 		page_pool_update_nid(pool, new_nid);
484 }
485 
486 #endif /* _NET_PAGE_POOL_HELPERS_H */
487