xref: /linux/include/net/page_pool/helpers.h (revision 268531be211f18c55f7ff5a1641d32c0fd0571cd)
1 /* SPDX-License-Identifier: GPL-2.0
2  *
3  * page_pool/helpers.h
4  *	Author:	Jesper Dangaard Brouer <netoptimizer@brouer.com>
5  *	Copyright (C) 2016 Red Hat, Inc.
6  */
7 
8 /**
9  * DOC: page_pool allocator
10  *
11  * The page_pool allocator is optimized for recycling page or page fragment used
12  * by skb packet and xdp frame.
13  *
14  * Basic use involves replacing and alloc_pages() calls with page_pool_alloc(),
15  * which allocate memory with or without page splitting depending on the
16  * requested memory size.
17  *
18  * If the driver knows that it always requires full pages or its allocations are
19  * always smaller than half a page, it can use one of the more specific API
20  * calls:
21  *
22  * 1. page_pool_alloc_pages(): allocate memory without page splitting when
23  * driver knows that the memory it need is always bigger than half of the page
24  * allocated from page pool. There is no cache line dirtying for 'struct page'
25  * when a page is recycled back to the page pool.
26  *
27  * 2. page_pool_alloc_frag(): allocate memory with page splitting when driver
28  * knows that the memory it need is always smaller than or equal to half of the
29  * page allocated from page pool. Page splitting enables memory saving and thus
30  * avoids TLB/cache miss for data access, but there also is some cost to
31  * implement page splitting, mainly some cache line dirtying/bouncing for
32  * 'struct page' and atomic operation for page->pp_ref_count.
33  *
34  * The API keeps track of in-flight pages, in order to let API users know when
35  * it is safe to free a page_pool object, the API users must call
36  * page_pool_put_page() or page_pool_free_va() to free the page_pool object, or
37  * attach the page_pool object to a page_pool-aware object like skbs marked with
38  * skb_mark_for_recycle().
39  *
40  * page_pool_put_page() may be called multi times on the same page if a page is
41  * split into multi fragments. For the last fragment, it will either recycle the
42  * page, or in case of page->_refcount > 1, it will release the DMA mapping and
43  * in-flight state accounting.
44  *
45  * dma_sync_single_range_for_device() is only called for the last fragment when
46  * page_pool is created with PP_FLAG_DMA_SYNC_DEV flag, so it depends on the
47  * last freed fragment to do the sync_for_device operation for all fragments in
48  * the same page when a page is split, the API user must setup pool->p.max_len
49  * and pool->p.offset correctly and ensure that page_pool_put_page() is called
50  * with dma_sync_size being -1 for fragment API.
51  */
52 #ifndef _NET_PAGE_POOL_HELPERS_H
53 #define _NET_PAGE_POOL_HELPERS_H
54 
55 #include <net/page_pool/types.h>
56 
57 #ifdef CONFIG_PAGE_POOL_STATS
58 /* Deprecated driver-facing API, use netlink instead */
59 int page_pool_ethtool_stats_get_count(void);
60 u8 *page_pool_ethtool_stats_get_strings(u8 *data);
61 u64 *page_pool_ethtool_stats_get(u64 *data, void *stats);
62 
63 bool page_pool_get_stats(const struct page_pool *pool,
64 			 struct page_pool_stats *stats);
65 #else
66 static inline int page_pool_ethtool_stats_get_count(void)
67 {
68 	return 0;
69 }
70 
71 static inline u8 *page_pool_ethtool_stats_get_strings(u8 *data)
72 {
73 	return data;
74 }
75 
76 static inline u64 *page_pool_ethtool_stats_get(u64 *data, void *stats)
77 {
78 	return data;
79 }
80 #endif
81 
82 /**
83  * page_pool_dev_alloc_pages() - allocate a page.
84  * @pool:	pool from which to allocate
85  *
86  * Get a page from the page allocator or page_pool caches.
87  */
88 static inline struct page *page_pool_dev_alloc_pages(struct page_pool *pool)
89 {
90 	gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
91 
92 	return page_pool_alloc_pages(pool, gfp);
93 }
94 
95 /**
96  * page_pool_dev_alloc_frag() - allocate a page fragment.
97  * @pool: pool from which to allocate
98  * @offset: offset to the allocated page
99  * @size: requested size
100  *
101  * Get a page fragment from the page allocator or page_pool caches.
102  *
103  * Return:
104  * Return allocated page fragment, otherwise return NULL.
105  */
106 static inline struct page *page_pool_dev_alloc_frag(struct page_pool *pool,
107 						    unsigned int *offset,
108 						    unsigned int size)
109 {
110 	gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
111 
112 	return page_pool_alloc_frag(pool, offset, size, gfp);
113 }
114 
115 static inline struct page *page_pool_alloc(struct page_pool *pool,
116 					   unsigned int *offset,
117 					   unsigned int *size, gfp_t gfp)
118 {
119 	unsigned int max_size = PAGE_SIZE << pool->p.order;
120 	struct page *page;
121 
122 	if ((*size << 1) > max_size) {
123 		*size = max_size;
124 		*offset = 0;
125 		return page_pool_alloc_pages(pool, gfp);
126 	}
127 
128 	page = page_pool_alloc_frag(pool, offset, *size, gfp);
129 	if (unlikely(!page))
130 		return NULL;
131 
132 	/* There is very likely not enough space for another fragment, so append
133 	 * the remaining size to the current fragment to avoid truesize
134 	 * underestimate problem.
135 	 */
136 	if (pool->frag_offset + *size > max_size) {
137 		*size = max_size - *offset;
138 		pool->frag_offset = max_size;
139 	}
140 
141 	return page;
142 }
143 
144 /**
145  * page_pool_dev_alloc() - allocate a page or a page fragment.
146  * @pool: pool from which to allocate
147  * @offset: offset to the allocated page
148  * @size: in as the requested size, out as the allocated size
149  *
150  * Get a page or a page fragment from the page allocator or page_pool caches
151  * depending on the requested size in order to allocate memory with least memory
152  * utilization and performance penalty.
153  *
154  * Return:
155  * Return allocated page or page fragment, otherwise return NULL.
156  */
157 static inline struct page *page_pool_dev_alloc(struct page_pool *pool,
158 					       unsigned int *offset,
159 					       unsigned int *size)
160 {
161 	gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
162 
163 	return page_pool_alloc(pool, offset, size, gfp);
164 }
165 
166 static inline void *page_pool_alloc_va(struct page_pool *pool,
167 				       unsigned int *size, gfp_t gfp)
168 {
169 	unsigned int offset;
170 	struct page *page;
171 
172 	/* Mask off __GFP_HIGHMEM to ensure we can use page_address() */
173 	page = page_pool_alloc(pool, &offset, size, gfp & ~__GFP_HIGHMEM);
174 	if (unlikely(!page))
175 		return NULL;
176 
177 	return page_address(page) + offset;
178 }
179 
180 /**
181  * page_pool_dev_alloc_va() - allocate a page or a page fragment and return its
182  *			      va.
183  * @pool: pool from which to allocate
184  * @size: in as the requested size, out as the allocated size
185  *
186  * This is just a thin wrapper around the page_pool_alloc() API, and
187  * it returns va of the allocated page or page fragment.
188  *
189  * Return:
190  * Return the va for the allocated page or page fragment, otherwise return NULL.
191  */
192 static inline void *page_pool_dev_alloc_va(struct page_pool *pool,
193 					   unsigned int *size)
194 {
195 	gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
196 
197 	return page_pool_alloc_va(pool, size, gfp);
198 }
199 
200 /**
201  * page_pool_get_dma_dir() - Retrieve the stored DMA direction.
202  * @pool:	pool from which page was allocated
203  *
204  * Get the stored dma direction. A driver might decide to store this locally
205  * and avoid the extra cache line from page_pool to determine the direction.
206  */
207 static
208 inline enum dma_data_direction page_pool_get_dma_dir(struct page_pool *pool)
209 {
210 	return pool->p.dma_dir;
211 }
212 
213 /**
214  * page_pool_fragment_page() - split a fresh page into fragments
215  * @page:	page to split
216  * @nr:		references to set
217  *
218  * pp_ref_count represents the number of outstanding references to the page,
219  * which will be freed using page_pool APIs (rather than page allocator APIs
220  * like put_page()). Such references are usually held by page_pool-aware
221  * objects like skbs marked for page pool recycling.
222  *
223  * This helper allows the caller to take (set) multiple references to a
224  * freshly allocated page. The page must be freshly allocated (have a
225  * pp_ref_count of 1). This is commonly done by drivers and
226  * "fragment allocators" to save atomic operations - either when they know
227  * upfront how many references they will need; or to take MAX references and
228  * return the unused ones with a single atomic dec(), instead of performing
229  * multiple atomic inc() operations.
230  */
231 static inline void page_pool_fragment_page(struct page *page, long nr)
232 {
233 	atomic_long_set(&page->pp_ref_count, nr);
234 }
235 
236 static inline long page_pool_unref_page(struct page *page, long nr)
237 {
238 	long ret;
239 
240 	/* If nr == pp_ref_count then we have cleared all remaining
241 	 * references to the page:
242 	 * 1. 'n == 1': no need to actually overwrite it.
243 	 * 2. 'n != 1': overwrite it with one, which is the rare case
244 	 *              for pp_ref_count draining.
245 	 *
246 	 * The main advantage to doing this is that not only we avoid a atomic
247 	 * update, as an atomic_read is generally a much cheaper operation than
248 	 * an atomic update, especially when dealing with a page that may be
249 	 * referenced by only 2 or 3 users; but also unify the pp_ref_count
250 	 * handling by ensuring all pages have partitioned into only 1 piece
251 	 * initially, and only overwrite it when the page is partitioned into
252 	 * more than one piece.
253 	 */
254 	if (atomic_long_read(&page->pp_ref_count) == nr) {
255 		/* As we have ensured nr is always one for constant case using
256 		 * the BUILD_BUG_ON(), only need to handle the non-constant case
257 		 * here for pp_ref_count draining, which is a rare case.
258 		 */
259 		BUILD_BUG_ON(__builtin_constant_p(nr) && nr != 1);
260 		if (!__builtin_constant_p(nr))
261 			atomic_long_set(&page->pp_ref_count, 1);
262 
263 		return 0;
264 	}
265 
266 	ret = atomic_long_sub_return(nr, &page->pp_ref_count);
267 	WARN_ON(ret < 0);
268 
269 	/* We are the last user here too, reset pp_ref_count back to 1 to
270 	 * ensure all pages have been partitioned into 1 piece initially,
271 	 * this should be the rare case when the last two fragment users call
272 	 * page_pool_unref_page() currently.
273 	 */
274 	if (unlikely(!ret))
275 		atomic_long_set(&page->pp_ref_count, 1);
276 
277 	return ret;
278 }
279 
280 static inline bool page_pool_is_last_ref(struct page *page)
281 {
282 	/* If page_pool_unref_page() returns 0, we were the last user */
283 	return page_pool_unref_page(page, 1) == 0;
284 }
285 
286 /**
287  * page_pool_put_page() - release a reference to a page pool page
288  * @pool:	pool from which page was allocated
289  * @page:	page to release a reference on
290  * @dma_sync_size: how much of the page may have been touched by the device
291  * @allow_direct: released by the consumer, allow lockless caching
292  *
293  * The outcome of this depends on the page refcnt. If the driver bumps
294  * the refcnt > 1 this will unmap the page. If the page refcnt is 1
295  * the allocator owns the page and will try to recycle it in one of the pool
296  * caches. If PP_FLAG_DMA_SYNC_DEV is set, the page will be synced for_device
297  * using dma_sync_single_range_for_device().
298  */
299 static inline void page_pool_put_page(struct page_pool *pool,
300 				      struct page *page,
301 				      unsigned int dma_sync_size,
302 				      bool allow_direct)
303 {
304 	/* When page_pool isn't compiled-in, net/core/xdp.c doesn't
305 	 * allow registering MEM_TYPE_PAGE_POOL, but shield linker.
306 	 */
307 #ifdef CONFIG_PAGE_POOL
308 	if (!page_pool_is_last_ref(page))
309 		return;
310 
311 	page_pool_put_unrefed_page(pool, page, dma_sync_size, allow_direct);
312 #endif
313 }
314 
315 /**
316  * page_pool_put_full_page() - release a reference on a page pool page
317  * @pool:	pool from which page was allocated
318  * @page:	page to release a reference on
319  * @allow_direct: released by the consumer, allow lockless caching
320  *
321  * Similar to page_pool_put_page(), but will DMA sync the entire memory area
322  * as configured in &page_pool_params.max_len.
323  */
324 static inline void page_pool_put_full_page(struct page_pool *pool,
325 					   struct page *page, bool allow_direct)
326 {
327 	page_pool_put_page(pool, page, -1, allow_direct);
328 }
329 
330 /**
331  * page_pool_recycle_direct() - release a reference on a page pool page
332  * @pool:	pool from which page was allocated
333  * @page:	page to release a reference on
334  *
335  * Similar to page_pool_put_full_page() but caller must guarantee safe context
336  * (e.g NAPI), since it will recycle the page directly into the pool fast cache.
337  */
338 static inline void page_pool_recycle_direct(struct page_pool *pool,
339 					    struct page *page)
340 {
341 	page_pool_put_full_page(pool, page, true);
342 }
343 
344 #define PAGE_POOL_32BIT_ARCH_WITH_64BIT_DMA	\
345 		(sizeof(dma_addr_t) > sizeof(unsigned long))
346 
347 /**
348  * page_pool_free_va() - free a va into the page_pool
349  * @pool: pool from which va was allocated
350  * @va: va to be freed
351  * @allow_direct: freed by the consumer, allow lockless caching
352  *
353  * Free a va allocated from page_pool_allo_va().
354  */
355 static inline void page_pool_free_va(struct page_pool *pool, void *va,
356 				     bool allow_direct)
357 {
358 	page_pool_put_page(pool, virt_to_head_page(va), -1, allow_direct);
359 }
360 
361 /**
362  * page_pool_get_dma_addr() - Retrieve the stored DMA address.
363  * @page:	page allocated from a page pool
364  *
365  * Fetch the DMA address of the page. The page pool to which the page belongs
366  * must had been created with PP_FLAG_DMA_MAP.
367  */
368 static inline dma_addr_t page_pool_get_dma_addr(struct page *page)
369 {
370 	dma_addr_t ret = page->dma_addr;
371 
372 	if (PAGE_POOL_32BIT_ARCH_WITH_64BIT_DMA)
373 		ret <<= PAGE_SHIFT;
374 
375 	return ret;
376 }
377 
378 static inline bool page_pool_set_dma_addr(struct page *page, dma_addr_t addr)
379 {
380 	if (PAGE_POOL_32BIT_ARCH_WITH_64BIT_DMA) {
381 		page->dma_addr = addr >> PAGE_SHIFT;
382 
383 		/* We assume page alignment to shave off bottom bits,
384 		 * if this "compression" doesn't work we need to drop.
385 		 */
386 		return addr != (dma_addr_t)page->dma_addr << PAGE_SHIFT;
387 	}
388 
389 	page->dma_addr = addr;
390 	return false;
391 }
392 
393 static inline bool page_pool_put(struct page_pool *pool)
394 {
395 	return refcount_dec_and_test(&pool->user_cnt);
396 }
397 
398 static inline void page_pool_nid_changed(struct page_pool *pool, int new_nid)
399 {
400 	if (unlikely(pool->p.nid != new_nid))
401 		page_pool_update_nid(pool, new_nid);
402 }
403 
404 #endif /* _NET_PAGE_POOL_HELPERS_H */
405