1 /* 2 * mac80211 <-> driver interface 3 * 4 * Copyright 2002-2005, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #ifndef MAC80211_H 14 #define MAC80211_H 15 16 #include <linux/bug.h> 17 #include <linux/kernel.h> 18 #include <linux/if_ether.h> 19 #include <linux/skbuff.h> 20 #include <linux/ieee80211.h> 21 #include <net/cfg80211.h> 22 #include <asm/unaligned.h> 23 24 /** 25 * DOC: Introduction 26 * 27 * mac80211 is the Linux stack for 802.11 hardware that implements 28 * only partial functionality in hard- or firmware. This document 29 * defines the interface between mac80211 and low-level hardware 30 * drivers. 31 */ 32 33 /** 34 * DOC: Calling mac80211 from interrupts 35 * 36 * Only ieee80211_tx_status_irqsafe() and ieee80211_rx_irqsafe() can be 37 * called in hardware interrupt context. The low-level driver must not call any 38 * other functions in hardware interrupt context. If there is a need for such 39 * call, the low-level driver should first ACK the interrupt and perform the 40 * IEEE 802.11 code call after this, e.g. from a scheduled workqueue or even 41 * tasklet function. 42 * 43 * NOTE: If the driver opts to use the _irqsafe() functions, it may not also 44 * use the non-IRQ-safe functions! 45 */ 46 47 /** 48 * DOC: Warning 49 * 50 * If you're reading this document and not the header file itself, it will 51 * be incomplete because not all documentation has been converted yet. 52 */ 53 54 /** 55 * DOC: Frame format 56 * 57 * As a general rule, when frames are passed between mac80211 and the driver, 58 * they start with the IEEE 802.11 header and include the same octets that are 59 * sent over the air except for the FCS which should be calculated by the 60 * hardware. 61 * 62 * There are, however, various exceptions to this rule for advanced features: 63 * 64 * The first exception is for hardware encryption and decryption offload 65 * where the IV/ICV may or may not be generated in hardware. 66 * 67 * Secondly, when the hardware handles fragmentation, the frame handed to 68 * the driver from mac80211 is the MSDU, not the MPDU. 69 */ 70 71 /** 72 * DOC: mac80211 workqueue 73 * 74 * mac80211 provides its own workqueue for drivers and internal mac80211 use. 75 * The workqueue is a single threaded workqueue and can only be accessed by 76 * helpers for sanity checking. Drivers must ensure all work added onto the 77 * mac80211 workqueue should be cancelled on the driver stop() callback. 78 * 79 * mac80211 will flushed the workqueue upon interface removal and during 80 * suspend. 81 * 82 * All work performed on the mac80211 workqueue must not acquire the RTNL lock. 83 * 84 */ 85 86 struct device; 87 88 /** 89 * enum ieee80211_max_queues - maximum number of queues 90 * 91 * @IEEE80211_MAX_QUEUES: Maximum number of regular device queues. 92 * @IEEE80211_MAX_QUEUE_MAP: bitmap with maximum queues set 93 */ 94 enum ieee80211_max_queues { 95 IEEE80211_MAX_QUEUES = 16, 96 IEEE80211_MAX_QUEUE_MAP = BIT(IEEE80211_MAX_QUEUES) - 1, 97 }; 98 99 #define IEEE80211_INVAL_HW_QUEUE 0xff 100 101 /** 102 * enum ieee80211_ac_numbers - AC numbers as used in mac80211 103 * @IEEE80211_AC_VO: voice 104 * @IEEE80211_AC_VI: video 105 * @IEEE80211_AC_BE: best effort 106 * @IEEE80211_AC_BK: background 107 */ 108 enum ieee80211_ac_numbers { 109 IEEE80211_AC_VO = 0, 110 IEEE80211_AC_VI = 1, 111 IEEE80211_AC_BE = 2, 112 IEEE80211_AC_BK = 3, 113 }; 114 #define IEEE80211_NUM_ACS 4 115 116 /** 117 * struct ieee80211_tx_queue_params - transmit queue configuration 118 * 119 * The information provided in this structure is required for QoS 120 * transmit queue configuration. Cf. IEEE 802.11 7.3.2.29. 121 * 122 * @aifs: arbitration interframe space [0..255] 123 * @cw_min: minimum contention window [a value of the form 124 * 2^n-1 in the range 1..32767] 125 * @cw_max: maximum contention window [like @cw_min] 126 * @txop: maximum burst time in units of 32 usecs, 0 meaning disabled 127 * @acm: is mandatory admission control required for the access category 128 * @uapsd: is U-APSD mode enabled for the queue 129 */ 130 struct ieee80211_tx_queue_params { 131 u16 txop; 132 u16 cw_min; 133 u16 cw_max; 134 u8 aifs; 135 bool acm; 136 bool uapsd; 137 }; 138 139 struct ieee80211_low_level_stats { 140 unsigned int dot11ACKFailureCount; 141 unsigned int dot11RTSFailureCount; 142 unsigned int dot11FCSErrorCount; 143 unsigned int dot11RTSSuccessCount; 144 }; 145 146 /** 147 * enum ieee80211_chanctx_change - change flag for channel context 148 * @IEEE80211_CHANCTX_CHANGE_WIDTH: The channel width changed 149 * @IEEE80211_CHANCTX_CHANGE_RX_CHAINS: The number of RX chains changed 150 * @IEEE80211_CHANCTX_CHANGE_RADAR: radar detection flag changed 151 * @IEEE80211_CHANCTX_CHANGE_CHANNEL: switched to another operating channel, 152 * this is used only with channel switching with CSA 153 * @IEEE80211_CHANCTX_CHANGE_MIN_WIDTH: The min required channel width changed 154 */ 155 enum ieee80211_chanctx_change { 156 IEEE80211_CHANCTX_CHANGE_WIDTH = BIT(0), 157 IEEE80211_CHANCTX_CHANGE_RX_CHAINS = BIT(1), 158 IEEE80211_CHANCTX_CHANGE_RADAR = BIT(2), 159 IEEE80211_CHANCTX_CHANGE_CHANNEL = BIT(3), 160 IEEE80211_CHANCTX_CHANGE_MIN_WIDTH = BIT(4), 161 }; 162 163 /** 164 * struct ieee80211_chanctx_conf - channel context that vifs may be tuned to 165 * 166 * This is the driver-visible part. The ieee80211_chanctx 167 * that contains it is visible in mac80211 only. 168 * 169 * @def: the channel definition 170 * @min_def: the minimum channel definition currently required. 171 * @rx_chains_static: The number of RX chains that must always be 172 * active on the channel to receive MIMO transmissions 173 * @rx_chains_dynamic: The number of RX chains that must be enabled 174 * after RTS/CTS handshake to receive SMPS MIMO transmissions; 175 * this will always be >= @rx_chains_static. 176 * @radar_enabled: whether radar detection is enabled on this channel. 177 * @drv_priv: data area for driver use, will always be aligned to 178 * sizeof(void *), size is determined in hw information. 179 */ 180 struct ieee80211_chanctx_conf { 181 struct cfg80211_chan_def def; 182 struct cfg80211_chan_def min_def; 183 184 u8 rx_chains_static, rx_chains_dynamic; 185 186 bool radar_enabled; 187 188 u8 drv_priv[0] __aligned(sizeof(void *)); 189 }; 190 191 /** 192 * enum ieee80211_bss_change - BSS change notification flags 193 * 194 * These flags are used with the bss_info_changed() callback 195 * to indicate which BSS parameter changed. 196 * 197 * @BSS_CHANGED_ASSOC: association status changed (associated/disassociated), 198 * also implies a change in the AID. 199 * @BSS_CHANGED_ERP_CTS_PROT: CTS protection changed 200 * @BSS_CHANGED_ERP_PREAMBLE: preamble changed 201 * @BSS_CHANGED_ERP_SLOT: slot timing changed 202 * @BSS_CHANGED_HT: 802.11n parameters changed 203 * @BSS_CHANGED_BASIC_RATES: Basic rateset changed 204 * @BSS_CHANGED_BEACON_INT: Beacon interval changed 205 * @BSS_CHANGED_BSSID: BSSID changed, for whatever 206 * reason (IBSS and managed mode) 207 * @BSS_CHANGED_BEACON: Beacon data changed, retrieve 208 * new beacon (beaconing modes) 209 * @BSS_CHANGED_BEACON_ENABLED: Beaconing should be 210 * enabled/disabled (beaconing modes) 211 * @BSS_CHANGED_CQM: Connection quality monitor config changed 212 * @BSS_CHANGED_IBSS: IBSS join status changed 213 * @BSS_CHANGED_ARP_FILTER: Hardware ARP filter address list or state changed. 214 * @BSS_CHANGED_QOS: QoS for this association was enabled/disabled. Note 215 * that it is only ever disabled for station mode. 216 * @BSS_CHANGED_IDLE: Idle changed for this BSS/interface. 217 * @BSS_CHANGED_SSID: SSID changed for this BSS (AP and IBSS mode) 218 * @BSS_CHANGED_AP_PROBE_RESP: Probe Response changed for this BSS (AP mode) 219 * @BSS_CHANGED_PS: PS changed for this BSS (STA mode) 220 * @BSS_CHANGED_TXPOWER: TX power setting changed for this interface 221 * @BSS_CHANGED_P2P_PS: P2P powersave settings (CTWindow, opportunistic PS) 222 * changed (currently only in P2P client mode, GO mode will be later) 223 * @BSS_CHANGED_BEACON_INFO: Data from the AP's beacon became available: 224 * currently dtim_period only is under consideration. 225 * @BSS_CHANGED_BANDWIDTH: The bandwidth used by this interface changed, 226 * note that this is only called when it changes after the channel 227 * context had been assigned. 228 */ 229 enum ieee80211_bss_change { 230 BSS_CHANGED_ASSOC = 1<<0, 231 BSS_CHANGED_ERP_CTS_PROT = 1<<1, 232 BSS_CHANGED_ERP_PREAMBLE = 1<<2, 233 BSS_CHANGED_ERP_SLOT = 1<<3, 234 BSS_CHANGED_HT = 1<<4, 235 BSS_CHANGED_BASIC_RATES = 1<<5, 236 BSS_CHANGED_BEACON_INT = 1<<6, 237 BSS_CHANGED_BSSID = 1<<7, 238 BSS_CHANGED_BEACON = 1<<8, 239 BSS_CHANGED_BEACON_ENABLED = 1<<9, 240 BSS_CHANGED_CQM = 1<<10, 241 BSS_CHANGED_IBSS = 1<<11, 242 BSS_CHANGED_ARP_FILTER = 1<<12, 243 BSS_CHANGED_QOS = 1<<13, 244 BSS_CHANGED_IDLE = 1<<14, 245 BSS_CHANGED_SSID = 1<<15, 246 BSS_CHANGED_AP_PROBE_RESP = 1<<16, 247 BSS_CHANGED_PS = 1<<17, 248 BSS_CHANGED_TXPOWER = 1<<18, 249 BSS_CHANGED_P2P_PS = 1<<19, 250 BSS_CHANGED_BEACON_INFO = 1<<20, 251 BSS_CHANGED_BANDWIDTH = 1<<21, 252 253 /* when adding here, make sure to change ieee80211_reconfig */ 254 }; 255 256 /* 257 * The maximum number of IPv4 addresses listed for ARP filtering. If the number 258 * of addresses for an interface increase beyond this value, hardware ARP 259 * filtering will be disabled. 260 */ 261 #define IEEE80211_BSS_ARP_ADDR_LIST_LEN 4 262 263 /** 264 * enum ieee80211_rssi_event - RSSI threshold event 265 * An indicator for when RSSI goes below/above a certain threshold. 266 * @RSSI_EVENT_HIGH: AP's rssi crossed the high threshold set by the driver. 267 * @RSSI_EVENT_LOW: AP's rssi crossed the low threshold set by the driver. 268 */ 269 enum ieee80211_rssi_event { 270 RSSI_EVENT_HIGH, 271 RSSI_EVENT_LOW, 272 }; 273 274 /** 275 * struct ieee80211_bss_conf - holds the BSS's changing parameters 276 * 277 * This structure keeps information about a BSS (and an association 278 * to that BSS) that can change during the lifetime of the BSS. 279 * 280 * @assoc: association status 281 * @ibss_joined: indicates whether this station is part of an IBSS 282 * or not 283 * @ibss_creator: indicates if a new IBSS network is being created 284 * @aid: association ID number, valid only when @assoc is true 285 * @use_cts_prot: use CTS protection 286 * @use_short_preamble: use 802.11b short preamble; 287 * if the hardware cannot handle this it must set the 288 * IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE hardware flag 289 * @use_short_slot: use short slot time (only relevant for ERP); 290 * if the hardware cannot handle this it must set the 291 * IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE hardware flag 292 * @dtim_period: num of beacons before the next DTIM, for beaconing, 293 * valid in station mode only if after the driver was notified 294 * with the %BSS_CHANGED_BEACON_INFO flag, will be non-zero then. 295 * @sync_tsf: last beacon's/probe response's TSF timestamp (could be old 296 * as it may have been received during scanning long ago). If the 297 * HW flag %IEEE80211_HW_TIMING_BEACON_ONLY is set, then this can 298 * only come from a beacon, but might not become valid until after 299 * association when a beacon is received (which is notified with the 300 * %BSS_CHANGED_DTIM flag.) 301 * @sync_device_ts: the device timestamp corresponding to the sync_tsf, 302 * the driver/device can use this to calculate synchronisation 303 * (see @sync_tsf) 304 * @sync_dtim_count: Only valid when %IEEE80211_HW_TIMING_BEACON_ONLY 305 * is requested, see @sync_tsf/@sync_device_ts. 306 * @beacon_int: beacon interval 307 * @assoc_capability: capabilities taken from assoc resp 308 * @basic_rates: bitmap of basic rates, each bit stands for an 309 * index into the rate table configured by the driver in 310 * the current band. 311 * @beacon_rate: associated AP's beacon TX rate 312 * @mcast_rate: per-band multicast rate index + 1 (0: disabled) 313 * @bssid: The BSSID for this BSS 314 * @enable_beacon: whether beaconing should be enabled or not 315 * @chandef: Channel definition for this BSS -- the hardware might be 316 * configured a higher bandwidth than this BSS uses, for example. 317 * @ht_operation_mode: HT operation mode like in &struct ieee80211_ht_operation. 318 * This field is only valid when the channel type is one of the HT types. 319 * @cqm_rssi_thold: Connection quality monitor RSSI threshold, a zero value 320 * implies disabled 321 * @cqm_rssi_hyst: Connection quality monitor RSSI hysteresis 322 * @arp_addr_list: List of IPv4 addresses for hardware ARP filtering. The 323 * may filter ARP queries targeted for other addresses than listed here. 324 * The driver must allow ARP queries targeted for all address listed here 325 * to pass through. An empty list implies no ARP queries need to pass. 326 * @arp_addr_cnt: Number of addresses currently on the list. Note that this 327 * may be larger than %IEEE80211_BSS_ARP_ADDR_LIST_LEN (the arp_addr_list 328 * array size), it's up to the driver what to do in that case. 329 * @qos: This is a QoS-enabled BSS. 330 * @idle: This interface is idle. There's also a global idle flag in the 331 * hardware config which may be more appropriate depending on what 332 * your driver/device needs to do. 333 * @ps: power-save mode (STA only). This flag is NOT affected by 334 * offchannel/dynamic_ps operations. 335 * @ssid: The SSID of the current vif. Valid in AP and IBSS mode. 336 * @ssid_len: Length of SSID given in @ssid. 337 * @hidden_ssid: The SSID of the current vif is hidden. Only valid in AP-mode. 338 * @txpower: TX power in dBm 339 * @p2p_noa_attr: P2P NoA attribute for P2P powersave 340 */ 341 struct ieee80211_bss_conf { 342 const u8 *bssid; 343 /* association related data */ 344 bool assoc, ibss_joined; 345 bool ibss_creator; 346 u16 aid; 347 /* erp related data */ 348 bool use_cts_prot; 349 bool use_short_preamble; 350 bool use_short_slot; 351 bool enable_beacon; 352 u8 dtim_period; 353 u16 beacon_int; 354 u16 assoc_capability; 355 u64 sync_tsf; 356 u32 sync_device_ts; 357 u8 sync_dtim_count; 358 u32 basic_rates; 359 struct ieee80211_rate *beacon_rate; 360 int mcast_rate[IEEE80211_NUM_BANDS]; 361 u16 ht_operation_mode; 362 s32 cqm_rssi_thold; 363 u32 cqm_rssi_hyst; 364 struct cfg80211_chan_def chandef; 365 __be32 arp_addr_list[IEEE80211_BSS_ARP_ADDR_LIST_LEN]; 366 int arp_addr_cnt; 367 bool qos; 368 bool idle; 369 bool ps; 370 u8 ssid[IEEE80211_MAX_SSID_LEN]; 371 size_t ssid_len; 372 bool hidden_ssid; 373 int txpower; 374 struct ieee80211_p2p_noa_attr p2p_noa_attr; 375 }; 376 377 /** 378 * enum mac80211_tx_info_flags - flags to describe transmission information/status 379 * 380 * These flags are used with the @flags member of &ieee80211_tx_info. 381 * 382 * @IEEE80211_TX_CTL_REQ_TX_STATUS: require TX status callback for this frame. 383 * @IEEE80211_TX_CTL_ASSIGN_SEQ: The driver has to assign a sequence 384 * number to this frame, taking care of not overwriting the fragment 385 * number and increasing the sequence number only when the 386 * IEEE80211_TX_CTL_FIRST_FRAGMENT flag is set. mac80211 will properly 387 * assign sequence numbers to QoS-data frames but cannot do so correctly 388 * for non-QoS-data and management frames because beacons need them from 389 * that counter as well and mac80211 cannot guarantee proper sequencing. 390 * If this flag is set, the driver should instruct the hardware to 391 * assign a sequence number to the frame or assign one itself. Cf. IEEE 392 * 802.11-2007 7.1.3.4.1 paragraph 3. This flag will always be set for 393 * beacons and always be clear for frames without a sequence number field. 394 * @IEEE80211_TX_CTL_NO_ACK: tell the low level not to wait for an ack 395 * @IEEE80211_TX_CTL_CLEAR_PS_FILT: clear powersave filter for destination 396 * station 397 * @IEEE80211_TX_CTL_FIRST_FRAGMENT: this is a first fragment of the frame 398 * @IEEE80211_TX_CTL_SEND_AFTER_DTIM: send this frame after DTIM beacon 399 * @IEEE80211_TX_CTL_AMPDU: this frame should be sent as part of an A-MPDU 400 * @IEEE80211_TX_CTL_INJECTED: Frame was injected, internal to mac80211. 401 * @IEEE80211_TX_STAT_TX_FILTERED: The frame was not transmitted 402 * because the destination STA was in powersave mode. Note that to 403 * avoid race conditions, the filter must be set by the hardware or 404 * firmware upon receiving a frame that indicates that the station 405 * went to sleep (must be done on device to filter frames already on 406 * the queue) and may only be unset after mac80211 gives the OK for 407 * that by setting the IEEE80211_TX_CTL_CLEAR_PS_FILT (see above), 408 * since only then is it guaranteed that no more frames are in the 409 * hardware queue. 410 * @IEEE80211_TX_STAT_ACK: Frame was acknowledged 411 * @IEEE80211_TX_STAT_AMPDU: The frame was aggregated, so status 412 * is for the whole aggregation. 413 * @IEEE80211_TX_STAT_AMPDU_NO_BACK: no block ack was returned, 414 * so consider using block ack request (BAR). 415 * @IEEE80211_TX_CTL_RATE_CTRL_PROBE: internal to mac80211, can be 416 * set by rate control algorithms to indicate probe rate, will 417 * be cleared for fragmented frames (except on the last fragment) 418 * @IEEE80211_TX_INTFL_OFFCHAN_TX_OK: Internal to mac80211. Used to indicate 419 * that a frame can be transmitted while the queues are stopped for 420 * off-channel operation. 421 * @IEEE80211_TX_INTFL_NEED_TXPROCESSING: completely internal to mac80211, 422 * used to indicate that a pending frame requires TX processing before 423 * it can be sent out. 424 * @IEEE80211_TX_INTFL_RETRIED: completely internal to mac80211, 425 * used to indicate that a frame was already retried due to PS 426 * @IEEE80211_TX_INTFL_DONT_ENCRYPT: completely internal to mac80211, 427 * used to indicate frame should not be encrypted 428 * @IEEE80211_TX_CTL_NO_PS_BUFFER: This frame is a response to a poll 429 * frame (PS-Poll or uAPSD) or a non-bufferable MMPDU and must 430 * be sent although the station is in powersave mode. 431 * @IEEE80211_TX_CTL_MORE_FRAMES: More frames will be passed to the 432 * transmit function after the current frame, this can be used 433 * by drivers to kick the DMA queue only if unset or when the 434 * queue gets full. 435 * @IEEE80211_TX_INTFL_RETRANSMISSION: This frame is being retransmitted 436 * after TX status because the destination was asleep, it must not 437 * be modified again (no seqno assignment, crypto, etc.) 438 * @IEEE80211_TX_INTFL_MLME_CONN_TX: This frame was transmitted by the MLME 439 * code for connection establishment, this indicates that its status 440 * should kick the MLME state machine. 441 * @IEEE80211_TX_INTFL_NL80211_FRAME_TX: Frame was requested through nl80211 442 * MLME command (internal to mac80211 to figure out whether to send TX 443 * status to user space) 444 * @IEEE80211_TX_CTL_LDPC: tells the driver to use LDPC for this frame 445 * @IEEE80211_TX_CTL_STBC: Enables Space-Time Block Coding (STBC) for this 446 * frame and selects the maximum number of streams that it can use. 447 * @IEEE80211_TX_CTL_TX_OFFCHAN: Marks this packet to be transmitted on 448 * the off-channel channel when a remain-on-channel offload is done 449 * in hardware -- normal packets still flow and are expected to be 450 * handled properly by the device. 451 * @IEEE80211_TX_INTFL_TKIP_MIC_FAILURE: Marks this packet to be used for TKIP 452 * testing. It will be sent out with incorrect Michael MIC key to allow 453 * TKIP countermeasures to be tested. 454 * @IEEE80211_TX_CTL_NO_CCK_RATE: This frame will be sent at non CCK rate. 455 * This flag is actually used for management frame especially for P2P 456 * frames not being sent at CCK rate in 2GHz band. 457 * @IEEE80211_TX_STATUS_EOSP: This packet marks the end of service period, 458 * when its status is reported the service period ends. For frames in 459 * an SP that mac80211 transmits, it is already set; for driver frames 460 * the driver may set this flag. It is also used to do the same for 461 * PS-Poll responses. 462 * @IEEE80211_TX_CTL_USE_MINRATE: This frame will be sent at lowest rate. 463 * This flag is used to send nullfunc frame at minimum rate when 464 * the nullfunc is used for connection monitoring purpose. 465 * @IEEE80211_TX_CTL_DONTFRAG: Don't fragment this packet even if it 466 * would be fragmented by size (this is optional, only used for 467 * monitor injection). 468 * @IEEE80211_TX_CTL_PS_RESPONSE: This frame is a response to a poll 469 * frame (PS-Poll or uAPSD). 470 * 471 * Note: If you have to add new flags to the enumeration, then don't 472 * forget to update %IEEE80211_TX_TEMPORARY_FLAGS when necessary. 473 */ 474 enum mac80211_tx_info_flags { 475 IEEE80211_TX_CTL_REQ_TX_STATUS = BIT(0), 476 IEEE80211_TX_CTL_ASSIGN_SEQ = BIT(1), 477 IEEE80211_TX_CTL_NO_ACK = BIT(2), 478 IEEE80211_TX_CTL_CLEAR_PS_FILT = BIT(3), 479 IEEE80211_TX_CTL_FIRST_FRAGMENT = BIT(4), 480 IEEE80211_TX_CTL_SEND_AFTER_DTIM = BIT(5), 481 IEEE80211_TX_CTL_AMPDU = BIT(6), 482 IEEE80211_TX_CTL_INJECTED = BIT(7), 483 IEEE80211_TX_STAT_TX_FILTERED = BIT(8), 484 IEEE80211_TX_STAT_ACK = BIT(9), 485 IEEE80211_TX_STAT_AMPDU = BIT(10), 486 IEEE80211_TX_STAT_AMPDU_NO_BACK = BIT(11), 487 IEEE80211_TX_CTL_RATE_CTRL_PROBE = BIT(12), 488 IEEE80211_TX_INTFL_OFFCHAN_TX_OK = BIT(13), 489 IEEE80211_TX_INTFL_NEED_TXPROCESSING = BIT(14), 490 IEEE80211_TX_INTFL_RETRIED = BIT(15), 491 IEEE80211_TX_INTFL_DONT_ENCRYPT = BIT(16), 492 IEEE80211_TX_CTL_NO_PS_BUFFER = BIT(17), 493 IEEE80211_TX_CTL_MORE_FRAMES = BIT(18), 494 IEEE80211_TX_INTFL_RETRANSMISSION = BIT(19), 495 IEEE80211_TX_INTFL_MLME_CONN_TX = BIT(20), 496 IEEE80211_TX_INTFL_NL80211_FRAME_TX = BIT(21), 497 IEEE80211_TX_CTL_LDPC = BIT(22), 498 IEEE80211_TX_CTL_STBC = BIT(23) | BIT(24), 499 IEEE80211_TX_CTL_TX_OFFCHAN = BIT(25), 500 IEEE80211_TX_INTFL_TKIP_MIC_FAILURE = BIT(26), 501 IEEE80211_TX_CTL_NO_CCK_RATE = BIT(27), 502 IEEE80211_TX_STATUS_EOSP = BIT(28), 503 IEEE80211_TX_CTL_USE_MINRATE = BIT(29), 504 IEEE80211_TX_CTL_DONTFRAG = BIT(30), 505 IEEE80211_TX_CTL_PS_RESPONSE = BIT(31), 506 }; 507 508 #define IEEE80211_TX_CTL_STBC_SHIFT 23 509 510 /** 511 * enum mac80211_tx_control_flags - flags to describe transmit control 512 * 513 * @IEEE80211_TX_CTRL_PORT_CTRL_PROTO: this frame is a port control 514 * protocol frame (e.g. EAP) 515 * 516 * These flags are used in tx_info->control.flags. 517 */ 518 enum mac80211_tx_control_flags { 519 IEEE80211_TX_CTRL_PORT_CTRL_PROTO = BIT(0), 520 }; 521 522 /* 523 * This definition is used as a mask to clear all temporary flags, which are 524 * set by the tx handlers for each transmission attempt by the mac80211 stack. 525 */ 526 #define IEEE80211_TX_TEMPORARY_FLAGS (IEEE80211_TX_CTL_NO_ACK | \ 527 IEEE80211_TX_CTL_CLEAR_PS_FILT | IEEE80211_TX_CTL_FIRST_FRAGMENT | \ 528 IEEE80211_TX_CTL_SEND_AFTER_DTIM | IEEE80211_TX_CTL_AMPDU | \ 529 IEEE80211_TX_STAT_TX_FILTERED | IEEE80211_TX_STAT_ACK | \ 530 IEEE80211_TX_STAT_AMPDU | IEEE80211_TX_STAT_AMPDU_NO_BACK | \ 531 IEEE80211_TX_CTL_RATE_CTRL_PROBE | IEEE80211_TX_CTL_NO_PS_BUFFER | \ 532 IEEE80211_TX_CTL_MORE_FRAMES | IEEE80211_TX_CTL_LDPC | \ 533 IEEE80211_TX_CTL_STBC | IEEE80211_TX_STATUS_EOSP) 534 535 /** 536 * enum mac80211_rate_control_flags - per-rate flags set by the 537 * Rate Control algorithm. 538 * 539 * These flags are set by the Rate control algorithm for each rate during tx, 540 * in the @flags member of struct ieee80211_tx_rate. 541 * 542 * @IEEE80211_TX_RC_USE_RTS_CTS: Use RTS/CTS exchange for this rate. 543 * @IEEE80211_TX_RC_USE_CTS_PROTECT: CTS-to-self protection is required. 544 * This is set if the current BSS requires ERP protection. 545 * @IEEE80211_TX_RC_USE_SHORT_PREAMBLE: Use short preamble. 546 * @IEEE80211_TX_RC_MCS: HT rate. 547 * @IEEE80211_TX_RC_VHT_MCS: VHT MCS rate, in this case the idx field is split 548 * into a higher 4 bits (Nss) and lower 4 bits (MCS number) 549 * @IEEE80211_TX_RC_GREEN_FIELD: Indicates whether this rate should be used in 550 * Greenfield mode. 551 * @IEEE80211_TX_RC_40_MHZ_WIDTH: Indicates if the Channel Width should be 40 MHz. 552 * @IEEE80211_TX_RC_80_MHZ_WIDTH: Indicates 80 MHz transmission 553 * @IEEE80211_TX_RC_160_MHZ_WIDTH: Indicates 160 MHz transmission 554 * (80+80 isn't supported yet) 555 * @IEEE80211_TX_RC_DUP_DATA: The frame should be transmitted on both of the 556 * adjacent 20 MHz channels, if the current channel type is 557 * NL80211_CHAN_HT40MINUS or NL80211_CHAN_HT40PLUS. 558 * @IEEE80211_TX_RC_SHORT_GI: Short Guard interval should be used for this rate. 559 */ 560 enum mac80211_rate_control_flags { 561 IEEE80211_TX_RC_USE_RTS_CTS = BIT(0), 562 IEEE80211_TX_RC_USE_CTS_PROTECT = BIT(1), 563 IEEE80211_TX_RC_USE_SHORT_PREAMBLE = BIT(2), 564 565 /* rate index is an HT/VHT MCS instead of an index */ 566 IEEE80211_TX_RC_MCS = BIT(3), 567 IEEE80211_TX_RC_GREEN_FIELD = BIT(4), 568 IEEE80211_TX_RC_40_MHZ_WIDTH = BIT(5), 569 IEEE80211_TX_RC_DUP_DATA = BIT(6), 570 IEEE80211_TX_RC_SHORT_GI = BIT(7), 571 IEEE80211_TX_RC_VHT_MCS = BIT(8), 572 IEEE80211_TX_RC_80_MHZ_WIDTH = BIT(9), 573 IEEE80211_TX_RC_160_MHZ_WIDTH = BIT(10), 574 }; 575 576 577 /* there are 40 bytes if you don't need the rateset to be kept */ 578 #define IEEE80211_TX_INFO_DRIVER_DATA_SIZE 40 579 580 /* if you do need the rateset, then you have less space */ 581 #define IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE 24 582 583 /* maximum number of rate stages */ 584 #define IEEE80211_TX_MAX_RATES 4 585 586 /* maximum number of rate table entries */ 587 #define IEEE80211_TX_RATE_TABLE_SIZE 4 588 589 /** 590 * struct ieee80211_tx_rate - rate selection/status 591 * 592 * @idx: rate index to attempt to send with 593 * @flags: rate control flags (&enum mac80211_rate_control_flags) 594 * @count: number of tries in this rate before going to the next rate 595 * 596 * A value of -1 for @idx indicates an invalid rate and, if used 597 * in an array of retry rates, that no more rates should be tried. 598 * 599 * When used for transmit status reporting, the driver should 600 * always report the rate along with the flags it used. 601 * 602 * &struct ieee80211_tx_info contains an array of these structs 603 * in the control information, and it will be filled by the rate 604 * control algorithm according to what should be sent. For example, 605 * if this array contains, in the format { <idx>, <count> } the 606 * information 607 * { 3, 2 }, { 2, 2 }, { 1, 4 }, { -1, 0 }, { -1, 0 } 608 * then this means that the frame should be transmitted 609 * up to twice at rate 3, up to twice at rate 2, and up to four 610 * times at rate 1 if it doesn't get acknowledged. Say it gets 611 * acknowledged by the peer after the fifth attempt, the status 612 * information should then contain 613 * { 3, 2 }, { 2, 2 }, { 1, 1 }, { -1, 0 } ... 614 * since it was transmitted twice at rate 3, twice at rate 2 615 * and once at rate 1 after which we received an acknowledgement. 616 */ 617 struct ieee80211_tx_rate { 618 s8 idx; 619 u16 count:5, 620 flags:11; 621 } __packed; 622 623 #define IEEE80211_MAX_TX_RETRY 31 624 625 static inline void ieee80211_rate_set_vht(struct ieee80211_tx_rate *rate, 626 u8 mcs, u8 nss) 627 { 628 WARN_ON(mcs & ~0xF); 629 WARN_ON((nss - 1) & ~0x7); 630 rate->idx = ((nss - 1) << 4) | mcs; 631 } 632 633 static inline u8 634 ieee80211_rate_get_vht_mcs(const struct ieee80211_tx_rate *rate) 635 { 636 return rate->idx & 0xF; 637 } 638 639 static inline u8 640 ieee80211_rate_get_vht_nss(const struct ieee80211_tx_rate *rate) 641 { 642 return (rate->idx >> 4) + 1; 643 } 644 645 /** 646 * struct ieee80211_tx_info - skb transmit information 647 * 648 * This structure is placed in skb->cb for three uses: 649 * (1) mac80211 TX control - mac80211 tells the driver what to do 650 * (2) driver internal use (if applicable) 651 * (3) TX status information - driver tells mac80211 what happened 652 * 653 * @flags: transmit info flags, defined above 654 * @band: the band to transmit on (use for checking for races) 655 * @hw_queue: HW queue to put the frame on, skb_get_queue_mapping() gives the AC 656 * @ack_frame_id: internal frame ID for TX status, used internally 657 * @control: union for control data 658 * @status: union for status data 659 * @driver_data: array of driver_data pointers 660 * @ampdu_ack_len: number of acked aggregated frames. 661 * relevant only if IEEE80211_TX_STAT_AMPDU was set. 662 * @ampdu_len: number of aggregated frames. 663 * relevant only if IEEE80211_TX_STAT_AMPDU was set. 664 * @ack_signal: signal strength of the ACK frame 665 */ 666 struct ieee80211_tx_info { 667 /* common information */ 668 u32 flags; 669 u8 band; 670 671 u8 hw_queue; 672 673 u16 ack_frame_id; 674 675 union { 676 struct { 677 union { 678 /* rate control */ 679 struct { 680 struct ieee80211_tx_rate rates[ 681 IEEE80211_TX_MAX_RATES]; 682 s8 rts_cts_rate_idx; 683 u8 use_rts:1; 684 u8 use_cts_prot:1; 685 u8 short_preamble:1; 686 u8 skip_table:1; 687 /* 2 bytes free */ 688 }; 689 /* only needed before rate control */ 690 unsigned long jiffies; 691 }; 692 /* NB: vif can be NULL for injected frames */ 693 struct ieee80211_vif *vif; 694 struct ieee80211_key_conf *hw_key; 695 u32 flags; 696 /* 4 bytes free */ 697 } control; 698 struct { 699 struct ieee80211_tx_rate rates[IEEE80211_TX_MAX_RATES]; 700 s32 ack_signal; 701 u8 ampdu_ack_len; 702 u8 ampdu_len; 703 u8 antenna; 704 void *status_driver_data[21 / sizeof(void *)]; 705 } status; 706 struct { 707 struct ieee80211_tx_rate driver_rates[ 708 IEEE80211_TX_MAX_RATES]; 709 u8 pad[4]; 710 711 void *rate_driver_data[ 712 IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE / sizeof(void *)]; 713 }; 714 void *driver_data[ 715 IEEE80211_TX_INFO_DRIVER_DATA_SIZE / sizeof(void *)]; 716 }; 717 }; 718 719 /** 720 * struct ieee80211_sched_scan_ies - scheduled scan IEs 721 * 722 * This structure is used to pass the appropriate IEs to be used in scheduled 723 * scans for all bands. It contains both the IEs passed from the userspace 724 * and the ones generated by mac80211. 725 * 726 * @ie: array with the IEs for each supported band 727 * @len: array with the total length of the IEs for each band 728 */ 729 struct ieee80211_sched_scan_ies { 730 u8 *ie[IEEE80211_NUM_BANDS]; 731 size_t len[IEEE80211_NUM_BANDS]; 732 }; 733 734 static inline struct ieee80211_tx_info *IEEE80211_SKB_CB(struct sk_buff *skb) 735 { 736 return (struct ieee80211_tx_info *)skb->cb; 737 } 738 739 static inline struct ieee80211_rx_status *IEEE80211_SKB_RXCB(struct sk_buff *skb) 740 { 741 return (struct ieee80211_rx_status *)skb->cb; 742 } 743 744 /** 745 * ieee80211_tx_info_clear_status - clear TX status 746 * 747 * @info: The &struct ieee80211_tx_info to be cleared. 748 * 749 * When the driver passes an skb back to mac80211, it must report 750 * a number of things in TX status. This function clears everything 751 * in the TX status but the rate control information (it does clear 752 * the count since you need to fill that in anyway). 753 * 754 * NOTE: You can only use this function if you do NOT use 755 * info->driver_data! Use info->rate_driver_data 756 * instead if you need only the less space that allows. 757 */ 758 static inline void 759 ieee80211_tx_info_clear_status(struct ieee80211_tx_info *info) 760 { 761 int i; 762 763 BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) != 764 offsetof(struct ieee80211_tx_info, control.rates)); 765 BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) != 766 offsetof(struct ieee80211_tx_info, driver_rates)); 767 BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) != 8); 768 /* clear the rate counts */ 769 for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) 770 info->status.rates[i].count = 0; 771 772 BUILD_BUG_ON( 773 offsetof(struct ieee80211_tx_info, status.ack_signal) != 20); 774 memset(&info->status.ampdu_ack_len, 0, 775 sizeof(struct ieee80211_tx_info) - 776 offsetof(struct ieee80211_tx_info, status.ampdu_ack_len)); 777 } 778 779 780 /** 781 * enum mac80211_rx_flags - receive flags 782 * 783 * These flags are used with the @flag member of &struct ieee80211_rx_status. 784 * @RX_FLAG_MMIC_ERROR: Michael MIC error was reported on this frame. 785 * Use together with %RX_FLAG_MMIC_STRIPPED. 786 * @RX_FLAG_DECRYPTED: This frame was decrypted in hardware. 787 * @RX_FLAG_MMIC_STRIPPED: the Michael MIC is stripped off this frame, 788 * verification has been done by the hardware. 789 * @RX_FLAG_IV_STRIPPED: The IV/ICV are stripped from this frame. 790 * If this flag is set, the stack cannot do any replay detection 791 * hence the driver or hardware will have to do that. 792 * @RX_FLAG_FAILED_FCS_CRC: Set this flag if the FCS check failed on 793 * the frame. 794 * @RX_FLAG_FAILED_PLCP_CRC: Set this flag if the PCLP check failed on 795 * the frame. 796 * @RX_FLAG_MACTIME_START: The timestamp passed in the RX status (@mactime 797 * field) is valid and contains the time the first symbol of the MPDU 798 * was received. This is useful in monitor mode and for proper IBSS 799 * merging. 800 * @RX_FLAG_MACTIME_END: The timestamp passed in the RX status (@mactime 801 * field) is valid and contains the time the last symbol of the MPDU 802 * (including FCS) was received. 803 * @RX_FLAG_SHORTPRE: Short preamble was used for this frame 804 * @RX_FLAG_HT: HT MCS was used and rate_idx is MCS index 805 * @RX_FLAG_VHT: VHT MCS was used and rate_index is MCS index 806 * @RX_FLAG_40MHZ: HT40 (40 MHz) was used 807 * @RX_FLAG_SHORT_GI: Short guard interval was used 808 * @RX_FLAG_NO_SIGNAL_VAL: The signal strength value is not present. 809 * Valid only for data frames (mainly A-MPDU) 810 * @RX_FLAG_HT_GF: This frame was received in a HT-greenfield transmission, if 811 * the driver fills this value it should add %IEEE80211_RADIOTAP_MCS_HAVE_FMT 812 * to hw.radiotap_mcs_details to advertise that fact 813 * @RX_FLAG_AMPDU_DETAILS: A-MPDU details are known, in particular the reference 814 * number (@ampdu_reference) must be populated and be a distinct number for 815 * each A-MPDU 816 * @RX_FLAG_AMPDU_REPORT_ZEROLEN: driver reports 0-length subframes 817 * @RX_FLAG_AMPDU_IS_ZEROLEN: This is a zero-length subframe, for 818 * monitoring purposes only 819 * @RX_FLAG_AMPDU_LAST_KNOWN: last subframe is known, should be set on all 820 * subframes of a single A-MPDU 821 * @RX_FLAG_AMPDU_IS_LAST: this subframe is the last subframe of the A-MPDU 822 * @RX_FLAG_AMPDU_DELIM_CRC_ERROR: A delimiter CRC error has been detected 823 * on this subframe 824 * @RX_FLAG_AMPDU_DELIM_CRC_KNOWN: The delimiter CRC field is known (the CRC 825 * is stored in the @ampdu_delimiter_crc field) 826 * @RX_FLAG_LDPC: LDPC was used 827 * @RX_FLAG_STBC_MASK: STBC 2 bit bitmask. 1 - Nss=1, 2 - Nss=2, 3 - Nss=3 828 * @RX_FLAG_10MHZ: 10 MHz (half channel) was used 829 * @RX_FLAG_5MHZ: 5 MHz (quarter channel) was used 830 * @RX_FLAG_AMSDU_MORE: Some drivers may prefer to report separate A-MSDU 831 * subframes instead of a one huge frame for performance reasons. 832 * All, but the last MSDU from an A-MSDU should have this flag set. E.g. 833 * if an A-MSDU has 3 frames, the first 2 must have the flag set, while 834 * the 3rd (last) one must not have this flag set. The flag is used to 835 * deal with retransmission/duplication recovery properly since A-MSDU 836 * subframes share the same sequence number. Reported subframes can be 837 * either regular MSDU or singly A-MSDUs. Subframes must not be 838 * interleaved with other frames. 839 */ 840 enum mac80211_rx_flags { 841 RX_FLAG_MMIC_ERROR = BIT(0), 842 RX_FLAG_DECRYPTED = BIT(1), 843 RX_FLAG_MMIC_STRIPPED = BIT(3), 844 RX_FLAG_IV_STRIPPED = BIT(4), 845 RX_FLAG_FAILED_FCS_CRC = BIT(5), 846 RX_FLAG_FAILED_PLCP_CRC = BIT(6), 847 RX_FLAG_MACTIME_START = BIT(7), 848 RX_FLAG_SHORTPRE = BIT(8), 849 RX_FLAG_HT = BIT(9), 850 RX_FLAG_40MHZ = BIT(10), 851 RX_FLAG_SHORT_GI = BIT(11), 852 RX_FLAG_NO_SIGNAL_VAL = BIT(12), 853 RX_FLAG_HT_GF = BIT(13), 854 RX_FLAG_AMPDU_DETAILS = BIT(14), 855 RX_FLAG_AMPDU_REPORT_ZEROLEN = BIT(15), 856 RX_FLAG_AMPDU_IS_ZEROLEN = BIT(16), 857 RX_FLAG_AMPDU_LAST_KNOWN = BIT(17), 858 RX_FLAG_AMPDU_IS_LAST = BIT(18), 859 RX_FLAG_AMPDU_DELIM_CRC_ERROR = BIT(19), 860 RX_FLAG_AMPDU_DELIM_CRC_KNOWN = BIT(20), 861 RX_FLAG_MACTIME_END = BIT(21), 862 RX_FLAG_VHT = BIT(22), 863 RX_FLAG_LDPC = BIT(23), 864 RX_FLAG_STBC_MASK = BIT(26) | BIT(27), 865 RX_FLAG_10MHZ = BIT(28), 866 RX_FLAG_5MHZ = BIT(29), 867 RX_FLAG_AMSDU_MORE = BIT(30), 868 }; 869 870 #define RX_FLAG_STBC_SHIFT 26 871 872 /** 873 * enum mac80211_rx_vht_flags - receive VHT flags 874 * 875 * These flags are used with the @vht_flag member of 876 * &struct ieee80211_rx_status. 877 * @RX_VHT_FLAG_80MHZ: 80 MHz was used 878 * @RX_VHT_FLAG_80P80MHZ: 80+80 MHz was used 879 * @RX_VHT_FLAG_160MHZ: 160 MHz was used 880 * @RX_VHT_FLAG_BF: packet was beamformed 881 */ 882 enum mac80211_rx_vht_flags { 883 RX_VHT_FLAG_80MHZ = BIT(0), 884 RX_VHT_FLAG_80P80MHZ = BIT(1), 885 RX_VHT_FLAG_160MHZ = BIT(2), 886 RX_VHT_FLAG_BF = BIT(3), 887 }; 888 889 /** 890 * struct ieee80211_rx_status - receive status 891 * 892 * The low-level driver should provide this information (the subset 893 * supported by hardware) to the 802.11 code with each received 894 * frame, in the skb's control buffer (cb). 895 * 896 * @mactime: value in microseconds of the 64-bit Time Synchronization Function 897 * (TSF) timer when the first data symbol (MPDU) arrived at the hardware. 898 * @device_timestamp: arbitrary timestamp for the device, mac80211 doesn't use 899 * it but can store it and pass it back to the driver for synchronisation 900 * @band: the active band when this frame was received 901 * @freq: frequency the radio was tuned to when receiving this frame, in MHz 902 * @signal: signal strength when receiving this frame, either in dBm, in dB or 903 * unspecified depending on the hardware capabilities flags 904 * @IEEE80211_HW_SIGNAL_* 905 * @chains: bitmask of receive chains for which separate signal strength 906 * values were filled. 907 * @chain_signal: per-chain signal strength, in dBm (unlike @signal, doesn't 908 * support dB or unspecified units) 909 * @antenna: antenna used 910 * @rate_idx: index of data rate into band's supported rates or MCS index if 911 * HT or VHT is used (%RX_FLAG_HT/%RX_FLAG_VHT) 912 * @vht_nss: number of streams (VHT only) 913 * @flag: %RX_FLAG_* 914 * @vht_flag: %RX_VHT_FLAG_* 915 * @rx_flags: internal RX flags for mac80211 916 * @ampdu_reference: A-MPDU reference number, must be a different value for 917 * each A-MPDU but the same for each subframe within one A-MPDU 918 * @ampdu_delimiter_crc: A-MPDU delimiter CRC 919 */ 920 struct ieee80211_rx_status { 921 u64 mactime; 922 u32 device_timestamp; 923 u32 ampdu_reference; 924 u32 flag; 925 u16 freq; 926 u8 vht_flag; 927 u8 rate_idx; 928 u8 vht_nss; 929 u8 rx_flags; 930 u8 band; 931 u8 antenna; 932 s8 signal; 933 u8 chains; 934 s8 chain_signal[IEEE80211_MAX_CHAINS]; 935 u8 ampdu_delimiter_crc; 936 }; 937 938 /** 939 * enum ieee80211_conf_flags - configuration flags 940 * 941 * Flags to define PHY configuration options 942 * 943 * @IEEE80211_CONF_MONITOR: there's a monitor interface present -- use this 944 * to determine for example whether to calculate timestamps for packets 945 * or not, do not use instead of filter flags! 946 * @IEEE80211_CONF_PS: Enable 802.11 power save mode (managed mode only). 947 * This is the power save mode defined by IEEE 802.11-2007 section 11.2, 948 * meaning that the hardware still wakes up for beacons, is able to 949 * transmit frames and receive the possible acknowledgment frames. 950 * Not to be confused with hardware specific wakeup/sleep states, 951 * driver is responsible for that. See the section "Powersave support" 952 * for more. 953 * @IEEE80211_CONF_IDLE: The device is running, but idle; if the flag is set 954 * the driver should be prepared to handle configuration requests but 955 * may turn the device off as much as possible. Typically, this flag will 956 * be set when an interface is set UP but not associated or scanning, but 957 * it can also be unset in that case when monitor interfaces are active. 958 * @IEEE80211_CONF_OFFCHANNEL: The device is currently not on its main 959 * operating channel. 960 */ 961 enum ieee80211_conf_flags { 962 IEEE80211_CONF_MONITOR = (1<<0), 963 IEEE80211_CONF_PS = (1<<1), 964 IEEE80211_CONF_IDLE = (1<<2), 965 IEEE80211_CONF_OFFCHANNEL = (1<<3), 966 }; 967 968 969 /** 970 * enum ieee80211_conf_changed - denotes which configuration changed 971 * 972 * @IEEE80211_CONF_CHANGE_LISTEN_INTERVAL: the listen interval changed 973 * @IEEE80211_CONF_CHANGE_MONITOR: the monitor flag changed 974 * @IEEE80211_CONF_CHANGE_PS: the PS flag or dynamic PS timeout changed 975 * @IEEE80211_CONF_CHANGE_POWER: the TX power changed 976 * @IEEE80211_CONF_CHANGE_CHANNEL: the channel/channel_type changed 977 * @IEEE80211_CONF_CHANGE_RETRY_LIMITS: retry limits changed 978 * @IEEE80211_CONF_CHANGE_IDLE: Idle flag changed 979 * @IEEE80211_CONF_CHANGE_SMPS: Spatial multiplexing powersave mode changed 980 * Note that this is only valid if channel contexts are not used, 981 * otherwise each channel context has the number of chains listed. 982 */ 983 enum ieee80211_conf_changed { 984 IEEE80211_CONF_CHANGE_SMPS = BIT(1), 985 IEEE80211_CONF_CHANGE_LISTEN_INTERVAL = BIT(2), 986 IEEE80211_CONF_CHANGE_MONITOR = BIT(3), 987 IEEE80211_CONF_CHANGE_PS = BIT(4), 988 IEEE80211_CONF_CHANGE_POWER = BIT(5), 989 IEEE80211_CONF_CHANGE_CHANNEL = BIT(6), 990 IEEE80211_CONF_CHANGE_RETRY_LIMITS = BIT(7), 991 IEEE80211_CONF_CHANGE_IDLE = BIT(8), 992 }; 993 994 /** 995 * enum ieee80211_smps_mode - spatial multiplexing power save mode 996 * 997 * @IEEE80211_SMPS_AUTOMATIC: automatic 998 * @IEEE80211_SMPS_OFF: off 999 * @IEEE80211_SMPS_STATIC: static 1000 * @IEEE80211_SMPS_DYNAMIC: dynamic 1001 * @IEEE80211_SMPS_NUM_MODES: internal, don't use 1002 */ 1003 enum ieee80211_smps_mode { 1004 IEEE80211_SMPS_AUTOMATIC, 1005 IEEE80211_SMPS_OFF, 1006 IEEE80211_SMPS_STATIC, 1007 IEEE80211_SMPS_DYNAMIC, 1008 1009 /* keep last */ 1010 IEEE80211_SMPS_NUM_MODES, 1011 }; 1012 1013 /** 1014 * struct ieee80211_conf - configuration of the device 1015 * 1016 * This struct indicates how the driver shall configure the hardware. 1017 * 1018 * @flags: configuration flags defined above 1019 * 1020 * @listen_interval: listen interval in units of beacon interval 1021 * @max_sleep_period: the maximum number of beacon intervals to sleep for 1022 * before checking the beacon for a TIM bit (managed mode only); this 1023 * value will be only achievable between DTIM frames, the hardware 1024 * needs to check for the multicast traffic bit in DTIM beacons. 1025 * This variable is valid only when the CONF_PS flag is set. 1026 * @ps_dtim_period: The DTIM period of the AP we're connected to, for use 1027 * in power saving. Power saving will not be enabled until a beacon 1028 * has been received and the DTIM period is known. 1029 * @dynamic_ps_timeout: The dynamic powersave timeout (in ms), see the 1030 * powersave documentation below. This variable is valid only when 1031 * the CONF_PS flag is set. 1032 * 1033 * @power_level: requested transmit power (in dBm), backward compatibility 1034 * value only that is set to the minimum of all interfaces 1035 * 1036 * @chandef: the channel definition to tune to 1037 * @radar_enabled: whether radar detection is enabled 1038 * 1039 * @long_frame_max_tx_count: Maximum number of transmissions for a "long" frame 1040 * (a frame not RTS protected), called "dot11LongRetryLimit" in 802.11, 1041 * but actually means the number of transmissions not the number of retries 1042 * @short_frame_max_tx_count: Maximum number of transmissions for a "short" 1043 * frame, called "dot11ShortRetryLimit" in 802.11, but actually means the 1044 * number of transmissions not the number of retries 1045 * 1046 * @smps_mode: spatial multiplexing powersave mode; note that 1047 * %IEEE80211_SMPS_STATIC is used when the device is not 1048 * configured for an HT channel. 1049 * Note that this is only valid if channel contexts are not used, 1050 * otherwise each channel context has the number of chains listed. 1051 */ 1052 struct ieee80211_conf { 1053 u32 flags; 1054 int power_level, dynamic_ps_timeout; 1055 int max_sleep_period; 1056 1057 u16 listen_interval; 1058 u8 ps_dtim_period; 1059 1060 u8 long_frame_max_tx_count, short_frame_max_tx_count; 1061 1062 struct cfg80211_chan_def chandef; 1063 bool radar_enabled; 1064 enum ieee80211_smps_mode smps_mode; 1065 }; 1066 1067 /** 1068 * struct ieee80211_channel_switch - holds the channel switch data 1069 * 1070 * The information provided in this structure is required for channel switch 1071 * operation. 1072 * 1073 * @timestamp: value in microseconds of the 64-bit Time Synchronization 1074 * Function (TSF) timer when the frame containing the channel switch 1075 * announcement was received. This is simply the rx.mactime parameter 1076 * the driver passed into mac80211. 1077 * @block_tx: Indicates whether transmission must be blocked before the 1078 * scheduled channel switch, as indicated by the AP. 1079 * @chandef: the new channel to switch to 1080 * @count: the number of TBTT's until the channel switch event 1081 */ 1082 struct ieee80211_channel_switch { 1083 u64 timestamp; 1084 bool block_tx; 1085 struct cfg80211_chan_def chandef; 1086 u8 count; 1087 }; 1088 1089 /** 1090 * enum ieee80211_vif_flags - virtual interface flags 1091 * 1092 * @IEEE80211_VIF_BEACON_FILTER: the device performs beacon filtering 1093 * on this virtual interface to avoid unnecessary CPU wakeups 1094 * @IEEE80211_VIF_SUPPORTS_CQM_RSSI: the device can do connection quality 1095 * monitoring on this virtual interface -- i.e. it can monitor 1096 * connection quality related parameters, such as the RSSI level and 1097 * provide notifications if configured trigger levels are reached. 1098 */ 1099 enum ieee80211_vif_flags { 1100 IEEE80211_VIF_BEACON_FILTER = BIT(0), 1101 IEEE80211_VIF_SUPPORTS_CQM_RSSI = BIT(1), 1102 }; 1103 1104 /** 1105 * struct ieee80211_vif - per-interface data 1106 * 1107 * Data in this structure is continually present for driver 1108 * use during the life of a virtual interface. 1109 * 1110 * @type: type of this virtual interface 1111 * @bss_conf: BSS configuration for this interface, either our own 1112 * or the BSS we're associated to 1113 * @addr: address of this interface 1114 * @p2p: indicates whether this AP or STA interface is a p2p 1115 * interface, i.e. a GO or p2p-sta respectively 1116 * @csa_active: marks whether a channel switch is going on 1117 * @driver_flags: flags/capabilities the driver has for this interface, 1118 * these need to be set (or cleared) when the interface is added 1119 * or, if supported by the driver, the interface type is changed 1120 * at runtime, mac80211 will never touch this field 1121 * @hw_queue: hardware queue for each AC 1122 * @cab_queue: content-after-beacon (DTIM beacon really) queue, AP mode only 1123 * @chanctx_conf: The channel context this interface is assigned to, or %NULL 1124 * when it is not assigned. This pointer is RCU-protected due to the TX 1125 * path needing to access it; even though the netdev carrier will always 1126 * be off when it is %NULL there can still be races and packets could be 1127 * processed after it switches back to %NULL. 1128 * @debugfs_dir: debugfs dentry, can be used by drivers to create own per 1129 * interface debug files. Note that it will be NULL for the virtual 1130 * monitor interface (if that is requested.) 1131 * @drv_priv: data area for driver use, will always be aligned to 1132 * sizeof(void *). 1133 */ 1134 struct ieee80211_vif { 1135 enum nl80211_iftype type; 1136 struct ieee80211_bss_conf bss_conf; 1137 u8 addr[ETH_ALEN]; 1138 bool p2p; 1139 bool csa_active; 1140 1141 u8 cab_queue; 1142 u8 hw_queue[IEEE80211_NUM_ACS]; 1143 1144 struct ieee80211_chanctx_conf __rcu *chanctx_conf; 1145 1146 u32 driver_flags; 1147 1148 #ifdef CONFIG_MAC80211_DEBUGFS 1149 struct dentry *debugfs_dir; 1150 #endif 1151 1152 /* must be last */ 1153 u8 drv_priv[0] __aligned(sizeof(void *)); 1154 }; 1155 1156 static inline bool ieee80211_vif_is_mesh(struct ieee80211_vif *vif) 1157 { 1158 #ifdef CONFIG_MAC80211_MESH 1159 return vif->type == NL80211_IFTYPE_MESH_POINT; 1160 #endif 1161 return false; 1162 } 1163 1164 /** 1165 * wdev_to_ieee80211_vif - return a vif struct from a wdev 1166 * @wdev: the wdev to get the vif for 1167 * 1168 * This can be used by mac80211 drivers with direct cfg80211 APIs 1169 * (like the vendor commands) that get a wdev. 1170 * 1171 * Note that this function may return %NULL if the given wdev isn't 1172 * associated with a vif that the driver knows about (e.g. monitor 1173 * or AP_VLAN interfaces.) 1174 */ 1175 struct ieee80211_vif *wdev_to_ieee80211_vif(struct wireless_dev *wdev); 1176 1177 /** 1178 * enum ieee80211_key_flags - key flags 1179 * 1180 * These flags are used for communication about keys between the driver 1181 * and mac80211, with the @flags parameter of &struct ieee80211_key_conf. 1182 * 1183 * @IEEE80211_KEY_FLAG_GENERATE_IV: This flag should be set by the 1184 * driver to indicate that it requires IV generation for this 1185 * particular key. 1186 * @IEEE80211_KEY_FLAG_GENERATE_MMIC: This flag should be set by 1187 * the driver for a TKIP key if it requires Michael MIC 1188 * generation in software. 1189 * @IEEE80211_KEY_FLAG_PAIRWISE: Set by mac80211, this flag indicates 1190 * that the key is pairwise rather then a shared key. 1191 * @IEEE80211_KEY_FLAG_SW_MGMT_TX: This flag should be set by the driver for a 1192 * CCMP key if it requires CCMP encryption of management frames (MFP) to 1193 * be done in software. 1194 * @IEEE80211_KEY_FLAG_PUT_IV_SPACE: This flag should be set by the driver 1195 * if space should be prepared for the IV, but the IV 1196 * itself should not be generated. Do not set together with 1197 * @IEEE80211_KEY_FLAG_GENERATE_IV on the same key. 1198 * @IEEE80211_KEY_FLAG_RX_MGMT: This key will be used to decrypt received 1199 * management frames. The flag can help drivers that have a hardware 1200 * crypto implementation that doesn't deal with management frames 1201 * properly by allowing them to not upload the keys to hardware and 1202 * fall back to software crypto. Note that this flag deals only with 1203 * RX, if your crypto engine can't deal with TX you can also set the 1204 * %IEEE80211_KEY_FLAG_SW_MGMT_TX flag to encrypt such frames in SW. 1205 */ 1206 enum ieee80211_key_flags { 1207 IEEE80211_KEY_FLAG_GENERATE_IV = 1<<1, 1208 IEEE80211_KEY_FLAG_GENERATE_MMIC= 1<<2, 1209 IEEE80211_KEY_FLAG_PAIRWISE = 1<<3, 1210 IEEE80211_KEY_FLAG_SW_MGMT_TX = 1<<4, 1211 IEEE80211_KEY_FLAG_PUT_IV_SPACE = 1<<5, 1212 IEEE80211_KEY_FLAG_RX_MGMT = 1<<6, 1213 }; 1214 1215 /** 1216 * struct ieee80211_key_conf - key information 1217 * 1218 * This key information is given by mac80211 to the driver by 1219 * the set_key() callback in &struct ieee80211_ops. 1220 * 1221 * @hw_key_idx: To be set by the driver, this is the key index the driver 1222 * wants to be given when a frame is transmitted and needs to be 1223 * encrypted in hardware. 1224 * @cipher: The key's cipher suite selector. 1225 * @flags: key flags, see &enum ieee80211_key_flags. 1226 * @keyidx: the key index (0-3) 1227 * @keylen: key material length 1228 * @key: key material. For ALG_TKIP the key is encoded as a 256-bit (32 byte) 1229 * data block: 1230 * - Temporal Encryption Key (128 bits) 1231 * - Temporal Authenticator Tx MIC Key (64 bits) 1232 * - Temporal Authenticator Rx MIC Key (64 bits) 1233 * @icv_len: The ICV length for this key type 1234 * @iv_len: The IV length for this key type 1235 */ 1236 struct ieee80211_key_conf { 1237 u32 cipher; 1238 u8 icv_len; 1239 u8 iv_len; 1240 u8 hw_key_idx; 1241 u8 flags; 1242 s8 keyidx; 1243 u8 keylen; 1244 u8 key[0]; 1245 }; 1246 1247 /** 1248 * struct ieee80211_cipher_scheme - cipher scheme 1249 * 1250 * This structure contains a cipher scheme information defining 1251 * the secure packet crypto handling. 1252 * 1253 * @cipher: a cipher suite selector 1254 * @iftype: a cipher iftype bit mask indicating an allowed cipher usage 1255 * @hdr_len: a length of a security header used the cipher 1256 * @pn_len: a length of a packet number in the security header 1257 * @pn_off: an offset of pn from the beginning of the security header 1258 * @key_idx_off: an offset of key index byte in the security header 1259 * @key_idx_mask: a bit mask of key_idx bits 1260 * @key_idx_shift: a bit shift needed to get key_idx 1261 * key_idx value calculation: 1262 * (sec_header_base[key_idx_off] & key_idx_mask) >> key_idx_shift 1263 * @mic_len: a mic length in bytes 1264 */ 1265 struct ieee80211_cipher_scheme { 1266 u32 cipher; 1267 u16 iftype; 1268 u8 hdr_len; 1269 u8 pn_len; 1270 u8 pn_off; 1271 u8 key_idx_off; 1272 u8 key_idx_mask; 1273 u8 key_idx_shift; 1274 u8 mic_len; 1275 }; 1276 1277 /** 1278 * enum set_key_cmd - key command 1279 * 1280 * Used with the set_key() callback in &struct ieee80211_ops, this 1281 * indicates whether a key is being removed or added. 1282 * 1283 * @SET_KEY: a key is set 1284 * @DISABLE_KEY: a key must be disabled 1285 */ 1286 enum set_key_cmd { 1287 SET_KEY, DISABLE_KEY, 1288 }; 1289 1290 /** 1291 * enum ieee80211_sta_state - station state 1292 * 1293 * @IEEE80211_STA_NOTEXIST: station doesn't exist at all, 1294 * this is a special state for add/remove transitions 1295 * @IEEE80211_STA_NONE: station exists without special state 1296 * @IEEE80211_STA_AUTH: station is authenticated 1297 * @IEEE80211_STA_ASSOC: station is associated 1298 * @IEEE80211_STA_AUTHORIZED: station is authorized (802.1X) 1299 */ 1300 enum ieee80211_sta_state { 1301 /* NOTE: These need to be ordered correctly! */ 1302 IEEE80211_STA_NOTEXIST, 1303 IEEE80211_STA_NONE, 1304 IEEE80211_STA_AUTH, 1305 IEEE80211_STA_ASSOC, 1306 IEEE80211_STA_AUTHORIZED, 1307 }; 1308 1309 /** 1310 * enum ieee80211_sta_rx_bandwidth - station RX bandwidth 1311 * @IEEE80211_STA_RX_BW_20: station can only receive 20 MHz 1312 * @IEEE80211_STA_RX_BW_40: station can receive up to 40 MHz 1313 * @IEEE80211_STA_RX_BW_80: station can receive up to 80 MHz 1314 * @IEEE80211_STA_RX_BW_160: station can receive up to 160 MHz 1315 * (including 80+80 MHz) 1316 * 1317 * Implementation note: 20 must be zero to be initialized 1318 * correctly, the values must be sorted. 1319 */ 1320 enum ieee80211_sta_rx_bandwidth { 1321 IEEE80211_STA_RX_BW_20 = 0, 1322 IEEE80211_STA_RX_BW_40, 1323 IEEE80211_STA_RX_BW_80, 1324 IEEE80211_STA_RX_BW_160, 1325 }; 1326 1327 /** 1328 * struct ieee80211_sta_rates - station rate selection table 1329 * 1330 * @rcu_head: RCU head used for freeing the table on update 1331 * @rate: transmit rates/flags to be used by default. 1332 * Overriding entries per-packet is possible by using cb tx control. 1333 */ 1334 struct ieee80211_sta_rates { 1335 struct rcu_head rcu_head; 1336 struct { 1337 s8 idx; 1338 u8 count; 1339 u8 count_cts; 1340 u8 count_rts; 1341 u16 flags; 1342 } rate[IEEE80211_TX_RATE_TABLE_SIZE]; 1343 }; 1344 1345 /** 1346 * struct ieee80211_sta - station table entry 1347 * 1348 * A station table entry represents a station we are possibly 1349 * communicating with. Since stations are RCU-managed in 1350 * mac80211, any ieee80211_sta pointer you get access to must 1351 * either be protected by rcu_read_lock() explicitly or implicitly, 1352 * or you must take good care to not use such a pointer after a 1353 * call to your sta_remove callback that removed it. 1354 * 1355 * @addr: MAC address 1356 * @aid: AID we assigned to the station if we're an AP 1357 * @supp_rates: Bitmap of supported rates (per band) 1358 * @ht_cap: HT capabilities of this STA; restricted to our own capabilities 1359 * @vht_cap: VHT capabilities of this STA; restricted to our own capabilities 1360 * @wme: indicates whether the STA supports WME. Only valid during AP-mode. 1361 * @drv_priv: data area for driver use, will always be aligned to 1362 * sizeof(void *), size is determined in hw information. 1363 * @uapsd_queues: bitmap of queues configured for uapsd. Only valid 1364 * if wme is supported. 1365 * @max_sp: max Service Period. Only valid if wme is supported. 1366 * @bandwidth: current bandwidth the station can receive with 1367 * @rx_nss: in HT/VHT, the maximum number of spatial streams the 1368 * station can receive at the moment, changed by operating mode 1369 * notifications and capabilities. The value is only valid after 1370 * the station moves to associated state. 1371 * @smps_mode: current SMPS mode (off, static or dynamic) 1372 * @rates: rate control selection table 1373 */ 1374 struct ieee80211_sta { 1375 u32 supp_rates[IEEE80211_NUM_BANDS]; 1376 u8 addr[ETH_ALEN]; 1377 u16 aid; 1378 struct ieee80211_sta_ht_cap ht_cap; 1379 struct ieee80211_sta_vht_cap vht_cap; 1380 bool wme; 1381 u8 uapsd_queues; 1382 u8 max_sp; 1383 u8 rx_nss; 1384 enum ieee80211_sta_rx_bandwidth bandwidth; 1385 enum ieee80211_smps_mode smps_mode; 1386 struct ieee80211_sta_rates __rcu *rates; 1387 1388 /* must be last */ 1389 u8 drv_priv[0] __aligned(sizeof(void *)); 1390 }; 1391 1392 /** 1393 * enum sta_notify_cmd - sta notify command 1394 * 1395 * Used with the sta_notify() callback in &struct ieee80211_ops, this 1396 * indicates if an associated station made a power state transition. 1397 * 1398 * @STA_NOTIFY_SLEEP: a station is now sleeping 1399 * @STA_NOTIFY_AWAKE: a sleeping station woke up 1400 */ 1401 enum sta_notify_cmd { 1402 STA_NOTIFY_SLEEP, STA_NOTIFY_AWAKE, 1403 }; 1404 1405 /** 1406 * struct ieee80211_tx_control - TX control data 1407 * 1408 * @sta: station table entry, this sta pointer may be NULL and 1409 * it is not allowed to copy the pointer, due to RCU. 1410 */ 1411 struct ieee80211_tx_control { 1412 struct ieee80211_sta *sta; 1413 }; 1414 1415 /** 1416 * enum ieee80211_hw_flags - hardware flags 1417 * 1418 * These flags are used to indicate hardware capabilities to 1419 * the stack. Generally, flags here should have their meaning 1420 * done in a way that the simplest hardware doesn't need setting 1421 * any particular flags. There are some exceptions to this rule, 1422 * however, so you are advised to review these flags carefully. 1423 * 1424 * @IEEE80211_HW_HAS_RATE_CONTROL: 1425 * The hardware or firmware includes rate control, and cannot be 1426 * controlled by the stack. As such, no rate control algorithm 1427 * should be instantiated, and the TX rate reported to userspace 1428 * will be taken from the TX status instead of the rate control 1429 * algorithm. 1430 * Note that this requires that the driver implement a number of 1431 * callbacks so it has the correct information, it needs to have 1432 * the @set_rts_threshold callback and must look at the BSS config 1433 * @use_cts_prot for G/N protection, @use_short_slot for slot 1434 * timing in 2.4 GHz and @use_short_preamble for preambles for 1435 * CCK frames. 1436 * 1437 * @IEEE80211_HW_RX_INCLUDES_FCS: 1438 * Indicates that received frames passed to the stack include 1439 * the FCS at the end. 1440 * 1441 * @IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING: 1442 * Some wireless LAN chipsets buffer broadcast/multicast frames 1443 * for power saving stations in the hardware/firmware and others 1444 * rely on the host system for such buffering. This option is used 1445 * to configure the IEEE 802.11 upper layer to buffer broadcast and 1446 * multicast frames when there are power saving stations so that 1447 * the driver can fetch them with ieee80211_get_buffered_bc(). 1448 * 1449 * @IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE: 1450 * Hardware is not capable of short slot operation on the 2.4 GHz band. 1451 * 1452 * @IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE: 1453 * Hardware is not capable of receiving frames with short preamble on 1454 * the 2.4 GHz band. 1455 * 1456 * @IEEE80211_HW_SIGNAL_UNSPEC: 1457 * Hardware can provide signal values but we don't know its units. We 1458 * expect values between 0 and @max_signal. 1459 * If possible please provide dB or dBm instead. 1460 * 1461 * @IEEE80211_HW_SIGNAL_DBM: 1462 * Hardware gives signal values in dBm, decibel difference from 1463 * one milliwatt. This is the preferred method since it is standardized 1464 * between different devices. @max_signal does not need to be set. 1465 * 1466 * @IEEE80211_HW_SPECTRUM_MGMT: 1467 * Hardware supports spectrum management defined in 802.11h 1468 * Measurement, Channel Switch, Quieting, TPC 1469 * 1470 * @IEEE80211_HW_AMPDU_AGGREGATION: 1471 * Hardware supports 11n A-MPDU aggregation. 1472 * 1473 * @IEEE80211_HW_SUPPORTS_PS: 1474 * Hardware has power save support (i.e. can go to sleep). 1475 * 1476 * @IEEE80211_HW_PS_NULLFUNC_STACK: 1477 * Hardware requires nullfunc frame handling in stack, implies 1478 * stack support for dynamic PS. 1479 * 1480 * @IEEE80211_HW_SUPPORTS_DYNAMIC_PS: 1481 * Hardware has support for dynamic PS. 1482 * 1483 * @IEEE80211_HW_MFP_CAPABLE: 1484 * Hardware supports management frame protection (MFP, IEEE 802.11w). 1485 * 1486 * @IEEE80211_HW_SUPPORTS_STATIC_SMPS: 1487 * Hardware supports static spatial multiplexing powersave, 1488 * ie. can turn off all but one chain even on HT connections 1489 * that should be using more chains. 1490 * 1491 * @IEEE80211_HW_SUPPORTS_DYNAMIC_SMPS: 1492 * Hardware supports dynamic spatial multiplexing powersave, 1493 * ie. can turn off all but one chain and then wake the rest 1494 * up as required after, for example, rts/cts handshake. 1495 * 1496 * @IEEE80211_HW_SUPPORTS_UAPSD: 1497 * Hardware supports Unscheduled Automatic Power Save Delivery 1498 * (U-APSD) in managed mode. The mode is configured with 1499 * conf_tx() operation. 1500 * 1501 * @IEEE80211_HW_REPORTS_TX_ACK_STATUS: 1502 * Hardware can provide ack status reports of Tx frames to 1503 * the stack. 1504 * 1505 * @IEEE80211_HW_CONNECTION_MONITOR: 1506 * The hardware performs its own connection monitoring, including 1507 * periodic keep-alives to the AP and probing the AP on beacon loss. 1508 * 1509 * @IEEE80211_HW_NEED_DTIM_BEFORE_ASSOC: 1510 * This device needs to get data from beacon before association (i.e. 1511 * dtim_period). 1512 * 1513 * @IEEE80211_HW_SUPPORTS_PER_STA_GTK: The device's crypto engine supports 1514 * per-station GTKs as used by IBSS RSN or during fast transition. If 1515 * the device doesn't support per-station GTKs, but can be asked not 1516 * to decrypt group addressed frames, then IBSS RSN support is still 1517 * possible but software crypto will be used. Advertise the wiphy flag 1518 * only in that case. 1519 * 1520 * @IEEE80211_HW_AP_LINK_PS: When operating in AP mode the device 1521 * autonomously manages the PS status of connected stations. When 1522 * this flag is set mac80211 will not trigger PS mode for connected 1523 * stations based on the PM bit of incoming frames. 1524 * Use ieee80211_start_ps()/ieee8021_end_ps() to manually configure 1525 * the PS mode of connected stations. 1526 * 1527 * @IEEE80211_HW_TX_AMPDU_SETUP_IN_HW: The device handles TX A-MPDU session 1528 * setup strictly in HW. mac80211 should not attempt to do this in 1529 * software. 1530 * 1531 * @IEEE80211_HW_WANT_MONITOR_VIF: The driver would like to be informed of 1532 * a virtual monitor interface when monitor interfaces are the only 1533 * active interfaces. 1534 * 1535 * @IEEE80211_HW_QUEUE_CONTROL: The driver wants to control per-interface 1536 * queue mapping in order to use different queues (not just one per AC) 1537 * for different virtual interfaces. See the doc section on HW queue 1538 * control for more details. 1539 * 1540 * @IEEE80211_HW_SUPPORTS_RC_TABLE: The driver supports using a rate 1541 * selection table provided by the rate control algorithm. 1542 * 1543 * @IEEE80211_HW_P2P_DEV_ADDR_FOR_INTF: Use the P2P Device address for any 1544 * P2P Interface. This will be honoured even if more than one interface 1545 * is supported. 1546 * 1547 * @IEEE80211_HW_TIMING_BEACON_ONLY: Use sync timing from beacon frames 1548 * only, to allow getting TBTT of a DTIM beacon. 1549 * 1550 * @IEEE80211_HW_SUPPORTS_HT_CCK_RATES: Hardware supports mixing HT/CCK rates 1551 * and can cope with CCK rates in an aggregation session (e.g. by not 1552 * using aggregation for such frames.) 1553 * 1554 * @IEEE80211_HW_CHANCTX_STA_CSA: Support 802.11h based channel-switch (CSA) 1555 * for a single active channel while using channel contexts. When support 1556 * is not enabled the default action is to disconnect when getting the 1557 * CSA frame. 1558 */ 1559 enum ieee80211_hw_flags { 1560 IEEE80211_HW_HAS_RATE_CONTROL = 1<<0, 1561 IEEE80211_HW_RX_INCLUDES_FCS = 1<<1, 1562 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING = 1<<2, 1563 IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE = 1<<3, 1564 IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE = 1<<4, 1565 IEEE80211_HW_SIGNAL_UNSPEC = 1<<5, 1566 IEEE80211_HW_SIGNAL_DBM = 1<<6, 1567 IEEE80211_HW_NEED_DTIM_BEFORE_ASSOC = 1<<7, 1568 IEEE80211_HW_SPECTRUM_MGMT = 1<<8, 1569 IEEE80211_HW_AMPDU_AGGREGATION = 1<<9, 1570 IEEE80211_HW_SUPPORTS_PS = 1<<10, 1571 IEEE80211_HW_PS_NULLFUNC_STACK = 1<<11, 1572 IEEE80211_HW_SUPPORTS_DYNAMIC_PS = 1<<12, 1573 IEEE80211_HW_MFP_CAPABLE = 1<<13, 1574 IEEE80211_HW_WANT_MONITOR_VIF = 1<<14, 1575 IEEE80211_HW_SUPPORTS_STATIC_SMPS = 1<<15, 1576 IEEE80211_HW_SUPPORTS_DYNAMIC_SMPS = 1<<16, 1577 IEEE80211_HW_SUPPORTS_UAPSD = 1<<17, 1578 IEEE80211_HW_REPORTS_TX_ACK_STATUS = 1<<18, 1579 IEEE80211_HW_CONNECTION_MONITOR = 1<<19, 1580 IEEE80211_HW_QUEUE_CONTROL = 1<<20, 1581 IEEE80211_HW_SUPPORTS_PER_STA_GTK = 1<<21, 1582 IEEE80211_HW_AP_LINK_PS = 1<<22, 1583 IEEE80211_HW_TX_AMPDU_SETUP_IN_HW = 1<<23, 1584 IEEE80211_HW_SUPPORTS_RC_TABLE = 1<<24, 1585 IEEE80211_HW_P2P_DEV_ADDR_FOR_INTF = 1<<25, 1586 IEEE80211_HW_TIMING_BEACON_ONLY = 1<<26, 1587 IEEE80211_HW_SUPPORTS_HT_CCK_RATES = 1<<27, 1588 IEEE80211_HW_CHANCTX_STA_CSA = 1<<28, 1589 }; 1590 1591 /** 1592 * struct ieee80211_hw - hardware information and state 1593 * 1594 * This structure contains the configuration and hardware 1595 * information for an 802.11 PHY. 1596 * 1597 * @wiphy: This points to the &struct wiphy allocated for this 1598 * 802.11 PHY. You must fill in the @perm_addr and @dev 1599 * members of this structure using SET_IEEE80211_DEV() 1600 * and SET_IEEE80211_PERM_ADDR(). Additionally, all supported 1601 * bands (with channels, bitrates) are registered here. 1602 * 1603 * @conf: &struct ieee80211_conf, device configuration, don't use. 1604 * 1605 * @priv: pointer to private area that was allocated for driver use 1606 * along with this structure. 1607 * 1608 * @flags: hardware flags, see &enum ieee80211_hw_flags. 1609 * 1610 * @extra_tx_headroom: headroom to reserve in each transmit skb 1611 * for use by the driver (e.g. for transmit headers.) 1612 * 1613 * @extra_beacon_tailroom: tailroom to reserve in each beacon tx skb. 1614 * Can be used by drivers to add extra IEs. 1615 * 1616 * @max_signal: Maximum value for signal (rssi) in RX information, used 1617 * only when @IEEE80211_HW_SIGNAL_UNSPEC or @IEEE80211_HW_SIGNAL_DB 1618 * 1619 * @max_listen_interval: max listen interval in units of beacon interval 1620 * that HW supports 1621 * 1622 * @queues: number of available hardware transmit queues for 1623 * data packets. WMM/QoS requires at least four, these 1624 * queues need to have configurable access parameters. 1625 * 1626 * @rate_control_algorithm: rate control algorithm for this hardware. 1627 * If unset (NULL), the default algorithm will be used. Must be 1628 * set before calling ieee80211_register_hw(). 1629 * 1630 * @vif_data_size: size (in bytes) of the drv_priv data area 1631 * within &struct ieee80211_vif. 1632 * @sta_data_size: size (in bytes) of the drv_priv data area 1633 * within &struct ieee80211_sta. 1634 * @chanctx_data_size: size (in bytes) of the drv_priv data area 1635 * within &struct ieee80211_chanctx_conf. 1636 * 1637 * @max_rates: maximum number of alternate rate retry stages the hw 1638 * can handle. 1639 * @max_report_rates: maximum number of alternate rate retry stages 1640 * the hw can report back. 1641 * @max_rate_tries: maximum number of tries for each stage 1642 * 1643 * @max_rx_aggregation_subframes: maximum buffer size (number of 1644 * sub-frames) to be used for A-MPDU block ack receiver 1645 * aggregation. 1646 * This is only relevant if the device has restrictions on the 1647 * number of subframes, if it relies on mac80211 to do reordering 1648 * it shouldn't be set. 1649 * 1650 * @max_tx_aggregation_subframes: maximum number of subframes in an 1651 * aggregate an HT driver will transmit, used by the peer as a 1652 * hint to size its reorder buffer. 1653 * 1654 * @offchannel_tx_hw_queue: HW queue ID to use for offchannel TX 1655 * (if %IEEE80211_HW_QUEUE_CONTROL is set) 1656 * 1657 * @radiotap_mcs_details: lists which MCS information can the HW 1658 * reports, by default it is set to _MCS, _GI and _BW but doesn't 1659 * include _FMT. Use %IEEE80211_RADIOTAP_MCS_HAVE_* values, only 1660 * adding _BW is supported today. 1661 * 1662 * @radiotap_vht_details: lists which VHT MCS information the HW reports, 1663 * the default is _GI | _BANDWIDTH. 1664 * Use the %IEEE80211_RADIOTAP_VHT_KNOWN_* values. 1665 * 1666 * @netdev_features: netdev features to be set in each netdev created 1667 * from this HW. Note only HW checksum features are currently 1668 * compatible with mac80211. Other feature bits will be rejected. 1669 * 1670 * @uapsd_queues: This bitmap is included in (re)association frame to indicate 1671 * for each access category if it is uAPSD trigger-enabled and delivery- 1672 * enabled. Use IEEE80211_WMM_IE_STA_QOSINFO_AC_* to set this bitmap. 1673 * Each bit corresponds to different AC. Value '1' in specific bit means 1674 * that corresponding AC is both trigger- and delivery-enabled. '0' means 1675 * neither enabled. 1676 * 1677 * @uapsd_max_sp_len: maximum number of total buffered frames the WMM AP may 1678 * deliver to a WMM STA during any Service Period triggered by the WMM STA. 1679 * Use IEEE80211_WMM_IE_STA_QOSINFO_SP_* for correct values. 1680 * 1681 * @n_cipher_schemes: a size of an array of cipher schemes definitions. 1682 * @cipher_schemes: a pointer to an array of cipher scheme definitions 1683 * supported by HW. 1684 */ 1685 struct ieee80211_hw { 1686 struct ieee80211_conf conf; 1687 struct wiphy *wiphy; 1688 const char *rate_control_algorithm; 1689 void *priv; 1690 u32 flags; 1691 unsigned int extra_tx_headroom; 1692 unsigned int extra_beacon_tailroom; 1693 int vif_data_size; 1694 int sta_data_size; 1695 int chanctx_data_size; 1696 u16 queues; 1697 u16 max_listen_interval; 1698 s8 max_signal; 1699 u8 max_rates; 1700 u8 max_report_rates; 1701 u8 max_rate_tries; 1702 u8 max_rx_aggregation_subframes; 1703 u8 max_tx_aggregation_subframes; 1704 u8 offchannel_tx_hw_queue; 1705 u8 radiotap_mcs_details; 1706 u16 radiotap_vht_details; 1707 netdev_features_t netdev_features; 1708 u8 uapsd_queues; 1709 u8 uapsd_max_sp_len; 1710 u8 n_cipher_schemes; 1711 const struct ieee80211_cipher_scheme *cipher_schemes; 1712 }; 1713 1714 /** 1715 * wiphy_to_ieee80211_hw - return a mac80211 driver hw struct from a wiphy 1716 * 1717 * @wiphy: the &struct wiphy which we want to query 1718 * 1719 * mac80211 drivers can use this to get to their respective 1720 * &struct ieee80211_hw. Drivers wishing to get to their own private 1721 * structure can then access it via hw->priv. Note that mac802111 drivers should 1722 * not use wiphy_priv() to try to get their private driver structure as this 1723 * is already used internally by mac80211. 1724 * 1725 * Return: The mac80211 driver hw struct of @wiphy. 1726 */ 1727 struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy); 1728 1729 /** 1730 * SET_IEEE80211_DEV - set device for 802.11 hardware 1731 * 1732 * @hw: the &struct ieee80211_hw to set the device for 1733 * @dev: the &struct device of this 802.11 device 1734 */ 1735 static inline void SET_IEEE80211_DEV(struct ieee80211_hw *hw, struct device *dev) 1736 { 1737 set_wiphy_dev(hw->wiphy, dev); 1738 } 1739 1740 /** 1741 * SET_IEEE80211_PERM_ADDR - set the permanent MAC address for 802.11 hardware 1742 * 1743 * @hw: the &struct ieee80211_hw to set the MAC address for 1744 * @addr: the address to set 1745 */ 1746 static inline void SET_IEEE80211_PERM_ADDR(struct ieee80211_hw *hw, u8 *addr) 1747 { 1748 memcpy(hw->wiphy->perm_addr, addr, ETH_ALEN); 1749 } 1750 1751 static inline struct ieee80211_rate * 1752 ieee80211_get_tx_rate(const struct ieee80211_hw *hw, 1753 const struct ieee80211_tx_info *c) 1754 { 1755 if (WARN_ON_ONCE(c->control.rates[0].idx < 0)) 1756 return NULL; 1757 return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[0].idx]; 1758 } 1759 1760 static inline struct ieee80211_rate * 1761 ieee80211_get_rts_cts_rate(const struct ieee80211_hw *hw, 1762 const struct ieee80211_tx_info *c) 1763 { 1764 if (c->control.rts_cts_rate_idx < 0) 1765 return NULL; 1766 return &hw->wiphy->bands[c->band]->bitrates[c->control.rts_cts_rate_idx]; 1767 } 1768 1769 static inline struct ieee80211_rate * 1770 ieee80211_get_alt_retry_rate(const struct ieee80211_hw *hw, 1771 const struct ieee80211_tx_info *c, int idx) 1772 { 1773 if (c->control.rates[idx + 1].idx < 0) 1774 return NULL; 1775 return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[idx + 1].idx]; 1776 } 1777 1778 /** 1779 * ieee80211_free_txskb - free TX skb 1780 * @hw: the hardware 1781 * @skb: the skb 1782 * 1783 * Free a transmit skb. Use this funtion when some failure 1784 * to transmit happened and thus status cannot be reported. 1785 */ 1786 void ieee80211_free_txskb(struct ieee80211_hw *hw, struct sk_buff *skb); 1787 1788 /** 1789 * DOC: Hardware crypto acceleration 1790 * 1791 * mac80211 is capable of taking advantage of many hardware 1792 * acceleration designs for encryption and decryption operations. 1793 * 1794 * The set_key() callback in the &struct ieee80211_ops for a given 1795 * device is called to enable hardware acceleration of encryption and 1796 * decryption. The callback takes a @sta parameter that will be NULL 1797 * for default keys or keys used for transmission only, or point to 1798 * the station information for the peer for individual keys. 1799 * Multiple transmission keys with the same key index may be used when 1800 * VLANs are configured for an access point. 1801 * 1802 * When transmitting, the TX control data will use the @hw_key_idx 1803 * selected by the driver by modifying the &struct ieee80211_key_conf 1804 * pointed to by the @key parameter to the set_key() function. 1805 * 1806 * The set_key() call for the %SET_KEY command should return 0 if 1807 * the key is now in use, -%EOPNOTSUPP or -%ENOSPC if it couldn't be 1808 * added; if you return 0 then hw_key_idx must be assigned to the 1809 * hardware key index, you are free to use the full u8 range. 1810 * 1811 * When the cmd is %DISABLE_KEY then it must succeed. 1812 * 1813 * Note that it is permissible to not decrypt a frame even if a key 1814 * for it has been uploaded to hardware, the stack will not make any 1815 * decision based on whether a key has been uploaded or not but rather 1816 * based on the receive flags. 1817 * 1818 * The &struct ieee80211_key_conf structure pointed to by the @key 1819 * parameter is guaranteed to be valid until another call to set_key() 1820 * removes it, but it can only be used as a cookie to differentiate 1821 * keys. 1822 * 1823 * In TKIP some HW need to be provided a phase 1 key, for RX decryption 1824 * acceleration (i.e. iwlwifi). Those drivers should provide update_tkip_key 1825 * handler. 1826 * The update_tkip_key() call updates the driver with the new phase 1 key. 1827 * This happens every time the iv16 wraps around (every 65536 packets). The 1828 * set_key() call will happen only once for each key (unless the AP did 1829 * rekeying), it will not include a valid phase 1 key. The valid phase 1 key is 1830 * provided by update_tkip_key only. The trigger that makes mac80211 call this 1831 * handler is software decryption with wrap around of iv16. 1832 * 1833 * The set_default_unicast_key() call updates the default WEP key index 1834 * configured to the hardware for WEP encryption type. This is required 1835 * for devices that support offload of data packets (e.g. ARP responses). 1836 */ 1837 1838 /** 1839 * DOC: Powersave support 1840 * 1841 * mac80211 has support for various powersave implementations. 1842 * 1843 * First, it can support hardware that handles all powersaving by itself, 1844 * such hardware should simply set the %IEEE80211_HW_SUPPORTS_PS hardware 1845 * flag. In that case, it will be told about the desired powersave mode 1846 * with the %IEEE80211_CONF_PS flag depending on the association status. 1847 * The hardware must take care of sending nullfunc frames when necessary, 1848 * i.e. when entering and leaving powersave mode. The hardware is required 1849 * to look at the AID in beacons and signal to the AP that it woke up when 1850 * it finds traffic directed to it. 1851 * 1852 * %IEEE80211_CONF_PS flag enabled means that the powersave mode defined in 1853 * IEEE 802.11-2007 section 11.2 is enabled. This is not to be confused 1854 * with hardware wakeup and sleep states. Driver is responsible for waking 1855 * up the hardware before issuing commands to the hardware and putting it 1856 * back to sleep at appropriate times. 1857 * 1858 * When PS is enabled, hardware needs to wakeup for beacons and receive the 1859 * buffered multicast/broadcast frames after the beacon. Also it must be 1860 * possible to send frames and receive the acknowledment frame. 1861 * 1862 * Other hardware designs cannot send nullfunc frames by themselves and also 1863 * need software support for parsing the TIM bitmap. This is also supported 1864 * by mac80211 by combining the %IEEE80211_HW_SUPPORTS_PS and 1865 * %IEEE80211_HW_PS_NULLFUNC_STACK flags. The hardware is of course still 1866 * required to pass up beacons. The hardware is still required to handle 1867 * waking up for multicast traffic; if it cannot the driver must handle that 1868 * as best as it can, mac80211 is too slow to do that. 1869 * 1870 * Dynamic powersave is an extension to normal powersave in which the 1871 * hardware stays awake for a user-specified period of time after sending a 1872 * frame so that reply frames need not be buffered and therefore delayed to 1873 * the next wakeup. It's compromise of getting good enough latency when 1874 * there's data traffic and still saving significantly power in idle 1875 * periods. 1876 * 1877 * Dynamic powersave is simply supported by mac80211 enabling and disabling 1878 * PS based on traffic. Driver needs to only set %IEEE80211_HW_SUPPORTS_PS 1879 * flag and mac80211 will handle everything automatically. Additionally, 1880 * hardware having support for the dynamic PS feature may set the 1881 * %IEEE80211_HW_SUPPORTS_DYNAMIC_PS flag to indicate that it can support 1882 * dynamic PS mode itself. The driver needs to look at the 1883 * @dynamic_ps_timeout hardware configuration value and use it that value 1884 * whenever %IEEE80211_CONF_PS is set. In this case mac80211 will disable 1885 * dynamic PS feature in stack and will just keep %IEEE80211_CONF_PS 1886 * enabled whenever user has enabled powersave. 1887 * 1888 * Driver informs U-APSD client support by enabling 1889 * %IEEE80211_HW_SUPPORTS_UAPSD flag. The mode is configured through the 1890 * uapsd parameter in conf_tx() operation. Hardware needs to send the QoS 1891 * Nullfunc frames and stay awake until the service period has ended. To 1892 * utilize U-APSD, dynamic powersave is disabled for voip AC and all frames 1893 * from that AC are transmitted with powersave enabled. 1894 * 1895 * Note: U-APSD client mode is not yet supported with 1896 * %IEEE80211_HW_PS_NULLFUNC_STACK. 1897 */ 1898 1899 /** 1900 * DOC: Beacon filter support 1901 * 1902 * Some hardware have beacon filter support to reduce host cpu wakeups 1903 * which will reduce system power consumption. It usually works so that 1904 * the firmware creates a checksum of the beacon but omits all constantly 1905 * changing elements (TSF, TIM etc). Whenever the checksum changes the 1906 * beacon is forwarded to the host, otherwise it will be just dropped. That 1907 * way the host will only receive beacons where some relevant information 1908 * (for example ERP protection or WMM settings) have changed. 1909 * 1910 * Beacon filter support is advertised with the %IEEE80211_VIF_BEACON_FILTER 1911 * interface capability. The driver needs to enable beacon filter support 1912 * whenever power save is enabled, that is %IEEE80211_CONF_PS is set. When 1913 * power save is enabled, the stack will not check for beacon loss and the 1914 * driver needs to notify about loss of beacons with ieee80211_beacon_loss(). 1915 * 1916 * The time (or number of beacons missed) until the firmware notifies the 1917 * driver of a beacon loss event (which in turn causes the driver to call 1918 * ieee80211_beacon_loss()) should be configurable and will be controlled 1919 * by mac80211 and the roaming algorithm in the future. 1920 * 1921 * Since there may be constantly changing information elements that nothing 1922 * in the software stack cares about, we will, in the future, have mac80211 1923 * tell the driver which information elements are interesting in the sense 1924 * that we want to see changes in them. This will include 1925 * - a list of information element IDs 1926 * - a list of OUIs for the vendor information element 1927 * 1928 * Ideally, the hardware would filter out any beacons without changes in the 1929 * requested elements, but if it cannot support that it may, at the expense 1930 * of some efficiency, filter out only a subset. For example, if the device 1931 * doesn't support checking for OUIs it should pass up all changes in all 1932 * vendor information elements. 1933 * 1934 * Note that change, for the sake of simplification, also includes information 1935 * elements appearing or disappearing from the beacon. 1936 * 1937 * Some hardware supports an "ignore list" instead, just make sure nothing 1938 * that was requested is on the ignore list, and include commonly changing 1939 * information element IDs in the ignore list, for example 11 (BSS load) and 1940 * the various vendor-assigned IEs with unknown contents (128, 129, 133-136, 1941 * 149, 150, 155, 156, 173, 176, 178, 179, 219); for forward compatibility 1942 * it could also include some currently unused IDs. 1943 * 1944 * 1945 * In addition to these capabilities, hardware should support notifying the 1946 * host of changes in the beacon RSSI. This is relevant to implement roaming 1947 * when no traffic is flowing (when traffic is flowing we see the RSSI of 1948 * the received data packets). This can consist in notifying the host when 1949 * the RSSI changes significantly or when it drops below or rises above 1950 * configurable thresholds. In the future these thresholds will also be 1951 * configured by mac80211 (which gets them from userspace) to implement 1952 * them as the roaming algorithm requires. 1953 * 1954 * If the hardware cannot implement this, the driver should ask it to 1955 * periodically pass beacon frames to the host so that software can do the 1956 * signal strength threshold checking. 1957 */ 1958 1959 /** 1960 * DOC: Spatial multiplexing power save 1961 * 1962 * SMPS (Spatial multiplexing power save) is a mechanism to conserve 1963 * power in an 802.11n implementation. For details on the mechanism 1964 * and rationale, please refer to 802.11 (as amended by 802.11n-2009) 1965 * "11.2.3 SM power save". 1966 * 1967 * The mac80211 implementation is capable of sending action frames 1968 * to update the AP about the station's SMPS mode, and will instruct 1969 * the driver to enter the specific mode. It will also announce the 1970 * requested SMPS mode during the association handshake. Hardware 1971 * support for this feature is required, and can be indicated by 1972 * hardware flags. 1973 * 1974 * The default mode will be "automatic", which nl80211/cfg80211 1975 * defines to be dynamic SMPS in (regular) powersave, and SMPS 1976 * turned off otherwise. 1977 * 1978 * To support this feature, the driver must set the appropriate 1979 * hardware support flags, and handle the SMPS flag to the config() 1980 * operation. It will then with this mechanism be instructed to 1981 * enter the requested SMPS mode while associated to an HT AP. 1982 */ 1983 1984 /** 1985 * DOC: Frame filtering 1986 * 1987 * mac80211 requires to see many management frames for proper 1988 * operation, and users may want to see many more frames when 1989 * in monitor mode. However, for best CPU usage and power consumption, 1990 * having as few frames as possible percolate through the stack is 1991 * desirable. Hence, the hardware should filter as much as possible. 1992 * 1993 * To achieve this, mac80211 uses filter flags (see below) to tell 1994 * the driver's configure_filter() function which frames should be 1995 * passed to mac80211 and which should be filtered out. 1996 * 1997 * Before configure_filter() is invoked, the prepare_multicast() 1998 * callback is invoked with the parameters @mc_count and @mc_list 1999 * for the combined multicast address list of all virtual interfaces. 2000 * It's use is optional, and it returns a u64 that is passed to 2001 * configure_filter(). Additionally, configure_filter() has the 2002 * arguments @changed_flags telling which flags were changed and 2003 * @total_flags with the new flag states. 2004 * 2005 * If your device has no multicast address filters your driver will 2006 * need to check both the %FIF_ALLMULTI flag and the @mc_count 2007 * parameter to see whether multicast frames should be accepted 2008 * or dropped. 2009 * 2010 * All unsupported flags in @total_flags must be cleared. 2011 * Hardware does not support a flag if it is incapable of _passing_ 2012 * the frame to the stack. Otherwise the driver must ignore 2013 * the flag, but not clear it. 2014 * You must _only_ clear the flag (announce no support for the 2015 * flag to mac80211) if you are not able to pass the packet type 2016 * to the stack (so the hardware always filters it). 2017 * So for example, you should clear @FIF_CONTROL, if your hardware 2018 * always filters control frames. If your hardware always passes 2019 * control frames to the kernel and is incapable of filtering them, 2020 * you do _not_ clear the @FIF_CONTROL flag. 2021 * This rule applies to all other FIF flags as well. 2022 */ 2023 2024 /** 2025 * DOC: AP support for powersaving clients 2026 * 2027 * In order to implement AP and P2P GO modes, mac80211 has support for 2028 * client powersaving, both "legacy" PS (PS-Poll/null data) and uAPSD. 2029 * There currently is no support for sAPSD. 2030 * 2031 * There is one assumption that mac80211 makes, namely that a client 2032 * will not poll with PS-Poll and trigger with uAPSD at the same time. 2033 * Both are supported, and both can be used by the same client, but 2034 * they can't be used concurrently by the same client. This simplifies 2035 * the driver code. 2036 * 2037 * The first thing to keep in mind is that there is a flag for complete 2038 * driver implementation: %IEEE80211_HW_AP_LINK_PS. If this flag is set, 2039 * mac80211 expects the driver to handle most of the state machine for 2040 * powersaving clients and will ignore the PM bit in incoming frames. 2041 * Drivers then use ieee80211_sta_ps_transition() to inform mac80211 of 2042 * stations' powersave transitions. In this mode, mac80211 also doesn't 2043 * handle PS-Poll/uAPSD. 2044 * 2045 * In the mode without %IEEE80211_HW_AP_LINK_PS, mac80211 will check the 2046 * PM bit in incoming frames for client powersave transitions. When a 2047 * station goes to sleep, we will stop transmitting to it. There is, 2048 * however, a race condition: a station might go to sleep while there is 2049 * data buffered on hardware queues. If the device has support for this 2050 * it will reject frames, and the driver should give the frames back to 2051 * mac80211 with the %IEEE80211_TX_STAT_TX_FILTERED flag set which will 2052 * cause mac80211 to retry the frame when the station wakes up. The 2053 * driver is also notified of powersave transitions by calling its 2054 * @sta_notify callback. 2055 * 2056 * When the station is asleep, it has three choices: it can wake up, 2057 * it can PS-Poll, or it can possibly start a uAPSD service period. 2058 * Waking up is implemented by simply transmitting all buffered (and 2059 * filtered) frames to the station. This is the easiest case. When 2060 * the station sends a PS-Poll or a uAPSD trigger frame, mac80211 2061 * will inform the driver of this with the @allow_buffered_frames 2062 * callback; this callback is optional. mac80211 will then transmit 2063 * the frames as usual and set the %IEEE80211_TX_CTL_NO_PS_BUFFER 2064 * on each frame. The last frame in the service period (or the only 2065 * response to a PS-Poll) also has %IEEE80211_TX_STATUS_EOSP set to 2066 * indicate that it ends the service period; as this frame must have 2067 * TX status report it also sets %IEEE80211_TX_CTL_REQ_TX_STATUS. 2068 * When TX status is reported for this frame, the service period is 2069 * marked has having ended and a new one can be started by the peer. 2070 * 2071 * Additionally, non-bufferable MMPDUs can also be transmitted by 2072 * mac80211 with the %IEEE80211_TX_CTL_NO_PS_BUFFER set in them. 2073 * 2074 * Another race condition can happen on some devices like iwlwifi 2075 * when there are frames queued for the station and it wakes up 2076 * or polls; the frames that are already queued could end up being 2077 * transmitted first instead, causing reordering and/or wrong 2078 * processing of the EOSP. The cause is that allowing frames to be 2079 * transmitted to a certain station is out-of-band communication to 2080 * the device. To allow this problem to be solved, the driver can 2081 * call ieee80211_sta_block_awake() if frames are buffered when it 2082 * is notified that the station went to sleep. When all these frames 2083 * have been filtered (see above), it must call the function again 2084 * to indicate that the station is no longer blocked. 2085 * 2086 * If the driver buffers frames in the driver for aggregation in any 2087 * way, it must use the ieee80211_sta_set_buffered() call when it is 2088 * notified of the station going to sleep to inform mac80211 of any 2089 * TIDs that have frames buffered. Note that when a station wakes up 2090 * this information is reset (hence the requirement to call it when 2091 * informed of the station going to sleep). Then, when a service 2092 * period starts for any reason, @release_buffered_frames is called 2093 * with the number of frames to be released and which TIDs they are 2094 * to come from. In this case, the driver is responsible for setting 2095 * the EOSP (for uAPSD) and MORE_DATA bits in the released frames, 2096 * to help the @more_data parameter is passed to tell the driver if 2097 * there is more data on other TIDs -- the TIDs to release frames 2098 * from are ignored since mac80211 doesn't know how many frames the 2099 * buffers for those TIDs contain. 2100 * 2101 * If the driver also implement GO mode, where absence periods may 2102 * shorten service periods (or abort PS-Poll responses), it must 2103 * filter those response frames except in the case of frames that 2104 * are buffered in the driver -- those must remain buffered to avoid 2105 * reordering. Because it is possible that no frames are released 2106 * in this case, the driver must call ieee80211_sta_eosp() 2107 * to indicate to mac80211 that the service period ended anyway. 2108 * 2109 * Finally, if frames from multiple TIDs are released from mac80211 2110 * but the driver might reorder them, it must clear & set the flags 2111 * appropriately (only the last frame may have %IEEE80211_TX_STATUS_EOSP) 2112 * and also take care of the EOSP and MORE_DATA bits in the frame. 2113 * The driver may also use ieee80211_sta_eosp() in this case. 2114 * 2115 * Note that if the driver ever buffers frames other than QoS-data 2116 * frames, it must take care to never send a non-QoS-data frame as 2117 * the last frame in a service period, adding a QoS-nulldata frame 2118 * after a non-QoS-data frame if needed. 2119 */ 2120 2121 /** 2122 * DOC: HW queue control 2123 * 2124 * Before HW queue control was introduced, mac80211 only had a single static 2125 * assignment of per-interface AC software queues to hardware queues. This 2126 * was problematic for a few reasons: 2127 * 1) off-channel transmissions might get stuck behind other frames 2128 * 2) multiple virtual interfaces couldn't be handled correctly 2129 * 3) after-DTIM frames could get stuck behind other frames 2130 * 2131 * To solve this, hardware typically uses multiple different queues for all 2132 * the different usages, and this needs to be propagated into mac80211 so it 2133 * won't have the same problem with the software queues. 2134 * 2135 * Therefore, mac80211 now offers the %IEEE80211_HW_QUEUE_CONTROL capability 2136 * flag that tells it that the driver implements its own queue control. To do 2137 * so, the driver will set up the various queues in each &struct ieee80211_vif 2138 * and the offchannel queue in &struct ieee80211_hw. In response, mac80211 will 2139 * use those queue IDs in the hw_queue field of &struct ieee80211_tx_info and 2140 * if necessary will queue the frame on the right software queue that mirrors 2141 * the hardware queue. 2142 * Additionally, the driver has to then use these HW queue IDs for the queue 2143 * management functions (ieee80211_stop_queue() et al.) 2144 * 2145 * The driver is free to set up the queue mappings as needed, multiple virtual 2146 * interfaces may map to the same hardware queues if needed. The setup has to 2147 * happen during add_interface or change_interface callbacks. For example, a 2148 * driver supporting station+station and station+AP modes might decide to have 2149 * 10 hardware queues to handle different scenarios: 2150 * 2151 * 4 AC HW queues for 1st vif: 0, 1, 2, 3 2152 * 4 AC HW queues for 2nd vif: 4, 5, 6, 7 2153 * after-DTIM queue for AP: 8 2154 * off-channel queue: 9 2155 * 2156 * It would then set up the hardware like this: 2157 * hw.offchannel_tx_hw_queue = 9 2158 * 2159 * and the first virtual interface that is added as follows: 2160 * vif.hw_queue[IEEE80211_AC_VO] = 0 2161 * vif.hw_queue[IEEE80211_AC_VI] = 1 2162 * vif.hw_queue[IEEE80211_AC_BE] = 2 2163 * vif.hw_queue[IEEE80211_AC_BK] = 3 2164 * vif.cab_queue = 8 // if AP mode, otherwise %IEEE80211_INVAL_HW_QUEUE 2165 * and the second virtual interface with 4-7. 2166 * 2167 * If queue 6 gets full, for example, mac80211 would only stop the second 2168 * virtual interface's BE queue since virtual interface queues are per AC. 2169 * 2170 * Note that the vif.cab_queue value should be set to %IEEE80211_INVAL_HW_QUEUE 2171 * whenever the queue is not used (i.e. the interface is not in AP mode) if the 2172 * queue could potentially be shared since mac80211 will look at cab_queue when 2173 * a queue is stopped/woken even if the interface is not in AP mode. 2174 */ 2175 2176 /** 2177 * enum ieee80211_filter_flags - hardware filter flags 2178 * 2179 * These flags determine what the filter in hardware should be 2180 * programmed to let through and what should not be passed to the 2181 * stack. It is always safe to pass more frames than requested, 2182 * but this has negative impact on power consumption. 2183 * 2184 * @FIF_PROMISC_IN_BSS: promiscuous mode within your BSS, 2185 * think of the BSS as your network segment and then this corresponds 2186 * to the regular ethernet device promiscuous mode. 2187 * 2188 * @FIF_ALLMULTI: pass all multicast frames, this is used if requested 2189 * by the user or if the hardware is not capable of filtering by 2190 * multicast address. 2191 * 2192 * @FIF_FCSFAIL: pass frames with failed FCS (but you need to set the 2193 * %RX_FLAG_FAILED_FCS_CRC for them) 2194 * 2195 * @FIF_PLCPFAIL: pass frames with failed PLCP CRC (but you need to set 2196 * the %RX_FLAG_FAILED_PLCP_CRC for them 2197 * 2198 * @FIF_BCN_PRBRESP_PROMISC: This flag is set during scanning to indicate 2199 * to the hardware that it should not filter beacons or probe responses 2200 * by BSSID. Filtering them can greatly reduce the amount of processing 2201 * mac80211 needs to do and the amount of CPU wakeups, so you should 2202 * honour this flag if possible. 2203 * 2204 * @FIF_CONTROL: pass control frames (except for PS Poll), if PROMISC_IN_BSS 2205 * is not set then only those addressed to this station. 2206 * 2207 * @FIF_OTHER_BSS: pass frames destined to other BSSes 2208 * 2209 * @FIF_PSPOLL: pass PS Poll frames, if PROMISC_IN_BSS is not set then only 2210 * those addressed to this station. 2211 * 2212 * @FIF_PROBE_REQ: pass probe request frames 2213 */ 2214 enum ieee80211_filter_flags { 2215 FIF_PROMISC_IN_BSS = 1<<0, 2216 FIF_ALLMULTI = 1<<1, 2217 FIF_FCSFAIL = 1<<2, 2218 FIF_PLCPFAIL = 1<<3, 2219 FIF_BCN_PRBRESP_PROMISC = 1<<4, 2220 FIF_CONTROL = 1<<5, 2221 FIF_OTHER_BSS = 1<<6, 2222 FIF_PSPOLL = 1<<7, 2223 FIF_PROBE_REQ = 1<<8, 2224 }; 2225 2226 /** 2227 * enum ieee80211_ampdu_mlme_action - A-MPDU actions 2228 * 2229 * These flags are used with the ampdu_action() callback in 2230 * &struct ieee80211_ops to indicate which action is needed. 2231 * 2232 * Note that drivers MUST be able to deal with a TX aggregation 2233 * session being stopped even before they OK'ed starting it by 2234 * calling ieee80211_start_tx_ba_cb_irqsafe, because the peer 2235 * might receive the addBA frame and send a delBA right away! 2236 * 2237 * @IEEE80211_AMPDU_RX_START: start RX aggregation 2238 * @IEEE80211_AMPDU_RX_STOP: stop RX aggregation 2239 * @IEEE80211_AMPDU_TX_START: start TX aggregation 2240 * @IEEE80211_AMPDU_TX_OPERATIONAL: TX aggregation has become operational 2241 * @IEEE80211_AMPDU_TX_STOP_CONT: stop TX aggregation but continue transmitting 2242 * queued packets, now unaggregated. After all packets are transmitted the 2243 * driver has to call ieee80211_stop_tx_ba_cb_irqsafe(). 2244 * @IEEE80211_AMPDU_TX_STOP_FLUSH: stop TX aggregation and flush all packets, 2245 * called when the station is removed. There's no need or reason to call 2246 * ieee80211_stop_tx_ba_cb_irqsafe() in this case as mac80211 assumes the 2247 * session is gone and removes the station. 2248 * @IEEE80211_AMPDU_TX_STOP_FLUSH_CONT: called when TX aggregation is stopped 2249 * but the driver hasn't called ieee80211_stop_tx_ba_cb_irqsafe() yet and 2250 * now the connection is dropped and the station will be removed. Drivers 2251 * should clean up and drop remaining packets when this is called. 2252 */ 2253 enum ieee80211_ampdu_mlme_action { 2254 IEEE80211_AMPDU_RX_START, 2255 IEEE80211_AMPDU_RX_STOP, 2256 IEEE80211_AMPDU_TX_START, 2257 IEEE80211_AMPDU_TX_STOP_CONT, 2258 IEEE80211_AMPDU_TX_STOP_FLUSH, 2259 IEEE80211_AMPDU_TX_STOP_FLUSH_CONT, 2260 IEEE80211_AMPDU_TX_OPERATIONAL, 2261 }; 2262 2263 /** 2264 * enum ieee80211_frame_release_type - frame release reason 2265 * @IEEE80211_FRAME_RELEASE_PSPOLL: frame released for PS-Poll 2266 * @IEEE80211_FRAME_RELEASE_UAPSD: frame(s) released due to 2267 * frame received on trigger-enabled AC 2268 */ 2269 enum ieee80211_frame_release_type { 2270 IEEE80211_FRAME_RELEASE_PSPOLL, 2271 IEEE80211_FRAME_RELEASE_UAPSD, 2272 }; 2273 2274 /** 2275 * enum ieee80211_rate_control_changed - flags to indicate what changed 2276 * 2277 * @IEEE80211_RC_BW_CHANGED: The bandwidth that can be used to transmit 2278 * to this station changed. The actual bandwidth is in the station 2279 * information -- for HT20/40 the IEEE80211_HT_CAP_SUP_WIDTH_20_40 2280 * flag changes, for HT and VHT the bandwidth field changes. 2281 * @IEEE80211_RC_SMPS_CHANGED: The SMPS state of the station changed. 2282 * @IEEE80211_RC_SUPP_RATES_CHANGED: The supported rate set of this peer 2283 * changed (in IBSS mode) due to discovering more information about 2284 * the peer. 2285 * @IEEE80211_RC_NSS_CHANGED: N_SS (number of spatial streams) was changed 2286 * by the peer 2287 */ 2288 enum ieee80211_rate_control_changed { 2289 IEEE80211_RC_BW_CHANGED = BIT(0), 2290 IEEE80211_RC_SMPS_CHANGED = BIT(1), 2291 IEEE80211_RC_SUPP_RATES_CHANGED = BIT(2), 2292 IEEE80211_RC_NSS_CHANGED = BIT(3), 2293 }; 2294 2295 /** 2296 * enum ieee80211_roc_type - remain on channel type 2297 * 2298 * With the support for multi channel contexts and multi channel operations, 2299 * remain on channel operations might be limited/deferred/aborted by other 2300 * flows/operations which have higher priority (and vise versa). 2301 * Specifying the ROC type can be used by devices to prioritize the ROC 2302 * operations compared to other operations/flows. 2303 * 2304 * @IEEE80211_ROC_TYPE_NORMAL: There are no special requirements for this ROC. 2305 * @IEEE80211_ROC_TYPE_MGMT_TX: The remain on channel request is required 2306 * for sending managment frames offchannel. 2307 */ 2308 enum ieee80211_roc_type { 2309 IEEE80211_ROC_TYPE_NORMAL = 0, 2310 IEEE80211_ROC_TYPE_MGMT_TX, 2311 }; 2312 2313 /** 2314 * struct ieee80211_ops - callbacks from mac80211 to the driver 2315 * 2316 * This structure contains various callbacks that the driver may 2317 * handle or, in some cases, must handle, for example to configure 2318 * the hardware to a new channel or to transmit a frame. 2319 * 2320 * @tx: Handler that 802.11 module calls for each transmitted frame. 2321 * skb contains the buffer starting from the IEEE 802.11 header. 2322 * The low-level driver should send the frame out based on 2323 * configuration in the TX control data. This handler should, 2324 * preferably, never fail and stop queues appropriately. 2325 * Must be atomic. 2326 * 2327 * @start: Called before the first netdevice attached to the hardware 2328 * is enabled. This should turn on the hardware and must turn on 2329 * frame reception (for possibly enabled monitor interfaces.) 2330 * Returns negative error codes, these may be seen in userspace, 2331 * or zero. 2332 * When the device is started it should not have a MAC address 2333 * to avoid acknowledging frames before a non-monitor device 2334 * is added. 2335 * Must be implemented and can sleep. 2336 * 2337 * @stop: Called after last netdevice attached to the hardware 2338 * is disabled. This should turn off the hardware (at least 2339 * it must turn off frame reception.) 2340 * May be called right after add_interface if that rejects 2341 * an interface. If you added any work onto the mac80211 workqueue 2342 * you should ensure to cancel it on this callback. 2343 * Must be implemented and can sleep. 2344 * 2345 * @suspend: Suspend the device; mac80211 itself will quiesce before and 2346 * stop transmitting and doing any other configuration, and then 2347 * ask the device to suspend. This is only invoked when WoWLAN is 2348 * configured, otherwise the device is deconfigured completely and 2349 * reconfigured at resume time. 2350 * The driver may also impose special conditions under which it 2351 * wants to use the "normal" suspend (deconfigure), say if it only 2352 * supports WoWLAN when the device is associated. In this case, it 2353 * must return 1 from this function. 2354 * 2355 * @resume: If WoWLAN was configured, this indicates that mac80211 is 2356 * now resuming its operation, after this the device must be fully 2357 * functional again. If this returns an error, the only way out is 2358 * to also unregister the device. If it returns 1, then mac80211 2359 * will also go through the regular complete restart on resume. 2360 * 2361 * @set_wakeup: Enable or disable wakeup when WoWLAN configuration is 2362 * modified. The reason is that device_set_wakeup_enable() is 2363 * supposed to be called when the configuration changes, not only 2364 * in suspend(). 2365 * 2366 * @add_interface: Called when a netdevice attached to the hardware is 2367 * enabled. Because it is not called for monitor mode devices, @start 2368 * and @stop must be implemented. 2369 * The driver should perform any initialization it needs before 2370 * the device can be enabled. The initial configuration for the 2371 * interface is given in the conf parameter. 2372 * The callback may refuse to add an interface by returning a 2373 * negative error code (which will be seen in userspace.) 2374 * Must be implemented and can sleep. 2375 * 2376 * @change_interface: Called when a netdevice changes type. This callback 2377 * is optional, but only if it is supported can interface types be 2378 * switched while the interface is UP. The callback may sleep. 2379 * Note that while an interface is being switched, it will not be 2380 * found by the interface iteration callbacks. 2381 * 2382 * @remove_interface: Notifies a driver that an interface is going down. 2383 * The @stop callback is called after this if it is the last interface 2384 * and no monitor interfaces are present. 2385 * When all interfaces are removed, the MAC address in the hardware 2386 * must be cleared so the device no longer acknowledges packets, 2387 * the mac_addr member of the conf structure is, however, set to the 2388 * MAC address of the device going away. 2389 * Hence, this callback must be implemented. It can sleep. 2390 * 2391 * @config: Handler for configuration requests. IEEE 802.11 code calls this 2392 * function to change hardware configuration, e.g., channel. 2393 * This function should never fail but returns a negative error code 2394 * if it does. The callback can sleep. 2395 * 2396 * @bss_info_changed: Handler for configuration requests related to BSS 2397 * parameters that may vary during BSS's lifespan, and may affect low 2398 * level driver (e.g. assoc/disassoc status, erp parameters). 2399 * This function should not be used if no BSS has been set, unless 2400 * for association indication. The @changed parameter indicates which 2401 * of the bss parameters has changed when a call is made. The callback 2402 * can sleep. 2403 * 2404 * @prepare_multicast: Prepare for multicast filter configuration. 2405 * This callback is optional, and its return value is passed 2406 * to configure_filter(). This callback must be atomic. 2407 * 2408 * @configure_filter: Configure the device's RX filter. 2409 * See the section "Frame filtering" for more information. 2410 * This callback must be implemented and can sleep. 2411 * 2412 * @set_tim: Set TIM bit. mac80211 calls this function when a TIM bit 2413 * must be set or cleared for a given STA. Must be atomic. 2414 * 2415 * @set_key: See the section "Hardware crypto acceleration" 2416 * This callback is only called between add_interface and 2417 * remove_interface calls, i.e. while the given virtual interface 2418 * is enabled. 2419 * Returns a negative error code if the key can't be added. 2420 * The callback can sleep. 2421 * 2422 * @update_tkip_key: See the section "Hardware crypto acceleration" 2423 * This callback will be called in the context of Rx. Called for drivers 2424 * which set IEEE80211_KEY_FLAG_TKIP_REQ_RX_P1_KEY. 2425 * The callback must be atomic. 2426 * 2427 * @set_rekey_data: If the device supports GTK rekeying, for example while the 2428 * host is suspended, it can assign this callback to retrieve the data 2429 * necessary to do GTK rekeying, this is the KEK, KCK and replay counter. 2430 * After rekeying was done it should (for example during resume) notify 2431 * userspace of the new replay counter using ieee80211_gtk_rekey_notify(). 2432 * 2433 * @set_default_unicast_key: Set the default (unicast) key index, useful for 2434 * WEP when the device sends data packets autonomously, e.g. for ARP 2435 * offloading. The index can be 0-3, or -1 for unsetting it. 2436 * 2437 * @hw_scan: Ask the hardware to service the scan request, no need to start 2438 * the scan state machine in stack. The scan must honour the channel 2439 * configuration done by the regulatory agent in the wiphy's 2440 * registered bands. The hardware (or the driver) needs to make sure 2441 * that power save is disabled. 2442 * The @req ie/ie_len members are rewritten by mac80211 to contain the 2443 * entire IEs after the SSID, so that drivers need not look at these 2444 * at all but just send them after the SSID -- mac80211 includes the 2445 * (extended) supported rates and HT information (where applicable). 2446 * When the scan finishes, ieee80211_scan_completed() must be called; 2447 * note that it also must be called when the scan cannot finish due to 2448 * any error unless this callback returned a negative error code. 2449 * The callback can sleep. 2450 * 2451 * @cancel_hw_scan: Ask the low-level tp cancel the active hw scan. 2452 * The driver should ask the hardware to cancel the scan (if possible), 2453 * but the scan will be completed only after the driver will call 2454 * ieee80211_scan_completed(). 2455 * This callback is needed for wowlan, to prevent enqueueing a new 2456 * scan_work after the low-level driver was already suspended. 2457 * The callback can sleep. 2458 * 2459 * @sched_scan_start: Ask the hardware to start scanning repeatedly at 2460 * specific intervals. The driver must call the 2461 * ieee80211_sched_scan_results() function whenever it finds results. 2462 * This process will continue until sched_scan_stop is called. 2463 * 2464 * @sched_scan_stop: Tell the hardware to stop an ongoing scheduled scan. 2465 * In this case, ieee80211_sched_scan_stopped() must not be called. 2466 * 2467 * @sw_scan_start: Notifier function that is called just before a software scan 2468 * is started. Can be NULL, if the driver doesn't need this notification. 2469 * The callback can sleep. 2470 * 2471 * @sw_scan_complete: Notifier function that is called just after a 2472 * software scan finished. Can be NULL, if the driver doesn't need 2473 * this notification. 2474 * The callback can sleep. 2475 * 2476 * @get_stats: Return low-level statistics. 2477 * Returns zero if statistics are available. 2478 * The callback can sleep. 2479 * 2480 * @get_tkip_seq: If your device implements TKIP encryption in hardware this 2481 * callback should be provided to read the TKIP transmit IVs (both IV32 2482 * and IV16) for the given key from hardware. 2483 * The callback must be atomic. 2484 * 2485 * @set_frag_threshold: Configuration of fragmentation threshold. Assign this 2486 * if the device does fragmentation by itself; if this callback is 2487 * implemented then the stack will not do fragmentation. 2488 * The callback can sleep. 2489 * 2490 * @set_rts_threshold: Configuration of RTS threshold (if device needs it) 2491 * The callback can sleep. 2492 * 2493 * @sta_add: Notifies low level driver about addition of an associated station, 2494 * AP, IBSS/WDS/mesh peer etc. This callback can sleep. 2495 * 2496 * @sta_remove: Notifies low level driver about removal of an associated 2497 * station, AP, IBSS/WDS/mesh peer etc. Note that after the callback 2498 * returns it isn't safe to use the pointer, not even RCU protected; 2499 * no RCU grace period is guaranteed between returning here and freeing 2500 * the station. See @sta_pre_rcu_remove if needed. 2501 * This callback can sleep. 2502 * 2503 * @sta_add_debugfs: Drivers can use this callback to add debugfs files 2504 * when a station is added to mac80211's station list. This callback 2505 * and @sta_remove_debugfs should be within a CONFIG_MAC80211_DEBUGFS 2506 * conditional. This callback can sleep. 2507 * 2508 * @sta_remove_debugfs: Remove the debugfs files which were added using 2509 * @sta_add_debugfs. This callback can sleep. 2510 * 2511 * @sta_notify: Notifies low level driver about power state transition of an 2512 * associated station, AP, IBSS/WDS/mesh peer etc. For a VIF operating 2513 * in AP mode, this callback will not be called when the flag 2514 * %IEEE80211_HW_AP_LINK_PS is set. Must be atomic. 2515 * 2516 * @sta_state: Notifies low level driver about state transition of a 2517 * station (which can be the AP, a client, IBSS/WDS/mesh peer etc.) 2518 * This callback is mutually exclusive with @sta_add/@sta_remove. 2519 * It must not fail for down transitions but may fail for transitions 2520 * up the list of states. Also note that after the callback returns it 2521 * isn't safe to use the pointer, not even RCU protected - no RCU grace 2522 * period is guaranteed between returning here and freeing the station. 2523 * See @sta_pre_rcu_remove if needed. 2524 * The callback can sleep. 2525 * 2526 * @sta_pre_rcu_remove: Notify driver about station removal before RCU 2527 * synchronisation. This is useful if a driver needs to have station 2528 * pointers protected using RCU, it can then use this call to clear 2529 * the pointers instead of waiting for an RCU grace period to elapse 2530 * in @sta_state. 2531 * The callback can sleep. 2532 * 2533 * @sta_rc_update: Notifies the driver of changes to the bitrates that can be 2534 * used to transmit to the station. The changes are advertised with bits 2535 * from &enum ieee80211_rate_control_changed and the values are reflected 2536 * in the station data. This callback should only be used when the driver 2537 * uses hardware rate control (%IEEE80211_HW_HAS_RATE_CONTROL) since 2538 * otherwise the rate control algorithm is notified directly. 2539 * Must be atomic. 2540 * 2541 * @conf_tx: Configure TX queue parameters (EDCF (aifs, cw_min, cw_max), 2542 * bursting) for a hardware TX queue. 2543 * Returns a negative error code on failure. 2544 * The callback can sleep. 2545 * 2546 * @get_tsf: Get the current TSF timer value from firmware/hardware. Currently, 2547 * this is only used for IBSS mode BSSID merging and debugging. Is not a 2548 * required function. 2549 * The callback can sleep. 2550 * 2551 * @set_tsf: Set the TSF timer to the specified value in the firmware/hardware. 2552 * Currently, this is only used for IBSS mode debugging. Is not a 2553 * required function. 2554 * The callback can sleep. 2555 * 2556 * @reset_tsf: Reset the TSF timer and allow firmware/hardware to synchronize 2557 * with other STAs in the IBSS. This is only used in IBSS mode. This 2558 * function is optional if the firmware/hardware takes full care of 2559 * TSF synchronization. 2560 * The callback can sleep. 2561 * 2562 * @tx_last_beacon: Determine whether the last IBSS beacon was sent by us. 2563 * This is needed only for IBSS mode and the result of this function is 2564 * used to determine whether to reply to Probe Requests. 2565 * Returns non-zero if this device sent the last beacon. 2566 * The callback can sleep. 2567 * 2568 * @ampdu_action: Perform a certain A-MPDU action 2569 * The RA/TID combination determines the destination and TID we want 2570 * the ampdu action to be performed for. The action is defined through 2571 * ieee80211_ampdu_mlme_action. Starting sequence number (@ssn) 2572 * is the first frame we expect to perform the action on. Notice 2573 * that TX/RX_STOP can pass NULL for this parameter. 2574 * The @buf_size parameter is only valid when the action is set to 2575 * %IEEE80211_AMPDU_TX_OPERATIONAL and indicates the peer's reorder 2576 * buffer size (number of subframes) for this session -- the driver 2577 * may neither send aggregates containing more subframes than this 2578 * nor send aggregates in a way that lost frames would exceed the 2579 * buffer size. If just limiting the aggregate size, this would be 2580 * possible with a buf_size of 8: 2581 * - TX: 1.....7 2582 * - RX: 2....7 (lost frame #1) 2583 * - TX: 8..1... 2584 * which is invalid since #1 was now re-transmitted well past the 2585 * buffer size of 8. Correct ways to retransmit #1 would be: 2586 * - TX: 1 or 18 or 81 2587 * Even "189" would be wrong since 1 could be lost again. 2588 * 2589 * Returns a negative error code on failure. 2590 * The callback can sleep. 2591 * 2592 * @get_survey: Return per-channel survey information 2593 * 2594 * @rfkill_poll: Poll rfkill hardware state. If you need this, you also 2595 * need to set wiphy->rfkill_poll to %true before registration, 2596 * and need to call wiphy_rfkill_set_hw_state() in the callback. 2597 * The callback can sleep. 2598 * 2599 * @set_coverage_class: Set slot time for given coverage class as specified 2600 * in IEEE 802.11-2007 section 17.3.8.6 and modify ACK timeout 2601 * accordingly. This callback is not required and may sleep. 2602 * 2603 * @testmode_cmd: Implement a cfg80211 test mode command. The passed @vif may 2604 * be %NULL. The callback can sleep. 2605 * @testmode_dump: Implement a cfg80211 test mode dump. The callback can sleep. 2606 * 2607 * @flush: Flush all pending frames from the hardware queue, making sure 2608 * that the hardware queues are empty. The @queues parameter is a bitmap 2609 * of queues to flush, which is useful if different virtual interfaces 2610 * use different hardware queues; it may also indicate all queues. 2611 * If the parameter @drop is set to %true, pending frames may be dropped. 2612 * The callback can sleep. 2613 * 2614 * @channel_switch: Drivers that need (or want) to offload the channel 2615 * switch operation for CSAs received from the AP may implement this 2616 * callback. They must then call ieee80211_chswitch_done() to indicate 2617 * completion of the channel switch. 2618 * 2619 * @set_antenna: Set antenna configuration (tx_ant, rx_ant) on the device. 2620 * Parameters are bitmaps of allowed antennas to use for TX/RX. Drivers may 2621 * reject TX/RX mask combinations they cannot support by returning -EINVAL 2622 * (also see nl80211.h @NL80211_ATTR_WIPHY_ANTENNA_TX). 2623 * 2624 * @get_antenna: Get current antenna configuration from device (tx_ant, rx_ant). 2625 * 2626 * @remain_on_channel: Starts an off-channel period on the given channel, must 2627 * call back to ieee80211_ready_on_channel() when on that channel. Note 2628 * that normal channel traffic is not stopped as this is intended for hw 2629 * offload. Frames to transmit on the off-channel channel are transmitted 2630 * normally except for the %IEEE80211_TX_CTL_TX_OFFCHAN flag. When the 2631 * duration (which will always be non-zero) expires, the driver must call 2632 * ieee80211_remain_on_channel_expired(). 2633 * Note that this callback may be called while the device is in IDLE and 2634 * must be accepted in this case. 2635 * This callback may sleep. 2636 * @cancel_remain_on_channel: Requests that an ongoing off-channel period is 2637 * aborted before it expires. This callback may sleep. 2638 * 2639 * @set_ringparam: Set tx and rx ring sizes. 2640 * 2641 * @get_ringparam: Get tx and rx ring current and maximum sizes. 2642 * 2643 * @tx_frames_pending: Check if there is any pending frame in the hardware 2644 * queues before entering power save. 2645 * 2646 * @set_bitrate_mask: Set a mask of rates to be used for rate control selection 2647 * when transmitting a frame. Currently only legacy rates are handled. 2648 * The callback can sleep. 2649 * @rssi_callback: Notify driver when the average RSSI goes above/below 2650 * thresholds that were registered previously. The callback can sleep. 2651 * 2652 * @release_buffered_frames: Release buffered frames according to the given 2653 * parameters. In the case where the driver buffers some frames for 2654 * sleeping stations mac80211 will use this callback to tell the driver 2655 * to release some frames, either for PS-poll or uAPSD. 2656 * Note that if the @more_data parameter is %false the driver must check 2657 * if there are more frames on the given TIDs, and if there are more than 2658 * the frames being released then it must still set the more-data bit in 2659 * the frame. If the @more_data parameter is %true, then of course the 2660 * more-data bit must always be set. 2661 * The @tids parameter tells the driver which TIDs to release frames 2662 * from, for PS-poll it will always have only a single bit set. 2663 * In the case this is used for a PS-poll initiated release, the 2664 * @num_frames parameter will always be 1 so code can be shared. In 2665 * this case the driver must also set %IEEE80211_TX_STATUS_EOSP flag 2666 * on the TX status (and must report TX status) so that the PS-poll 2667 * period is properly ended. This is used to avoid sending multiple 2668 * responses for a retried PS-poll frame. 2669 * In the case this is used for uAPSD, the @num_frames parameter may be 2670 * bigger than one, but the driver may send fewer frames (it must send 2671 * at least one, however). In this case it is also responsible for 2672 * setting the EOSP flag in the QoS header of the frames. Also, when the 2673 * service period ends, the driver must set %IEEE80211_TX_STATUS_EOSP 2674 * on the last frame in the SP. Alternatively, it may call the function 2675 * ieee80211_sta_eosp() to inform mac80211 of the end of the SP. 2676 * This callback must be atomic. 2677 * @allow_buffered_frames: Prepare device to allow the given number of frames 2678 * to go out to the given station. The frames will be sent by mac80211 2679 * via the usual TX path after this call. The TX information for frames 2680 * released will also have the %IEEE80211_TX_CTL_NO_PS_BUFFER flag set 2681 * and the last one will also have %IEEE80211_TX_STATUS_EOSP set. In case 2682 * frames from multiple TIDs are released and the driver might reorder 2683 * them between the TIDs, it must set the %IEEE80211_TX_STATUS_EOSP flag 2684 * on the last frame and clear it on all others and also handle the EOSP 2685 * bit in the QoS header correctly. Alternatively, it can also call the 2686 * ieee80211_sta_eosp() function. 2687 * The @tids parameter is a bitmap and tells the driver which TIDs the 2688 * frames will be on; it will at most have two bits set. 2689 * This callback must be atomic. 2690 * 2691 * @get_et_sset_count: Ethtool API to get string-set count. 2692 * 2693 * @get_et_stats: Ethtool API to get a set of u64 stats. 2694 * 2695 * @get_et_strings: Ethtool API to get a set of strings to describe stats 2696 * and perhaps other supported types of ethtool data-sets. 2697 * 2698 * @get_rssi: Get current signal strength in dBm, the function is optional 2699 * and can sleep. 2700 * 2701 * @mgd_prepare_tx: Prepare for transmitting a management frame for association 2702 * before associated. In multi-channel scenarios, a virtual interface is 2703 * bound to a channel before it is associated, but as it isn't associated 2704 * yet it need not necessarily be given airtime, in particular since any 2705 * transmission to a P2P GO needs to be synchronized against the GO's 2706 * powersave state. mac80211 will call this function before transmitting a 2707 * management frame prior to having successfully associated to allow the 2708 * driver to give it channel time for the transmission, to get a response 2709 * and to be able to synchronize with the GO. 2710 * The callback will be called before each transmission and upon return 2711 * mac80211 will transmit the frame right away. 2712 * The callback is optional and can (should!) sleep. 2713 * 2714 * @add_chanctx: Notifies device driver about new channel context creation. 2715 * @remove_chanctx: Notifies device driver about channel context destruction. 2716 * @change_chanctx: Notifies device driver about channel context changes that 2717 * may happen when combining different virtual interfaces on the same 2718 * channel context with different settings 2719 * @assign_vif_chanctx: Notifies device driver about channel context being bound 2720 * to vif. Possible use is for hw queue remapping. 2721 * @unassign_vif_chanctx: Notifies device driver about channel context being 2722 * unbound from vif. 2723 * @start_ap: Start operation on the AP interface, this is called after all the 2724 * information in bss_conf is set and beacon can be retrieved. A channel 2725 * context is bound before this is called. Note that if the driver uses 2726 * software scan or ROC, this (and @stop_ap) isn't called when the AP is 2727 * just "paused" for scanning/ROC, which is indicated by the beacon being 2728 * disabled/enabled via @bss_info_changed. 2729 * @stop_ap: Stop operation on the AP interface. 2730 * 2731 * @restart_complete: Called after a call to ieee80211_restart_hw(), when the 2732 * reconfiguration has completed. This can help the driver implement the 2733 * reconfiguration step. Also called when reconfiguring because the 2734 * driver's resume function returned 1, as this is just like an "inline" 2735 * hardware restart. This callback may sleep. 2736 * 2737 * @ipv6_addr_change: IPv6 address assignment on the given interface changed. 2738 * Currently, this is only called for managed or P2P client interfaces. 2739 * This callback is optional; it must not sleep. 2740 * 2741 * @channel_switch_beacon: Starts a channel switch to a new channel. 2742 * Beacons are modified to include CSA or ECSA IEs before calling this 2743 * function. The corresponding count fields in these IEs must be 2744 * decremented, and when they reach 1 the driver must call 2745 * ieee80211_csa_finish(). Drivers which use ieee80211_beacon_get() 2746 * get the csa counter decremented by mac80211, but must check if it is 2747 * 1 using ieee80211_csa_is_complete() after the beacon has been 2748 * transmitted and then call ieee80211_csa_finish(). 2749 * If the CSA count starts as zero or 1, this function will not be called, 2750 * since there won't be any time to beacon before the switch anyway. 2751 * 2752 * @join_ibss: Join an IBSS (on an IBSS interface); this is called after all 2753 * information in bss_conf is set up and the beacon can be retrieved. A 2754 * channel context is bound before this is called. 2755 * @leave_ibss: Leave the IBSS again. 2756 */ 2757 struct ieee80211_ops { 2758 void (*tx)(struct ieee80211_hw *hw, 2759 struct ieee80211_tx_control *control, 2760 struct sk_buff *skb); 2761 int (*start)(struct ieee80211_hw *hw); 2762 void (*stop)(struct ieee80211_hw *hw); 2763 #ifdef CONFIG_PM 2764 int (*suspend)(struct ieee80211_hw *hw, struct cfg80211_wowlan *wowlan); 2765 int (*resume)(struct ieee80211_hw *hw); 2766 void (*set_wakeup)(struct ieee80211_hw *hw, bool enabled); 2767 #endif 2768 int (*add_interface)(struct ieee80211_hw *hw, 2769 struct ieee80211_vif *vif); 2770 int (*change_interface)(struct ieee80211_hw *hw, 2771 struct ieee80211_vif *vif, 2772 enum nl80211_iftype new_type, bool p2p); 2773 void (*remove_interface)(struct ieee80211_hw *hw, 2774 struct ieee80211_vif *vif); 2775 int (*config)(struct ieee80211_hw *hw, u32 changed); 2776 void (*bss_info_changed)(struct ieee80211_hw *hw, 2777 struct ieee80211_vif *vif, 2778 struct ieee80211_bss_conf *info, 2779 u32 changed); 2780 2781 int (*start_ap)(struct ieee80211_hw *hw, struct ieee80211_vif *vif); 2782 void (*stop_ap)(struct ieee80211_hw *hw, struct ieee80211_vif *vif); 2783 2784 u64 (*prepare_multicast)(struct ieee80211_hw *hw, 2785 struct netdev_hw_addr_list *mc_list); 2786 void (*configure_filter)(struct ieee80211_hw *hw, 2787 unsigned int changed_flags, 2788 unsigned int *total_flags, 2789 u64 multicast); 2790 int (*set_tim)(struct ieee80211_hw *hw, struct ieee80211_sta *sta, 2791 bool set); 2792 int (*set_key)(struct ieee80211_hw *hw, enum set_key_cmd cmd, 2793 struct ieee80211_vif *vif, struct ieee80211_sta *sta, 2794 struct ieee80211_key_conf *key); 2795 void (*update_tkip_key)(struct ieee80211_hw *hw, 2796 struct ieee80211_vif *vif, 2797 struct ieee80211_key_conf *conf, 2798 struct ieee80211_sta *sta, 2799 u32 iv32, u16 *phase1key); 2800 void (*set_rekey_data)(struct ieee80211_hw *hw, 2801 struct ieee80211_vif *vif, 2802 struct cfg80211_gtk_rekey_data *data); 2803 void (*set_default_unicast_key)(struct ieee80211_hw *hw, 2804 struct ieee80211_vif *vif, int idx); 2805 int (*hw_scan)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 2806 struct cfg80211_scan_request *req); 2807 void (*cancel_hw_scan)(struct ieee80211_hw *hw, 2808 struct ieee80211_vif *vif); 2809 int (*sched_scan_start)(struct ieee80211_hw *hw, 2810 struct ieee80211_vif *vif, 2811 struct cfg80211_sched_scan_request *req, 2812 struct ieee80211_sched_scan_ies *ies); 2813 int (*sched_scan_stop)(struct ieee80211_hw *hw, 2814 struct ieee80211_vif *vif); 2815 void (*sw_scan_start)(struct ieee80211_hw *hw); 2816 void (*sw_scan_complete)(struct ieee80211_hw *hw); 2817 int (*get_stats)(struct ieee80211_hw *hw, 2818 struct ieee80211_low_level_stats *stats); 2819 void (*get_tkip_seq)(struct ieee80211_hw *hw, u8 hw_key_idx, 2820 u32 *iv32, u16 *iv16); 2821 int (*set_frag_threshold)(struct ieee80211_hw *hw, u32 value); 2822 int (*set_rts_threshold)(struct ieee80211_hw *hw, u32 value); 2823 int (*sta_add)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 2824 struct ieee80211_sta *sta); 2825 int (*sta_remove)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 2826 struct ieee80211_sta *sta); 2827 #ifdef CONFIG_MAC80211_DEBUGFS 2828 void (*sta_add_debugfs)(struct ieee80211_hw *hw, 2829 struct ieee80211_vif *vif, 2830 struct ieee80211_sta *sta, 2831 struct dentry *dir); 2832 void (*sta_remove_debugfs)(struct ieee80211_hw *hw, 2833 struct ieee80211_vif *vif, 2834 struct ieee80211_sta *sta, 2835 struct dentry *dir); 2836 #endif 2837 void (*sta_notify)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 2838 enum sta_notify_cmd, struct ieee80211_sta *sta); 2839 int (*sta_state)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 2840 struct ieee80211_sta *sta, 2841 enum ieee80211_sta_state old_state, 2842 enum ieee80211_sta_state new_state); 2843 void (*sta_pre_rcu_remove)(struct ieee80211_hw *hw, 2844 struct ieee80211_vif *vif, 2845 struct ieee80211_sta *sta); 2846 void (*sta_rc_update)(struct ieee80211_hw *hw, 2847 struct ieee80211_vif *vif, 2848 struct ieee80211_sta *sta, 2849 u32 changed); 2850 int (*conf_tx)(struct ieee80211_hw *hw, 2851 struct ieee80211_vif *vif, u16 ac, 2852 const struct ieee80211_tx_queue_params *params); 2853 u64 (*get_tsf)(struct ieee80211_hw *hw, struct ieee80211_vif *vif); 2854 void (*set_tsf)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 2855 u64 tsf); 2856 void (*reset_tsf)(struct ieee80211_hw *hw, struct ieee80211_vif *vif); 2857 int (*tx_last_beacon)(struct ieee80211_hw *hw); 2858 int (*ampdu_action)(struct ieee80211_hw *hw, 2859 struct ieee80211_vif *vif, 2860 enum ieee80211_ampdu_mlme_action action, 2861 struct ieee80211_sta *sta, u16 tid, u16 *ssn, 2862 u8 buf_size); 2863 int (*get_survey)(struct ieee80211_hw *hw, int idx, 2864 struct survey_info *survey); 2865 void (*rfkill_poll)(struct ieee80211_hw *hw); 2866 void (*set_coverage_class)(struct ieee80211_hw *hw, u8 coverage_class); 2867 #ifdef CONFIG_NL80211_TESTMODE 2868 int (*testmode_cmd)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 2869 void *data, int len); 2870 int (*testmode_dump)(struct ieee80211_hw *hw, struct sk_buff *skb, 2871 struct netlink_callback *cb, 2872 void *data, int len); 2873 #endif 2874 void (*flush)(struct ieee80211_hw *hw, u32 queues, bool drop); 2875 void (*channel_switch)(struct ieee80211_hw *hw, 2876 struct ieee80211_channel_switch *ch_switch); 2877 int (*set_antenna)(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant); 2878 int (*get_antenna)(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant); 2879 2880 int (*remain_on_channel)(struct ieee80211_hw *hw, 2881 struct ieee80211_vif *vif, 2882 struct ieee80211_channel *chan, 2883 int duration, 2884 enum ieee80211_roc_type type); 2885 int (*cancel_remain_on_channel)(struct ieee80211_hw *hw); 2886 int (*set_ringparam)(struct ieee80211_hw *hw, u32 tx, u32 rx); 2887 void (*get_ringparam)(struct ieee80211_hw *hw, 2888 u32 *tx, u32 *tx_max, u32 *rx, u32 *rx_max); 2889 bool (*tx_frames_pending)(struct ieee80211_hw *hw); 2890 int (*set_bitrate_mask)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 2891 const struct cfg80211_bitrate_mask *mask); 2892 void (*rssi_callback)(struct ieee80211_hw *hw, 2893 struct ieee80211_vif *vif, 2894 enum ieee80211_rssi_event rssi_event); 2895 2896 void (*allow_buffered_frames)(struct ieee80211_hw *hw, 2897 struct ieee80211_sta *sta, 2898 u16 tids, int num_frames, 2899 enum ieee80211_frame_release_type reason, 2900 bool more_data); 2901 void (*release_buffered_frames)(struct ieee80211_hw *hw, 2902 struct ieee80211_sta *sta, 2903 u16 tids, int num_frames, 2904 enum ieee80211_frame_release_type reason, 2905 bool more_data); 2906 2907 int (*get_et_sset_count)(struct ieee80211_hw *hw, 2908 struct ieee80211_vif *vif, int sset); 2909 void (*get_et_stats)(struct ieee80211_hw *hw, 2910 struct ieee80211_vif *vif, 2911 struct ethtool_stats *stats, u64 *data); 2912 void (*get_et_strings)(struct ieee80211_hw *hw, 2913 struct ieee80211_vif *vif, 2914 u32 sset, u8 *data); 2915 int (*get_rssi)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 2916 struct ieee80211_sta *sta, s8 *rssi_dbm); 2917 2918 void (*mgd_prepare_tx)(struct ieee80211_hw *hw, 2919 struct ieee80211_vif *vif); 2920 2921 int (*add_chanctx)(struct ieee80211_hw *hw, 2922 struct ieee80211_chanctx_conf *ctx); 2923 void (*remove_chanctx)(struct ieee80211_hw *hw, 2924 struct ieee80211_chanctx_conf *ctx); 2925 void (*change_chanctx)(struct ieee80211_hw *hw, 2926 struct ieee80211_chanctx_conf *ctx, 2927 u32 changed); 2928 int (*assign_vif_chanctx)(struct ieee80211_hw *hw, 2929 struct ieee80211_vif *vif, 2930 struct ieee80211_chanctx_conf *ctx); 2931 void (*unassign_vif_chanctx)(struct ieee80211_hw *hw, 2932 struct ieee80211_vif *vif, 2933 struct ieee80211_chanctx_conf *ctx); 2934 2935 void (*restart_complete)(struct ieee80211_hw *hw); 2936 2937 #if IS_ENABLED(CONFIG_IPV6) 2938 void (*ipv6_addr_change)(struct ieee80211_hw *hw, 2939 struct ieee80211_vif *vif, 2940 struct inet6_dev *idev); 2941 #endif 2942 void (*channel_switch_beacon)(struct ieee80211_hw *hw, 2943 struct ieee80211_vif *vif, 2944 struct cfg80211_chan_def *chandef); 2945 2946 int (*join_ibss)(struct ieee80211_hw *hw, struct ieee80211_vif *vif); 2947 void (*leave_ibss)(struct ieee80211_hw *hw, struct ieee80211_vif *vif); 2948 }; 2949 2950 /** 2951 * ieee80211_alloc_hw - Allocate a new hardware device 2952 * 2953 * This must be called once for each hardware device. The returned pointer 2954 * must be used to refer to this device when calling other functions. 2955 * mac80211 allocates a private data area for the driver pointed to by 2956 * @priv in &struct ieee80211_hw, the size of this area is given as 2957 * @priv_data_len. 2958 * 2959 * @priv_data_len: length of private data 2960 * @ops: callbacks for this device 2961 * 2962 * Return: A pointer to the new hardware device, or %NULL on error. 2963 */ 2964 struct ieee80211_hw *ieee80211_alloc_hw(size_t priv_data_len, 2965 const struct ieee80211_ops *ops); 2966 2967 /** 2968 * ieee80211_register_hw - Register hardware device 2969 * 2970 * You must call this function before any other functions in 2971 * mac80211. Note that before a hardware can be registered, you 2972 * need to fill the contained wiphy's information. 2973 * 2974 * @hw: the device to register as returned by ieee80211_alloc_hw() 2975 * 2976 * Return: 0 on success. An error code otherwise. 2977 */ 2978 int ieee80211_register_hw(struct ieee80211_hw *hw); 2979 2980 /** 2981 * struct ieee80211_tpt_blink - throughput blink description 2982 * @throughput: throughput in Kbit/sec 2983 * @blink_time: blink time in milliseconds 2984 * (full cycle, ie. one off + one on period) 2985 */ 2986 struct ieee80211_tpt_blink { 2987 int throughput; 2988 int blink_time; 2989 }; 2990 2991 /** 2992 * enum ieee80211_tpt_led_trigger_flags - throughput trigger flags 2993 * @IEEE80211_TPT_LEDTRIG_FL_RADIO: enable blinking with radio 2994 * @IEEE80211_TPT_LEDTRIG_FL_WORK: enable blinking when working 2995 * @IEEE80211_TPT_LEDTRIG_FL_CONNECTED: enable blinking when at least one 2996 * interface is connected in some way, including being an AP 2997 */ 2998 enum ieee80211_tpt_led_trigger_flags { 2999 IEEE80211_TPT_LEDTRIG_FL_RADIO = BIT(0), 3000 IEEE80211_TPT_LEDTRIG_FL_WORK = BIT(1), 3001 IEEE80211_TPT_LEDTRIG_FL_CONNECTED = BIT(2), 3002 }; 3003 3004 #ifdef CONFIG_MAC80211_LEDS 3005 char *__ieee80211_get_tx_led_name(struct ieee80211_hw *hw); 3006 char *__ieee80211_get_rx_led_name(struct ieee80211_hw *hw); 3007 char *__ieee80211_get_assoc_led_name(struct ieee80211_hw *hw); 3008 char *__ieee80211_get_radio_led_name(struct ieee80211_hw *hw); 3009 char *__ieee80211_create_tpt_led_trigger(struct ieee80211_hw *hw, 3010 unsigned int flags, 3011 const struct ieee80211_tpt_blink *blink_table, 3012 unsigned int blink_table_len); 3013 #endif 3014 /** 3015 * ieee80211_get_tx_led_name - get name of TX LED 3016 * 3017 * mac80211 creates a transmit LED trigger for each wireless hardware 3018 * that can be used to drive LEDs if your driver registers a LED device. 3019 * This function returns the name (or %NULL if not configured for LEDs) 3020 * of the trigger so you can automatically link the LED device. 3021 * 3022 * @hw: the hardware to get the LED trigger name for 3023 * 3024 * Return: The name of the LED trigger. %NULL if not configured for LEDs. 3025 */ 3026 static inline char *ieee80211_get_tx_led_name(struct ieee80211_hw *hw) 3027 { 3028 #ifdef CONFIG_MAC80211_LEDS 3029 return __ieee80211_get_tx_led_name(hw); 3030 #else 3031 return NULL; 3032 #endif 3033 } 3034 3035 /** 3036 * ieee80211_get_rx_led_name - get name of RX LED 3037 * 3038 * mac80211 creates a receive LED trigger for each wireless hardware 3039 * that can be used to drive LEDs if your driver registers a LED device. 3040 * This function returns the name (or %NULL if not configured for LEDs) 3041 * of the trigger so you can automatically link the LED device. 3042 * 3043 * @hw: the hardware to get the LED trigger name for 3044 * 3045 * Return: The name of the LED trigger. %NULL if not configured for LEDs. 3046 */ 3047 static inline char *ieee80211_get_rx_led_name(struct ieee80211_hw *hw) 3048 { 3049 #ifdef CONFIG_MAC80211_LEDS 3050 return __ieee80211_get_rx_led_name(hw); 3051 #else 3052 return NULL; 3053 #endif 3054 } 3055 3056 /** 3057 * ieee80211_get_assoc_led_name - get name of association LED 3058 * 3059 * mac80211 creates a association LED trigger for each wireless hardware 3060 * that can be used to drive LEDs if your driver registers a LED device. 3061 * This function returns the name (or %NULL if not configured for LEDs) 3062 * of the trigger so you can automatically link the LED device. 3063 * 3064 * @hw: the hardware to get the LED trigger name for 3065 * 3066 * Return: The name of the LED trigger. %NULL if not configured for LEDs. 3067 */ 3068 static inline char *ieee80211_get_assoc_led_name(struct ieee80211_hw *hw) 3069 { 3070 #ifdef CONFIG_MAC80211_LEDS 3071 return __ieee80211_get_assoc_led_name(hw); 3072 #else 3073 return NULL; 3074 #endif 3075 } 3076 3077 /** 3078 * ieee80211_get_radio_led_name - get name of radio LED 3079 * 3080 * mac80211 creates a radio change LED trigger for each wireless hardware 3081 * that can be used to drive LEDs if your driver registers a LED device. 3082 * This function returns the name (or %NULL if not configured for LEDs) 3083 * of the trigger so you can automatically link the LED device. 3084 * 3085 * @hw: the hardware to get the LED trigger name for 3086 * 3087 * Return: The name of the LED trigger. %NULL if not configured for LEDs. 3088 */ 3089 static inline char *ieee80211_get_radio_led_name(struct ieee80211_hw *hw) 3090 { 3091 #ifdef CONFIG_MAC80211_LEDS 3092 return __ieee80211_get_radio_led_name(hw); 3093 #else 3094 return NULL; 3095 #endif 3096 } 3097 3098 /** 3099 * ieee80211_create_tpt_led_trigger - create throughput LED trigger 3100 * @hw: the hardware to create the trigger for 3101 * @flags: trigger flags, see &enum ieee80211_tpt_led_trigger_flags 3102 * @blink_table: the blink table -- needs to be ordered by throughput 3103 * @blink_table_len: size of the blink table 3104 * 3105 * Return: %NULL (in case of error, or if no LED triggers are 3106 * configured) or the name of the new trigger. 3107 * 3108 * Note: This function must be called before ieee80211_register_hw(). 3109 */ 3110 static inline char * 3111 ieee80211_create_tpt_led_trigger(struct ieee80211_hw *hw, unsigned int flags, 3112 const struct ieee80211_tpt_blink *blink_table, 3113 unsigned int blink_table_len) 3114 { 3115 #ifdef CONFIG_MAC80211_LEDS 3116 return __ieee80211_create_tpt_led_trigger(hw, flags, blink_table, 3117 blink_table_len); 3118 #else 3119 return NULL; 3120 #endif 3121 } 3122 3123 /** 3124 * ieee80211_unregister_hw - Unregister a hardware device 3125 * 3126 * This function instructs mac80211 to free allocated resources 3127 * and unregister netdevices from the networking subsystem. 3128 * 3129 * @hw: the hardware to unregister 3130 */ 3131 void ieee80211_unregister_hw(struct ieee80211_hw *hw); 3132 3133 /** 3134 * ieee80211_free_hw - free hardware descriptor 3135 * 3136 * This function frees everything that was allocated, including the 3137 * private data for the driver. You must call ieee80211_unregister_hw() 3138 * before calling this function. 3139 * 3140 * @hw: the hardware to free 3141 */ 3142 void ieee80211_free_hw(struct ieee80211_hw *hw); 3143 3144 /** 3145 * ieee80211_restart_hw - restart hardware completely 3146 * 3147 * Call this function when the hardware was restarted for some reason 3148 * (hardware error, ...) and the driver is unable to restore its state 3149 * by itself. mac80211 assumes that at this point the driver/hardware 3150 * is completely uninitialised and stopped, it starts the process by 3151 * calling the ->start() operation. The driver will need to reset all 3152 * internal state that it has prior to calling this function. 3153 * 3154 * @hw: the hardware to restart 3155 */ 3156 void ieee80211_restart_hw(struct ieee80211_hw *hw); 3157 3158 /** 3159 * ieee80211_napi_add - initialize mac80211 NAPI context 3160 * @hw: the hardware to initialize the NAPI context on 3161 * @napi: the NAPI context to initialize 3162 * @napi_dev: dummy NAPI netdevice, here to not waste the space if the 3163 * driver doesn't use NAPI 3164 * @poll: poll function 3165 * @weight: default weight 3166 * 3167 * See also netif_napi_add(). 3168 */ 3169 void ieee80211_napi_add(struct ieee80211_hw *hw, struct napi_struct *napi, 3170 struct net_device *napi_dev, 3171 int (*poll)(struct napi_struct *, int), 3172 int weight); 3173 3174 /** 3175 * ieee80211_rx - receive frame 3176 * 3177 * Use this function to hand received frames to mac80211. The receive 3178 * buffer in @skb must start with an IEEE 802.11 header. In case of a 3179 * paged @skb is used, the driver is recommended to put the ieee80211 3180 * header of the frame on the linear part of the @skb to avoid memory 3181 * allocation and/or memcpy by the stack. 3182 * 3183 * This function may not be called in IRQ context. Calls to this function 3184 * for a single hardware must be synchronized against each other. Calls to 3185 * this function, ieee80211_rx_ni() and ieee80211_rx_irqsafe() may not be 3186 * mixed for a single hardware. Must not run concurrently with 3187 * ieee80211_tx_status() or ieee80211_tx_status_ni(). 3188 * 3189 * In process context use instead ieee80211_rx_ni(). 3190 * 3191 * @hw: the hardware this frame came in on 3192 * @skb: the buffer to receive, owned by mac80211 after this call 3193 */ 3194 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb); 3195 3196 /** 3197 * ieee80211_rx_irqsafe - receive frame 3198 * 3199 * Like ieee80211_rx() but can be called in IRQ context 3200 * (internally defers to a tasklet.) 3201 * 3202 * Calls to this function, ieee80211_rx() or ieee80211_rx_ni() may not 3203 * be mixed for a single hardware.Must not run concurrently with 3204 * ieee80211_tx_status() or ieee80211_tx_status_ni(). 3205 * 3206 * @hw: the hardware this frame came in on 3207 * @skb: the buffer to receive, owned by mac80211 after this call 3208 */ 3209 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb); 3210 3211 /** 3212 * ieee80211_rx_ni - receive frame (in process context) 3213 * 3214 * Like ieee80211_rx() but can be called in process context 3215 * (internally disables bottom halves). 3216 * 3217 * Calls to this function, ieee80211_rx() and ieee80211_rx_irqsafe() may 3218 * not be mixed for a single hardware. Must not run concurrently with 3219 * ieee80211_tx_status() or ieee80211_tx_status_ni(). 3220 * 3221 * @hw: the hardware this frame came in on 3222 * @skb: the buffer to receive, owned by mac80211 after this call 3223 */ 3224 static inline void ieee80211_rx_ni(struct ieee80211_hw *hw, 3225 struct sk_buff *skb) 3226 { 3227 local_bh_disable(); 3228 ieee80211_rx(hw, skb); 3229 local_bh_enable(); 3230 } 3231 3232 /** 3233 * ieee80211_sta_ps_transition - PS transition for connected sta 3234 * 3235 * When operating in AP mode with the %IEEE80211_HW_AP_LINK_PS 3236 * flag set, use this function to inform mac80211 about a connected station 3237 * entering/leaving PS mode. 3238 * 3239 * This function may not be called in IRQ context or with softirqs enabled. 3240 * 3241 * Calls to this function for a single hardware must be synchronized against 3242 * each other. 3243 * 3244 * @sta: currently connected sta 3245 * @start: start or stop PS 3246 * 3247 * Return: 0 on success. -EINVAL when the requested PS mode is already set. 3248 */ 3249 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start); 3250 3251 /** 3252 * ieee80211_sta_ps_transition_ni - PS transition for connected sta 3253 * (in process context) 3254 * 3255 * Like ieee80211_sta_ps_transition() but can be called in process context 3256 * (internally disables bottom halves). Concurrent call restriction still 3257 * applies. 3258 * 3259 * @sta: currently connected sta 3260 * @start: start or stop PS 3261 * 3262 * Return: Like ieee80211_sta_ps_transition(). 3263 */ 3264 static inline int ieee80211_sta_ps_transition_ni(struct ieee80211_sta *sta, 3265 bool start) 3266 { 3267 int ret; 3268 3269 local_bh_disable(); 3270 ret = ieee80211_sta_ps_transition(sta, start); 3271 local_bh_enable(); 3272 3273 return ret; 3274 } 3275 3276 /* 3277 * The TX headroom reserved by mac80211 for its own tx_status functions. 3278 * This is enough for the radiotap header. 3279 */ 3280 #define IEEE80211_TX_STATUS_HEADROOM 14 3281 3282 /** 3283 * ieee80211_sta_set_buffered - inform mac80211 about driver-buffered frames 3284 * @sta: &struct ieee80211_sta pointer for the sleeping station 3285 * @tid: the TID that has buffered frames 3286 * @buffered: indicates whether or not frames are buffered for this TID 3287 * 3288 * If a driver buffers frames for a powersave station instead of passing 3289 * them back to mac80211 for retransmission, the station may still need 3290 * to be told that there are buffered frames via the TIM bit. 3291 * 3292 * This function informs mac80211 whether or not there are frames that are 3293 * buffered in the driver for a given TID; mac80211 can then use this data 3294 * to set the TIM bit (NOTE: This may call back into the driver's set_tim 3295 * call! Beware of the locking!) 3296 * 3297 * If all frames are released to the station (due to PS-poll or uAPSD) 3298 * then the driver needs to inform mac80211 that there no longer are 3299 * frames buffered. However, when the station wakes up mac80211 assumes 3300 * that all buffered frames will be transmitted and clears this data, 3301 * drivers need to make sure they inform mac80211 about all buffered 3302 * frames on the sleep transition (sta_notify() with %STA_NOTIFY_SLEEP). 3303 * 3304 * Note that technically mac80211 only needs to know this per AC, not per 3305 * TID, but since driver buffering will inevitably happen per TID (since 3306 * it is related to aggregation) it is easier to make mac80211 map the 3307 * TID to the AC as required instead of keeping track in all drivers that 3308 * use this API. 3309 */ 3310 void ieee80211_sta_set_buffered(struct ieee80211_sta *sta, 3311 u8 tid, bool buffered); 3312 3313 /** 3314 * ieee80211_get_tx_rates - get the selected transmit rates for a packet 3315 * 3316 * Call this function in a driver with per-packet rate selection support 3317 * to combine the rate info in the packet tx info with the most recent 3318 * rate selection table for the station entry. 3319 * 3320 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 3321 * @sta: the receiver station to which this packet is sent. 3322 * @skb: the frame to be transmitted. 3323 * @dest: buffer for extracted rate/retry information 3324 * @max_rates: maximum number of rates to fetch 3325 */ 3326 void ieee80211_get_tx_rates(struct ieee80211_vif *vif, 3327 struct ieee80211_sta *sta, 3328 struct sk_buff *skb, 3329 struct ieee80211_tx_rate *dest, 3330 int max_rates); 3331 3332 /** 3333 * ieee80211_tx_status - transmit status callback 3334 * 3335 * Call this function for all transmitted frames after they have been 3336 * transmitted. It is permissible to not call this function for 3337 * multicast frames but this can affect statistics. 3338 * 3339 * This function may not be called in IRQ context. Calls to this function 3340 * for a single hardware must be synchronized against each other. Calls 3341 * to this function, ieee80211_tx_status_ni() and ieee80211_tx_status_irqsafe() 3342 * may not be mixed for a single hardware. Must not run concurrently with 3343 * ieee80211_rx() or ieee80211_rx_ni(). 3344 * 3345 * @hw: the hardware the frame was transmitted by 3346 * @skb: the frame that was transmitted, owned by mac80211 after this call 3347 */ 3348 void ieee80211_tx_status(struct ieee80211_hw *hw, 3349 struct sk_buff *skb); 3350 3351 /** 3352 * ieee80211_tx_status_ni - transmit status callback (in process context) 3353 * 3354 * Like ieee80211_tx_status() but can be called in process context. 3355 * 3356 * Calls to this function, ieee80211_tx_status() and 3357 * ieee80211_tx_status_irqsafe() may not be mixed 3358 * for a single hardware. 3359 * 3360 * @hw: the hardware the frame was transmitted by 3361 * @skb: the frame that was transmitted, owned by mac80211 after this call 3362 */ 3363 static inline void ieee80211_tx_status_ni(struct ieee80211_hw *hw, 3364 struct sk_buff *skb) 3365 { 3366 local_bh_disable(); 3367 ieee80211_tx_status(hw, skb); 3368 local_bh_enable(); 3369 } 3370 3371 /** 3372 * ieee80211_tx_status_irqsafe - IRQ-safe transmit status callback 3373 * 3374 * Like ieee80211_tx_status() but can be called in IRQ context 3375 * (internally defers to a tasklet.) 3376 * 3377 * Calls to this function, ieee80211_tx_status() and 3378 * ieee80211_tx_status_ni() may not be mixed for a single hardware. 3379 * 3380 * @hw: the hardware the frame was transmitted by 3381 * @skb: the frame that was transmitted, owned by mac80211 after this call 3382 */ 3383 void ieee80211_tx_status_irqsafe(struct ieee80211_hw *hw, 3384 struct sk_buff *skb); 3385 3386 /** 3387 * ieee80211_report_low_ack - report non-responding station 3388 * 3389 * When operating in AP-mode, call this function to report a non-responding 3390 * connected STA. 3391 * 3392 * @sta: the non-responding connected sta 3393 * @num_packets: number of packets sent to @sta without a response 3394 */ 3395 void ieee80211_report_low_ack(struct ieee80211_sta *sta, u32 num_packets); 3396 3397 /** 3398 * ieee80211_beacon_get_tim - beacon generation function 3399 * @hw: pointer obtained from ieee80211_alloc_hw(). 3400 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 3401 * @tim_offset: pointer to variable that will receive the TIM IE offset. 3402 * Set to 0 if invalid (in non-AP modes). 3403 * @tim_length: pointer to variable that will receive the TIM IE length, 3404 * (including the ID and length bytes!). 3405 * Set to 0 if invalid (in non-AP modes). 3406 * 3407 * If the driver implements beaconing modes, it must use this function to 3408 * obtain the beacon frame/template. 3409 * 3410 * If the beacon frames are generated by the host system (i.e., not in 3411 * hardware/firmware), the driver uses this function to get each beacon 3412 * frame from mac80211 -- it is responsible for calling this function 3413 * before the beacon is needed (e.g. based on hardware interrupt). 3414 * 3415 * If the beacon frames are generated by the device, then the driver 3416 * must use the returned beacon as the template and change the TIM IE 3417 * according to the current DTIM parameters/TIM bitmap. 3418 * 3419 * The driver is responsible for freeing the returned skb. 3420 * 3421 * Return: The beacon template. %NULL on error. 3422 */ 3423 struct sk_buff *ieee80211_beacon_get_tim(struct ieee80211_hw *hw, 3424 struct ieee80211_vif *vif, 3425 u16 *tim_offset, u16 *tim_length); 3426 3427 /** 3428 * ieee80211_beacon_get - beacon generation function 3429 * @hw: pointer obtained from ieee80211_alloc_hw(). 3430 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 3431 * 3432 * See ieee80211_beacon_get_tim(). 3433 * 3434 * Return: See ieee80211_beacon_get_tim(). 3435 */ 3436 static inline struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw, 3437 struct ieee80211_vif *vif) 3438 { 3439 return ieee80211_beacon_get_tim(hw, vif, NULL, NULL); 3440 } 3441 3442 /** 3443 * ieee80211_csa_finish - notify mac80211 about channel switch 3444 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 3445 * 3446 * After a channel switch announcement was scheduled and the counter in this 3447 * announcement hits 1, this function must be called by the driver to 3448 * notify mac80211 that the channel can be changed. 3449 */ 3450 void ieee80211_csa_finish(struct ieee80211_vif *vif); 3451 3452 /** 3453 * ieee80211_csa_is_complete - find out if counters reached 1 3454 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 3455 * 3456 * This function returns whether the channel switch counters reached zero. 3457 */ 3458 bool ieee80211_csa_is_complete(struct ieee80211_vif *vif); 3459 3460 3461 /** 3462 * ieee80211_proberesp_get - retrieve a Probe Response template 3463 * @hw: pointer obtained from ieee80211_alloc_hw(). 3464 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 3465 * 3466 * Creates a Probe Response template which can, for example, be uploaded to 3467 * hardware. The destination address should be set by the caller. 3468 * 3469 * Can only be called in AP mode. 3470 * 3471 * Return: The Probe Response template. %NULL on error. 3472 */ 3473 struct sk_buff *ieee80211_proberesp_get(struct ieee80211_hw *hw, 3474 struct ieee80211_vif *vif); 3475 3476 /** 3477 * ieee80211_pspoll_get - retrieve a PS Poll template 3478 * @hw: pointer obtained from ieee80211_alloc_hw(). 3479 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 3480 * 3481 * Creates a PS Poll a template which can, for example, uploaded to 3482 * hardware. The template must be updated after association so that correct 3483 * AID, BSSID and MAC address is used. 3484 * 3485 * Note: Caller (or hardware) is responsible for setting the 3486 * &IEEE80211_FCTL_PM bit. 3487 * 3488 * Return: The PS Poll template. %NULL on error. 3489 */ 3490 struct sk_buff *ieee80211_pspoll_get(struct ieee80211_hw *hw, 3491 struct ieee80211_vif *vif); 3492 3493 /** 3494 * ieee80211_nullfunc_get - retrieve a nullfunc template 3495 * @hw: pointer obtained from ieee80211_alloc_hw(). 3496 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 3497 * 3498 * Creates a Nullfunc template which can, for example, uploaded to 3499 * hardware. The template must be updated after association so that correct 3500 * BSSID and address is used. 3501 * 3502 * Note: Caller (or hardware) is responsible for setting the 3503 * &IEEE80211_FCTL_PM bit as well as Duration and Sequence Control fields. 3504 * 3505 * Return: The nullfunc template. %NULL on error. 3506 */ 3507 struct sk_buff *ieee80211_nullfunc_get(struct ieee80211_hw *hw, 3508 struct ieee80211_vif *vif); 3509 3510 /** 3511 * ieee80211_probereq_get - retrieve a Probe Request template 3512 * @hw: pointer obtained from ieee80211_alloc_hw(). 3513 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 3514 * @ssid: SSID buffer 3515 * @ssid_len: length of SSID 3516 * @tailroom: tailroom to reserve at end of SKB for IEs 3517 * 3518 * Creates a Probe Request template which can, for example, be uploaded to 3519 * hardware. 3520 * 3521 * Return: The Probe Request template. %NULL on error. 3522 */ 3523 struct sk_buff *ieee80211_probereq_get(struct ieee80211_hw *hw, 3524 struct ieee80211_vif *vif, 3525 const u8 *ssid, size_t ssid_len, 3526 size_t tailroom); 3527 3528 /** 3529 * ieee80211_rts_get - RTS frame generation function 3530 * @hw: pointer obtained from ieee80211_alloc_hw(). 3531 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 3532 * @frame: pointer to the frame that is going to be protected by the RTS. 3533 * @frame_len: the frame length (in octets). 3534 * @frame_txctl: &struct ieee80211_tx_info of the frame. 3535 * @rts: The buffer where to store the RTS frame. 3536 * 3537 * If the RTS frames are generated by the host system (i.e., not in 3538 * hardware/firmware), the low-level driver uses this function to receive 3539 * the next RTS frame from the 802.11 code. The low-level is responsible 3540 * for calling this function before and RTS frame is needed. 3541 */ 3542 void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 3543 const void *frame, size_t frame_len, 3544 const struct ieee80211_tx_info *frame_txctl, 3545 struct ieee80211_rts *rts); 3546 3547 /** 3548 * ieee80211_rts_duration - Get the duration field for an RTS frame 3549 * @hw: pointer obtained from ieee80211_alloc_hw(). 3550 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 3551 * @frame_len: the length of the frame that is going to be protected by the RTS. 3552 * @frame_txctl: &struct ieee80211_tx_info of the frame. 3553 * 3554 * If the RTS is generated in firmware, but the host system must provide 3555 * the duration field, the low-level driver uses this function to receive 3556 * the duration field value in little-endian byteorder. 3557 * 3558 * Return: The duration. 3559 */ 3560 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw, 3561 struct ieee80211_vif *vif, size_t frame_len, 3562 const struct ieee80211_tx_info *frame_txctl); 3563 3564 /** 3565 * ieee80211_ctstoself_get - CTS-to-self frame generation function 3566 * @hw: pointer obtained from ieee80211_alloc_hw(). 3567 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 3568 * @frame: pointer to the frame that is going to be protected by the CTS-to-self. 3569 * @frame_len: the frame length (in octets). 3570 * @frame_txctl: &struct ieee80211_tx_info of the frame. 3571 * @cts: The buffer where to store the CTS-to-self frame. 3572 * 3573 * If the CTS-to-self frames are generated by the host system (i.e., not in 3574 * hardware/firmware), the low-level driver uses this function to receive 3575 * the next CTS-to-self frame from the 802.11 code. The low-level is responsible 3576 * for calling this function before and CTS-to-self frame is needed. 3577 */ 3578 void ieee80211_ctstoself_get(struct ieee80211_hw *hw, 3579 struct ieee80211_vif *vif, 3580 const void *frame, size_t frame_len, 3581 const struct ieee80211_tx_info *frame_txctl, 3582 struct ieee80211_cts *cts); 3583 3584 /** 3585 * ieee80211_ctstoself_duration - Get the duration field for a CTS-to-self frame 3586 * @hw: pointer obtained from ieee80211_alloc_hw(). 3587 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 3588 * @frame_len: the length of the frame that is going to be protected by the CTS-to-self. 3589 * @frame_txctl: &struct ieee80211_tx_info of the frame. 3590 * 3591 * If the CTS-to-self is generated in firmware, but the host system must provide 3592 * the duration field, the low-level driver uses this function to receive 3593 * the duration field value in little-endian byteorder. 3594 * 3595 * Return: The duration. 3596 */ 3597 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw, 3598 struct ieee80211_vif *vif, 3599 size_t frame_len, 3600 const struct ieee80211_tx_info *frame_txctl); 3601 3602 /** 3603 * ieee80211_generic_frame_duration - Calculate the duration field for a frame 3604 * @hw: pointer obtained from ieee80211_alloc_hw(). 3605 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 3606 * @band: the band to calculate the frame duration on 3607 * @frame_len: the length of the frame. 3608 * @rate: the rate at which the frame is going to be transmitted. 3609 * 3610 * Calculate the duration field of some generic frame, given its 3611 * length and transmission rate (in 100kbps). 3612 * 3613 * Return: The duration. 3614 */ 3615 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw, 3616 struct ieee80211_vif *vif, 3617 enum ieee80211_band band, 3618 size_t frame_len, 3619 struct ieee80211_rate *rate); 3620 3621 /** 3622 * ieee80211_get_buffered_bc - accessing buffered broadcast and multicast frames 3623 * @hw: pointer as obtained from ieee80211_alloc_hw(). 3624 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 3625 * 3626 * Function for accessing buffered broadcast and multicast frames. If 3627 * hardware/firmware does not implement buffering of broadcast/multicast 3628 * frames when power saving is used, 802.11 code buffers them in the host 3629 * memory. The low-level driver uses this function to fetch next buffered 3630 * frame. In most cases, this is used when generating beacon frame. 3631 * 3632 * Return: A pointer to the next buffered skb or NULL if no more buffered 3633 * frames are available. 3634 * 3635 * Note: buffered frames are returned only after DTIM beacon frame was 3636 * generated with ieee80211_beacon_get() and the low-level driver must thus 3637 * call ieee80211_beacon_get() first. ieee80211_get_buffered_bc() returns 3638 * NULL if the previous generated beacon was not DTIM, so the low-level driver 3639 * does not need to check for DTIM beacons separately and should be able to 3640 * use common code for all beacons. 3641 */ 3642 struct sk_buff * 3643 ieee80211_get_buffered_bc(struct ieee80211_hw *hw, struct ieee80211_vif *vif); 3644 3645 /** 3646 * ieee80211_get_tkip_p1k_iv - get a TKIP phase 1 key for IV32 3647 * 3648 * This function returns the TKIP phase 1 key for the given IV32. 3649 * 3650 * @keyconf: the parameter passed with the set key 3651 * @iv32: IV32 to get the P1K for 3652 * @p1k: a buffer to which the key will be written, as 5 u16 values 3653 */ 3654 void ieee80211_get_tkip_p1k_iv(struct ieee80211_key_conf *keyconf, 3655 u32 iv32, u16 *p1k); 3656 3657 /** 3658 * ieee80211_get_tkip_p1k - get a TKIP phase 1 key 3659 * 3660 * This function returns the TKIP phase 1 key for the IV32 taken 3661 * from the given packet. 3662 * 3663 * @keyconf: the parameter passed with the set key 3664 * @skb: the packet to take the IV32 value from that will be encrypted 3665 * with this P1K 3666 * @p1k: a buffer to which the key will be written, as 5 u16 values 3667 */ 3668 static inline void ieee80211_get_tkip_p1k(struct ieee80211_key_conf *keyconf, 3669 struct sk_buff *skb, u16 *p1k) 3670 { 3671 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 3672 const u8 *data = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control); 3673 u32 iv32 = get_unaligned_le32(&data[4]); 3674 3675 ieee80211_get_tkip_p1k_iv(keyconf, iv32, p1k); 3676 } 3677 3678 /** 3679 * ieee80211_get_tkip_rx_p1k - get a TKIP phase 1 key for RX 3680 * 3681 * This function returns the TKIP phase 1 key for the given IV32 3682 * and transmitter address. 3683 * 3684 * @keyconf: the parameter passed with the set key 3685 * @ta: TA that will be used with the key 3686 * @iv32: IV32 to get the P1K for 3687 * @p1k: a buffer to which the key will be written, as 5 u16 values 3688 */ 3689 void ieee80211_get_tkip_rx_p1k(struct ieee80211_key_conf *keyconf, 3690 const u8 *ta, u32 iv32, u16 *p1k); 3691 3692 /** 3693 * ieee80211_get_tkip_p2k - get a TKIP phase 2 key 3694 * 3695 * This function computes the TKIP RC4 key for the IV values 3696 * in the packet. 3697 * 3698 * @keyconf: the parameter passed with the set key 3699 * @skb: the packet to take the IV32/IV16 values from that will be 3700 * encrypted with this key 3701 * @p2k: a buffer to which the key will be written, 16 bytes 3702 */ 3703 void ieee80211_get_tkip_p2k(struct ieee80211_key_conf *keyconf, 3704 struct sk_buff *skb, u8 *p2k); 3705 3706 /** 3707 * ieee80211_aes_cmac_calculate_k1_k2 - calculate the AES-CMAC sub keys 3708 * 3709 * This function computes the two AES-CMAC sub-keys, based on the 3710 * previously installed master key. 3711 * 3712 * @keyconf: the parameter passed with the set key 3713 * @k1: a buffer to be filled with the 1st sub-key 3714 * @k2: a buffer to be filled with the 2nd sub-key 3715 */ 3716 void ieee80211_aes_cmac_calculate_k1_k2(struct ieee80211_key_conf *keyconf, 3717 u8 *k1, u8 *k2); 3718 3719 /** 3720 * struct ieee80211_key_seq - key sequence counter 3721 * 3722 * @tkip: TKIP data, containing IV32 and IV16 in host byte order 3723 * @ccmp: PN data, most significant byte first (big endian, 3724 * reverse order than in packet) 3725 * @aes_cmac: PN data, most significant byte first (big endian, 3726 * reverse order than in packet) 3727 */ 3728 struct ieee80211_key_seq { 3729 union { 3730 struct { 3731 u32 iv32; 3732 u16 iv16; 3733 } tkip; 3734 struct { 3735 u8 pn[6]; 3736 } ccmp; 3737 struct { 3738 u8 pn[6]; 3739 } aes_cmac; 3740 }; 3741 }; 3742 3743 /** 3744 * ieee80211_get_key_tx_seq - get key TX sequence counter 3745 * 3746 * @keyconf: the parameter passed with the set key 3747 * @seq: buffer to receive the sequence data 3748 * 3749 * This function allows a driver to retrieve the current TX IV/PN 3750 * for the given key. It must not be called if IV generation is 3751 * offloaded to the device. 3752 * 3753 * Note that this function may only be called when no TX processing 3754 * can be done concurrently, for example when queues are stopped 3755 * and the stop has been synchronized. 3756 */ 3757 void ieee80211_get_key_tx_seq(struct ieee80211_key_conf *keyconf, 3758 struct ieee80211_key_seq *seq); 3759 3760 /** 3761 * ieee80211_get_key_rx_seq - get key RX sequence counter 3762 * 3763 * @keyconf: the parameter passed with the set key 3764 * @tid: The TID, or -1 for the management frame value (CCMP only); 3765 * the value on TID 0 is also used for non-QoS frames. For 3766 * CMAC, only TID 0 is valid. 3767 * @seq: buffer to receive the sequence data 3768 * 3769 * This function allows a driver to retrieve the current RX IV/PNs 3770 * for the given key. It must not be called if IV checking is done 3771 * by the device and not by mac80211. 3772 * 3773 * Note that this function may only be called when no RX processing 3774 * can be done concurrently. 3775 */ 3776 void ieee80211_get_key_rx_seq(struct ieee80211_key_conf *keyconf, 3777 int tid, struct ieee80211_key_seq *seq); 3778 3779 /** 3780 * ieee80211_set_key_tx_seq - set key TX sequence counter 3781 * 3782 * @keyconf: the parameter passed with the set key 3783 * @seq: new sequence data 3784 * 3785 * This function allows a driver to set the current TX IV/PNs for the 3786 * given key. This is useful when resuming from WoWLAN sleep and the 3787 * device may have transmitted frames using the PTK, e.g. replies to 3788 * ARP requests. 3789 * 3790 * Note that this function may only be called when no TX processing 3791 * can be done concurrently. 3792 */ 3793 void ieee80211_set_key_tx_seq(struct ieee80211_key_conf *keyconf, 3794 struct ieee80211_key_seq *seq); 3795 3796 /** 3797 * ieee80211_set_key_rx_seq - set key RX sequence counter 3798 * 3799 * @keyconf: the parameter passed with the set key 3800 * @tid: The TID, or -1 for the management frame value (CCMP only); 3801 * the value on TID 0 is also used for non-QoS frames. For 3802 * CMAC, only TID 0 is valid. 3803 * @seq: new sequence data 3804 * 3805 * This function allows a driver to set the current RX IV/PNs for the 3806 * given key. This is useful when resuming from WoWLAN sleep and GTK 3807 * rekey may have been done while suspended. It should not be called 3808 * if IV checking is done by the device and not by mac80211. 3809 * 3810 * Note that this function may only be called when no RX processing 3811 * can be done concurrently. 3812 */ 3813 void ieee80211_set_key_rx_seq(struct ieee80211_key_conf *keyconf, 3814 int tid, struct ieee80211_key_seq *seq); 3815 3816 /** 3817 * ieee80211_remove_key - remove the given key 3818 * @keyconf: the parameter passed with the set key 3819 * 3820 * Remove the given key. If the key was uploaded to the hardware at the 3821 * time this function is called, it is not deleted in the hardware but 3822 * instead assumed to have been removed already. 3823 * 3824 * Note that due to locking considerations this function can (currently) 3825 * only be called during key iteration (ieee80211_iter_keys().) 3826 */ 3827 void ieee80211_remove_key(struct ieee80211_key_conf *keyconf); 3828 3829 /** 3830 * ieee80211_gtk_rekey_add - add a GTK key from rekeying during WoWLAN 3831 * @vif: the virtual interface to add the key on 3832 * @keyconf: new key data 3833 * 3834 * When GTK rekeying was done while the system was suspended, (a) new 3835 * key(s) will be available. These will be needed by mac80211 for proper 3836 * RX processing, so this function allows setting them. 3837 * 3838 * The function returns the newly allocated key structure, which will 3839 * have similar contents to the passed key configuration but point to 3840 * mac80211-owned memory. In case of errors, the function returns an 3841 * ERR_PTR(), use IS_ERR() etc. 3842 * 3843 * Note that this function assumes the key isn't added to hardware 3844 * acceleration, so no TX will be done with the key. Since it's a GTK 3845 * on managed (station) networks, this is true anyway. If the driver 3846 * calls this function from the resume callback and subsequently uses 3847 * the return code 1 to reconfigure the device, this key will be part 3848 * of the reconfiguration. 3849 * 3850 * Note that the driver should also call ieee80211_set_key_rx_seq() 3851 * for the new key for each TID to set up sequence counters properly. 3852 * 3853 * IMPORTANT: If this replaces a key that is present in the hardware, 3854 * then it will attempt to remove it during this call. In many cases 3855 * this isn't what you want, so call ieee80211_remove_key() first for 3856 * the key that's being replaced. 3857 */ 3858 struct ieee80211_key_conf * 3859 ieee80211_gtk_rekey_add(struct ieee80211_vif *vif, 3860 struct ieee80211_key_conf *keyconf); 3861 3862 /** 3863 * ieee80211_gtk_rekey_notify - notify userspace supplicant of rekeying 3864 * @vif: virtual interface the rekeying was done on 3865 * @bssid: The BSSID of the AP, for checking association 3866 * @replay_ctr: the new replay counter after GTK rekeying 3867 * @gfp: allocation flags 3868 */ 3869 void ieee80211_gtk_rekey_notify(struct ieee80211_vif *vif, const u8 *bssid, 3870 const u8 *replay_ctr, gfp_t gfp); 3871 3872 /** 3873 * ieee80211_wake_queue - wake specific queue 3874 * @hw: pointer as obtained from ieee80211_alloc_hw(). 3875 * @queue: queue number (counted from zero). 3876 * 3877 * Drivers should use this function instead of netif_wake_queue. 3878 */ 3879 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue); 3880 3881 /** 3882 * ieee80211_stop_queue - stop specific queue 3883 * @hw: pointer as obtained from ieee80211_alloc_hw(). 3884 * @queue: queue number (counted from zero). 3885 * 3886 * Drivers should use this function instead of netif_stop_queue. 3887 */ 3888 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue); 3889 3890 /** 3891 * ieee80211_queue_stopped - test status of the queue 3892 * @hw: pointer as obtained from ieee80211_alloc_hw(). 3893 * @queue: queue number (counted from zero). 3894 * 3895 * Drivers should use this function instead of netif_stop_queue. 3896 * 3897 * Return: %true if the queue is stopped. %false otherwise. 3898 */ 3899 3900 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue); 3901 3902 /** 3903 * ieee80211_stop_queues - stop all queues 3904 * @hw: pointer as obtained from ieee80211_alloc_hw(). 3905 * 3906 * Drivers should use this function instead of netif_stop_queue. 3907 */ 3908 void ieee80211_stop_queues(struct ieee80211_hw *hw); 3909 3910 /** 3911 * ieee80211_wake_queues - wake all queues 3912 * @hw: pointer as obtained from ieee80211_alloc_hw(). 3913 * 3914 * Drivers should use this function instead of netif_wake_queue. 3915 */ 3916 void ieee80211_wake_queues(struct ieee80211_hw *hw); 3917 3918 /** 3919 * ieee80211_scan_completed - completed hardware scan 3920 * 3921 * When hardware scan offload is used (i.e. the hw_scan() callback is 3922 * assigned) this function needs to be called by the driver to notify 3923 * mac80211 that the scan finished. This function can be called from 3924 * any context, including hardirq context. 3925 * 3926 * @hw: the hardware that finished the scan 3927 * @aborted: set to true if scan was aborted 3928 */ 3929 void ieee80211_scan_completed(struct ieee80211_hw *hw, bool aborted); 3930 3931 /** 3932 * ieee80211_sched_scan_results - got results from scheduled scan 3933 * 3934 * When a scheduled scan is running, this function needs to be called by the 3935 * driver whenever there are new scan results available. 3936 * 3937 * @hw: the hardware that is performing scheduled scans 3938 */ 3939 void ieee80211_sched_scan_results(struct ieee80211_hw *hw); 3940 3941 /** 3942 * ieee80211_sched_scan_stopped - inform that the scheduled scan has stopped 3943 * 3944 * When a scheduled scan is running, this function can be called by 3945 * the driver if it needs to stop the scan to perform another task. 3946 * Usual scenarios are drivers that cannot continue the scheduled scan 3947 * while associating, for instance. 3948 * 3949 * @hw: the hardware that is performing scheduled scans 3950 */ 3951 void ieee80211_sched_scan_stopped(struct ieee80211_hw *hw); 3952 3953 /** 3954 * enum ieee80211_interface_iteration_flags - interface iteration flags 3955 * @IEEE80211_IFACE_ITER_NORMAL: Iterate over all interfaces that have 3956 * been added to the driver; However, note that during hardware 3957 * reconfiguration (after restart_hw) it will iterate over a new 3958 * interface and over all the existing interfaces even if they 3959 * haven't been re-added to the driver yet. 3960 * @IEEE80211_IFACE_ITER_RESUME_ALL: During resume, iterate over all 3961 * interfaces, even if they haven't been re-added to the driver yet. 3962 */ 3963 enum ieee80211_interface_iteration_flags { 3964 IEEE80211_IFACE_ITER_NORMAL = 0, 3965 IEEE80211_IFACE_ITER_RESUME_ALL = BIT(0), 3966 }; 3967 3968 /** 3969 * ieee80211_iterate_active_interfaces - iterate active interfaces 3970 * 3971 * This function iterates over the interfaces associated with a given 3972 * hardware that are currently active and calls the callback for them. 3973 * This function allows the iterator function to sleep, when the iterator 3974 * function is atomic @ieee80211_iterate_active_interfaces_atomic can 3975 * be used. 3976 * Does not iterate over a new interface during add_interface(). 3977 * 3978 * @hw: the hardware struct of which the interfaces should be iterated over 3979 * @iter_flags: iteration flags, see &enum ieee80211_interface_iteration_flags 3980 * @iterator: the iterator function to call 3981 * @data: first argument of the iterator function 3982 */ 3983 void ieee80211_iterate_active_interfaces(struct ieee80211_hw *hw, 3984 u32 iter_flags, 3985 void (*iterator)(void *data, u8 *mac, 3986 struct ieee80211_vif *vif), 3987 void *data); 3988 3989 /** 3990 * ieee80211_iterate_active_interfaces_atomic - iterate active interfaces 3991 * 3992 * This function iterates over the interfaces associated with a given 3993 * hardware that are currently active and calls the callback for them. 3994 * This function requires the iterator callback function to be atomic, 3995 * if that is not desired, use @ieee80211_iterate_active_interfaces instead. 3996 * Does not iterate over a new interface during add_interface(). 3997 * 3998 * @hw: the hardware struct of which the interfaces should be iterated over 3999 * @iter_flags: iteration flags, see &enum ieee80211_interface_iteration_flags 4000 * @iterator: the iterator function to call, cannot sleep 4001 * @data: first argument of the iterator function 4002 */ 4003 void ieee80211_iterate_active_interfaces_atomic(struct ieee80211_hw *hw, 4004 u32 iter_flags, 4005 void (*iterator)(void *data, 4006 u8 *mac, 4007 struct ieee80211_vif *vif), 4008 void *data); 4009 4010 /** 4011 * ieee80211_iterate_active_interfaces_rtnl - iterate active interfaces 4012 * 4013 * This function iterates over the interfaces associated with a given 4014 * hardware that are currently active and calls the callback for them. 4015 * This version can only be used while holding the RTNL. 4016 * 4017 * @hw: the hardware struct of which the interfaces should be iterated over 4018 * @iter_flags: iteration flags, see &enum ieee80211_interface_iteration_flags 4019 * @iterator: the iterator function to call, cannot sleep 4020 * @data: first argument of the iterator function 4021 */ 4022 void ieee80211_iterate_active_interfaces_rtnl(struct ieee80211_hw *hw, 4023 u32 iter_flags, 4024 void (*iterator)(void *data, 4025 u8 *mac, 4026 struct ieee80211_vif *vif), 4027 void *data); 4028 4029 /** 4030 * ieee80211_queue_work - add work onto the mac80211 workqueue 4031 * 4032 * Drivers and mac80211 use this to add work onto the mac80211 workqueue. 4033 * This helper ensures drivers are not queueing work when they should not be. 4034 * 4035 * @hw: the hardware struct for the interface we are adding work for 4036 * @work: the work we want to add onto the mac80211 workqueue 4037 */ 4038 void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work); 4039 4040 /** 4041 * ieee80211_queue_delayed_work - add work onto the mac80211 workqueue 4042 * 4043 * Drivers and mac80211 use this to queue delayed work onto the mac80211 4044 * workqueue. 4045 * 4046 * @hw: the hardware struct for the interface we are adding work for 4047 * @dwork: delayable work to queue onto the mac80211 workqueue 4048 * @delay: number of jiffies to wait before queueing 4049 */ 4050 void ieee80211_queue_delayed_work(struct ieee80211_hw *hw, 4051 struct delayed_work *dwork, 4052 unsigned long delay); 4053 4054 /** 4055 * ieee80211_start_tx_ba_session - Start a tx Block Ack session. 4056 * @sta: the station for which to start a BA session 4057 * @tid: the TID to BA on. 4058 * @timeout: session timeout value (in TUs) 4059 * 4060 * Return: success if addBA request was sent, failure otherwise 4061 * 4062 * Although mac80211/low level driver/user space application can estimate 4063 * the need to start aggregation on a certain RA/TID, the session level 4064 * will be managed by the mac80211. 4065 */ 4066 int ieee80211_start_tx_ba_session(struct ieee80211_sta *sta, u16 tid, 4067 u16 timeout); 4068 4069 /** 4070 * ieee80211_start_tx_ba_cb_irqsafe - low level driver ready to aggregate. 4071 * @vif: &struct ieee80211_vif pointer from the add_interface callback 4072 * @ra: receiver address of the BA session recipient. 4073 * @tid: the TID to BA on. 4074 * 4075 * This function must be called by low level driver once it has 4076 * finished with preparations for the BA session. It can be called 4077 * from any context. 4078 */ 4079 void ieee80211_start_tx_ba_cb_irqsafe(struct ieee80211_vif *vif, const u8 *ra, 4080 u16 tid); 4081 4082 /** 4083 * ieee80211_stop_tx_ba_session - Stop a Block Ack session. 4084 * @sta: the station whose BA session to stop 4085 * @tid: the TID to stop BA. 4086 * 4087 * Return: negative error if the TID is invalid, or no aggregation active 4088 * 4089 * Although mac80211/low level driver/user space application can estimate 4090 * the need to stop aggregation on a certain RA/TID, the session level 4091 * will be managed by the mac80211. 4092 */ 4093 int ieee80211_stop_tx_ba_session(struct ieee80211_sta *sta, u16 tid); 4094 4095 /** 4096 * ieee80211_stop_tx_ba_cb_irqsafe - low level driver ready to stop aggregate. 4097 * @vif: &struct ieee80211_vif pointer from the add_interface callback 4098 * @ra: receiver address of the BA session recipient. 4099 * @tid: the desired TID to BA on. 4100 * 4101 * This function must be called by low level driver once it has 4102 * finished with preparations for the BA session tear down. It 4103 * can be called from any context. 4104 */ 4105 void ieee80211_stop_tx_ba_cb_irqsafe(struct ieee80211_vif *vif, const u8 *ra, 4106 u16 tid); 4107 4108 /** 4109 * ieee80211_find_sta - find a station 4110 * 4111 * @vif: virtual interface to look for station on 4112 * @addr: station's address 4113 * 4114 * Return: The station, if found. %NULL otherwise. 4115 * 4116 * Note: This function must be called under RCU lock and the 4117 * resulting pointer is only valid under RCU lock as well. 4118 */ 4119 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif, 4120 const u8 *addr); 4121 4122 /** 4123 * ieee80211_find_sta_by_ifaddr - find a station on hardware 4124 * 4125 * @hw: pointer as obtained from ieee80211_alloc_hw() 4126 * @addr: remote station's address 4127 * @localaddr: local address (vif->sdata->vif.addr). Use NULL for 'any'. 4128 * 4129 * Return: The station, if found. %NULL otherwise. 4130 * 4131 * Note: This function must be called under RCU lock and the 4132 * resulting pointer is only valid under RCU lock as well. 4133 * 4134 * NOTE: You may pass NULL for localaddr, but then you will just get 4135 * the first STA that matches the remote address 'addr'. 4136 * We can have multiple STA associated with multiple 4137 * logical stations (e.g. consider a station connecting to another 4138 * BSSID on the same AP hardware without disconnecting first). 4139 * In this case, the result of this method with localaddr NULL 4140 * is not reliable. 4141 * 4142 * DO NOT USE THIS FUNCTION with localaddr NULL if at all possible. 4143 */ 4144 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw, 4145 const u8 *addr, 4146 const u8 *localaddr); 4147 4148 /** 4149 * ieee80211_sta_block_awake - block station from waking up 4150 * @hw: the hardware 4151 * @pubsta: the station 4152 * @block: whether to block or unblock 4153 * 4154 * Some devices require that all frames that are on the queues 4155 * for a specific station that went to sleep are flushed before 4156 * a poll response or frames after the station woke up can be 4157 * delivered to that it. Note that such frames must be rejected 4158 * by the driver as filtered, with the appropriate status flag. 4159 * 4160 * This function allows implementing this mode in a race-free 4161 * manner. 4162 * 4163 * To do this, a driver must keep track of the number of frames 4164 * still enqueued for a specific station. If this number is not 4165 * zero when the station goes to sleep, the driver must call 4166 * this function to force mac80211 to consider the station to 4167 * be asleep regardless of the station's actual state. Once the 4168 * number of outstanding frames reaches zero, the driver must 4169 * call this function again to unblock the station. That will 4170 * cause mac80211 to be able to send ps-poll responses, and if 4171 * the station queried in the meantime then frames will also 4172 * be sent out as a result of this. Additionally, the driver 4173 * will be notified that the station woke up some time after 4174 * it is unblocked, regardless of whether the station actually 4175 * woke up while blocked or not. 4176 */ 4177 void ieee80211_sta_block_awake(struct ieee80211_hw *hw, 4178 struct ieee80211_sta *pubsta, bool block); 4179 4180 /** 4181 * ieee80211_sta_eosp - notify mac80211 about end of SP 4182 * @pubsta: the station 4183 * 4184 * When a device transmits frames in a way that it can't tell 4185 * mac80211 in the TX status about the EOSP, it must clear the 4186 * %IEEE80211_TX_STATUS_EOSP bit and call this function instead. 4187 * This applies for PS-Poll as well as uAPSD. 4188 * 4189 * Note that just like with _tx_status() and _rx() drivers must 4190 * not mix calls to irqsafe/non-irqsafe versions, this function 4191 * must not be mixed with those either. Use the all irqsafe, or 4192 * all non-irqsafe, don't mix! 4193 * 4194 * NB: the _irqsafe version of this function doesn't exist, no 4195 * driver needs it right now. Don't call this function if 4196 * you'd need the _irqsafe version, look at the git history 4197 * and restore the _irqsafe version! 4198 */ 4199 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta); 4200 4201 /** 4202 * ieee80211_iter_keys - iterate keys programmed into the device 4203 * @hw: pointer obtained from ieee80211_alloc_hw() 4204 * @vif: virtual interface to iterate, may be %NULL for all 4205 * @iter: iterator function that will be called for each key 4206 * @iter_data: custom data to pass to the iterator function 4207 * 4208 * This function can be used to iterate all the keys known to 4209 * mac80211, even those that weren't previously programmed into 4210 * the device. This is intended for use in WoWLAN if the device 4211 * needs reprogramming of the keys during suspend. Note that due 4212 * to locking reasons, it is also only safe to call this at few 4213 * spots since it must hold the RTNL and be able to sleep. 4214 * 4215 * The order in which the keys are iterated matches the order 4216 * in which they were originally installed and handed to the 4217 * set_key callback. 4218 */ 4219 void ieee80211_iter_keys(struct ieee80211_hw *hw, 4220 struct ieee80211_vif *vif, 4221 void (*iter)(struct ieee80211_hw *hw, 4222 struct ieee80211_vif *vif, 4223 struct ieee80211_sta *sta, 4224 struct ieee80211_key_conf *key, 4225 void *data), 4226 void *iter_data); 4227 4228 /** 4229 * ieee80211_iter_chan_contexts_atomic - iterate channel contexts 4230 * @hw: pointre obtained from ieee80211_alloc_hw(). 4231 * @iter: iterator function 4232 * @iter_data: data passed to iterator function 4233 * 4234 * Iterate all active channel contexts. This function is atomic and 4235 * doesn't acquire any locks internally that might be held in other 4236 * places while calling into the driver. 4237 * 4238 * The iterator will not find a context that's being added (during 4239 * the driver callback to add it) but will find it while it's being 4240 * removed. 4241 * 4242 * Note that during hardware restart, all contexts that existed 4243 * before the restart are considered already present so will be 4244 * found while iterating, whether they've been re-added already 4245 * or not. 4246 */ 4247 void ieee80211_iter_chan_contexts_atomic( 4248 struct ieee80211_hw *hw, 4249 void (*iter)(struct ieee80211_hw *hw, 4250 struct ieee80211_chanctx_conf *chanctx_conf, 4251 void *data), 4252 void *iter_data); 4253 4254 /** 4255 * ieee80211_ap_probereq_get - retrieve a Probe Request template 4256 * @hw: pointer obtained from ieee80211_alloc_hw(). 4257 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 4258 * 4259 * Creates a Probe Request template which can, for example, be uploaded to 4260 * hardware. The template is filled with bssid, ssid and supported rate 4261 * information. This function must only be called from within the 4262 * .bss_info_changed callback function and only in managed mode. The function 4263 * is only useful when the interface is associated, otherwise it will return 4264 * %NULL. 4265 * 4266 * Return: The Probe Request template. %NULL on error. 4267 */ 4268 struct sk_buff *ieee80211_ap_probereq_get(struct ieee80211_hw *hw, 4269 struct ieee80211_vif *vif); 4270 4271 /** 4272 * ieee80211_beacon_loss - inform hardware does not receive beacons 4273 * 4274 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 4275 * 4276 * When beacon filtering is enabled with %IEEE80211_VIF_BEACON_FILTER and 4277 * %IEEE80211_CONF_PS is set, the driver needs to inform whenever the 4278 * hardware is not receiving beacons with this function. 4279 */ 4280 void ieee80211_beacon_loss(struct ieee80211_vif *vif); 4281 4282 /** 4283 * ieee80211_connection_loss - inform hardware has lost connection to the AP 4284 * 4285 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 4286 * 4287 * When beacon filtering is enabled with %IEEE80211_VIF_BEACON_FILTER, and 4288 * %IEEE80211_CONF_PS and %IEEE80211_HW_CONNECTION_MONITOR are set, the driver 4289 * needs to inform if the connection to the AP has been lost. 4290 * The function may also be called if the connection needs to be terminated 4291 * for some other reason, even if %IEEE80211_HW_CONNECTION_MONITOR isn't set. 4292 * 4293 * This function will cause immediate change to disassociated state, 4294 * without connection recovery attempts. 4295 */ 4296 void ieee80211_connection_loss(struct ieee80211_vif *vif); 4297 4298 /** 4299 * ieee80211_resume_disconnect - disconnect from AP after resume 4300 * 4301 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 4302 * 4303 * Instructs mac80211 to disconnect from the AP after resume. 4304 * Drivers can use this after WoWLAN if they know that the 4305 * connection cannot be kept up, for example because keys were 4306 * used while the device was asleep but the replay counters or 4307 * similar cannot be retrieved from the device during resume. 4308 * 4309 * Note that due to implementation issues, if the driver uses 4310 * the reconfiguration functionality during resume the interface 4311 * will still be added as associated first during resume and then 4312 * disconnect normally later. 4313 * 4314 * This function can only be called from the resume callback and 4315 * the driver must not be holding any of its own locks while it 4316 * calls this function, or at least not any locks it needs in the 4317 * key configuration paths (if it supports HW crypto). 4318 */ 4319 void ieee80211_resume_disconnect(struct ieee80211_vif *vif); 4320 4321 /** 4322 * ieee80211_cqm_rssi_notify - inform a configured connection quality monitoring 4323 * rssi threshold triggered 4324 * 4325 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 4326 * @rssi_event: the RSSI trigger event type 4327 * @gfp: context flags 4328 * 4329 * When the %IEEE80211_VIF_SUPPORTS_CQM_RSSI is set, and a connection quality 4330 * monitoring is configured with an rssi threshold, the driver will inform 4331 * whenever the rssi level reaches the threshold. 4332 */ 4333 void ieee80211_cqm_rssi_notify(struct ieee80211_vif *vif, 4334 enum nl80211_cqm_rssi_threshold_event rssi_event, 4335 gfp_t gfp); 4336 4337 /** 4338 * ieee80211_radar_detected - inform that a radar was detected 4339 * 4340 * @hw: pointer as obtained from ieee80211_alloc_hw() 4341 */ 4342 void ieee80211_radar_detected(struct ieee80211_hw *hw); 4343 4344 /** 4345 * ieee80211_chswitch_done - Complete channel switch process 4346 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 4347 * @success: make the channel switch successful or not 4348 * 4349 * Complete the channel switch post-process: set the new operational channel 4350 * and wake up the suspended queues. 4351 */ 4352 void ieee80211_chswitch_done(struct ieee80211_vif *vif, bool success); 4353 4354 /** 4355 * ieee80211_request_smps - request SM PS transition 4356 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 4357 * @smps_mode: new SM PS mode 4358 * 4359 * This allows the driver to request an SM PS transition in managed 4360 * mode. This is useful when the driver has more information than 4361 * the stack about possible interference, for example by bluetooth. 4362 */ 4363 void ieee80211_request_smps(struct ieee80211_vif *vif, 4364 enum ieee80211_smps_mode smps_mode); 4365 4366 /** 4367 * ieee80211_ready_on_channel - notification of remain-on-channel start 4368 * @hw: pointer as obtained from ieee80211_alloc_hw() 4369 */ 4370 void ieee80211_ready_on_channel(struct ieee80211_hw *hw); 4371 4372 /** 4373 * ieee80211_remain_on_channel_expired - remain_on_channel duration expired 4374 * @hw: pointer as obtained from ieee80211_alloc_hw() 4375 */ 4376 void ieee80211_remain_on_channel_expired(struct ieee80211_hw *hw); 4377 4378 /** 4379 * ieee80211_stop_rx_ba_session - callback to stop existing BA sessions 4380 * 4381 * in order not to harm the system performance and user experience, the device 4382 * may request not to allow any rx ba session and tear down existing rx ba 4383 * sessions based on system constraints such as periodic BT activity that needs 4384 * to limit wlan activity (eg.sco or a2dp)." 4385 * in such cases, the intention is to limit the duration of the rx ppdu and 4386 * therefore prevent the peer device to use a-mpdu aggregation. 4387 * 4388 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 4389 * @ba_rx_bitmap: Bit map of open rx ba per tid 4390 * @addr: & to bssid mac address 4391 */ 4392 void ieee80211_stop_rx_ba_session(struct ieee80211_vif *vif, u16 ba_rx_bitmap, 4393 const u8 *addr); 4394 4395 /** 4396 * ieee80211_send_bar - send a BlockAckReq frame 4397 * 4398 * can be used to flush pending frames from the peer's aggregation reorder 4399 * buffer. 4400 * 4401 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 4402 * @ra: the peer's destination address 4403 * @tid: the TID of the aggregation session 4404 * @ssn: the new starting sequence number for the receiver 4405 */ 4406 void ieee80211_send_bar(struct ieee80211_vif *vif, u8 *ra, u16 tid, u16 ssn); 4407 4408 /* Rate control API */ 4409 4410 /** 4411 * struct ieee80211_tx_rate_control - rate control information for/from RC algo 4412 * 4413 * @hw: The hardware the algorithm is invoked for. 4414 * @sband: The band this frame is being transmitted on. 4415 * @bss_conf: the current BSS configuration 4416 * @skb: the skb that will be transmitted, the control information in it needs 4417 * to be filled in 4418 * @reported_rate: The rate control algorithm can fill this in to indicate 4419 * which rate should be reported to userspace as the current rate and 4420 * used for rate calculations in the mesh network. 4421 * @rts: whether RTS will be used for this frame because it is longer than the 4422 * RTS threshold 4423 * @short_preamble: whether mac80211 will request short-preamble transmission 4424 * if the selected rate supports it 4425 * @max_rate_idx: user-requested maximum (legacy) rate 4426 * (deprecated; this will be removed once drivers get updated to use 4427 * rate_idx_mask) 4428 * @rate_idx_mask: user-requested (legacy) rate mask 4429 * @rate_idx_mcs_mask: user-requested MCS rate mask (NULL if not in use) 4430 * @bss: whether this frame is sent out in AP or IBSS mode 4431 */ 4432 struct ieee80211_tx_rate_control { 4433 struct ieee80211_hw *hw; 4434 struct ieee80211_supported_band *sband; 4435 struct ieee80211_bss_conf *bss_conf; 4436 struct sk_buff *skb; 4437 struct ieee80211_tx_rate reported_rate; 4438 bool rts, short_preamble; 4439 u8 max_rate_idx; 4440 u32 rate_idx_mask; 4441 u8 *rate_idx_mcs_mask; 4442 bool bss; 4443 }; 4444 4445 struct rate_control_ops { 4446 const char *name; 4447 void *(*alloc)(struct ieee80211_hw *hw, struct dentry *debugfsdir); 4448 void (*free)(void *priv); 4449 4450 void *(*alloc_sta)(void *priv, struct ieee80211_sta *sta, gfp_t gfp); 4451 void (*rate_init)(void *priv, struct ieee80211_supported_band *sband, 4452 struct cfg80211_chan_def *chandef, 4453 struct ieee80211_sta *sta, void *priv_sta); 4454 void (*rate_update)(void *priv, struct ieee80211_supported_band *sband, 4455 struct cfg80211_chan_def *chandef, 4456 struct ieee80211_sta *sta, void *priv_sta, 4457 u32 changed); 4458 void (*free_sta)(void *priv, struct ieee80211_sta *sta, 4459 void *priv_sta); 4460 4461 void (*tx_status)(void *priv, struct ieee80211_supported_band *sband, 4462 struct ieee80211_sta *sta, void *priv_sta, 4463 struct sk_buff *skb); 4464 void (*get_rate)(void *priv, struct ieee80211_sta *sta, void *priv_sta, 4465 struct ieee80211_tx_rate_control *txrc); 4466 4467 void (*add_sta_debugfs)(void *priv, void *priv_sta, 4468 struct dentry *dir); 4469 void (*remove_sta_debugfs)(void *priv, void *priv_sta); 4470 }; 4471 4472 static inline int rate_supported(struct ieee80211_sta *sta, 4473 enum ieee80211_band band, 4474 int index) 4475 { 4476 return (sta == NULL || sta->supp_rates[band] & BIT(index)); 4477 } 4478 4479 /** 4480 * rate_control_send_low - helper for drivers for management/no-ack frames 4481 * 4482 * Rate control algorithms that agree to use the lowest rate to 4483 * send management frames and NO_ACK data with the respective hw 4484 * retries should use this in the beginning of their mac80211 get_rate 4485 * callback. If true is returned the rate control can simply return. 4486 * If false is returned we guarantee that sta and sta and priv_sta is 4487 * not null. 4488 * 4489 * Rate control algorithms wishing to do more intelligent selection of 4490 * rate for multicast/broadcast frames may choose to not use this. 4491 * 4492 * @sta: &struct ieee80211_sta pointer to the target destination. Note 4493 * that this may be null. 4494 * @priv_sta: private rate control structure. This may be null. 4495 * @txrc: rate control information we sholud populate for mac80211. 4496 */ 4497 bool rate_control_send_low(struct ieee80211_sta *sta, 4498 void *priv_sta, 4499 struct ieee80211_tx_rate_control *txrc); 4500 4501 4502 static inline s8 4503 rate_lowest_index(struct ieee80211_supported_band *sband, 4504 struct ieee80211_sta *sta) 4505 { 4506 int i; 4507 4508 for (i = 0; i < sband->n_bitrates; i++) 4509 if (rate_supported(sta, sband->band, i)) 4510 return i; 4511 4512 /* warn when we cannot find a rate. */ 4513 WARN_ON_ONCE(1); 4514 4515 /* and return 0 (the lowest index) */ 4516 return 0; 4517 } 4518 4519 static inline 4520 bool rate_usable_index_exists(struct ieee80211_supported_band *sband, 4521 struct ieee80211_sta *sta) 4522 { 4523 unsigned int i; 4524 4525 for (i = 0; i < sband->n_bitrates; i++) 4526 if (rate_supported(sta, sband->band, i)) 4527 return true; 4528 return false; 4529 } 4530 4531 /** 4532 * rate_control_set_rates - pass the sta rate selection to mac80211/driver 4533 * 4534 * When not doing a rate control probe to test rates, rate control should pass 4535 * its rate selection to mac80211. If the driver supports receiving a station 4536 * rate table, it will use it to ensure that frames are always sent based on 4537 * the most recent rate control module decision. 4538 * 4539 * @hw: pointer as obtained from ieee80211_alloc_hw() 4540 * @pubsta: &struct ieee80211_sta pointer to the target destination. 4541 * @rates: new tx rate set to be used for this station. 4542 */ 4543 int rate_control_set_rates(struct ieee80211_hw *hw, 4544 struct ieee80211_sta *pubsta, 4545 struct ieee80211_sta_rates *rates); 4546 4547 int ieee80211_rate_control_register(const struct rate_control_ops *ops); 4548 void ieee80211_rate_control_unregister(const struct rate_control_ops *ops); 4549 4550 static inline bool 4551 conf_is_ht20(struct ieee80211_conf *conf) 4552 { 4553 return conf->chandef.width == NL80211_CHAN_WIDTH_20; 4554 } 4555 4556 static inline bool 4557 conf_is_ht40_minus(struct ieee80211_conf *conf) 4558 { 4559 return conf->chandef.width == NL80211_CHAN_WIDTH_40 && 4560 conf->chandef.center_freq1 < conf->chandef.chan->center_freq; 4561 } 4562 4563 static inline bool 4564 conf_is_ht40_plus(struct ieee80211_conf *conf) 4565 { 4566 return conf->chandef.width == NL80211_CHAN_WIDTH_40 && 4567 conf->chandef.center_freq1 > conf->chandef.chan->center_freq; 4568 } 4569 4570 static inline bool 4571 conf_is_ht40(struct ieee80211_conf *conf) 4572 { 4573 return conf->chandef.width == NL80211_CHAN_WIDTH_40; 4574 } 4575 4576 static inline bool 4577 conf_is_ht(struct ieee80211_conf *conf) 4578 { 4579 return conf->chandef.width != NL80211_CHAN_WIDTH_20_NOHT; 4580 } 4581 4582 static inline enum nl80211_iftype 4583 ieee80211_iftype_p2p(enum nl80211_iftype type, bool p2p) 4584 { 4585 if (p2p) { 4586 switch (type) { 4587 case NL80211_IFTYPE_STATION: 4588 return NL80211_IFTYPE_P2P_CLIENT; 4589 case NL80211_IFTYPE_AP: 4590 return NL80211_IFTYPE_P2P_GO; 4591 default: 4592 break; 4593 } 4594 } 4595 return type; 4596 } 4597 4598 static inline enum nl80211_iftype 4599 ieee80211_vif_type_p2p(struct ieee80211_vif *vif) 4600 { 4601 return ieee80211_iftype_p2p(vif->type, vif->p2p); 4602 } 4603 4604 void ieee80211_enable_rssi_reports(struct ieee80211_vif *vif, 4605 int rssi_min_thold, 4606 int rssi_max_thold); 4607 4608 void ieee80211_disable_rssi_reports(struct ieee80211_vif *vif); 4609 4610 /** 4611 * ieee80211_ave_rssi - report the average RSSI for the specified interface 4612 * 4613 * @vif: the specified virtual interface 4614 * 4615 * Note: This function assumes that the given vif is valid. 4616 * 4617 * Return: The average RSSI value for the requested interface, or 0 if not 4618 * applicable. 4619 */ 4620 int ieee80211_ave_rssi(struct ieee80211_vif *vif); 4621 4622 /** 4623 * ieee80211_report_wowlan_wakeup - report WoWLAN wakeup 4624 * @vif: virtual interface 4625 * @wakeup: wakeup reason(s) 4626 * @gfp: allocation flags 4627 * 4628 * See cfg80211_report_wowlan_wakeup(). 4629 */ 4630 void ieee80211_report_wowlan_wakeup(struct ieee80211_vif *vif, 4631 struct cfg80211_wowlan_wakeup *wakeup, 4632 gfp_t gfp); 4633 4634 /** 4635 * ieee80211_tx_prepare_skb - prepare an 802.11 skb for transmission 4636 * @hw: pointer as obtained from ieee80211_alloc_hw() 4637 * @vif: virtual interface 4638 * @skb: frame to be sent from within the driver 4639 * @band: the band to transmit on 4640 * @sta: optional pointer to get the station to send the frame to 4641 * 4642 * Note: must be called under RCU lock 4643 */ 4644 bool ieee80211_tx_prepare_skb(struct ieee80211_hw *hw, 4645 struct ieee80211_vif *vif, struct sk_buff *skb, 4646 int band, struct ieee80211_sta **sta); 4647 4648 /** 4649 * struct ieee80211_noa_data - holds temporary data for tracking P2P NoA state 4650 * 4651 * @next_tsf: TSF timestamp of the next absent state change 4652 * @has_next_tsf: next absent state change event pending 4653 * 4654 * @absent: descriptor bitmask, set if GO is currently absent 4655 * 4656 * private: 4657 * 4658 * @count: count fields from the NoA descriptors 4659 * @desc: adjusted data from the NoA 4660 */ 4661 struct ieee80211_noa_data { 4662 u32 next_tsf; 4663 bool has_next_tsf; 4664 4665 u8 absent; 4666 4667 u8 count[IEEE80211_P2P_NOA_DESC_MAX]; 4668 struct { 4669 u32 start; 4670 u32 duration; 4671 u32 interval; 4672 } desc[IEEE80211_P2P_NOA_DESC_MAX]; 4673 }; 4674 4675 /** 4676 * ieee80211_parse_p2p_noa - initialize NoA tracking data from P2P IE 4677 * 4678 * @attr: P2P NoA IE 4679 * @data: NoA tracking data 4680 * @tsf: current TSF timestamp 4681 * 4682 * Return: number of successfully parsed descriptors 4683 */ 4684 int ieee80211_parse_p2p_noa(const struct ieee80211_p2p_noa_attr *attr, 4685 struct ieee80211_noa_data *data, u32 tsf); 4686 4687 /** 4688 * ieee80211_update_p2p_noa - get next pending P2P GO absent state change 4689 * 4690 * @data: NoA tracking data 4691 * @tsf: current TSF timestamp 4692 */ 4693 void ieee80211_update_p2p_noa(struct ieee80211_noa_data *data, u32 tsf); 4694 4695 #endif /* MAC80211_H */ 4696