xref: /linux/include/net/page_pool/helpers.h (revision 58154dbda4345299bff30eb78cbce6bc6dafcf84)
1 /* SPDX-License-Identifier: GPL-2.0
2  *
3  * page_pool/helpers.h
4  *	Author:	Jesper Dangaard Brouer <netoptimizer@brouer.com>
5  *	Copyright (C) 2016 Red Hat, Inc.
6  */
7 
8 /**
9  * DOC: page_pool allocator
10  *
11  * The page_pool allocator is optimized for recycling page or page fragment used
12  * by skb packet and xdp frame.
13  *
14  * Basic use involves replacing any alloc_pages() calls with page_pool_alloc(),
15  * which allocate memory with or without page splitting depending on the
16  * requested memory size.
17  *
18  * If the driver knows that it always requires full pages or its allocations are
19  * always smaller than half a page, it can use one of the more specific API
20  * calls:
21  *
22  * 1. page_pool_alloc_pages(): allocate memory without page splitting when
23  * driver knows that the memory it need is always bigger than half of the page
24  * allocated from page pool. There is no cache line dirtying for 'struct page'
25  * when a page is recycled back to the page pool.
26  *
27  * 2. page_pool_alloc_frag(): allocate memory with page splitting when driver
28  * knows that the memory it need is always smaller than or equal to half of the
29  * page allocated from page pool. Page splitting enables memory saving and thus
30  * avoids TLB/cache miss for data access, but there also is some cost to
31  * implement page splitting, mainly some cache line dirtying/bouncing for
32  * 'struct page' and atomic operation for page->pp_ref_count.
33  *
34  * The API keeps track of in-flight pages, in order to let API users know when
35  * it is safe to free a page_pool object, the API users must call
36  * page_pool_put_page() or page_pool_free_va() to free the page_pool object, or
37  * attach the page_pool object to a page_pool-aware object like skbs marked with
38  * skb_mark_for_recycle().
39  *
40  * page_pool_put_page() may be called multiple times on the same page if a page
41  * is split into multiple fragments. For the last fragment, it will either
42  * recycle the page, or in case of page->_refcount > 1, it will release the DMA
43  * mapping and in-flight state accounting.
44  *
45  * dma_sync_single_range_for_device() is only called for the last fragment when
46  * page_pool is created with PP_FLAG_DMA_SYNC_DEV flag, so it depends on the
47  * last freed fragment to do the sync_for_device operation for all fragments in
48  * the same page when a page is split. The API user must setup pool->p.max_len
49  * and pool->p.offset correctly and ensure that page_pool_put_page() is called
50  * with dma_sync_size being -1 for fragment API.
51  */
52 #ifndef _NET_PAGE_POOL_HELPERS_H
53 #define _NET_PAGE_POOL_HELPERS_H
54 
55 #include <linux/dma-mapping.h>
56 
57 #include <net/page_pool/types.h>
58 
59 #ifdef CONFIG_PAGE_POOL_STATS
60 /* Deprecated driver-facing API, use netlink instead */
61 int page_pool_ethtool_stats_get_count(void);
62 u8 *page_pool_ethtool_stats_get_strings(u8 *data);
63 u64 *page_pool_ethtool_stats_get(u64 *data, const void *stats);
64 
65 bool page_pool_get_stats(const struct page_pool *pool,
66 			 struct page_pool_stats *stats);
67 #else
68 static inline int page_pool_ethtool_stats_get_count(void)
69 {
70 	return 0;
71 }
72 
73 static inline u8 *page_pool_ethtool_stats_get_strings(u8 *data)
74 {
75 	return data;
76 }
77 
78 static inline u64 *page_pool_ethtool_stats_get(u64 *data, const void *stats)
79 {
80 	return data;
81 }
82 #endif
83 
84 /**
85  * page_pool_dev_alloc_pages() - allocate a page.
86  * @pool:	pool from which to allocate
87  *
88  * Get a page from the page allocator or page_pool caches.
89  */
90 static inline struct page *page_pool_dev_alloc_pages(struct page_pool *pool)
91 {
92 	gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
93 
94 	return page_pool_alloc_pages(pool, gfp);
95 }
96 
97 /**
98  * page_pool_dev_alloc_frag() - allocate a page fragment.
99  * @pool: pool from which to allocate
100  * @offset: offset to the allocated page
101  * @size: requested size
102  *
103  * Get a page fragment from the page allocator or page_pool caches.
104  *
105  * Return:
106  * Return allocated page fragment, otherwise return NULL.
107  */
108 static inline struct page *page_pool_dev_alloc_frag(struct page_pool *pool,
109 						    unsigned int *offset,
110 						    unsigned int size)
111 {
112 	gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
113 
114 	return page_pool_alloc_frag(pool, offset, size, gfp);
115 }
116 
117 static inline struct page *page_pool_alloc(struct page_pool *pool,
118 					   unsigned int *offset,
119 					   unsigned int *size, gfp_t gfp)
120 {
121 	unsigned int max_size = PAGE_SIZE << pool->p.order;
122 	struct page *page;
123 
124 	if ((*size << 1) > max_size) {
125 		*size = max_size;
126 		*offset = 0;
127 		return page_pool_alloc_pages(pool, gfp);
128 	}
129 
130 	page = page_pool_alloc_frag(pool, offset, *size, gfp);
131 	if (unlikely(!page))
132 		return NULL;
133 
134 	/* There is very likely not enough space for another fragment, so append
135 	 * the remaining size to the current fragment to avoid truesize
136 	 * underestimate problem.
137 	 */
138 	if (pool->frag_offset + *size > max_size) {
139 		*size = max_size - *offset;
140 		pool->frag_offset = max_size;
141 	}
142 
143 	return page;
144 }
145 
146 /**
147  * page_pool_dev_alloc() - allocate a page or a page fragment.
148  * @pool: pool from which to allocate
149  * @offset: offset to the allocated page
150  * @size: in as the requested size, out as the allocated size
151  *
152  * Get a page or a page fragment from the page allocator or page_pool caches
153  * depending on the requested size in order to allocate memory with least memory
154  * utilization and performance penalty.
155  *
156  * Return:
157  * Return allocated page or page fragment, otherwise return NULL.
158  */
159 static inline struct page *page_pool_dev_alloc(struct page_pool *pool,
160 					       unsigned int *offset,
161 					       unsigned int *size)
162 {
163 	gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
164 
165 	return page_pool_alloc(pool, offset, size, gfp);
166 }
167 
168 static inline void *page_pool_alloc_va(struct page_pool *pool,
169 				       unsigned int *size, gfp_t gfp)
170 {
171 	unsigned int offset;
172 	struct page *page;
173 
174 	/* Mask off __GFP_HIGHMEM to ensure we can use page_address() */
175 	page = page_pool_alloc(pool, &offset, size, gfp & ~__GFP_HIGHMEM);
176 	if (unlikely(!page))
177 		return NULL;
178 
179 	return page_address(page) + offset;
180 }
181 
182 /**
183  * page_pool_dev_alloc_va() - allocate a page or a page fragment and return its
184  *			      va.
185  * @pool: pool from which to allocate
186  * @size: in as the requested size, out as the allocated size
187  *
188  * This is just a thin wrapper around the page_pool_alloc() API, and
189  * it returns va of the allocated page or page fragment.
190  *
191  * Return:
192  * Return the va for the allocated page or page fragment, otherwise return NULL.
193  */
194 static inline void *page_pool_dev_alloc_va(struct page_pool *pool,
195 					   unsigned int *size)
196 {
197 	gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
198 
199 	return page_pool_alloc_va(pool, size, gfp);
200 }
201 
202 /**
203  * page_pool_get_dma_dir() - Retrieve the stored DMA direction.
204  * @pool:	pool from which page was allocated
205  *
206  * Get the stored dma direction. A driver might decide to store this locally
207  * and avoid the extra cache line from page_pool to determine the direction.
208  */
209 static inline enum dma_data_direction
210 page_pool_get_dma_dir(const struct page_pool *pool)
211 {
212 	return pool->p.dma_dir;
213 }
214 
215 /**
216  * page_pool_fragment_page() - split a fresh page into fragments
217  * @page:	page to split
218  * @nr:		references to set
219  *
220  * pp_ref_count represents the number of outstanding references to the page,
221  * which will be freed using page_pool APIs (rather than page allocator APIs
222  * like put_page()). Such references are usually held by page_pool-aware
223  * objects like skbs marked for page pool recycling.
224  *
225  * This helper allows the caller to take (set) multiple references to a
226  * freshly allocated page. The page must be freshly allocated (have a
227  * pp_ref_count of 1). This is commonly done by drivers and
228  * "fragment allocators" to save atomic operations - either when they know
229  * upfront how many references they will need; or to take MAX references and
230  * return the unused ones with a single atomic dec(), instead of performing
231  * multiple atomic inc() operations.
232  */
233 static inline void page_pool_fragment_page(struct page *page, long nr)
234 {
235 	atomic_long_set(&page->pp_ref_count, nr);
236 }
237 
238 static inline long page_pool_unref_page(struct page *page, long nr)
239 {
240 	long ret;
241 
242 	/* If nr == pp_ref_count then we have cleared all remaining
243 	 * references to the page:
244 	 * 1. 'n == 1': no need to actually overwrite it.
245 	 * 2. 'n != 1': overwrite it with one, which is the rare case
246 	 *              for pp_ref_count draining.
247 	 *
248 	 * The main advantage to doing this is that not only we avoid a atomic
249 	 * update, as an atomic_read is generally a much cheaper operation than
250 	 * an atomic update, especially when dealing with a page that may be
251 	 * referenced by only 2 or 3 users; but also unify the pp_ref_count
252 	 * handling by ensuring all pages have partitioned into only 1 piece
253 	 * initially, and only overwrite it when the page is partitioned into
254 	 * more than one piece.
255 	 */
256 	if (atomic_long_read(&page->pp_ref_count) == nr) {
257 		/* As we have ensured nr is always one for constant case using
258 		 * the BUILD_BUG_ON(), only need to handle the non-constant case
259 		 * here for pp_ref_count draining, which is a rare case.
260 		 */
261 		BUILD_BUG_ON(__builtin_constant_p(nr) && nr != 1);
262 		if (!__builtin_constant_p(nr))
263 			atomic_long_set(&page->pp_ref_count, 1);
264 
265 		return 0;
266 	}
267 
268 	ret = atomic_long_sub_return(nr, &page->pp_ref_count);
269 	WARN_ON(ret < 0);
270 
271 	/* We are the last user here too, reset pp_ref_count back to 1 to
272 	 * ensure all pages have been partitioned into 1 piece initially,
273 	 * this should be the rare case when the last two fragment users call
274 	 * page_pool_unref_page() currently.
275 	 */
276 	if (unlikely(!ret))
277 		atomic_long_set(&page->pp_ref_count, 1);
278 
279 	return ret;
280 }
281 
282 static inline void page_pool_ref_page(struct page *page)
283 {
284 	atomic_long_inc(&page->pp_ref_count);
285 }
286 
287 static inline bool page_pool_is_last_ref(struct page *page)
288 {
289 	/* If page_pool_unref_page() returns 0, we were the last user */
290 	return page_pool_unref_page(page, 1) == 0;
291 }
292 
293 /**
294  * page_pool_put_page() - release a reference to a page pool page
295  * @pool:	pool from which page was allocated
296  * @page:	page to release a reference on
297  * @dma_sync_size: how much of the page may have been touched by the device
298  * @allow_direct: released by the consumer, allow lockless caching
299  *
300  * The outcome of this depends on the page refcnt. If the driver bumps
301  * the refcnt > 1 this will unmap the page. If the page refcnt is 1
302  * the allocator owns the page and will try to recycle it in one of the pool
303  * caches. If PP_FLAG_DMA_SYNC_DEV is set, the page will be synced for_device
304  * using dma_sync_single_range_for_device().
305  */
306 static inline void page_pool_put_page(struct page_pool *pool,
307 				      struct page *page,
308 				      unsigned int dma_sync_size,
309 				      bool allow_direct)
310 {
311 	/* When page_pool isn't compiled-in, net/core/xdp.c doesn't
312 	 * allow registering MEM_TYPE_PAGE_POOL, but shield linker.
313 	 */
314 #ifdef CONFIG_PAGE_POOL
315 	if (!page_pool_is_last_ref(page))
316 		return;
317 
318 	page_pool_put_unrefed_page(pool, page, dma_sync_size, allow_direct);
319 #endif
320 }
321 
322 /**
323  * page_pool_put_full_page() - release a reference on a page pool page
324  * @pool:	pool from which page was allocated
325  * @page:	page to release a reference on
326  * @allow_direct: released by the consumer, allow lockless caching
327  *
328  * Similar to page_pool_put_page(), but will DMA sync the entire memory area
329  * as configured in &page_pool_params.max_len.
330  */
331 static inline void page_pool_put_full_page(struct page_pool *pool,
332 					   struct page *page, bool allow_direct)
333 {
334 	page_pool_put_page(pool, page, -1, allow_direct);
335 }
336 
337 /**
338  * page_pool_recycle_direct() - release a reference on a page pool page
339  * @pool:	pool from which page was allocated
340  * @page:	page to release a reference on
341  *
342  * Similar to page_pool_put_full_page() but caller must guarantee safe context
343  * (e.g NAPI), since it will recycle the page directly into the pool fast cache.
344  */
345 static inline void page_pool_recycle_direct(struct page_pool *pool,
346 					    struct page *page)
347 {
348 	page_pool_put_full_page(pool, page, true);
349 }
350 
351 #define PAGE_POOL_32BIT_ARCH_WITH_64BIT_DMA	\
352 		(sizeof(dma_addr_t) > sizeof(unsigned long))
353 
354 /**
355  * page_pool_free_va() - free a va into the page_pool
356  * @pool: pool from which va was allocated
357  * @va: va to be freed
358  * @allow_direct: freed by the consumer, allow lockless caching
359  *
360  * Free a va allocated from page_pool_allo_va().
361  */
362 static inline void page_pool_free_va(struct page_pool *pool, void *va,
363 				     bool allow_direct)
364 {
365 	page_pool_put_page(pool, virt_to_head_page(va), -1, allow_direct);
366 }
367 
368 /**
369  * page_pool_get_dma_addr() - Retrieve the stored DMA address.
370  * @page:	page allocated from a page pool
371  *
372  * Fetch the DMA address of the page. The page pool to which the page belongs
373  * must had been created with PP_FLAG_DMA_MAP.
374  */
375 static inline dma_addr_t page_pool_get_dma_addr(const struct page *page)
376 {
377 	dma_addr_t ret = page->dma_addr;
378 
379 	if (PAGE_POOL_32BIT_ARCH_WITH_64BIT_DMA)
380 		ret <<= PAGE_SHIFT;
381 
382 	return ret;
383 }
384 
385 static inline bool page_pool_set_dma_addr(struct page *page, dma_addr_t addr)
386 {
387 	if (PAGE_POOL_32BIT_ARCH_WITH_64BIT_DMA) {
388 		page->dma_addr = addr >> PAGE_SHIFT;
389 
390 		/* We assume page alignment to shave off bottom bits,
391 		 * if this "compression" doesn't work we need to drop.
392 		 */
393 		return addr != (dma_addr_t)page->dma_addr << PAGE_SHIFT;
394 	}
395 
396 	page->dma_addr = addr;
397 	return false;
398 }
399 
400 /**
401  * page_pool_dma_sync_for_cpu - sync Rx page for CPU after it's written by HW
402  * @pool: &page_pool the @page belongs to
403  * @page: page to sync
404  * @offset: offset from page start to "hard" start if using PP frags
405  * @dma_sync_size: size of the data written to the page
406  *
407  * Can be used as a shorthand to sync Rx pages before accessing them in the
408  * driver. Caller must ensure the pool was created with ``PP_FLAG_DMA_MAP``.
409  * Note that this version performs DMA sync unconditionally, even if the
410  * associated PP doesn't perform sync-for-device.
411  */
412 static inline void page_pool_dma_sync_for_cpu(const struct page_pool *pool,
413 					      const struct page *page,
414 					      u32 offset, u32 dma_sync_size)
415 {
416 	dma_sync_single_range_for_cpu(pool->p.dev,
417 				      page_pool_get_dma_addr(page),
418 				      offset + pool->p.offset, dma_sync_size,
419 				      page_pool_get_dma_dir(pool));
420 }
421 
422 static inline bool page_pool_put(struct page_pool *pool)
423 {
424 	return refcount_dec_and_test(&pool->user_cnt);
425 }
426 
427 static inline void page_pool_nid_changed(struct page_pool *pool, int new_nid)
428 {
429 	if (unlikely(pool->p.nid != new_nid))
430 		page_pool_update_nid(pool, new_nid);
431 }
432 
433 #endif /* _NET_PAGE_POOL_HELPERS_H */
434