1 /* SPDX-License-Identifier: GPL-2.0 2 * 3 * page_pool/helpers.h 4 * Author: Jesper Dangaard Brouer <netoptimizer@brouer.com> 5 * Copyright (C) 2016 Red Hat, Inc. 6 */ 7 8 /** 9 * DOC: page_pool allocator 10 * 11 * The page_pool allocator is optimized for recycling page or page fragment used 12 * by skb packet and xdp frame. 13 * 14 * Basic use involves replacing and alloc_pages() calls with page_pool_alloc(), 15 * which allocate memory with or without page splitting depending on the 16 * requested memory size. 17 * 18 * If the driver knows that it always requires full pages or its allocations are 19 * always smaller than half a page, it can use one of the more specific API 20 * calls: 21 * 22 * 1. page_pool_alloc_pages(): allocate memory without page splitting when 23 * driver knows that the memory it need is always bigger than half of the page 24 * allocated from page pool. There is no cache line dirtying for 'struct page' 25 * when a page is recycled back to the page pool. 26 * 27 * 2. page_pool_alloc_frag(): allocate memory with page splitting when driver 28 * knows that the memory it need is always smaller than or equal to half of the 29 * page allocated from page pool. Page splitting enables memory saving and thus 30 * avoids TLB/cache miss for data access, but there also is some cost to 31 * implement page splitting, mainly some cache line dirtying/bouncing for 32 * 'struct page' and atomic operation for page->pp_frag_count. 33 * 34 * The API keeps track of in-flight pages, in order to let API users know when 35 * it is safe to free a page_pool object, the API users must call 36 * page_pool_put_page() or page_pool_free_va() to free the page_pool object, or 37 * attach the page_pool object to a page_pool-aware object like skbs marked with 38 * skb_mark_for_recycle(). 39 * 40 * page_pool_put_page() may be called multi times on the same page if a page is 41 * split into multi fragments. For the last fragment, it will either recycle the 42 * page, or in case of page->_refcount > 1, it will release the DMA mapping and 43 * in-flight state accounting. 44 * 45 * dma_sync_single_range_for_device() is only called for the last fragment when 46 * page_pool is created with PP_FLAG_DMA_SYNC_DEV flag, so it depends on the 47 * last freed fragment to do the sync_for_device operation for all fragments in 48 * the same page when a page is split, the API user must setup pool->p.max_len 49 * and pool->p.offset correctly and ensure that page_pool_put_page() is called 50 * with dma_sync_size being -1 for fragment API. 51 */ 52 #ifndef _NET_PAGE_POOL_HELPERS_H 53 #define _NET_PAGE_POOL_HELPERS_H 54 55 #include <net/page_pool/types.h> 56 57 #ifdef CONFIG_PAGE_POOL_STATS 58 int page_pool_ethtool_stats_get_count(void); 59 u8 *page_pool_ethtool_stats_get_strings(u8 *data); 60 u64 *page_pool_ethtool_stats_get(u64 *data, void *stats); 61 62 /* 63 * Drivers that wish to harvest page pool stats and report them to users 64 * (perhaps via ethtool, debugfs, or another mechanism) can allocate a 65 * struct page_pool_stats call page_pool_get_stats to get stats for the specified pool. 66 */ 67 bool page_pool_get_stats(struct page_pool *pool, 68 struct page_pool_stats *stats); 69 #else 70 static inline int page_pool_ethtool_stats_get_count(void) 71 { 72 return 0; 73 } 74 75 static inline u8 *page_pool_ethtool_stats_get_strings(u8 *data) 76 { 77 return data; 78 } 79 80 static inline u64 *page_pool_ethtool_stats_get(u64 *data, void *stats) 81 { 82 return data; 83 } 84 #endif 85 86 /** 87 * page_pool_dev_alloc_pages() - allocate a page. 88 * @pool: pool from which to allocate 89 * 90 * Get a page from the page allocator or page_pool caches. 91 */ 92 static inline struct page *page_pool_dev_alloc_pages(struct page_pool *pool) 93 { 94 gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN); 95 96 return page_pool_alloc_pages(pool, gfp); 97 } 98 99 /** 100 * page_pool_dev_alloc_frag() - allocate a page fragment. 101 * @pool: pool from which to allocate 102 * @offset: offset to the allocated page 103 * @size: requested size 104 * 105 * Get a page fragment from the page allocator or page_pool caches. 106 * 107 * Return: 108 * Return allocated page fragment, otherwise return NULL. 109 */ 110 static inline struct page *page_pool_dev_alloc_frag(struct page_pool *pool, 111 unsigned int *offset, 112 unsigned int size) 113 { 114 gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN); 115 116 return page_pool_alloc_frag(pool, offset, size, gfp); 117 } 118 119 static inline struct page *page_pool_alloc(struct page_pool *pool, 120 unsigned int *offset, 121 unsigned int *size, gfp_t gfp) 122 { 123 unsigned int max_size = PAGE_SIZE << pool->p.order; 124 struct page *page; 125 126 if ((*size << 1) > max_size) { 127 *size = max_size; 128 *offset = 0; 129 return page_pool_alloc_pages(pool, gfp); 130 } 131 132 page = page_pool_alloc_frag(pool, offset, *size, gfp); 133 if (unlikely(!page)) 134 return NULL; 135 136 /* There is very likely not enough space for another fragment, so append 137 * the remaining size to the current fragment to avoid truesize 138 * underestimate problem. 139 */ 140 if (pool->frag_offset + *size > max_size) { 141 *size = max_size - *offset; 142 pool->frag_offset = max_size; 143 } 144 145 return page; 146 } 147 148 /** 149 * page_pool_dev_alloc() - allocate a page or a page fragment. 150 * @pool: pool from which to allocate 151 * @offset: offset to the allocated page 152 * @size: in as the requested size, out as the allocated size 153 * 154 * Get a page or a page fragment from the page allocator or page_pool caches 155 * depending on the requested size in order to allocate memory with least memory 156 * utilization and performance penalty. 157 * 158 * Return: 159 * Return allocated page or page fragment, otherwise return NULL. 160 */ 161 static inline struct page *page_pool_dev_alloc(struct page_pool *pool, 162 unsigned int *offset, 163 unsigned int *size) 164 { 165 gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN); 166 167 return page_pool_alloc(pool, offset, size, gfp); 168 } 169 170 static inline void *page_pool_alloc_va(struct page_pool *pool, 171 unsigned int *size, gfp_t gfp) 172 { 173 unsigned int offset; 174 struct page *page; 175 176 /* Mask off __GFP_HIGHMEM to ensure we can use page_address() */ 177 page = page_pool_alloc(pool, &offset, size, gfp & ~__GFP_HIGHMEM); 178 if (unlikely(!page)) 179 return NULL; 180 181 return page_address(page) + offset; 182 } 183 184 /** 185 * page_pool_dev_alloc_va() - allocate a page or a page fragment and return its 186 * va. 187 * @pool: pool from which to allocate 188 * @size: in as the requested size, out as the allocated size 189 * 190 * This is just a thin wrapper around the page_pool_alloc() API, and 191 * it returns va of the allocated page or page fragment. 192 * 193 * Return: 194 * Return the va for the allocated page or page fragment, otherwise return NULL. 195 */ 196 static inline void *page_pool_dev_alloc_va(struct page_pool *pool, 197 unsigned int *size) 198 { 199 gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN); 200 201 return page_pool_alloc_va(pool, size, gfp); 202 } 203 204 /** 205 * page_pool_get_dma_dir() - Retrieve the stored DMA direction. 206 * @pool: pool from which page was allocated 207 * 208 * Get the stored dma direction. A driver might decide to store this locally 209 * and avoid the extra cache line from page_pool to determine the direction. 210 */ 211 static 212 inline enum dma_data_direction page_pool_get_dma_dir(struct page_pool *pool) 213 { 214 return pool->p.dma_dir; 215 } 216 217 /* pp_frag_count represents the number of writers who can update the page 218 * either by updating skb->data or via DMA mappings for the device. 219 * We can't rely on the page refcnt for that as we don't know who might be 220 * holding page references and we can't reliably destroy or sync DMA mappings 221 * of the fragments. 222 * 223 * When pp_frag_count reaches 0 we can either recycle the page if the page 224 * refcnt is 1 or return it back to the memory allocator and destroy any 225 * mappings we have. 226 */ 227 static inline void page_pool_fragment_page(struct page *page, long nr) 228 { 229 atomic_long_set(&page->pp_frag_count, nr); 230 } 231 232 static inline long page_pool_defrag_page(struct page *page, long nr) 233 { 234 long ret; 235 236 /* If nr == pp_frag_count then we have cleared all remaining 237 * references to the page: 238 * 1. 'n == 1': no need to actually overwrite it. 239 * 2. 'n != 1': overwrite it with one, which is the rare case 240 * for pp_frag_count draining. 241 * 242 * The main advantage to doing this is that not only we avoid a atomic 243 * update, as an atomic_read is generally a much cheaper operation than 244 * an atomic update, especially when dealing with a page that may be 245 * partitioned into only 2 or 3 pieces; but also unify the pp_frag_count 246 * handling by ensuring all pages have partitioned into only 1 piece 247 * initially, and only overwrite it when the page is partitioned into 248 * more than one piece. 249 */ 250 if (atomic_long_read(&page->pp_frag_count) == nr) { 251 /* As we have ensured nr is always one for constant case using 252 * the BUILD_BUG_ON(), only need to handle the non-constant case 253 * here for pp_frag_count draining, which is a rare case. 254 */ 255 BUILD_BUG_ON(__builtin_constant_p(nr) && nr != 1); 256 if (!__builtin_constant_p(nr)) 257 atomic_long_set(&page->pp_frag_count, 1); 258 259 return 0; 260 } 261 262 ret = atomic_long_sub_return(nr, &page->pp_frag_count); 263 WARN_ON(ret < 0); 264 265 /* We are the last user here too, reset pp_frag_count back to 1 to 266 * ensure all pages have been partitioned into 1 piece initially, 267 * this should be the rare case when the last two fragment users call 268 * page_pool_defrag_page() currently. 269 */ 270 if (unlikely(!ret)) 271 atomic_long_set(&page->pp_frag_count, 1); 272 273 return ret; 274 } 275 276 static inline bool page_pool_is_last_frag(struct page *page) 277 { 278 /* If page_pool_defrag_page() returns 0, we were the last user */ 279 return page_pool_defrag_page(page, 1) == 0; 280 } 281 282 /** 283 * page_pool_put_page() - release a reference to a page pool page 284 * @pool: pool from which page was allocated 285 * @page: page to release a reference on 286 * @dma_sync_size: how much of the page may have been touched by the device 287 * @allow_direct: released by the consumer, allow lockless caching 288 * 289 * The outcome of this depends on the page refcnt. If the driver bumps 290 * the refcnt > 1 this will unmap the page. If the page refcnt is 1 291 * the allocator owns the page and will try to recycle it in one of the pool 292 * caches. If PP_FLAG_DMA_SYNC_DEV is set, the page will be synced for_device 293 * using dma_sync_single_range_for_device(). 294 */ 295 static inline void page_pool_put_page(struct page_pool *pool, 296 struct page *page, 297 unsigned int dma_sync_size, 298 bool allow_direct) 299 { 300 /* When page_pool isn't compiled-in, net/core/xdp.c doesn't 301 * allow registering MEM_TYPE_PAGE_POOL, but shield linker. 302 */ 303 #ifdef CONFIG_PAGE_POOL 304 if (!page_pool_is_last_frag(page)) 305 return; 306 307 page_pool_put_defragged_page(pool, page, dma_sync_size, allow_direct); 308 #endif 309 } 310 311 /** 312 * page_pool_put_full_page() - release a reference on a page pool page 313 * @pool: pool from which page was allocated 314 * @page: page to release a reference on 315 * @allow_direct: released by the consumer, allow lockless caching 316 * 317 * Similar to page_pool_put_page(), but will DMA sync the entire memory area 318 * as configured in &page_pool_params.max_len. 319 */ 320 static inline void page_pool_put_full_page(struct page_pool *pool, 321 struct page *page, bool allow_direct) 322 { 323 page_pool_put_page(pool, page, -1, allow_direct); 324 } 325 326 /** 327 * page_pool_recycle_direct() - release a reference on a page pool page 328 * @pool: pool from which page was allocated 329 * @page: page to release a reference on 330 * 331 * Similar to page_pool_put_full_page() but caller must guarantee safe context 332 * (e.g NAPI), since it will recycle the page directly into the pool fast cache. 333 */ 334 static inline void page_pool_recycle_direct(struct page_pool *pool, 335 struct page *page) 336 { 337 page_pool_put_full_page(pool, page, true); 338 } 339 340 #define PAGE_POOL_32BIT_ARCH_WITH_64BIT_DMA \ 341 (sizeof(dma_addr_t) > sizeof(unsigned long)) 342 343 /** 344 * page_pool_free_va() - free a va into the page_pool 345 * @pool: pool from which va was allocated 346 * @va: va to be freed 347 * @allow_direct: freed by the consumer, allow lockless caching 348 * 349 * Free a va allocated from page_pool_allo_va(). 350 */ 351 static inline void page_pool_free_va(struct page_pool *pool, void *va, 352 bool allow_direct) 353 { 354 page_pool_put_page(pool, virt_to_head_page(va), -1, allow_direct); 355 } 356 357 /** 358 * page_pool_get_dma_addr() - Retrieve the stored DMA address. 359 * @page: page allocated from a page pool 360 * 361 * Fetch the DMA address of the page. The page pool to which the page belongs 362 * must had been created with PP_FLAG_DMA_MAP. 363 */ 364 static inline dma_addr_t page_pool_get_dma_addr(struct page *page) 365 { 366 dma_addr_t ret = page->dma_addr; 367 368 if (PAGE_POOL_32BIT_ARCH_WITH_64BIT_DMA) 369 ret <<= PAGE_SHIFT; 370 371 return ret; 372 } 373 374 static inline bool page_pool_set_dma_addr(struct page *page, dma_addr_t addr) 375 { 376 if (PAGE_POOL_32BIT_ARCH_WITH_64BIT_DMA) { 377 page->dma_addr = addr >> PAGE_SHIFT; 378 379 /* We assume page alignment to shave off bottom bits, 380 * if this "compression" doesn't work we need to drop. 381 */ 382 return addr != (dma_addr_t)page->dma_addr << PAGE_SHIFT; 383 } 384 385 page->dma_addr = addr; 386 return false; 387 } 388 389 static inline bool page_pool_put(struct page_pool *pool) 390 { 391 return refcount_dec_and_test(&pool->user_cnt); 392 } 393 394 static inline void page_pool_nid_changed(struct page_pool *pool, int new_nid) 395 { 396 if (unlikely(pool->p.nid != new_nid)) 397 page_pool_update_nid(pool, new_nid); 398 } 399 400 #endif /* _NET_PAGE_POOL_HELPERS_H */ 401