1 /* 2 * mac80211 <-> driver interface 3 * 4 * Copyright 2002-2005, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2013-2014 Intel Mobile Communications GmbH 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 */ 13 14 #ifndef MAC80211_H 15 #define MAC80211_H 16 17 #include <linux/bug.h> 18 #include <linux/kernel.h> 19 #include <linux/if_ether.h> 20 #include <linux/skbuff.h> 21 #include <linux/ieee80211.h> 22 #include <net/cfg80211.h> 23 #include <asm/unaligned.h> 24 25 /** 26 * DOC: Introduction 27 * 28 * mac80211 is the Linux stack for 802.11 hardware that implements 29 * only partial functionality in hard- or firmware. This document 30 * defines the interface between mac80211 and low-level hardware 31 * drivers. 32 */ 33 34 /** 35 * DOC: Calling mac80211 from interrupts 36 * 37 * Only ieee80211_tx_status_irqsafe() and ieee80211_rx_irqsafe() can be 38 * called in hardware interrupt context. The low-level driver must not call any 39 * other functions in hardware interrupt context. If there is a need for such 40 * call, the low-level driver should first ACK the interrupt and perform the 41 * IEEE 802.11 code call after this, e.g. from a scheduled workqueue or even 42 * tasklet function. 43 * 44 * NOTE: If the driver opts to use the _irqsafe() functions, it may not also 45 * use the non-IRQ-safe functions! 46 */ 47 48 /** 49 * DOC: Warning 50 * 51 * If you're reading this document and not the header file itself, it will 52 * be incomplete because not all documentation has been converted yet. 53 */ 54 55 /** 56 * DOC: Frame format 57 * 58 * As a general rule, when frames are passed between mac80211 and the driver, 59 * they start with the IEEE 802.11 header and include the same octets that are 60 * sent over the air except for the FCS which should be calculated by the 61 * hardware. 62 * 63 * There are, however, various exceptions to this rule for advanced features: 64 * 65 * The first exception is for hardware encryption and decryption offload 66 * where the IV/ICV may or may not be generated in hardware. 67 * 68 * Secondly, when the hardware handles fragmentation, the frame handed to 69 * the driver from mac80211 is the MSDU, not the MPDU. 70 */ 71 72 /** 73 * DOC: mac80211 workqueue 74 * 75 * mac80211 provides its own workqueue for drivers and internal mac80211 use. 76 * The workqueue is a single threaded workqueue and can only be accessed by 77 * helpers for sanity checking. Drivers must ensure all work added onto the 78 * mac80211 workqueue should be cancelled on the driver stop() callback. 79 * 80 * mac80211 will flushed the workqueue upon interface removal and during 81 * suspend. 82 * 83 * All work performed on the mac80211 workqueue must not acquire the RTNL lock. 84 * 85 */ 86 87 /** 88 * DOC: mac80211 software tx queueing 89 * 90 * mac80211 provides an optional intermediate queueing implementation designed 91 * to allow the driver to keep hardware queues short and provide some fairness 92 * between different stations/interfaces. 93 * In this model, the driver pulls data frames from the mac80211 queue instead 94 * of letting mac80211 push them via drv_tx(). 95 * Other frames (e.g. control or management) are still pushed using drv_tx(). 96 * 97 * Drivers indicate that they use this model by implementing the .wake_tx_queue 98 * driver operation. 99 * 100 * Intermediate queues (struct ieee80211_txq) are kept per-sta per-tid, with a 101 * single per-vif queue for multicast data frames. 102 * 103 * The driver is expected to initialize its private per-queue data for stations 104 * and interfaces in the .add_interface and .sta_add ops. 105 * 106 * The driver can't access the queue directly. To dequeue a frame, it calls 107 * ieee80211_tx_dequeue(). Whenever mac80211 adds a new frame to a queue, it 108 * calls the .wake_tx_queue driver op. 109 * 110 * For AP powersave TIM handling, the driver only needs to indicate if it has 111 * buffered packets in the driver specific data structures by calling 112 * ieee80211_sta_set_buffered(). For frames buffered in the ieee80211_txq 113 * struct, mac80211 sets the appropriate TIM PVB bits and calls 114 * .release_buffered_frames(). 115 * In that callback the driver is therefore expected to release its own 116 * buffered frames and afterwards also frames from the ieee80211_txq (obtained 117 * via the usual ieee80211_tx_dequeue). 118 */ 119 120 struct device; 121 122 /** 123 * enum ieee80211_max_queues - maximum number of queues 124 * 125 * @IEEE80211_MAX_QUEUES: Maximum number of regular device queues. 126 * @IEEE80211_MAX_QUEUE_MAP: bitmap with maximum queues set 127 */ 128 enum ieee80211_max_queues { 129 IEEE80211_MAX_QUEUES = 16, 130 IEEE80211_MAX_QUEUE_MAP = BIT(IEEE80211_MAX_QUEUES) - 1, 131 }; 132 133 #define IEEE80211_INVAL_HW_QUEUE 0xff 134 135 /** 136 * enum ieee80211_ac_numbers - AC numbers as used in mac80211 137 * @IEEE80211_AC_VO: voice 138 * @IEEE80211_AC_VI: video 139 * @IEEE80211_AC_BE: best effort 140 * @IEEE80211_AC_BK: background 141 */ 142 enum ieee80211_ac_numbers { 143 IEEE80211_AC_VO = 0, 144 IEEE80211_AC_VI = 1, 145 IEEE80211_AC_BE = 2, 146 IEEE80211_AC_BK = 3, 147 }; 148 #define IEEE80211_NUM_ACS 4 149 150 /** 151 * struct ieee80211_tx_queue_params - transmit queue configuration 152 * 153 * The information provided in this structure is required for QoS 154 * transmit queue configuration. Cf. IEEE 802.11 7.3.2.29. 155 * 156 * @aifs: arbitration interframe space [0..255] 157 * @cw_min: minimum contention window [a value of the form 158 * 2^n-1 in the range 1..32767] 159 * @cw_max: maximum contention window [like @cw_min] 160 * @txop: maximum burst time in units of 32 usecs, 0 meaning disabled 161 * @acm: is mandatory admission control required for the access category 162 * @uapsd: is U-APSD mode enabled for the queue 163 */ 164 struct ieee80211_tx_queue_params { 165 u16 txop; 166 u16 cw_min; 167 u16 cw_max; 168 u8 aifs; 169 bool acm; 170 bool uapsd; 171 }; 172 173 struct ieee80211_low_level_stats { 174 unsigned int dot11ACKFailureCount; 175 unsigned int dot11RTSFailureCount; 176 unsigned int dot11FCSErrorCount; 177 unsigned int dot11RTSSuccessCount; 178 }; 179 180 /** 181 * enum ieee80211_chanctx_change - change flag for channel context 182 * @IEEE80211_CHANCTX_CHANGE_WIDTH: The channel width changed 183 * @IEEE80211_CHANCTX_CHANGE_RX_CHAINS: The number of RX chains changed 184 * @IEEE80211_CHANCTX_CHANGE_RADAR: radar detection flag changed 185 * @IEEE80211_CHANCTX_CHANGE_CHANNEL: switched to another operating channel, 186 * this is used only with channel switching with CSA 187 * @IEEE80211_CHANCTX_CHANGE_MIN_WIDTH: The min required channel width changed 188 */ 189 enum ieee80211_chanctx_change { 190 IEEE80211_CHANCTX_CHANGE_WIDTH = BIT(0), 191 IEEE80211_CHANCTX_CHANGE_RX_CHAINS = BIT(1), 192 IEEE80211_CHANCTX_CHANGE_RADAR = BIT(2), 193 IEEE80211_CHANCTX_CHANGE_CHANNEL = BIT(3), 194 IEEE80211_CHANCTX_CHANGE_MIN_WIDTH = BIT(4), 195 }; 196 197 /** 198 * struct ieee80211_chanctx_conf - channel context that vifs may be tuned to 199 * 200 * This is the driver-visible part. The ieee80211_chanctx 201 * that contains it is visible in mac80211 only. 202 * 203 * @def: the channel definition 204 * @min_def: the minimum channel definition currently required. 205 * @rx_chains_static: The number of RX chains that must always be 206 * active on the channel to receive MIMO transmissions 207 * @rx_chains_dynamic: The number of RX chains that must be enabled 208 * after RTS/CTS handshake to receive SMPS MIMO transmissions; 209 * this will always be >= @rx_chains_static. 210 * @radar_enabled: whether radar detection is enabled on this channel. 211 * @drv_priv: data area for driver use, will always be aligned to 212 * sizeof(void *), size is determined in hw information. 213 */ 214 struct ieee80211_chanctx_conf { 215 struct cfg80211_chan_def def; 216 struct cfg80211_chan_def min_def; 217 218 u8 rx_chains_static, rx_chains_dynamic; 219 220 bool radar_enabled; 221 222 u8 drv_priv[0] __aligned(sizeof(void *)); 223 }; 224 225 /** 226 * enum ieee80211_chanctx_switch_mode - channel context switch mode 227 * @CHANCTX_SWMODE_REASSIGN_VIF: Both old and new contexts already 228 * exist (and will continue to exist), but the virtual interface 229 * needs to be switched from one to the other. 230 * @CHANCTX_SWMODE_SWAP_CONTEXTS: The old context exists but will stop 231 * to exist with this call, the new context doesn't exist but 232 * will be active after this call, the virtual interface switches 233 * from the old to the new (note that the driver may of course 234 * implement this as an on-the-fly chandef switch of the existing 235 * hardware context, but the mac80211 pointer for the old context 236 * will cease to exist and only the new one will later be used 237 * for changes/removal.) 238 */ 239 enum ieee80211_chanctx_switch_mode { 240 CHANCTX_SWMODE_REASSIGN_VIF, 241 CHANCTX_SWMODE_SWAP_CONTEXTS, 242 }; 243 244 /** 245 * struct ieee80211_vif_chanctx_switch - vif chanctx switch information 246 * 247 * This is structure is used to pass information about a vif that 248 * needs to switch from one chanctx to another. The 249 * &ieee80211_chanctx_switch_mode defines how the switch should be 250 * done. 251 * 252 * @vif: the vif that should be switched from old_ctx to new_ctx 253 * @old_ctx: the old context to which the vif was assigned 254 * @new_ctx: the new context to which the vif must be assigned 255 */ 256 struct ieee80211_vif_chanctx_switch { 257 struct ieee80211_vif *vif; 258 struct ieee80211_chanctx_conf *old_ctx; 259 struct ieee80211_chanctx_conf *new_ctx; 260 }; 261 262 /** 263 * enum ieee80211_bss_change - BSS change notification flags 264 * 265 * These flags are used with the bss_info_changed() callback 266 * to indicate which BSS parameter changed. 267 * 268 * @BSS_CHANGED_ASSOC: association status changed (associated/disassociated), 269 * also implies a change in the AID. 270 * @BSS_CHANGED_ERP_CTS_PROT: CTS protection changed 271 * @BSS_CHANGED_ERP_PREAMBLE: preamble changed 272 * @BSS_CHANGED_ERP_SLOT: slot timing changed 273 * @BSS_CHANGED_HT: 802.11n parameters changed 274 * @BSS_CHANGED_BASIC_RATES: Basic rateset changed 275 * @BSS_CHANGED_BEACON_INT: Beacon interval changed 276 * @BSS_CHANGED_BSSID: BSSID changed, for whatever 277 * reason (IBSS and managed mode) 278 * @BSS_CHANGED_BEACON: Beacon data changed, retrieve 279 * new beacon (beaconing modes) 280 * @BSS_CHANGED_BEACON_ENABLED: Beaconing should be 281 * enabled/disabled (beaconing modes) 282 * @BSS_CHANGED_CQM: Connection quality monitor config changed 283 * @BSS_CHANGED_IBSS: IBSS join status changed 284 * @BSS_CHANGED_ARP_FILTER: Hardware ARP filter address list or state changed. 285 * @BSS_CHANGED_QOS: QoS for this association was enabled/disabled. Note 286 * that it is only ever disabled for station mode. 287 * @BSS_CHANGED_IDLE: Idle changed for this BSS/interface. 288 * @BSS_CHANGED_SSID: SSID changed for this BSS (AP and IBSS mode) 289 * @BSS_CHANGED_AP_PROBE_RESP: Probe Response changed for this BSS (AP mode) 290 * @BSS_CHANGED_PS: PS changed for this BSS (STA mode) 291 * @BSS_CHANGED_TXPOWER: TX power setting changed for this interface 292 * @BSS_CHANGED_P2P_PS: P2P powersave settings (CTWindow, opportunistic PS) 293 * changed (currently only in P2P client mode, GO mode will be later) 294 * @BSS_CHANGED_BEACON_INFO: Data from the AP's beacon became available: 295 * currently dtim_period only is under consideration. 296 * @BSS_CHANGED_BANDWIDTH: The bandwidth used by this interface changed, 297 * note that this is only called when it changes after the channel 298 * context had been assigned. 299 * @BSS_CHANGED_OCB: OCB join status changed 300 */ 301 enum ieee80211_bss_change { 302 BSS_CHANGED_ASSOC = 1<<0, 303 BSS_CHANGED_ERP_CTS_PROT = 1<<1, 304 BSS_CHANGED_ERP_PREAMBLE = 1<<2, 305 BSS_CHANGED_ERP_SLOT = 1<<3, 306 BSS_CHANGED_HT = 1<<4, 307 BSS_CHANGED_BASIC_RATES = 1<<5, 308 BSS_CHANGED_BEACON_INT = 1<<6, 309 BSS_CHANGED_BSSID = 1<<7, 310 BSS_CHANGED_BEACON = 1<<8, 311 BSS_CHANGED_BEACON_ENABLED = 1<<9, 312 BSS_CHANGED_CQM = 1<<10, 313 BSS_CHANGED_IBSS = 1<<11, 314 BSS_CHANGED_ARP_FILTER = 1<<12, 315 BSS_CHANGED_QOS = 1<<13, 316 BSS_CHANGED_IDLE = 1<<14, 317 BSS_CHANGED_SSID = 1<<15, 318 BSS_CHANGED_AP_PROBE_RESP = 1<<16, 319 BSS_CHANGED_PS = 1<<17, 320 BSS_CHANGED_TXPOWER = 1<<18, 321 BSS_CHANGED_P2P_PS = 1<<19, 322 BSS_CHANGED_BEACON_INFO = 1<<20, 323 BSS_CHANGED_BANDWIDTH = 1<<21, 324 BSS_CHANGED_OCB = 1<<22, 325 326 /* when adding here, make sure to change ieee80211_reconfig */ 327 }; 328 329 /* 330 * The maximum number of IPv4 addresses listed for ARP filtering. If the number 331 * of addresses for an interface increase beyond this value, hardware ARP 332 * filtering will be disabled. 333 */ 334 #define IEEE80211_BSS_ARP_ADDR_LIST_LEN 4 335 336 /** 337 * enum ieee80211_event_type - event to be notified to the low level driver 338 * @RSSI_EVENT: AP's rssi crossed the a threshold set by the driver. 339 * @MLME_EVENT: event related to MLME 340 * @BAR_RX_EVENT: a BAR was received 341 * @BA_FRAME_TIMEOUT: Frames were released from the reordering buffer because 342 * they timed out. This won't be called for each frame released, but only 343 * once each time the timeout triggers. 344 */ 345 enum ieee80211_event_type { 346 RSSI_EVENT, 347 MLME_EVENT, 348 BAR_RX_EVENT, 349 BA_FRAME_TIMEOUT, 350 }; 351 352 /** 353 * enum ieee80211_rssi_event_data - relevant when event type is %RSSI_EVENT 354 * @RSSI_EVENT_HIGH: AP's rssi went below the threshold set by the driver. 355 * @RSSI_EVENT_LOW: AP's rssi went above the threshold set by the driver. 356 */ 357 enum ieee80211_rssi_event_data { 358 RSSI_EVENT_HIGH, 359 RSSI_EVENT_LOW, 360 }; 361 362 /** 363 * struct ieee80211_rssi_event - data attached to an %RSSI_EVENT 364 * @data: See &enum ieee80211_rssi_event_data 365 */ 366 struct ieee80211_rssi_event { 367 enum ieee80211_rssi_event_data data; 368 }; 369 370 /** 371 * enum ieee80211_mlme_event_data - relevant when event type is %MLME_EVENT 372 * @AUTH_EVENT: the MLME operation is authentication 373 * @ASSOC_EVENT: the MLME operation is association 374 * @DEAUTH_RX_EVENT: deauth received.. 375 * @DEAUTH_TX_EVENT: deauth sent. 376 */ 377 enum ieee80211_mlme_event_data { 378 AUTH_EVENT, 379 ASSOC_EVENT, 380 DEAUTH_RX_EVENT, 381 DEAUTH_TX_EVENT, 382 }; 383 384 /** 385 * enum ieee80211_mlme_event_status - relevant when event type is %MLME_EVENT 386 * @MLME_SUCCESS: the MLME operation completed successfully. 387 * @MLME_DENIED: the MLME operation was denied by the peer. 388 * @MLME_TIMEOUT: the MLME operation timed out. 389 */ 390 enum ieee80211_mlme_event_status { 391 MLME_SUCCESS, 392 MLME_DENIED, 393 MLME_TIMEOUT, 394 }; 395 396 /** 397 * struct ieee80211_mlme_event - data attached to an %MLME_EVENT 398 * @data: See &enum ieee80211_mlme_event_data 399 * @status: See &enum ieee80211_mlme_event_status 400 * @reason: the reason code if applicable 401 */ 402 struct ieee80211_mlme_event { 403 enum ieee80211_mlme_event_data data; 404 enum ieee80211_mlme_event_status status; 405 u16 reason; 406 }; 407 408 /** 409 * struct ieee80211_ba_event - data attached for BlockAck related events 410 * @sta: pointer to the &ieee80211_sta to which this event relates 411 * @tid: the tid 412 * @ssn: the starting sequence number (for %BAR_RX_EVENT) 413 */ 414 struct ieee80211_ba_event { 415 struct ieee80211_sta *sta; 416 u16 tid; 417 u16 ssn; 418 }; 419 420 /** 421 * struct ieee80211_event - event to be sent to the driver 422 * @type: The event itself. See &enum ieee80211_event_type. 423 * @rssi: relevant if &type is %RSSI_EVENT 424 * @mlme: relevant if &type is %AUTH_EVENT 425 * @ba: relevant if &type is %BAR_RX_EVENT or %BA_FRAME_TIMEOUT 426 * @u:union holding the fields above 427 */ 428 struct ieee80211_event { 429 enum ieee80211_event_type type; 430 union { 431 struct ieee80211_rssi_event rssi; 432 struct ieee80211_mlme_event mlme; 433 struct ieee80211_ba_event ba; 434 } u; 435 }; 436 437 /** 438 * struct ieee80211_bss_conf - holds the BSS's changing parameters 439 * 440 * This structure keeps information about a BSS (and an association 441 * to that BSS) that can change during the lifetime of the BSS. 442 * 443 * @assoc: association status 444 * @ibss_joined: indicates whether this station is part of an IBSS 445 * or not 446 * @ibss_creator: indicates if a new IBSS network is being created 447 * @aid: association ID number, valid only when @assoc is true 448 * @use_cts_prot: use CTS protection 449 * @use_short_preamble: use 802.11b short preamble 450 * @use_short_slot: use short slot time (only relevant for ERP) 451 * @dtim_period: num of beacons before the next DTIM, for beaconing, 452 * valid in station mode only if after the driver was notified 453 * with the %BSS_CHANGED_BEACON_INFO flag, will be non-zero then. 454 * @sync_tsf: last beacon's/probe response's TSF timestamp (could be old 455 * as it may have been received during scanning long ago). If the 456 * HW flag %IEEE80211_HW_TIMING_BEACON_ONLY is set, then this can 457 * only come from a beacon, but might not become valid until after 458 * association when a beacon is received (which is notified with the 459 * %BSS_CHANGED_DTIM flag.). See also sync_dtim_count important notice. 460 * @sync_device_ts: the device timestamp corresponding to the sync_tsf, 461 * the driver/device can use this to calculate synchronisation 462 * (see @sync_tsf). See also sync_dtim_count important notice. 463 * @sync_dtim_count: Only valid when %IEEE80211_HW_TIMING_BEACON_ONLY 464 * is requested, see @sync_tsf/@sync_device_ts. 465 * IMPORTANT: These three sync_* parameters would possibly be out of sync 466 * by the time the driver will use them. The synchronized view is currently 467 * guaranteed only in certain callbacks. 468 * @beacon_int: beacon interval 469 * @assoc_capability: capabilities taken from assoc resp 470 * @basic_rates: bitmap of basic rates, each bit stands for an 471 * index into the rate table configured by the driver in 472 * the current band. 473 * @beacon_rate: associated AP's beacon TX rate 474 * @mcast_rate: per-band multicast rate index + 1 (0: disabled) 475 * @bssid: The BSSID for this BSS 476 * @enable_beacon: whether beaconing should be enabled or not 477 * @chandef: Channel definition for this BSS -- the hardware might be 478 * configured a higher bandwidth than this BSS uses, for example. 479 * @ht_operation_mode: HT operation mode like in &struct ieee80211_ht_operation. 480 * This field is only valid when the channel type is one of the HT types. 481 * @cqm_rssi_thold: Connection quality monitor RSSI threshold, a zero value 482 * implies disabled 483 * @cqm_rssi_hyst: Connection quality monitor RSSI hysteresis 484 * @arp_addr_list: List of IPv4 addresses for hardware ARP filtering. The 485 * may filter ARP queries targeted for other addresses than listed here. 486 * The driver must allow ARP queries targeted for all address listed here 487 * to pass through. An empty list implies no ARP queries need to pass. 488 * @arp_addr_cnt: Number of addresses currently on the list. Note that this 489 * may be larger than %IEEE80211_BSS_ARP_ADDR_LIST_LEN (the arp_addr_list 490 * array size), it's up to the driver what to do in that case. 491 * @qos: This is a QoS-enabled BSS. 492 * @idle: This interface is idle. There's also a global idle flag in the 493 * hardware config which may be more appropriate depending on what 494 * your driver/device needs to do. 495 * @ps: power-save mode (STA only). This flag is NOT affected by 496 * offchannel/dynamic_ps operations. 497 * @ssid: The SSID of the current vif. Valid in AP and IBSS mode. 498 * @ssid_len: Length of SSID given in @ssid. 499 * @hidden_ssid: The SSID of the current vif is hidden. Only valid in AP-mode. 500 * @txpower: TX power in dBm 501 * @txpower_type: TX power adjustment used to control per packet Transmit 502 * Power Control (TPC) in lower driver for the current vif. In particular 503 * TPC is enabled if value passed in %txpower_type is 504 * NL80211_TX_POWER_LIMITED (allow using less than specified from 505 * userspace), whereas TPC is disabled if %txpower_type is set to 506 * NL80211_TX_POWER_FIXED (use value configured from userspace) 507 * @p2p_noa_attr: P2P NoA attribute for P2P powersave 508 */ 509 struct ieee80211_bss_conf { 510 const u8 *bssid; 511 /* association related data */ 512 bool assoc, ibss_joined; 513 bool ibss_creator; 514 u16 aid; 515 /* erp related data */ 516 bool use_cts_prot; 517 bool use_short_preamble; 518 bool use_short_slot; 519 bool enable_beacon; 520 u8 dtim_period; 521 u16 beacon_int; 522 u16 assoc_capability; 523 u64 sync_tsf; 524 u32 sync_device_ts; 525 u8 sync_dtim_count; 526 u32 basic_rates; 527 struct ieee80211_rate *beacon_rate; 528 int mcast_rate[IEEE80211_NUM_BANDS]; 529 u16 ht_operation_mode; 530 s32 cqm_rssi_thold; 531 u32 cqm_rssi_hyst; 532 struct cfg80211_chan_def chandef; 533 __be32 arp_addr_list[IEEE80211_BSS_ARP_ADDR_LIST_LEN]; 534 int arp_addr_cnt; 535 bool qos; 536 bool idle; 537 bool ps; 538 u8 ssid[IEEE80211_MAX_SSID_LEN]; 539 size_t ssid_len; 540 bool hidden_ssid; 541 int txpower; 542 enum nl80211_tx_power_setting txpower_type; 543 struct ieee80211_p2p_noa_attr p2p_noa_attr; 544 }; 545 546 /** 547 * enum mac80211_tx_info_flags - flags to describe transmission information/status 548 * 549 * These flags are used with the @flags member of &ieee80211_tx_info. 550 * 551 * @IEEE80211_TX_CTL_REQ_TX_STATUS: require TX status callback for this frame. 552 * @IEEE80211_TX_CTL_ASSIGN_SEQ: The driver has to assign a sequence 553 * number to this frame, taking care of not overwriting the fragment 554 * number and increasing the sequence number only when the 555 * IEEE80211_TX_CTL_FIRST_FRAGMENT flag is set. mac80211 will properly 556 * assign sequence numbers to QoS-data frames but cannot do so correctly 557 * for non-QoS-data and management frames because beacons need them from 558 * that counter as well and mac80211 cannot guarantee proper sequencing. 559 * If this flag is set, the driver should instruct the hardware to 560 * assign a sequence number to the frame or assign one itself. Cf. IEEE 561 * 802.11-2007 7.1.3.4.1 paragraph 3. This flag will always be set for 562 * beacons and always be clear for frames without a sequence number field. 563 * @IEEE80211_TX_CTL_NO_ACK: tell the low level not to wait for an ack 564 * @IEEE80211_TX_CTL_CLEAR_PS_FILT: clear powersave filter for destination 565 * station 566 * @IEEE80211_TX_CTL_FIRST_FRAGMENT: this is a first fragment of the frame 567 * @IEEE80211_TX_CTL_SEND_AFTER_DTIM: send this frame after DTIM beacon 568 * @IEEE80211_TX_CTL_AMPDU: this frame should be sent as part of an A-MPDU 569 * @IEEE80211_TX_CTL_INJECTED: Frame was injected, internal to mac80211. 570 * @IEEE80211_TX_STAT_TX_FILTERED: The frame was not transmitted 571 * because the destination STA was in powersave mode. Note that to 572 * avoid race conditions, the filter must be set by the hardware or 573 * firmware upon receiving a frame that indicates that the station 574 * went to sleep (must be done on device to filter frames already on 575 * the queue) and may only be unset after mac80211 gives the OK for 576 * that by setting the IEEE80211_TX_CTL_CLEAR_PS_FILT (see above), 577 * since only then is it guaranteed that no more frames are in the 578 * hardware queue. 579 * @IEEE80211_TX_STAT_ACK: Frame was acknowledged 580 * @IEEE80211_TX_STAT_AMPDU: The frame was aggregated, so status 581 * is for the whole aggregation. 582 * @IEEE80211_TX_STAT_AMPDU_NO_BACK: no block ack was returned, 583 * so consider using block ack request (BAR). 584 * @IEEE80211_TX_CTL_RATE_CTRL_PROBE: internal to mac80211, can be 585 * set by rate control algorithms to indicate probe rate, will 586 * be cleared for fragmented frames (except on the last fragment) 587 * @IEEE80211_TX_INTFL_OFFCHAN_TX_OK: Internal to mac80211. Used to indicate 588 * that a frame can be transmitted while the queues are stopped for 589 * off-channel operation. 590 * @IEEE80211_TX_INTFL_NEED_TXPROCESSING: completely internal to mac80211, 591 * used to indicate that a pending frame requires TX processing before 592 * it can be sent out. 593 * @IEEE80211_TX_INTFL_RETRIED: completely internal to mac80211, 594 * used to indicate that a frame was already retried due to PS 595 * @IEEE80211_TX_INTFL_DONT_ENCRYPT: completely internal to mac80211, 596 * used to indicate frame should not be encrypted 597 * @IEEE80211_TX_CTL_NO_PS_BUFFER: This frame is a response to a poll 598 * frame (PS-Poll or uAPSD) or a non-bufferable MMPDU and must 599 * be sent although the station is in powersave mode. 600 * @IEEE80211_TX_CTL_MORE_FRAMES: More frames will be passed to the 601 * transmit function after the current frame, this can be used 602 * by drivers to kick the DMA queue only if unset or when the 603 * queue gets full. 604 * @IEEE80211_TX_INTFL_RETRANSMISSION: This frame is being retransmitted 605 * after TX status because the destination was asleep, it must not 606 * be modified again (no seqno assignment, crypto, etc.) 607 * @IEEE80211_TX_INTFL_MLME_CONN_TX: This frame was transmitted by the MLME 608 * code for connection establishment, this indicates that its status 609 * should kick the MLME state machine. 610 * @IEEE80211_TX_INTFL_NL80211_FRAME_TX: Frame was requested through nl80211 611 * MLME command (internal to mac80211 to figure out whether to send TX 612 * status to user space) 613 * @IEEE80211_TX_CTL_LDPC: tells the driver to use LDPC for this frame 614 * @IEEE80211_TX_CTL_STBC: Enables Space-Time Block Coding (STBC) for this 615 * frame and selects the maximum number of streams that it can use. 616 * @IEEE80211_TX_CTL_TX_OFFCHAN: Marks this packet to be transmitted on 617 * the off-channel channel when a remain-on-channel offload is done 618 * in hardware -- normal packets still flow and are expected to be 619 * handled properly by the device. 620 * @IEEE80211_TX_INTFL_TKIP_MIC_FAILURE: Marks this packet to be used for TKIP 621 * testing. It will be sent out with incorrect Michael MIC key to allow 622 * TKIP countermeasures to be tested. 623 * @IEEE80211_TX_CTL_NO_CCK_RATE: This frame will be sent at non CCK rate. 624 * This flag is actually used for management frame especially for P2P 625 * frames not being sent at CCK rate in 2GHz band. 626 * @IEEE80211_TX_STATUS_EOSP: This packet marks the end of service period, 627 * when its status is reported the service period ends. For frames in 628 * an SP that mac80211 transmits, it is already set; for driver frames 629 * the driver may set this flag. It is also used to do the same for 630 * PS-Poll responses. 631 * @IEEE80211_TX_CTL_USE_MINRATE: This frame will be sent at lowest rate. 632 * This flag is used to send nullfunc frame at minimum rate when 633 * the nullfunc is used for connection monitoring purpose. 634 * @IEEE80211_TX_CTL_DONTFRAG: Don't fragment this packet even if it 635 * would be fragmented by size (this is optional, only used for 636 * monitor injection). 637 * @IEEE80211_TX_STAT_NOACK_TRANSMITTED: A frame that was marked with 638 * IEEE80211_TX_CTL_NO_ACK has been successfully transmitted without 639 * any errors (like issues specific to the driver/HW). 640 * This flag must not be set for frames that don't request no-ack 641 * behaviour with IEEE80211_TX_CTL_NO_ACK. 642 * 643 * Note: If you have to add new flags to the enumeration, then don't 644 * forget to update %IEEE80211_TX_TEMPORARY_FLAGS when necessary. 645 */ 646 enum mac80211_tx_info_flags { 647 IEEE80211_TX_CTL_REQ_TX_STATUS = BIT(0), 648 IEEE80211_TX_CTL_ASSIGN_SEQ = BIT(1), 649 IEEE80211_TX_CTL_NO_ACK = BIT(2), 650 IEEE80211_TX_CTL_CLEAR_PS_FILT = BIT(3), 651 IEEE80211_TX_CTL_FIRST_FRAGMENT = BIT(4), 652 IEEE80211_TX_CTL_SEND_AFTER_DTIM = BIT(5), 653 IEEE80211_TX_CTL_AMPDU = BIT(6), 654 IEEE80211_TX_CTL_INJECTED = BIT(7), 655 IEEE80211_TX_STAT_TX_FILTERED = BIT(8), 656 IEEE80211_TX_STAT_ACK = BIT(9), 657 IEEE80211_TX_STAT_AMPDU = BIT(10), 658 IEEE80211_TX_STAT_AMPDU_NO_BACK = BIT(11), 659 IEEE80211_TX_CTL_RATE_CTRL_PROBE = BIT(12), 660 IEEE80211_TX_INTFL_OFFCHAN_TX_OK = BIT(13), 661 IEEE80211_TX_INTFL_NEED_TXPROCESSING = BIT(14), 662 IEEE80211_TX_INTFL_RETRIED = BIT(15), 663 IEEE80211_TX_INTFL_DONT_ENCRYPT = BIT(16), 664 IEEE80211_TX_CTL_NO_PS_BUFFER = BIT(17), 665 IEEE80211_TX_CTL_MORE_FRAMES = BIT(18), 666 IEEE80211_TX_INTFL_RETRANSMISSION = BIT(19), 667 IEEE80211_TX_INTFL_MLME_CONN_TX = BIT(20), 668 IEEE80211_TX_INTFL_NL80211_FRAME_TX = BIT(21), 669 IEEE80211_TX_CTL_LDPC = BIT(22), 670 IEEE80211_TX_CTL_STBC = BIT(23) | BIT(24), 671 IEEE80211_TX_CTL_TX_OFFCHAN = BIT(25), 672 IEEE80211_TX_INTFL_TKIP_MIC_FAILURE = BIT(26), 673 IEEE80211_TX_CTL_NO_CCK_RATE = BIT(27), 674 IEEE80211_TX_STATUS_EOSP = BIT(28), 675 IEEE80211_TX_CTL_USE_MINRATE = BIT(29), 676 IEEE80211_TX_CTL_DONTFRAG = BIT(30), 677 IEEE80211_TX_STAT_NOACK_TRANSMITTED = BIT(31), 678 }; 679 680 #define IEEE80211_TX_CTL_STBC_SHIFT 23 681 682 /** 683 * enum mac80211_tx_control_flags - flags to describe transmit control 684 * 685 * @IEEE80211_TX_CTRL_PORT_CTRL_PROTO: this frame is a port control 686 * protocol frame (e.g. EAP) 687 * @IEEE80211_TX_CTRL_PS_RESPONSE: This frame is a response to a poll 688 * frame (PS-Poll or uAPSD). 689 * 690 * These flags are used in tx_info->control.flags. 691 */ 692 enum mac80211_tx_control_flags { 693 IEEE80211_TX_CTRL_PORT_CTRL_PROTO = BIT(0), 694 IEEE80211_TX_CTRL_PS_RESPONSE = BIT(1), 695 }; 696 697 /* 698 * This definition is used as a mask to clear all temporary flags, which are 699 * set by the tx handlers for each transmission attempt by the mac80211 stack. 700 */ 701 #define IEEE80211_TX_TEMPORARY_FLAGS (IEEE80211_TX_CTL_NO_ACK | \ 702 IEEE80211_TX_CTL_CLEAR_PS_FILT | IEEE80211_TX_CTL_FIRST_FRAGMENT | \ 703 IEEE80211_TX_CTL_SEND_AFTER_DTIM | IEEE80211_TX_CTL_AMPDU | \ 704 IEEE80211_TX_STAT_TX_FILTERED | IEEE80211_TX_STAT_ACK | \ 705 IEEE80211_TX_STAT_AMPDU | IEEE80211_TX_STAT_AMPDU_NO_BACK | \ 706 IEEE80211_TX_CTL_RATE_CTRL_PROBE | IEEE80211_TX_CTL_NO_PS_BUFFER | \ 707 IEEE80211_TX_CTL_MORE_FRAMES | IEEE80211_TX_CTL_LDPC | \ 708 IEEE80211_TX_CTL_STBC | IEEE80211_TX_STATUS_EOSP) 709 710 /** 711 * enum mac80211_rate_control_flags - per-rate flags set by the 712 * Rate Control algorithm. 713 * 714 * These flags are set by the Rate control algorithm for each rate during tx, 715 * in the @flags member of struct ieee80211_tx_rate. 716 * 717 * @IEEE80211_TX_RC_USE_RTS_CTS: Use RTS/CTS exchange for this rate. 718 * @IEEE80211_TX_RC_USE_CTS_PROTECT: CTS-to-self protection is required. 719 * This is set if the current BSS requires ERP protection. 720 * @IEEE80211_TX_RC_USE_SHORT_PREAMBLE: Use short preamble. 721 * @IEEE80211_TX_RC_MCS: HT rate. 722 * @IEEE80211_TX_RC_VHT_MCS: VHT MCS rate, in this case the idx field is split 723 * into a higher 4 bits (Nss) and lower 4 bits (MCS number) 724 * @IEEE80211_TX_RC_GREEN_FIELD: Indicates whether this rate should be used in 725 * Greenfield mode. 726 * @IEEE80211_TX_RC_40_MHZ_WIDTH: Indicates if the Channel Width should be 40 MHz. 727 * @IEEE80211_TX_RC_80_MHZ_WIDTH: Indicates 80 MHz transmission 728 * @IEEE80211_TX_RC_160_MHZ_WIDTH: Indicates 160 MHz transmission 729 * (80+80 isn't supported yet) 730 * @IEEE80211_TX_RC_DUP_DATA: The frame should be transmitted on both of the 731 * adjacent 20 MHz channels, if the current channel type is 732 * NL80211_CHAN_HT40MINUS or NL80211_CHAN_HT40PLUS. 733 * @IEEE80211_TX_RC_SHORT_GI: Short Guard interval should be used for this rate. 734 */ 735 enum mac80211_rate_control_flags { 736 IEEE80211_TX_RC_USE_RTS_CTS = BIT(0), 737 IEEE80211_TX_RC_USE_CTS_PROTECT = BIT(1), 738 IEEE80211_TX_RC_USE_SHORT_PREAMBLE = BIT(2), 739 740 /* rate index is an HT/VHT MCS instead of an index */ 741 IEEE80211_TX_RC_MCS = BIT(3), 742 IEEE80211_TX_RC_GREEN_FIELD = BIT(4), 743 IEEE80211_TX_RC_40_MHZ_WIDTH = BIT(5), 744 IEEE80211_TX_RC_DUP_DATA = BIT(6), 745 IEEE80211_TX_RC_SHORT_GI = BIT(7), 746 IEEE80211_TX_RC_VHT_MCS = BIT(8), 747 IEEE80211_TX_RC_80_MHZ_WIDTH = BIT(9), 748 IEEE80211_TX_RC_160_MHZ_WIDTH = BIT(10), 749 }; 750 751 752 /* there are 40 bytes if you don't need the rateset to be kept */ 753 #define IEEE80211_TX_INFO_DRIVER_DATA_SIZE 40 754 755 /* if you do need the rateset, then you have less space */ 756 #define IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE 24 757 758 /* maximum number of rate stages */ 759 #define IEEE80211_TX_MAX_RATES 4 760 761 /* maximum number of rate table entries */ 762 #define IEEE80211_TX_RATE_TABLE_SIZE 4 763 764 /** 765 * struct ieee80211_tx_rate - rate selection/status 766 * 767 * @idx: rate index to attempt to send with 768 * @flags: rate control flags (&enum mac80211_rate_control_flags) 769 * @count: number of tries in this rate before going to the next rate 770 * 771 * A value of -1 for @idx indicates an invalid rate and, if used 772 * in an array of retry rates, that no more rates should be tried. 773 * 774 * When used for transmit status reporting, the driver should 775 * always report the rate along with the flags it used. 776 * 777 * &struct ieee80211_tx_info contains an array of these structs 778 * in the control information, and it will be filled by the rate 779 * control algorithm according to what should be sent. For example, 780 * if this array contains, in the format { <idx>, <count> } the 781 * information 782 * { 3, 2 }, { 2, 2 }, { 1, 4 }, { -1, 0 }, { -1, 0 } 783 * then this means that the frame should be transmitted 784 * up to twice at rate 3, up to twice at rate 2, and up to four 785 * times at rate 1 if it doesn't get acknowledged. Say it gets 786 * acknowledged by the peer after the fifth attempt, the status 787 * information should then contain 788 * { 3, 2 }, { 2, 2 }, { 1, 1 }, { -1, 0 } ... 789 * since it was transmitted twice at rate 3, twice at rate 2 790 * and once at rate 1 after which we received an acknowledgement. 791 */ 792 struct ieee80211_tx_rate { 793 s8 idx; 794 u16 count:5, 795 flags:11; 796 } __packed; 797 798 #define IEEE80211_MAX_TX_RETRY 31 799 800 static inline void ieee80211_rate_set_vht(struct ieee80211_tx_rate *rate, 801 u8 mcs, u8 nss) 802 { 803 WARN_ON(mcs & ~0xF); 804 WARN_ON((nss - 1) & ~0x7); 805 rate->idx = ((nss - 1) << 4) | mcs; 806 } 807 808 static inline u8 809 ieee80211_rate_get_vht_mcs(const struct ieee80211_tx_rate *rate) 810 { 811 return rate->idx & 0xF; 812 } 813 814 static inline u8 815 ieee80211_rate_get_vht_nss(const struct ieee80211_tx_rate *rate) 816 { 817 return (rate->idx >> 4) + 1; 818 } 819 820 /** 821 * struct ieee80211_tx_info - skb transmit information 822 * 823 * This structure is placed in skb->cb for three uses: 824 * (1) mac80211 TX control - mac80211 tells the driver what to do 825 * (2) driver internal use (if applicable) 826 * (3) TX status information - driver tells mac80211 what happened 827 * 828 * @flags: transmit info flags, defined above 829 * @band: the band to transmit on (use for checking for races) 830 * @hw_queue: HW queue to put the frame on, skb_get_queue_mapping() gives the AC 831 * @ack_frame_id: internal frame ID for TX status, used internally 832 * @control: union for control data 833 * @status: union for status data 834 * @driver_data: array of driver_data pointers 835 * @ampdu_ack_len: number of acked aggregated frames. 836 * relevant only if IEEE80211_TX_STAT_AMPDU was set. 837 * @ampdu_len: number of aggregated frames. 838 * relevant only if IEEE80211_TX_STAT_AMPDU was set. 839 * @ack_signal: signal strength of the ACK frame 840 */ 841 struct ieee80211_tx_info { 842 /* common information */ 843 u32 flags; 844 u8 band; 845 846 u8 hw_queue; 847 848 u16 ack_frame_id; 849 850 union { 851 struct { 852 union { 853 /* rate control */ 854 struct { 855 struct ieee80211_tx_rate rates[ 856 IEEE80211_TX_MAX_RATES]; 857 s8 rts_cts_rate_idx; 858 u8 use_rts:1; 859 u8 use_cts_prot:1; 860 u8 short_preamble:1; 861 u8 skip_table:1; 862 /* 2 bytes free */ 863 }; 864 /* only needed before rate control */ 865 unsigned long jiffies; 866 }; 867 /* NB: vif can be NULL for injected frames */ 868 struct ieee80211_vif *vif; 869 struct ieee80211_key_conf *hw_key; 870 u32 flags; 871 /* 4 bytes free */ 872 } control; 873 struct { 874 u64 cookie; 875 } ack; 876 struct { 877 struct ieee80211_tx_rate rates[IEEE80211_TX_MAX_RATES]; 878 s32 ack_signal; 879 u8 ampdu_ack_len; 880 u8 ampdu_len; 881 u8 antenna; 882 u16 tx_time; 883 void *status_driver_data[19 / sizeof(void *)]; 884 } status; 885 struct { 886 struct ieee80211_tx_rate driver_rates[ 887 IEEE80211_TX_MAX_RATES]; 888 u8 pad[4]; 889 890 void *rate_driver_data[ 891 IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE / sizeof(void *)]; 892 }; 893 void *driver_data[ 894 IEEE80211_TX_INFO_DRIVER_DATA_SIZE / sizeof(void *)]; 895 }; 896 }; 897 898 /** 899 * struct ieee80211_scan_ies - descriptors for different blocks of IEs 900 * 901 * This structure is used to point to different blocks of IEs in HW scan 902 * and scheduled scan. These blocks contain the IEs passed by userspace 903 * and the ones generated by mac80211. 904 * 905 * @ies: pointers to band specific IEs. 906 * @len: lengths of band_specific IEs. 907 * @common_ies: IEs for all bands (especially vendor specific ones) 908 * @common_ie_len: length of the common_ies 909 */ 910 struct ieee80211_scan_ies { 911 const u8 *ies[IEEE80211_NUM_BANDS]; 912 size_t len[IEEE80211_NUM_BANDS]; 913 const u8 *common_ies; 914 size_t common_ie_len; 915 }; 916 917 918 static inline struct ieee80211_tx_info *IEEE80211_SKB_CB(struct sk_buff *skb) 919 { 920 return (struct ieee80211_tx_info *)skb->cb; 921 } 922 923 static inline struct ieee80211_rx_status *IEEE80211_SKB_RXCB(struct sk_buff *skb) 924 { 925 return (struct ieee80211_rx_status *)skb->cb; 926 } 927 928 /** 929 * ieee80211_tx_info_clear_status - clear TX status 930 * 931 * @info: The &struct ieee80211_tx_info to be cleared. 932 * 933 * When the driver passes an skb back to mac80211, it must report 934 * a number of things in TX status. This function clears everything 935 * in the TX status but the rate control information (it does clear 936 * the count since you need to fill that in anyway). 937 * 938 * NOTE: You can only use this function if you do NOT use 939 * info->driver_data! Use info->rate_driver_data 940 * instead if you need only the less space that allows. 941 */ 942 static inline void 943 ieee80211_tx_info_clear_status(struct ieee80211_tx_info *info) 944 { 945 int i; 946 947 BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) != 948 offsetof(struct ieee80211_tx_info, control.rates)); 949 BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) != 950 offsetof(struct ieee80211_tx_info, driver_rates)); 951 BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) != 8); 952 /* clear the rate counts */ 953 for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) 954 info->status.rates[i].count = 0; 955 956 BUILD_BUG_ON( 957 offsetof(struct ieee80211_tx_info, status.ack_signal) != 20); 958 memset(&info->status.ampdu_ack_len, 0, 959 sizeof(struct ieee80211_tx_info) - 960 offsetof(struct ieee80211_tx_info, status.ampdu_ack_len)); 961 } 962 963 964 /** 965 * enum mac80211_rx_flags - receive flags 966 * 967 * These flags are used with the @flag member of &struct ieee80211_rx_status. 968 * @RX_FLAG_MMIC_ERROR: Michael MIC error was reported on this frame. 969 * Use together with %RX_FLAG_MMIC_STRIPPED. 970 * @RX_FLAG_DECRYPTED: This frame was decrypted in hardware. 971 * @RX_FLAG_MMIC_STRIPPED: the Michael MIC is stripped off this frame, 972 * verification has been done by the hardware. 973 * @RX_FLAG_IV_STRIPPED: The IV/ICV are stripped from this frame. 974 * If this flag is set, the stack cannot do any replay detection 975 * hence the driver or hardware will have to do that. 976 * @RX_FLAG_FAILED_FCS_CRC: Set this flag if the FCS check failed on 977 * the frame. 978 * @RX_FLAG_FAILED_PLCP_CRC: Set this flag if the PCLP check failed on 979 * the frame. 980 * @RX_FLAG_MACTIME_START: The timestamp passed in the RX status (@mactime 981 * field) is valid and contains the time the first symbol of the MPDU 982 * was received. This is useful in monitor mode and for proper IBSS 983 * merging. 984 * @RX_FLAG_MACTIME_END: The timestamp passed in the RX status (@mactime 985 * field) is valid and contains the time the last symbol of the MPDU 986 * (including FCS) was received. 987 * @RX_FLAG_SHORTPRE: Short preamble was used for this frame 988 * @RX_FLAG_HT: HT MCS was used and rate_idx is MCS index 989 * @RX_FLAG_VHT: VHT MCS was used and rate_index is MCS index 990 * @RX_FLAG_40MHZ: HT40 (40 MHz) was used 991 * @RX_FLAG_SHORT_GI: Short guard interval was used 992 * @RX_FLAG_NO_SIGNAL_VAL: The signal strength value is not present. 993 * Valid only for data frames (mainly A-MPDU) 994 * @RX_FLAG_HT_GF: This frame was received in a HT-greenfield transmission, if 995 * the driver fills this value it should add %IEEE80211_RADIOTAP_MCS_HAVE_FMT 996 * to hw.radiotap_mcs_details to advertise that fact 997 * @RX_FLAG_AMPDU_DETAILS: A-MPDU details are known, in particular the reference 998 * number (@ampdu_reference) must be populated and be a distinct number for 999 * each A-MPDU 1000 * @RX_FLAG_AMPDU_REPORT_ZEROLEN: driver reports 0-length subframes 1001 * @RX_FLAG_AMPDU_IS_ZEROLEN: This is a zero-length subframe, for 1002 * monitoring purposes only 1003 * @RX_FLAG_AMPDU_LAST_KNOWN: last subframe is known, should be set on all 1004 * subframes of a single A-MPDU 1005 * @RX_FLAG_AMPDU_IS_LAST: this subframe is the last subframe of the A-MPDU 1006 * @RX_FLAG_AMPDU_DELIM_CRC_ERROR: A delimiter CRC error has been detected 1007 * on this subframe 1008 * @RX_FLAG_AMPDU_DELIM_CRC_KNOWN: The delimiter CRC field is known (the CRC 1009 * is stored in the @ampdu_delimiter_crc field) 1010 * @RX_FLAG_LDPC: LDPC was used 1011 * @RX_FLAG_STBC_MASK: STBC 2 bit bitmask. 1 - Nss=1, 2 - Nss=2, 3 - Nss=3 1012 * @RX_FLAG_10MHZ: 10 MHz (half channel) was used 1013 * @RX_FLAG_5MHZ: 5 MHz (quarter channel) was used 1014 * @RX_FLAG_AMSDU_MORE: Some drivers may prefer to report separate A-MSDU 1015 * subframes instead of a one huge frame for performance reasons. 1016 * All, but the last MSDU from an A-MSDU should have this flag set. E.g. 1017 * if an A-MSDU has 3 frames, the first 2 must have the flag set, while 1018 * the 3rd (last) one must not have this flag set. The flag is used to 1019 * deal with retransmission/duplication recovery properly since A-MSDU 1020 * subframes share the same sequence number. Reported subframes can be 1021 * either regular MSDU or singly A-MSDUs. Subframes must not be 1022 * interleaved with other frames. 1023 * @RX_FLAG_RADIOTAP_VENDOR_DATA: This frame contains vendor-specific 1024 * radiotap data in the skb->data (before the frame) as described by 1025 * the &struct ieee80211_vendor_radiotap. 1026 */ 1027 enum mac80211_rx_flags { 1028 RX_FLAG_MMIC_ERROR = BIT(0), 1029 RX_FLAG_DECRYPTED = BIT(1), 1030 RX_FLAG_MMIC_STRIPPED = BIT(3), 1031 RX_FLAG_IV_STRIPPED = BIT(4), 1032 RX_FLAG_FAILED_FCS_CRC = BIT(5), 1033 RX_FLAG_FAILED_PLCP_CRC = BIT(6), 1034 RX_FLAG_MACTIME_START = BIT(7), 1035 RX_FLAG_SHORTPRE = BIT(8), 1036 RX_FLAG_HT = BIT(9), 1037 RX_FLAG_40MHZ = BIT(10), 1038 RX_FLAG_SHORT_GI = BIT(11), 1039 RX_FLAG_NO_SIGNAL_VAL = BIT(12), 1040 RX_FLAG_HT_GF = BIT(13), 1041 RX_FLAG_AMPDU_DETAILS = BIT(14), 1042 RX_FLAG_AMPDU_REPORT_ZEROLEN = BIT(15), 1043 RX_FLAG_AMPDU_IS_ZEROLEN = BIT(16), 1044 RX_FLAG_AMPDU_LAST_KNOWN = BIT(17), 1045 RX_FLAG_AMPDU_IS_LAST = BIT(18), 1046 RX_FLAG_AMPDU_DELIM_CRC_ERROR = BIT(19), 1047 RX_FLAG_AMPDU_DELIM_CRC_KNOWN = BIT(20), 1048 RX_FLAG_MACTIME_END = BIT(21), 1049 RX_FLAG_VHT = BIT(22), 1050 RX_FLAG_LDPC = BIT(23), 1051 RX_FLAG_STBC_MASK = BIT(26) | BIT(27), 1052 RX_FLAG_10MHZ = BIT(28), 1053 RX_FLAG_5MHZ = BIT(29), 1054 RX_FLAG_AMSDU_MORE = BIT(30), 1055 RX_FLAG_RADIOTAP_VENDOR_DATA = BIT(31), 1056 }; 1057 1058 #define RX_FLAG_STBC_SHIFT 26 1059 1060 /** 1061 * enum mac80211_rx_vht_flags - receive VHT flags 1062 * 1063 * These flags are used with the @vht_flag member of 1064 * &struct ieee80211_rx_status. 1065 * @RX_VHT_FLAG_80MHZ: 80 MHz was used 1066 * @RX_VHT_FLAG_160MHZ: 160 MHz was used 1067 * @RX_VHT_FLAG_BF: packet was beamformed 1068 */ 1069 enum mac80211_rx_vht_flags { 1070 RX_VHT_FLAG_80MHZ = BIT(0), 1071 RX_VHT_FLAG_160MHZ = BIT(1), 1072 RX_VHT_FLAG_BF = BIT(2), 1073 }; 1074 1075 /** 1076 * struct ieee80211_rx_status - receive status 1077 * 1078 * The low-level driver should provide this information (the subset 1079 * supported by hardware) to the 802.11 code with each received 1080 * frame, in the skb's control buffer (cb). 1081 * 1082 * @mactime: value in microseconds of the 64-bit Time Synchronization Function 1083 * (TSF) timer when the first data symbol (MPDU) arrived at the hardware. 1084 * @device_timestamp: arbitrary timestamp for the device, mac80211 doesn't use 1085 * it but can store it and pass it back to the driver for synchronisation 1086 * @band: the active band when this frame was received 1087 * @freq: frequency the radio was tuned to when receiving this frame, in MHz 1088 * @signal: signal strength when receiving this frame, either in dBm, in dB or 1089 * unspecified depending on the hardware capabilities flags 1090 * @IEEE80211_HW_SIGNAL_* 1091 * @chains: bitmask of receive chains for which separate signal strength 1092 * values were filled. 1093 * @chain_signal: per-chain signal strength, in dBm (unlike @signal, doesn't 1094 * support dB or unspecified units) 1095 * @antenna: antenna used 1096 * @rate_idx: index of data rate into band's supported rates or MCS index if 1097 * HT or VHT is used (%RX_FLAG_HT/%RX_FLAG_VHT) 1098 * @vht_nss: number of streams (VHT only) 1099 * @flag: %RX_FLAG_* 1100 * @vht_flag: %RX_VHT_FLAG_* 1101 * @rx_flags: internal RX flags for mac80211 1102 * @ampdu_reference: A-MPDU reference number, must be a different value for 1103 * each A-MPDU but the same for each subframe within one A-MPDU 1104 * @ampdu_delimiter_crc: A-MPDU delimiter CRC 1105 */ 1106 struct ieee80211_rx_status { 1107 u64 mactime; 1108 u32 device_timestamp; 1109 u32 ampdu_reference; 1110 u32 flag; 1111 u16 freq; 1112 u8 vht_flag; 1113 u8 rate_idx; 1114 u8 vht_nss; 1115 u8 rx_flags; 1116 u8 band; 1117 u8 antenna; 1118 s8 signal; 1119 u8 chains; 1120 s8 chain_signal[IEEE80211_MAX_CHAINS]; 1121 u8 ampdu_delimiter_crc; 1122 }; 1123 1124 /** 1125 * struct ieee80211_vendor_radiotap - vendor radiotap data information 1126 * @present: presence bitmap for this vendor namespace 1127 * (this could be extended in the future if any vendor needs more 1128 * bits, the radiotap spec does allow for that) 1129 * @align: radiotap vendor namespace alignment. This defines the needed 1130 * alignment for the @data field below, not for the vendor namespace 1131 * description itself (which has a fixed 2-byte alignment) 1132 * Must be a power of two, and be set to at least 1! 1133 * @oui: radiotap vendor namespace OUI 1134 * @subns: radiotap vendor sub namespace 1135 * @len: radiotap vendor sub namespace skip length, if alignment is done 1136 * then that's added to this, i.e. this is only the length of the 1137 * @data field. 1138 * @pad: number of bytes of padding after the @data, this exists so that 1139 * the skb data alignment can be preserved even if the data has odd 1140 * length 1141 * @data: the actual vendor namespace data 1142 * 1143 * This struct, including the vendor data, goes into the skb->data before 1144 * the 802.11 header. It's split up in mac80211 using the align/oui/subns 1145 * data. 1146 */ 1147 struct ieee80211_vendor_radiotap { 1148 u32 present; 1149 u8 align; 1150 u8 oui[3]; 1151 u8 subns; 1152 u8 pad; 1153 u16 len; 1154 u8 data[]; 1155 } __packed; 1156 1157 /** 1158 * enum ieee80211_conf_flags - configuration flags 1159 * 1160 * Flags to define PHY configuration options 1161 * 1162 * @IEEE80211_CONF_MONITOR: there's a monitor interface present -- use this 1163 * to determine for example whether to calculate timestamps for packets 1164 * or not, do not use instead of filter flags! 1165 * @IEEE80211_CONF_PS: Enable 802.11 power save mode (managed mode only). 1166 * This is the power save mode defined by IEEE 802.11-2007 section 11.2, 1167 * meaning that the hardware still wakes up for beacons, is able to 1168 * transmit frames and receive the possible acknowledgment frames. 1169 * Not to be confused with hardware specific wakeup/sleep states, 1170 * driver is responsible for that. See the section "Powersave support" 1171 * for more. 1172 * @IEEE80211_CONF_IDLE: The device is running, but idle; if the flag is set 1173 * the driver should be prepared to handle configuration requests but 1174 * may turn the device off as much as possible. Typically, this flag will 1175 * be set when an interface is set UP but not associated or scanning, but 1176 * it can also be unset in that case when monitor interfaces are active. 1177 * @IEEE80211_CONF_OFFCHANNEL: The device is currently not on its main 1178 * operating channel. 1179 */ 1180 enum ieee80211_conf_flags { 1181 IEEE80211_CONF_MONITOR = (1<<0), 1182 IEEE80211_CONF_PS = (1<<1), 1183 IEEE80211_CONF_IDLE = (1<<2), 1184 IEEE80211_CONF_OFFCHANNEL = (1<<3), 1185 }; 1186 1187 1188 /** 1189 * enum ieee80211_conf_changed - denotes which configuration changed 1190 * 1191 * @IEEE80211_CONF_CHANGE_LISTEN_INTERVAL: the listen interval changed 1192 * @IEEE80211_CONF_CHANGE_MONITOR: the monitor flag changed 1193 * @IEEE80211_CONF_CHANGE_PS: the PS flag or dynamic PS timeout changed 1194 * @IEEE80211_CONF_CHANGE_POWER: the TX power changed 1195 * @IEEE80211_CONF_CHANGE_CHANNEL: the channel/channel_type changed 1196 * @IEEE80211_CONF_CHANGE_RETRY_LIMITS: retry limits changed 1197 * @IEEE80211_CONF_CHANGE_IDLE: Idle flag changed 1198 * @IEEE80211_CONF_CHANGE_SMPS: Spatial multiplexing powersave mode changed 1199 * Note that this is only valid if channel contexts are not used, 1200 * otherwise each channel context has the number of chains listed. 1201 */ 1202 enum ieee80211_conf_changed { 1203 IEEE80211_CONF_CHANGE_SMPS = BIT(1), 1204 IEEE80211_CONF_CHANGE_LISTEN_INTERVAL = BIT(2), 1205 IEEE80211_CONF_CHANGE_MONITOR = BIT(3), 1206 IEEE80211_CONF_CHANGE_PS = BIT(4), 1207 IEEE80211_CONF_CHANGE_POWER = BIT(5), 1208 IEEE80211_CONF_CHANGE_CHANNEL = BIT(6), 1209 IEEE80211_CONF_CHANGE_RETRY_LIMITS = BIT(7), 1210 IEEE80211_CONF_CHANGE_IDLE = BIT(8), 1211 }; 1212 1213 /** 1214 * enum ieee80211_smps_mode - spatial multiplexing power save mode 1215 * 1216 * @IEEE80211_SMPS_AUTOMATIC: automatic 1217 * @IEEE80211_SMPS_OFF: off 1218 * @IEEE80211_SMPS_STATIC: static 1219 * @IEEE80211_SMPS_DYNAMIC: dynamic 1220 * @IEEE80211_SMPS_NUM_MODES: internal, don't use 1221 */ 1222 enum ieee80211_smps_mode { 1223 IEEE80211_SMPS_AUTOMATIC, 1224 IEEE80211_SMPS_OFF, 1225 IEEE80211_SMPS_STATIC, 1226 IEEE80211_SMPS_DYNAMIC, 1227 1228 /* keep last */ 1229 IEEE80211_SMPS_NUM_MODES, 1230 }; 1231 1232 /** 1233 * struct ieee80211_conf - configuration of the device 1234 * 1235 * This struct indicates how the driver shall configure the hardware. 1236 * 1237 * @flags: configuration flags defined above 1238 * 1239 * @listen_interval: listen interval in units of beacon interval 1240 * @max_sleep_period: the maximum number of beacon intervals to sleep for 1241 * before checking the beacon for a TIM bit (managed mode only); this 1242 * value will be only achievable between DTIM frames, the hardware 1243 * needs to check for the multicast traffic bit in DTIM beacons. 1244 * This variable is valid only when the CONF_PS flag is set. 1245 * @ps_dtim_period: The DTIM period of the AP we're connected to, for use 1246 * in power saving. Power saving will not be enabled until a beacon 1247 * has been received and the DTIM period is known. 1248 * @dynamic_ps_timeout: The dynamic powersave timeout (in ms), see the 1249 * powersave documentation below. This variable is valid only when 1250 * the CONF_PS flag is set. 1251 * 1252 * @power_level: requested transmit power (in dBm), backward compatibility 1253 * value only that is set to the minimum of all interfaces 1254 * 1255 * @chandef: the channel definition to tune to 1256 * @radar_enabled: whether radar detection is enabled 1257 * 1258 * @long_frame_max_tx_count: Maximum number of transmissions for a "long" frame 1259 * (a frame not RTS protected), called "dot11LongRetryLimit" in 802.11, 1260 * but actually means the number of transmissions not the number of retries 1261 * @short_frame_max_tx_count: Maximum number of transmissions for a "short" 1262 * frame, called "dot11ShortRetryLimit" in 802.11, but actually means the 1263 * number of transmissions not the number of retries 1264 * 1265 * @smps_mode: spatial multiplexing powersave mode; note that 1266 * %IEEE80211_SMPS_STATIC is used when the device is not 1267 * configured for an HT channel. 1268 * Note that this is only valid if channel contexts are not used, 1269 * otherwise each channel context has the number of chains listed. 1270 */ 1271 struct ieee80211_conf { 1272 u32 flags; 1273 int power_level, dynamic_ps_timeout; 1274 int max_sleep_period; 1275 1276 u16 listen_interval; 1277 u8 ps_dtim_period; 1278 1279 u8 long_frame_max_tx_count, short_frame_max_tx_count; 1280 1281 struct cfg80211_chan_def chandef; 1282 bool radar_enabled; 1283 enum ieee80211_smps_mode smps_mode; 1284 }; 1285 1286 /** 1287 * struct ieee80211_channel_switch - holds the channel switch data 1288 * 1289 * The information provided in this structure is required for channel switch 1290 * operation. 1291 * 1292 * @timestamp: value in microseconds of the 64-bit Time Synchronization 1293 * Function (TSF) timer when the frame containing the channel switch 1294 * announcement was received. This is simply the rx.mactime parameter 1295 * the driver passed into mac80211. 1296 * @device_timestamp: arbitrary timestamp for the device, this is the 1297 * rx.device_timestamp parameter the driver passed to mac80211. 1298 * @block_tx: Indicates whether transmission must be blocked before the 1299 * scheduled channel switch, as indicated by the AP. 1300 * @chandef: the new channel to switch to 1301 * @count: the number of TBTT's until the channel switch event 1302 */ 1303 struct ieee80211_channel_switch { 1304 u64 timestamp; 1305 u32 device_timestamp; 1306 bool block_tx; 1307 struct cfg80211_chan_def chandef; 1308 u8 count; 1309 }; 1310 1311 /** 1312 * enum ieee80211_vif_flags - virtual interface flags 1313 * 1314 * @IEEE80211_VIF_BEACON_FILTER: the device performs beacon filtering 1315 * on this virtual interface to avoid unnecessary CPU wakeups 1316 * @IEEE80211_VIF_SUPPORTS_CQM_RSSI: the device can do connection quality 1317 * monitoring on this virtual interface -- i.e. it can monitor 1318 * connection quality related parameters, such as the RSSI level and 1319 * provide notifications if configured trigger levels are reached. 1320 * @IEEE80211_VIF_SUPPORTS_UAPSD: The device can do U-APSD for this 1321 * interface. This flag should be set during interface addition, 1322 * but may be set/cleared as late as authentication to an AP. It is 1323 * only valid for managed/station mode interfaces. 1324 */ 1325 enum ieee80211_vif_flags { 1326 IEEE80211_VIF_BEACON_FILTER = BIT(0), 1327 IEEE80211_VIF_SUPPORTS_CQM_RSSI = BIT(1), 1328 IEEE80211_VIF_SUPPORTS_UAPSD = BIT(2), 1329 }; 1330 1331 /** 1332 * struct ieee80211_vif - per-interface data 1333 * 1334 * Data in this structure is continually present for driver 1335 * use during the life of a virtual interface. 1336 * 1337 * @type: type of this virtual interface 1338 * @bss_conf: BSS configuration for this interface, either our own 1339 * or the BSS we're associated to 1340 * @addr: address of this interface 1341 * @p2p: indicates whether this AP or STA interface is a p2p 1342 * interface, i.e. a GO or p2p-sta respectively 1343 * @csa_active: marks whether a channel switch is going on. Internally it is 1344 * write-protected by sdata_lock and local->mtx so holding either is fine 1345 * for read access. 1346 * @driver_flags: flags/capabilities the driver has for this interface, 1347 * these need to be set (or cleared) when the interface is added 1348 * or, if supported by the driver, the interface type is changed 1349 * at runtime, mac80211 will never touch this field 1350 * @hw_queue: hardware queue for each AC 1351 * @cab_queue: content-after-beacon (DTIM beacon really) queue, AP mode only 1352 * @chanctx_conf: The channel context this interface is assigned to, or %NULL 1353 * when it is not assigned. This pointer is RCU-protected due to the TX 1354 * path needing to access it; even though the netdev carrier will always 1355 * be off when it is %NULL there can still be races and packets could be 1356 * processed after it switches back to %NULL. 1357 * @debugfs_dir: debugfs dentry, can be used by drivers to create own per 1358 * interface debug files. Note that it will be NULL for the virtual 1359 * monitor interface (if that is requested.) 1360 * @drv_priv: data area for driver use, will always be aligned to 1361 * sizeof(void *). 1362 * @txq: the multicast data TX queue (if driver uses the TXQ abstraction) 1363 */ 1364 struct ieee80211_vif { 1365 enum nl80211_iftype type; 1366 struct ieee80211_bss_conf bss_conf; 1367 u8 addr[ETH_ALEN]; 1368 bool p2p; 1369 bool csa_active; 1370 1371 u8 cab_queue; 1372 u8 hw_queue[IEEE80211_NUM_ACS]; 1373 1374 struct ieee80211_txq *txq; 1375 1376 struct ieee80211_chanctx_conf __rcu *chanctx_conf; 1377 1378 u32 driver_flags; 1379 1380 #ifdef CONFIG_MAC80211_DEBUGFS 1381 struct dentry *debugfs_dir; 1382 #endif 1383 1384 /* must be last */ 1385 u8 drv_priv[0] __aligned(sizeof(void *)); 1386 }; 1387 1388 static inline bool ieee80211_vif_is_mesh(struct ieee80211_vif *vif) 1389 { 1390 #ifdef CONFIG_MAC80211_MESH 1391 return vif->type == NL80211_IFTYPE_MESH_POINT; 1392 #endif 1393 return false; 1394 } 1395 1396 /** 1397 * wdev_to_ieee80211_vif - return a vif struct from a wdev 1398 * @wdev: the wdev to get the vif for 1399 * 1400 * This can be used by mac80211 drivers with direct cfg80211 APIs 1401 * (like the vendor commands) that get a wdev. 1402 * 1403 * Note that this function may return %NULL if the given wdev isn't 1404 * associated with a vif that the driver knows about (e.g. monitor 1405 * or AP_VLAN interfaces.) 1406 */ 1407 struct ieee80211_vif *wdev_to_ieee80211_vif(struct wireless_dev *wdev); 1408 1409 /** 1410 * ieee80211_vif_to_wdev - return a wdev struct from a vif 1411 * @vif: the vif to get the wdev for 1412 * 1413 * This can be used by mac80211 drivers with direct cfg80211 APIs 1414 * (like the vendor commands) that needs to get the wdev for a vif. 1415 * 1416 * Note that this function may return %NULL if the given wdev isn't 1417 * associated with a vif that the driver knows about (e.g. monitor 1418 * or AP_VLAN interfaces.) 1419 */ 1420 struct wireless_dev *ieee80211_vif_to_wdev(struct ieee80211_vif *vif); 1421 1422 /** 1423 * enum ieee80211_key_flags - key flags 1424 * 1425 * These flags are used for communication about keys between the driver 1426 * and mac80211, with the @flags parameter of &struct ieee80211_key_conf. 1427 * 1428 * @IEEE80211_KEY_FLAG_GENERATE_IV: This flag should be set by the 1429 * driver to indicate that it requires IV generation for this 1430 * particular key. Setting this flag does not necessarily mean that SKBs 1431 * will have sufficient tailroom for ICV or MIC. 1432 * @IEEE80211_KEY_FLAG_GENERATE_MMIC: This flag should be set by 1433 * the driver for a TKIP key if it requires Michael MIC 1434 * generation in software. 1435 * @IEEE80211_KEY_FLAG_PAIRWISE: Set by mac80211, this flag indicates 1436 * that the key is pairwise rather then a shared key. 1437 * @IEEE80211_KEY_FLAG_SW_MGMT_TX: This flag should be set by the driver for a 1438 * CCMP/GCMP key if it requires CCMP/GCMP encryption of management frames 1439 * (MFP) to be done in software. 1440 * @IEEE80211_KEY_FLAG_PUT_IV_SPACE: This flag should be set by the driver 1441 * if space should be prepared for the IV, but the IV 1442 * itself should not be generated. Do not set together with 1443 * @IEEE80211_KEY_FLAG_GENERATE_IV on the same key. Setting this flag does 1444 * not necessarily mean that SKBs will have sufficient tailroom for ICV or 1445 * MIC. 1446 * @IEEE80211_KEY_FLAG_RX_MGMT: This key will be used to decrypt received 1447 * management frames. The flag can help drivers that have a hardware 1448 * crypto implementation that doesn't deal with management frames 1449 * properly by allowing them to not upload the keys to hardware and 1450 * fall back to software crypto. Note that this flag deals only with 1451 * RX, if your crypto engine can't deal with TX you can also set the 1452 * %IEEE80211_KEY_FLAG_SW_MGMT_TX flag to encrypt such frames in SW. 1453 * @IEEE80211_KEY_FLAG_GENERATE_IV_MGMT: This flag should be set by the 1454 * driver for a CCMP/GCMP key to indicate that is requires IV generation 1455 * only for managment frames (MFP). 1456 * @IEEE80211_KEY_FLAG_RESERVE_TAILROOM: This flag should be set by the 1457 * driver for a key to indicate that sufficient tailroom must always 1458 * be reserved for ICV or MIC, even when HW encryption is enabled. 1459 */ 1460 enum ieee80211_key_flags { 1461 IEEE80211_KEY_FLAG_GENERATE_IV_MGMT = BIT(0), 1462 IEEE80211_KEY_FLAG_GENERATE_IV = BIT(1), 1463 IEEE80211_KEY_FLAG_GENERATE_MMIC = BIT(2), 1464 IEEE80211_KEY_FLAG_PAIRWISE = BIT(3), 1465 IEEE80211_KEY_FLAG_SW_MGMT_TX = BIT(4), 1466 IEEE80211_KEY_FLAG_PUT_IV_SPACE = BIT(5), 1467 IEEE80211_KEY_FLAG_RX_MGMT = BIT(6), 1468 IEEE80211_KEY_FLAG_RESERVE_TAILROOM = BIT(7), 1469 }; 1470 1471 /** 1472 * struct ieee80211_key_conf - key information 1473 * 1474 * This key information is given by mac80211 to the driver by 1475 * the set_key() callback in &struct ieee80211_ops. 1476 * 1477 * @hw_key_idx: To be set by the driver, this is the key index the driver 1478 * wants to be given when a frame is transmitted and needs to be 1479 * encrypted in hardware. 1480 * @cipher: The key's cipher suite selector. 1481 * @tx_pn: PN used for TX on non-TKIP keys, may be used by the driver 1482 * as well if it needs to do software PN assignment by itself 1483 * (e.g. due to TSO) 1484 * @flags: key flags, see &enum ieee80211_key_flags. 1485 * @keyidx: the key index (0-3) 1486 * @keylen: key material length 1487 * @key: key material. For ALG_TKIP the key is encoded as a 256-bit (32 byte) 1488 * data block: 1489 * - Temporal Encryption Key (128 bits) 1490 * - Temporal Authenticator Tx MIC Key (64 bits) 1491 * - Temporal Authenticator Rx MIC Key (64 bits) 1492 * @icv_len: The ICV length for this key type 1493 * @iv_len: The IV length for this key type 1494 */ 1495 struct ieee80211_key_conf { 1496 atomic64_t tx_pn; 1497 u32 cipher; 1498 u8 icv_len; 1499 u8 iv_len; 1500 u8 hw_key_idx; 1501 u8 flags; 1502 s8 keyidx; 1503 u8 keylen; 1504 u8 key[0]; 1505 }; 1506 1507 #define IEEE80211_MAX_PN_LEN 16 1508 1509 /** 1510 * struct ieee80211_key_seq - key sequence counter 1511 * 1512 * @tkip: TKIP data, containing IV32 and IV16 in host byte order 1513 * @ccmp: PN data, most significant byte first (big endian, 1514 * reverse order than in packet) 1515 * @aes_cmac: PN data, most significant byte first (big endian, 1516 * reverse order than in packet) 1517 * @aes_gmac: PN data, most significant byte first (big endian, 1518 * reverse order than in packet) 1519 * @gcmp: PN data, most significant byte first (big endian, 1520 * reverse order than in packet) 1521 * @hw: data for HW-only (e.g. cipher scheme) keys 1522 */ 1523 struct ieee80211_key_seq { 1524 union { 1525 struct { 1526 u32 iv32; 1527 u16 iv16; 1528 } tkip; 1529 struct { 1530 u8 pn[6]; 1531 } ccmp; 1532 struct { 1533 u8 pn[6]; 1534 } aes_cmac; 1535 struct { 1536 u8 pn[6]; 1537 } aes_gmac; 1538 struct { 1539 u8 pn[6]; 1540 } gcmp; 1541 struct { 1542 u8 seq[IEEE80211_MAX_PN_LEN]; 1543 u8 seq_len; 1544 } hw; 1545 }; 1546 }; 1547 1548 /** 1549 * struct ieee80211_cipher_scheme - cipher scheme 1550 * 1551 * This structure contains a cipher scheme information defining 1552 * the secure packet crypto handling. 1553 * 1554 * @cipher: a cipher suite selector 1555 * @iftype: a cipher iftype bit mask indicating an allowed cipher usage 1556 * @hdr_len: a length of a security header used the cipher 1557 * @pn_len: a length of a packet number in the security header 1558 * @pn_off: an offset of pn from the beginning of the security header 1559 * @key_idx_off: an offset of key index byte in the security header 1560 * @key_idx_mask: a bit mask of key_idx bits 1561 * @key_idx_shift: a bit shift needed to get key_idx 1562 * key_idx value calculation: 1563 * (sec_header_base[key_idx_off] & key_idx_mask) >> key_idx_shift 1564 * @mic_len: a mic length in bytes 1565 */ 1566 struct ieee80211_cipher_scheme { 1567 u32 cipher; 1568 u16 iftype; 1569 u8 hdr_len; 1570 u8 pn_len; 1571 u8 pn_off; 1572 u8 key_idx_off; 1573 u8 key_idx_mask; 1574 u8 key_idx_shift; 1575 u8 mic_len; 1576 }; 1577 1578 /** 1579 * enum set_key_cmd - key command 1580 * 1581 * Used with the set_key() callback in &struct ieee80211_ops, this 1582 * indicates whether a key is being removed or added. 1583 * 1584 * @SET_KEY: a key is set 1585 * @DISABLE_KEY: a key must be disabled 1586 */ 1587 enum set_key_cmd { 1588 SET_KEY, DISABLE_KEY, 1589 }; 1590 1591 /** 1592 * enum ieee80211_sta_state - station state 1593 * 1594 * @IEEE80211_STA_NOTEXIST: station doesn't exist at all, 1595 * this is a special state for add/remove transitions 1596 * @IEEE80211_STA_NONE: station exists without special state 1597 * @IEEE80211_STA_AUTH: station is authenticated 1598 * @IEEE80211_STA_ASSOC: station is associated 1599 * @IEEE80211_STA_AUTHORIZED: station is authorized (802.1X) 1600 */ 1601 enum ieee80211_sta_state { 1602 /* NOTE: These need to be ordered correctly! */ 1603 IEEE80211_STA_NOTEXIST, 1604 IEEE80211_STA_NONE, 1605 IEEE80211_STA_AUTH, 1606 IEEE80211_STA_ASSOC, 1607 IEEE80211_STA_AUTHORIZED, 1608 }; 1609 1610 /** 1611 * enum ieee80211_sta_rx_bandwidth - station RX bandwidth 1612 * @IEEE80211_STA_RX_BW_20: station can only receive 20 MHz 1613 * @IEEE80211_STA_RX_BW_40: station can receive up to 40 MHz 1614 * @IEEE80211_STA_RX_BW_80: station can receive up to 80 MHz 1615 * @IEEE80211_STA_RX_BW_160: station can receive up to 160 MHz 1616 * (including 80+80 MHz) 1617 * 1618 * Implementation note: 20 must be zero to be initialized 1619 * correctly, the values must be sorted. 1620 */ 1621 enum ieee80211_sta_rx_bandwidth { 1622 IEEE80211_STA_RX_BW_20 = 0, 1623 IEEE80211_STA_RX_BW_40, 1624 IEEE80211_STA_RX_BW_80, 1625 IEEE80211_STA_RX_BW_160, 1626 }; 1627 1628 /** 1629 * struct ieee80211_sta_rates - station rate selection table 1630 * 1631 * @rcu_head: RCU head used for freeing the table on update 1632 * @rate: transmit rates/flags to be used by default. 1633 * Overriding entries per-packet is possible by using cb tx control. 1634 */ 1635 struct ieee80211_sta_rates { 1636 struct rcu_head rcu_head; 1637 struct { 1638 s8 idx; 1639 u8 count; 1640 u8 count_cts; 1641 u8 count_rts; 1642 u16 flags; 1643 } rate[IEEE80211_TX_RATE_TABLE_SIZE]; 1644 }; 1645 1646 /** 1647 * struct ieee80211_sta - station table entry 1648 * 1649 * A station table entry represents a station we are possibly 1650 * communicating with. Since stations are RCU-managed in 1651 * mac80211, any ieee80211_sta pointer you get access to must 1652 * either be protected by rcu_read_lock() explicitly or implicitly, 1653 * or you must take good care to not use such a pointer after a 1654 * call to your sta_remove callback that removed it. 1655 * 1656 * @addr: MAC address 1657 * @aid: AID we assigned to the station if we're an AP 1658 * @supp_rates: Bitmap of supported rates (per band) 1659 * @ht_cap: HT capabilities of this STA; restricted to our own capabilities 1660 * @vht_cap: VHT capabilities of this STA; restricted to our own capabilities 1661 * @wme: indicates whether the STA supports QoS/WME (if local devices does, 1662 * otherwise always false) 1663 * @drv_priv: data area for driver use, will always be aligned to 1664 * sizeof(void *), size is determined in hw information. 1665 * @uapsd_queues: bitmap of queues configured for uapsd. Only valid 1666 * if wme is supported. 1667 * @max_sp: max Service Period. Only valid if wme is supported. 1668 * @bandwidth: current bandwidth the station can receive with 1669 * @rx_nss: in HT/VHT, the maximum number of spatial streams the 1670 * station can receive at the moment, changed by operating mode 1671 * notifications and capabilities. The value is only valid after 1672 * the station moves to associated state. 1673 * @smps_mode: current SMPS mode (off, static or dynamic) 1674 * @rates: rate control selection table 1675 * @tdls: indicates whether the STA is a TDLS peer 1676 * @tdls_initiator: indicates the STA is an initiator of the TDLS link. Only 1677 * valid if the STA is a TDLS peer in the first place. 1678 * @mfp: indicates whether the STA uses management frame protection or not. 1679 * @txq: per-TID data TX queues (if driver uses the TXQ abstraction) 1680 */ 1681 struct ieee80211_sta { 1682 u32 supp_rates[IEEE80211_NUM_BANDS]; 1683 u8 addr[ETH_ALEN]; 1684 u16 aid; 1685 struct ieee80211_sta_ht_cap ht_cap; 1686 struct ieee80211_sta_vht_cap vht_cap; 1687 bool wme; 1688 u8 uapsd_queues; 1689 u8 max_sp; 1690 u8 rx_nss; 1691 enum ieee80211_sta_rx_bandwidth bandwidth; 1692 enum ieee80211_smps_mode smps_mode; 1693 struct ieee80211_sta_rates __rcu *rates; 1694 bool tdls; 1695 bool tdls_initiator; 1696 bool mfp; 1697 1698 struct ieee80211_txq *txq[IEEE80211_NUM_TIDS]; 1699 1700 /* must be last */ 1701 u8 drv_priv[0] __aligned(sizeof(void *)); 1702 }; 1703 1704 /** 1705 * enum sta_notify_cmd - sta notify command 1706 * 1707 * Used with the sta_notify() callback in &struct ieee80211_ops, this 1708 * indicates if an associated station made a power state transition. 1709 * 1710 * @STA_NOTIFY_SLEEP: a station is now sleeping 1711 * @STA_NOTIFY_AWAKE: a sleeping station woke up 1712 */ 1713 enum sta_notify_cmd { 1714 STA_NOTIFY_SLEEP, STA_NOTIFY_AWAKE, 1715 }; 1716 1717 /** 1718 * struct ieee80211_tx_control - TX control data 1719 * 1720 * @sta: station table entry, this sta pointer may be NULL and 1721 * it is not allowed to copy the pointer, due to RCU. 1722 */ 1723 struct ieee80211_tx_control { 1724 struct ieee80211_sta *sta; 1725 }; 1726 1727 /** 1728 * struct ieee80211_txq - Software intermediate tx queue 1729 * 1730 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 1731 * @sta: station table entry, %NULL for per-vif queue 1732 * @tid: the TID for this queue (unused for per-vif queue) 1733 * @ac: the AC for this queue 1734 * @drv_priv: driver private area, sized by hw->txq_data_size 1735 * 1736 * The driver can obtain packets from this queue by calling 1737 * ieee80211_tx_dequeue(). 1738 */ 1739 struct ieee80211_txq { 1740 struct ieee80211_vif *vif; 1741 struct ieee80211_sta *sta; 1742 u8 tid; 1743 u8 ac; 1744 1745 /* must be last */ 1746 u8 drv_priv[0] __aligned(sizeof(void *)); 1747 }; 1748 1749 /** 1750 * enum ieee80211_hw_flags - hardware flags 1751 * 1752 * These flags are used to indicate hardware capabilities to 1753 * the stack. Generally, flags here should have their meaning 1754 * done in a way that the simplest hardware doesn't need setting 1755 * any particular flags. There are some exceptions to this rule, 1756 * however, so you are advised to review these flags carefully. 1757 * 1758 * @IEEE80211_HW_HAS_RATE_CONTROL: 1759 * The hardware or firmware includes rate control, and cannot be 1760 * controlled by the stack. As such, no rate control algorithm 1761 * should be instantiated, and the TX rate reported to userspace 1762 * will be taken from the TX status instead of the rate control 1763 * algorithm. 1764 * Note that this requires that the driver implement a number of 1765 * callbacks so it has the correct information, it needs to have 1766 * the @set_rts_threshold callback and must look at the BSS config 1767 * @use_cts_prot for G/N protection, @use_short_slot for slot 1768 * timing in 2.4 GHz and @use_short_preamble for preambles for 1769 * CCK frames. 1770 * 1771 * @IEEE80211_HW_RX_INCLUDES_FCS: 1772 * Indicates that received frames passed to the stack include 1773 * the FCS at the end. 1774 * 1775 * @IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING: 1776 * Some wireless LAN chipsets buffer broadcast/multicast frames 1777 * for power saving stations in the hardware/firmware and others 1778 * rely on the host system for such buffering. This option is used 1779 * to configure the IEEE 802.11 upper layer to buffer broadcast and 1780 * multicast frames when there are power saving stations so that 1781 * the driver can fetch them with ieee80211_get_buffered_bc(). 1782 * 1783 * @IEEE80211_HW_SIGNAL_UNSPEC: 1784 * Hardware can provide signal values but we don't know its units. We 1785 * expect values between 0 and @max_signal. 1786 * If possible please provide dB or dBm instead. 1787 * 1788 * @IEEE80211_HW_SIGNAL_DBM: 1789 * Hardware gives signal values in dBm, decibel difference from 1790 * one milliwatt. This is the preferred method since it is standardized 1791 * between different devices. @max_signal does not need to be set. 1792 * 1793 * @IEEE80211_HW_SPECTRUM_MGMT: 1794 * Hardware supports spectrum management defined in 802.11h 1795 * Measurement, Channel Switch, Quieting, TPC 1796 * 1797 * @IEEE80211_HW_AMPDU_AGGREGATION: 1798 * Hardware supports 11n A-MPDU aggregation. 1799 * 1800 * @IEEE80211_HW_SUPPORTS_PS: 1801 * Hardware has power save support (i.e. can go to sleep). 1802 * 1803 * @IEEE80211_HW_PS_NULLFUNC_STACK: 1804 * Hardware requires nullfunc frame handling in stack, implies 1805 * stack support for dynamic PS. 1806 * 1807 * @IEEE80211_HW_SUPPORTS_DYNAMIC_PS: 1808 * Hardware has support for dynamic PS. 1809 * 1810 * @IEEE80211_HW_MFP_CAPABLE: 1811 * Hardware supports management frame protection (MFP, IEEE 802.11w). 1812 * 1813 * @IEEE80211_HW_REPORTS_TX_ACK_STATUS: 1814 * Hardware can provide ack status reports of Tx frames to 1815 * the stack. 1816 * 1817 * @IEEE80211_HW_CONNECTION_MONITOR: 1818 * The hardware performs its own connection monitoring, including 1819 * periodic keep-alives to the AP and probing the AP on beacon loss. 1820 * 1821 * @IEEE80211_HW_NEED_DTIM_BEFORE_ASSOC: 1822 * This device needs to get data from beacon before association (i.e. 1823 * dtim_period). 1824 * 1825 * @IEEE80211_HW_SUPPORTS_PER_STA_GTK: The device's crypto engine supports 1826 * per-station GTKs as used by IBSS RSN or during fast transition. If 1827 * the device doesn't support per-station GTKs, but can be asked not 1828 * to decrypt group addressed frames, then IBSS RSN support is still 1829 * possible but software crypto will be used. Advertise the wiphy flag 1830 * only in that case. 1831 * 1832 * @IEEE80211_HW_AP_LINK_PS: When operating in AP mode the device 1833 * autonomously manages the PS status of connected stations. When 1834 * this flag is set mac80211 will not trigger PS mode for connected 1835 * stations based on the PM bit of incoming frames. 1836 * Use ieee80211_start_ps()/ieee8021_end_ps() to manually configure 1837 * the PS mode of connected stations. 1838 * 1839 * @IEEE80211_HW_TX_AMPDU_SETUP_IN_HW: The device handles TX A-MPDU session 1840 * setup strictly in HW. mac80211 should not attempt to do this in 1841 * software. 1842 * 1843 * @IEEE80211_HW_WANT_MONITOR_VIF: The driver would like to be informed of 1844 * a virtual monitor interface when monitor interfaces are the only 1845 * active interfaces. 1846 * 1847 * @IEEE80211_HW_NO_AUTO_VIF: The driver would like for no wlanX to 1848 * be created. It is expected user-space will create vifs as 1849 * desired (and thus have them named as desired). 1850 * 1851 * @IEEE80211_HW_SW_CRYPTO_CONTROL: The driver wants to control which of the 1852 * crypto algorithms can be done in software - so don't automatically 1853 * try to fall back to it if hardware crypto fails, but do so only if 1854 * the driver returns 1. This also forces the driver to advertise its 1855 * supported cipher suites. 1856 * 1857 * @IEEE80211_HW_SUPPORT_FAST_XMIT: The driver/hardware supports fast-xmit, 1858 * this currently requires only the ability to calculate the duration 1859 * for frames. 1860 * 1861 * @IEEE80211_HW_QUEUE_CONTROL: The driver wants to control per-interface 1862 * queue mapping in order to use different queues (not just one per AC) 1863 * for different virtual interfaces. See the doc section on HW queue 1864 * control for more details. 1865 * 1866 * @IEEE80211_HW_SUPPORTS_RC_TABLE: The driver supports using a rate 1867 * selection table provided by the rate control algorithm. 1868 * 1869 * @IEEE80211_HW_P2P_DEV_ADDR_FOR_INTF: Use the P2P Device address for any 1870 * P2P Interface. This will be honoured even if more than one interface 1871 * is supported. 1872 * 1873 * @IEEE80211_HW_TIMING_BEACON_ONLY: Use sync timing from beacon frames 1874 * only, to allow getting TBTT of a DTIM beacon. 1875 * 1876 * @IEEE80211_HW_SUPPORTS_HT_CCK_RATES: Hardware supports mixing HT/CCK rates 1877 * and can cope with CCK rates in an aggregation session (e.g. by not 1878 * using aggregation for such frames.) 1879 * 1880 * @IEEE80211_HW_CHANCTX_STA_CSA: Support 802.11h based channel-switch (CSA) 1881 * for a single active channel while using channel contexts. When support 1882 * is not enabled the default action is to disconnect when getting the 1883 * CSA frame. 1884 * 1885 * @IEEE80211_HW_SUPPORTS_CLONED_SKBS: The driver will never modify the payload 1886 * or tailroom of TX skbs without copying them first. 1887 * 1888 * @IEEE80211_HW_SINGLE_SCAN_ON_ALL_BANDS: The HW supports scanning on all bands 1889 * in one command, mac80211 doesn't have to run separate scans per band. 1890 * 1891 * @NUM_IEEE80211_HW_FLAGS: number of hardware flags, used for sizing arrays 1892 */ 1893 enum ieee80211_hw_flags { 1894 IEEE80211_HW_HAS_RATE_CONTROL, 1895 IEEE80211_HW_RX_INCLUDES_FCS, 1896 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING, 1897 IEEE80211_HW_SIGNAL_UNSPEC, 1898 IEEE80211_HW_SIGNAL_DBM, 1899 IEEE80211_HW_NEED_DTIM_BEFORE_ASSOC, 1900 IEEE80211_HW_SPECTRUM_MGMT, 1901 IEEE80211_HW_AMPDU_AGGREGATION, 1902 IEEE80211_HW_SUPPORTS_PS, 1903 IEEE80211_HW_PS_NULLFUNC_STACK, 1904 IEEE80211_HW_SUPPORTS_DYNAMIC_PS, 1905 IEEE80211_HW_MFP_CAPABLE, 1906 IEEE80211_HW_WANT_MONITOR_VIF, 1907 IEEE80211_HW_NO_AUTO_VIF, 1908 IEEE80211_HW_SW_CRYPTO_CONTROL, 1909 IEEE80211_HW_SUPPORT_FAST_XMIT, 1910 IEEE80211_HW_REPORTS_TX_ACK_STATUS, 1911 IEEE80211_HW_CONNECTION_MONITOR, 1912 IEEE80211_HW_QUEUE_CONTROL, 1913 IEEE80211_HW_SUPPORTS_PER_STA_GTK, 1914 IEEE80211_HW_AP_LINK_PS, 1915 IEEE80211_HW_TX_AMPDU_SETUP_IN_HW, 1916 IEEE80211_HW_SUPPORTS_RC_TABLE, 1917 IEEE80211_HW_P2P_DEV_ADDR_FOR_INTF, 1918 IEEE80211_HW_TIMING_BEACON_ONLY, 1919 IEEE80211_HW_SUPPORTS_HT_CCK_RATES, 1920 IEEE80211_HW_CHANCTX_STA_CSA, 1921 IEEE80211_HW_SUPPORTS_CLONED_SKBS, 1922 IEEE80211_HW_SINGLE_SCAN_ON_ALL_BANDS, 1923 1924 /* keep last, obviously */ 1925 NUM_IEEE80211_HW_FLAGS 1926 }; 1927 1928 /** 1929 * struct ieee80211_hw - hardware information and state 1930 * 1931 * This structure contains the configuration and hardware 1932 * information for an 802.11 PHY. 1933 * 1934 * @wiphy: This points to the &struct wiphy allocated for this 1935 * 802.11 PHY. You must fill in the @perm_addr and @dev 1936 * members of this structure using SET_IEEE80211_DEV() 1937 * and SET_IEEE80211_PERM_ADDR(). Additionally, all supported 1938 * bands (with channels, bitrates) are registered here. 1939 * 1940 * @conf: &struct ieee80211_conf, device configuration, don't use. 1941 * 1942 * @priv: pointer to private area that was allocated for driver use 1943 * along with this structure. 1944 * 1945 * @flags: hardware flags, see &enum ieee80211_hw_flags. 1946 * 1947 * @extra_tx_headroom: headroom to reserve in each transmit skb 1948 * for use by the driver (e.g. for transmit headers.) 1949 * 1950 * @extra_beacon_tailroom: tailroom to reserve in each beacon tx skb. 1951 * Can be used by drivers to add extra IEs. 1952 * 1953 * @max_signal: Maximum value for signal (rssi) in RX information, used 1954 * only when @IEEE80211_HW_SIGNAL_UNSPEC or @IEEE80211_HW_SIGNAL_DB 1955 * 1956 * @max_listen_interval: max listen interval in units of beacon interval 1957 * that HW supports 1958 * 1959 * @queues: number of available hardware transmit queues for 1960 * data packets. WMM/QoS requires at least four, these 1961 * queues need to have configurable access parameters. 1962 * 1963 * @rate_control_algorithm: rate control algorithm for this hardware. 1964 * If unset (NULL), the default algorithm will be used. Must be 1965 * set before calling ieee80211_register_hw(). 1966 * 1967 * @vif_data_size: size (in bytes) of the drv_priv data area 1968 * within &struct ieee80211_vif. 1969 * @sta_data_size: size (in bytes) of the drv_priv data area 1970 * within &struct ieee80211_sta. 1971 * @chanctx_data_size: size (in bytes) of the drv_priv data area 1972 * within &struct ieee80211_chanctx_conf. 1973 * @txq_data_size: size (in bytes) of the drv_priv data area 1974 * within @struct ieee80211_txq. 1975 * 1976 * @max_rates: maximum number of alternate rate retry stages the hw 1977 * can handle. 1978 * @max_report_rates: maximum number of alternate rate retry stages 1979 * the hw can report back. 1980 * @max_rate_tries: maximum number of tries for each stage 1981 * 1982 * @max_rx_aggregation_subframes: maximum buffer size (number of 1983 * sub-frames) to be used for A-MPDU block ack receiver 1984 * aggregation. 1985 * This is only relevant if the device has restrictions on the 1986 * number of subframes, if it relies on mac80211 to do reordering 1987 * it shouldn't be set. 1988 * 1989 * @max_tx_aggregation_subframes: maximum number of subframes in an 1990 * aggregate an HT driver will transmit, used by the peer as a 1991 * hint to size its reorder buffer. 1992 * 1993 * @offchannel_tx_hw_queue: HW queue ID to use for offchannel TX 1994 * (if %IEEE80211_HW_QUEUE_CONTROL is set) 1995 * 1996 * @radiotap_mcs_details: lists which MCS information can the HW 1997 * reports, by default it is set to _MCS, _GI and _BW but doesn't 1998 * include _FMT. Use %IEEE80211_RADIOTAP_MCS_HAVE_* values, only 1999 * adding _BW is supported today. 2000 * 2001 * @radiotap_vht_details: lists which VHT MCS information the HW reports, 2002 * the default is _GI | _BANDWIDTH. 2003 * Use the %IEEE80211_RADIOTAP_VHT_KNOWN_* values. 2004 * 2005 * @netdev_features: netdev features to be set in each netdev created 2006 * from this HW. Note that not all features are usable with mac80211, 2007 * other features will be rejected during HW registration. 2008 * 2009 * @uapsd_queues: This bitmap is included in (re)association frame to indicate 2010 * for each access category if it is uAPSD trigger-enabled and delivery- 2011 * enabled. Use IEEE80211_WMM_IE_STA_QOSINFO_AC_* to set this bitmap. 2012 * Each bit corresponds to different AC. Value '1' in specific bit means 2013 * that corresponding AC is both trigger- and delivery-enabled. '0' means 2014 * neither enabled. 2015 * 2016 * @uapsd_max_sp_len: maximum number of total buffered frames the WMM AP may 2017 * deliver to a WMM STA during any Service Period triggered by the WMM STA. 2018 * Use IEEE80211_WMM_IE_STA_QOSINFO_SP_* for correct values. 2019 * 2020 * @n_cipher_schemes: a size of an array of cipher schemes definitions. 2021 * @cipher_schemes: a pointer to an array of cipher scheme definitions 2022 * supported by HW. 2023 * 2024 * @txq_ac_max_pending: maximum number of frames per AC pending in all txq 2025 * entries for a vif. 2026 */ 2027 struct ieee80211_hw { 2028 struct ieee80211_conf conf; 2029 struct wiphy *wiphy; 2030 const char *rate_control_algorithm; 2031 void *priv; 2032 unsigned long flags[BITS_TO_LONGS(NUM_IEEE80211_HW_FLAGS)]; 2033 unsigned int extra_tx_headroom; 2034 unsigned int extra_beacon_tailroom; 2035 int vif_data_size; 2036 int sta_data_size; 2037 int chanctx_data_size; 2038 int txq_data_size; 2039 u16 queues; 2040 u16 max_listen_interval; 2041 s8 max_signal; 2042 u8 max_rates; 2043 u8 max_report_rates; 2044 u8 max_rate_tries; 2045 u8 max_rx_aggregation_subframes; 2046 u8 max_tx_aggregation_subframes; 2047 u8 offchannel_tx_hw_queue; 2048 u8 radiotap_mcs_details; 2049 u16 radiotap_vht_details; 2050 netdev_features_t netdev_features; 2051 u8 uapsd_queues; 2052 u8 uapsd_max_sp_len; 2053 u8 n_cipher_schemes; 2054 const struct ieee80211_cipher_scheme *cipher_schemes; 2055 int txq_ac_max_pending; 2056 }; 2057 2058 static inline bool _ieee80211_hw_check(struct ieee80211_hw *hw, 2059 enum ieee80211_hw_flags flg) 2060 { 2061 return test_bit(flg, hw->flags); 2062 } 2063 #define ieee80211_hw_check(hw, flg) _ieee80211_hw_check(hw, IEEE80211_HW_##flg) 2064 2065 static inline void _ieee80211_hw_set(struct ieee80211_hw *hw, 2066 enum ieee80211_hw_flags flg) 2067 { 2068 return __set_bit(flg, hw->flags); 2069 } 2070 #define ieee80211_hw_set(hw, flg) _ieee80211_hw_set(hw, IEEE80211_HW_##flg) 2071 2072 /** 2073 * struct ieee80211_scan_request - hw scan request 2074 * 2075 * @ies: pointers different parts of IEs (in req.ie) 2076 * @req: cfg80211 request. 2077 */ 2078 struct ieee80211_scan_request { 2079 struct ieee80211_scan_ies ies; 2080 2081 /* Keep last */ 2082 struct cfg80211_scan_request req; 2083 }; 2084 2085 /** 2086 * struct ieee80211_tdls_ch_sw_params - TDLS channel switch parameters 2087 * 2088 * @sta: peer this TDLS channel-switch request/response came from 2089 * @chandef: channel referenced in a TDLS channel-switch request 2090 * @action_code: see &enum ieee80211_tdls_actioncode 2091 * @status: channel-switch response status 2092 * @timestamp: time at which the frame was received 2093 * @switch_time: switch-timing parameter received in the frame 2094 * @switch_timeout: switch-timing parameter received in the frame 2095 * @tmpl_skb: TDLS switch-channel response template 2096 * @ch_sw_tm_ie: offset of the channel-switch timing IE inside @tmpl_skb 2097 */ 2098 struct ieee80211_tdls_ch_sw_params { 2099 struct ieee80211_sta *sta; 2100 struct cfg80211_chan_def *chandef; 2101 u8 action_code; 2102 u32 status; 2103 u32 timestamp; 2104 u16 switch_time; 2105 u16 switch_timeout; 2106 struct sk_buff *tmpl_skb; 2107 u32 ch_sw_tm_ie; 2108 }; 2109 2110 /** 2111 * wiphy_to_ieee80211_hw - return a mac80211 driver hw struct from a wiphy 2112 * 2113 * @wiphy: the &struct wiphy which we want to query 2114 * 2115 * mac80211 drivers can use this to get to their respective 2116 * &struct ieee80211_hw. Drivers wishing to get to their own private 2117 * structure can then access it via hw->priv. Note that mac802111 drivers should 2118 * not use wiphy_priv() to try to get their private driver structure as this 2119 * is already used internally by mac80211. 2120 * 2121 * Return: The mac80211 driver hw struct of @wiphy. 2122 */ 2123 struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy); 2124 2125 /** 2126 * SET_IEEE80211_DEV - set device for 802.11 hardware 2127 * 2128 * @hw: the &struct ieee80211_hw to set the device for 2129 * @dev: the &struct device of this 802.11 device 2130 */ 2131 static inline void SET_IEEE80211_DEV(struct ieee80211_hw *hw, struct device *dev) 2132 { 2133 set_wiphy_dev(hw->wiphy, dev); 2134 } 2135 2136 /** 2137 * SET_IEEE80211_PERM_ADDR - set the permanent MAC address for 802.11 hardware 2138 * 2139 * @hw: the &struct ieee80211_hw to set the MAC address for 2140 * @addr: the address to set 2141 */ 2142 static inline void SET_IEEE80211_PERM_ADDR(struct ieee80211_hw *hw, u8 *addr) 2143 { 2144 memcpy(hw->wiphy->perm_addr, addr, ETH_ALEN); 2145 } 2146 2147 static inline struct ieee80211_rate * 2148 ieee80211_get_tx_rate(const struct ieee80211_hw *hw, 2149 const struct ieee80211_tx_info *c) 2150 { 2151 if (WARN_ON_ONCE(c->control.rates[0].idx < 0)) 2152 return NULL; 2153 return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[0].idx]; 2154 } 2155 2156 static inline struct ieee80211_rate * 2157 ieee80211_get_rts_cts_rate(const struct ieee80211_hw *hw, 2158 const struct ieee80211_tx_info *c) 2159 { 2160 if (c->control.rts_cts_rate_idx < 0) 2161 return NULL; 2162 return &hw->wiphy->bands[c->band]->bitrates[c->control.rts_cts_rate_idx]; 2163 } 2164 2165 static inline struct ieee80211_rate * 2166 ieee80211_get_alt_retry_rate(const struct ieee80211_hw *hw, 2167 const struct ieee80211_tx_info *c, int idx) 2168 { 2169 if (c->control.rates[idx + 1].idx < 0) 2170 return NULL; 2171 return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[idx + 1].idx]; 2172 } 2173 2174 /** 2175 * ieee80211_free_txskb - free TX skb 2176 * @hw: the hardware 2177 * @skb: the skb 2178 * 2179 * Free a transmit skb. Use this funtion when some failure 2180 * to transmit happened and thus status cannot be reported. 2181 */ 2182 void ieee80211_free_txskb(struct ieee80211_hw *hw, struct sk_buff *skb); 2183 2184 /** 2185 * DOC: Hardware crypto acceleration 2186 * 2187 * mac80211 is capable of taking advantage of many hardware 2188 * acceleration designs for encryption and decryption operations. 2189 * 2190 * The set_key() callback in the &struct ieee80211_ops for a given 2191 * device is called to enable hardware acceleration of encryption and 2192 * decryption. The callback takes a @sta parameter that will be NULL 2193 * for default keys or keys used for transmission only, or point to 2194 * the station information for the peer for individual keys. 2195 * Multiple transmission keys with the same key index may be used when 2196 * VLANs are configured for an access point. 2197 * 2198 * When transmitting, the TX control data will use the @hw_key_idx 2199 * selected by the driver by modifying the &struct ieee80211_key_conf 2200 * pointed to by the @key parameter to the set_key() function. 2201 * 2202 * The set_key() call for the %SET_KEY command should return 0 if 2203 * the key is now in use, -%EOPNOTSUPP or -%ENOSPC if it couldn't be 2204 * added; if you return 0 then hw_key_idx must be assigned to the 2205 * hardware key index, you are free to use the full u8 range. 2206 * 2207 * Note that in the case that the @IEEE80211_HW_SW_CRYPTO_CONTROL flag is 2208 * set, mac80211 will not automatically fall back to software crypto if 2209 * enabling hardware crypto failed. The set_key() call may also return the 2210 * value 1 to permit this specific key/algorithm to be done in software. 2211 * 2212 * When the cmd is %DISABLE_KEY then it must succeed. 2213 * 2214 * Note that it is permissible to not decrypt a frame even if a key 2215 * for it has been uploaded to hardware, the stack will not make any 2216 * decision based on whether a key has been uploaded or not but rather 2217 * based on the receive flags. 2218 * 2219 * The &struct ieee80211_key_conf structure pointed to by the @key 2220 * parameter is guaranteed to be valid until another call to set_key() 2221 * removes it, but it can only be used as a cookie to differentiate 2222 * keys. 2223 * 2224 * In TKIP some HW need to be provided a phase 1 key, for RX decryption 2225 * acceleration (i.e. iwlwifi). Those drivers should provide update_tkip_key 2226 * handler. 2227 * The update_tkip_key() call updates the driver with the new phase 1 key. 2228 * This happens every time the iv16 wraps around (every 65536 packets). The 2229 * set_key() call will happen only once for each key (unless the AP did 2230 * rekeying), it will not include a valid phase 1 key. The valid phase 1 key is 2231 * provided by update_tkip_key only. The trigger that makes mac80211 call this 2232 * handler is software decryption with wrap around of iv16. 2233 * 2234 * The set_default_unicast_key() call updates the default WEP key index 2235 * configured to the hardware for WEP encryption type. This is required 2236 * for devices that support offload of data packets (e.g. ARP responses). 2237 */ 2238 2239 /** 2240 * DOC: Powersave support 2241 * 2242 * mac80211 has support for various powersave implementations. 2243 * 2244 * First, it can support hardware that handles all powersaving by itself, 2245 * such hardware should simply set the %IEEE80211_HW_SUPPORTS_PS hardware 2246 * flag. In that case, it will be told about the desired powersave mode 2247 * with the %IEEE80211_CONF_PS flag depending on the association status. 2248 * The hardware must take care of sending nullfunc frames when necessary, 2249 * i.e. when entering and leaving powersave mode. The hardware is required 2250 * to look at the AID in beacons and signal to the AP that it woke up when 2251 * it finds traffic directed to it. 2252 * 2253 * %IEEE80211_CONF_PS flag enabled means that the powersave mode defined in 2254 * IEEE 802.11-2007 section 11.2 is enabled. This is not to be confused 2255 * with hardware wakeup and sleep states. Driver is responsible for waking 2256 * up the hardware before issuing commands to the hardware and putting it 2257 * back to sleep at appropriate times. 2258 * 2259 * When PS is enabled, hardware needs to wakeup for beacons and receive the 2260 * buffered multicast/broadcast frames after the beacon. Also it must be 2261 * possible to send frames and receive the acknowledment frame. 2262 * 2263 * Other hardware designs cannot send nullfunc frames by themselves and also 2264 * need software support for parsing the TIM bitmap. This is also supported 2265 * by mac80211 by combining the %IEEE80211_HW_SUPPORTS_PS and 2266 * %IEEE80211_HW_PS_NULLFUNC_STACK flags. The hardware is of course still 2267 * required to pass up beacons. The hardware is still required to handle 2268 * waking up for multicast traffic; if it cannot the driver must handle that 2269 * as best as it can, mac80211 is too slow to do that. 2270 * 2271 * Dynamic powersave is an extension to normal powersave in which the 2272 * hardware stays awake for a user-specified period of time after sending a 2273 * frame so that reply frames need not be buffered and therefore delayed to 2274 * the next wakeup. It's compromise of getting good enough latency when 2275 * there's data traffic and still saving significantly power in idle 2276 * periods. 2277 * 2278 * Dynamic powersave is simply supported by mac80211 enabling and disabling 2279 * PS based on traffic. Driver needs to only set %IEEE80211_HW_SUPPORTS_PS 2280 * flag and mac80211 will handle everything automatically. Additionally, 2281 * hardware having support for the dynamic PS feature may set the 2282 * %IEEE80211_HW_SUPPORTS_DYNAMIC_PS flag to indicate that it can support 2283 * dynamic PS mode itself. The driver needs to look at the 2284 * @dynamic_ps_timeout hardware configuration value and use it that value 2285 * whenever %IEEE80211_CONF_PS is set. In this case mac80211 will disable 2286 * dynamic PS feature in stack and will just keep %IEEE80211_CONF_PS 2287 * enabled whenever user has enabled powersave. 2288 * 2289 * Driver informs U-APSD client support by enabling 2290 * %IEEE80211_VIF_SUPPORTS_UAPSD flag. The mode is configured through the 2291 * uapsd parameter in conf_tx() operation. Hardware needs to send the QoS 2292 * Nullfunc frames and stay awake until the service period has ended. To 2293 * utilize U-APSD, dynamic powersave is disabled for voip AC and all frames 2294 * from that AC are transmitted with powersave enabled. 2295 * 2296 * Note: U-APSD client mode is not yet supported with 2297 * %IEEE80211_HW_PS_NULLFUNC_STACK. 2298 */ 2299 2300 /** 2301 * DOC: Beacon filter support 2302 * 2303 * Some hardware have beacon filter support to reduce host cpu wakeups 2304 * which will reduce system power consumption. It usually works so that 2305 * the firmware creates a checksum of the beacon but omits all constantly 2306 * changing elements (TSF, TIM etc). Whenever the checksum changes the 2307 * beacon is forwarded to the host, otherwise it will be just dropped. That 2308 * way the host will only receive beacons where some relevant information 2309 * (for example ERP protection or WMM settings) have changed. 2310 * 2311 * Beacon filter support is advertised with the %IEEE80211_VIF_BEACON_FILTER 2312 * interface capability. The driver needs to enable beacon filter support 2313 * whenever power save is enabled, that is %IEEE80211_CONF_PS is set. When 2314 * power save is enabled, the stack will not check for beacon loss and the 2315 * driver needs to notify about loss of beacons with ieee80211_beacon_loss(). 2316 * 2317 * The time (or number of beacons missed) until the firmware notifies the 2318 * driver of a beacon loss event (which in turn causes the driver to call 2319 * ieee80211_beacon_loss()) should be configurable and will be controlled 2320 * by mac80211 and the roaming algorithm in the future. 2321 * 2322 * Since there may be constantly changing information elements that nothing 2323 * in the software stack cares about, we will, in the future, have mac80211 2324 * tell the driver which information elements are interesting in the sense 2325 * that we want to see changes in them. This will include 2326 * - a list of information element IDs 2327 * - a list of OUIs for the vendor information element 2328 * 2329 * Ideally, the hardware would filter out any beacons without changes in the 2330 * requested elements, but if it cannot support that it may, at the expense 2331 * of some efficiency, filter out only a subset. For example, if the device 2332 * doesn't support checking for OUIs it should pass up all changes in all 2333 * vendor information elements. 2334 * 2335 * Note that change, for the sake of simplification, also includes information 2336 * elements appearing or disappearing from the beacon. 2337 * 2338 * Some hardware supports an "ignore list" instead, just make sure nothing 2339 * that was requested is on the ignore list, and include commonly changing 2340 * information element IDs in the ignore list, for example 11 (BSS load) and 2341 * the various vendor-assigned IEs with unknown contents (128, 129, 133-136, 2342 * 149, 150, 155, 156, 173, 176, 178, 179, 219); for forward compatibility 2343 * it could also include some currently unused IDs. 2344 * 2345 * 2346 * In addition to these capabilities, hardware should support notifying the 2347 * host of changes in the beacon RSSI. This is relevant to implement roaming 2348 * when no traffic is flowing (when traffic is flowing we see the RSSI of 2349 * the received data packets). This can consist in notifying the host when 2350 * the RSSI changes significantly or when it drops below or rises above 2351 * configurable thresholds. In the future these thresholds will also be 2352 * configured by mac80211 (which gets them from userspace) to implement 2353 * them as the roaming algorithm requires. 2354 * 2355 * If the hardware cannot implement this, the driver should ask it to 2356 * periodically pass beacon frames to the host so that software can do the 2357 * signal strength threshold checking. 2358 */ 2359 2360 /** 2361 * DOC: Spatial multiplexing power save 2362 * 2363 * SMPS (Spatial multiplexing power save) is a mechanism to conserve 2364 * power in an 802.11n implementation. For details on the mechanism 2365 * and rationale, please refer to 802.11 (as amended by 802.11n-2009) 2366 * "11.2.3 SM power save". 2367 * 2368 * The mac80211 implementation is capable of sending action frames 2369 * to update the AP about the station's SMPS mode, and will instruct 2370 * the driver to enter the specific mode. It will also announce the 2371 * requested SMPS mode during the association handshake. Hardware 2372 * support for this feature is required, and can be indicated by 2373 * hardware flags. 2374 * 2375 * The default mode will be "automatic", which nl80211/cfg80211 2376 * defines to be dynamic SMPS in (regular) powersave, and SMPS 2377 * turned off otherwise. 2378 * 2379 * To support this feature, the driver must set the appropriate 2380 * hardware support flags, and handle the SMPS flag to the config() 2381 * operation. It will then with this mechanism be instructed to 2382 * enter the requested SMPS mode while associated to an HT AP. 2383 */ 2384 2385 /** 2386 * DOC: Frame filtering 2387 * 2388 * mac80211 requires to see many management frames for proper 2389 * operation, and users may want to see many more frames when 2390 * in monitor mode. However, for best CPU usage and power consumption, 2391 * having as few frames as possible percolate through the stack is 2392 * desirable. Hence, the hardware should filter as much as possible. 2393 * 2394 * To achieve this, mac80211 uses filter flags (see below) to tell 2395 * the driver's configure_filter() function which frames should be 2396 * passed to mac80211 and which should be filtered out. 2397 * 2398 * Before configure_filter() is invoked, the prepare_multicast() 2399 * callback is invoked with the parameters @mc_count and @mc_list 2400 * for the combined multicast address list of all virtual interfaces. 2401 * It's use is optional, and it returns a u64 that is passed to 2402 * configure_filter(). Additionally, configure_filter() has the 2403 * arguments @changed_flags telling which flags were changed and 2404 * @total_flags with the new flag states. 2405 * 2406 * If your device has no multicast address filters your driver will 2407 * need to check both the %FIF_ALLMULTI flag and the @mc_count 2408 * parameter to see whether multicast frames should be accepted 2409 * or dropped. 2410 * 2411 * All unsupported flags in @total_flags must be cleared. 2412 * Hardware does not support a flag if it is incapable of _passing_ 2413 * the frame to the stack. Otherwise the driver must ignore 2414 * the flag, but not clear it. 2415 * You must _only_ clear the flag (announce no support for the 2416 * flag to mac80211) if you are not able to pass the packet type 2417 * to the stack (so the hardware always filters it). 2418 * So for example, you should clear @FIF_CONTROL, if your hardware 2419 * always filters control frames. If your hardware always passes 2420 * control frames to the kernel and is incapable of filtering them, 2421 * you do _not_ clear the @FIF_CONTROL flag. 2422 * This rule applies to all other FIF flags as well. 2423 */ 2424 2425 /** 2426 * DOC: AP support for powersaving clients 2427 * 2428 * In order to implement AP and P2P GO modes, mac80211 has support for 2429 * client powersaving, both "legacy" PS (PS-Poll/null data) and uAPSD. 2430 * There currently is no support for sAPSD. 2431 * 2432 * There is one assumption that mac80211 makes, namely that a client 2433 * will not poll with PS-Poll and trigger with uAPSD at the same time. 2434 * Both are supported, and both can be used by the same client, but 2435 * they can't be used concurrently by the same client. This simplifies 2436 * the driver code. 2437 * 2438 * The first thing to keep in mind is that there is a flag for complete 2439 * driver implementation: %IEEE80211_HW_AP_LINK_PS. If this flag is set, 2440 * mac80211 expects the driver to handle most of the state machine for 2441 * powersaving clients and will ignore the PM bit in incoming frames. 2442 * Drivers then use ieee80211_sta_ps_transition() to inform mac80211 of 2443 * stations' powersave transitions. In this mode, mac80211 also doesn't 2444 * handle PS-Poll/uAPSD. 2445 * 2446 * In the mode without %IEEE80211_HW_AP_LINK_PS, mac80211 will check the 2447 * PM bit in incoming frames for client powersave transitions. When a 2448 * station goes to sleep, we will stop transmitting to it. There is, 2449 * however, a race condition: a station might go to sleep while there is 2450 * data buffered on hardware queues. If the device has support for this 2451 * it will reject frames, and the driver should give the frames back to 2452 * mac80211 with the %IEEE80211_TX_STAT_TX_FILTERED flag set which will 2453 * cause mac80211 to retry the frame when the station wakes up. The 2454 * driver is also notified of powersave transitions by calling its 2455 * @sta_notify callback. 2456 * 2457 * When the station is asleep, it has three choices: it can wake up, 2458 * it can PS-Poll, or it can possibly start a uAPSD service period. 2459 * Waking up is implemented by simply transmitting all buffered (and 2460 * filtered) frames to the station. This is the easiest case. When 2461 * the station sends a PS-Poll or a uAPSD trigger frame, mac80211 2462 * will inform the driver of this with the @allow_buffered_frames 2463 * callback; this callback is optional. mac80211 will then transmit 2464 * the frames as usual and set the %IEEE80211_TX_CTL_NO_PS_BUFFER 2465 * on each frame. The last frame in the service period (or the only 2466 * response to a PS-Poll) also has %IEEE80211_TX_STATUS_EOSP set to 2467 * indicate that it ends the service period; as this frame must have 2468 * TX status report it also sets %IEEE80211_TX_CTL_REQ_TX_STATUS. 2469 * When TX status is reported for this frame, the service period is 2470 * marked has having ended and a new one can be started by the peer. 2471 * 2472 * Additionally, non-bufferable MMPDUs can also be transmitted by 2473 * mac80211 with the %IEEE80211_TX_CTL_NO_PS_BUFFER set in them. 2474 * 2475 * Another race condition can happen on some devices like iwlwifi 2476 * when there are frames queued for the station and it wakes up 2477 * or polls; the frames that are already queued could end up being 2478 * transmitted first instead, causing reordering and/or wrong 2479 * processing of the EOSP. The cause is that allowing frames to be 2480 * transmitted to a certain station is out-of-band communication to 2481 * the device. To allow this problem to be solved, the driver can 2482 * call ieee80211_sta_block_awake() if frames are buffered when it 2483 * is notified that the station went to sleep. When all these frames 2484 * have been filtered (see above), it must call the function again 2485 * to indicate that the station is no longer blocked. 2486 * 2487 * If the driver buffers frames in the driver for aggregation in any 2488 * way, it must use the ieee80211_sta_set_buffered() call when it is 2489 * notified of the station going to sleep to inform mac80211 of any 2490 * TIDs that have frames buffered. Note that when a station wakes up 2491 * this information is reset (hence the requirement to call it when 2492 * informed of the station going to sleep). Then, when a service 2493 * period starts for any reason, @release_buffered_frames is called 2494 * with the number of frames to be released and which TIDs they are 2495 * to come from. In this case, the driver is responsible for setting 2496 * the EOSP (for uAPSD) and MORE_DATA bits in the released frames, 2497 * to help the @more_data parameter is passed to tell the driver if 2498 * there is more data on other TIDs -- the TIDs to release frames 2499 * from are ignored since mac80211 doesn't know how many frames the 2500 * buffers for those TIDs contain. 2501 * 2502 * If the driver also implement GO mode, where absence periods may 2503 * shorten service periods (or abort PS-Poll responses), it must 2504 * filter those response frames except in the case of frames that 2505 * are buffered in the driver -- those must remain buffered to avoid 2506 * reordering. Because it is possible that no frames are released 2507 * in this case, the driver must call ieee80211_sta_eosp() 2508 * to indicate to mac80211 that the service period ended anyway. 2509 * 2510 * Finally, if frames from multiple TIDs are released from mac80211 2511 * but the driver might reorder them, it must clear & set the flags 2512 * appropriately (only the last frame may have %IEEE80211_TX_STATUS_EOSP) 2513 * and also take care of the EOSP and MORE_DATA bits in the frame. 2514 * The driver may also use ieee80211_sta_eosp() in this case. 2515 * 2516 * Note that if the driver ever buffers frames other than QoS-data 2517 * frames, it must take care to never send a non-QoS-data frame as 2518 * the last frame in a service period, adding a QoS-nulldata frame 2519 * after a non-QoS-data frame if needed. 2520 */ 2521 2522 /** 2523 * DOC: HW queue control 2524 * 2525 * Before HW queue control was introduced, mac80211 only had a single static 2526 * assignment of per-interface AC software queues to hardware queues. This 2527 * was problematic for a few reasons: 2528 * 1) off-channel transmissions might get stuck behind other frames 2529 * 2) multiple virtual interfaces couldn't be handled correctly 2530 * 3) after-DTIM frames could get stuck behind other frames 2531 * 2532 * To solve this, hardware typically uses multiple different queues for all 2533 * the different usages, and this needs to be propagated into mac80211 so it 2534 * won't have the same problem with the software queues. 2535 * 2536 * Therefore, mac80211 now offers the %IEEE80211_HW_QUEUE_CONTROL capability 2537 * flag that tells it that the driver implements its own queue control. To do 2538 * so, the driver will set up the various queues in each &struct ieee80211_vif 2539 * and the offchannel queue in &struct ieee80211_hw. In response, mac80211 will 2540 * use those queue IDs in the hw_queue field of &struct ieee80211_tx_info and 2541 * if necessary will queue the frame on the right software queue that mirrors 2542 * the hardware queue. 2543 * Additionally, the driver has to then use these HW queue IDs for the queue 2544 * management functions (ieee80211_stop_queue() et al.) 2545 * 2546 * The driver is free to set up the queue mappings as needed, multiple virtual 2547 * interfaces may map to the same hardware queues if needed. The setup has to 2548 * happen during add_interface or change_interface callbacks. For example, a 2549 * driver supporting station+station and station+AP modes might decide to have 2550 * 10 hardware queues to handle different scenarios: 2551 * 2552 * 4 AC HW queues for 1st vif: 0, 1, 2, 3 2553 * 4 AC HW queues for 2nd vif: 4, 5, 6, 7 2554 * after-DTIM queue for AP: 8 2555 * off-channel queue: 9 2556 * 2557 * It would then set up the hardware like this: 2558 * hw.offchannel_tx_hw_queue = 9 2559 * 2560 * and the first virtual interface that is added as follows: 2561 * vif.hw_queue[IEEE80211_AC_VO] = 0 2562 * vif.hw_queue[IEEE80211_AC_VI] = 1 2563 * vif.hw_queue[IEEE80211_AC_BE] = 2 2564 * vif.hw_queue[IEEE80211_AC_BK] = 3 2565 * vif.cab_queue = 8 // if AP mode, otherwise %IEEE80211_INVAL_HW_QUEUE 2566 * and the second virtual interface with 4-7. 2567 * 2568 * If queue 6 gets full, for example, mac80211 would only stop the second 2569 * virtual interface's BE queue since virtual interface queues are per AC. 2570 * 2571 * Note that the vif.cab_queue value should be set to %IEEE80211_INVAL_HW_QUEUE 2572 * whenever the queue is not used (i.e. the interface is not in AP mode) if the 2573 * queue could potentially be shared since mac80211 will look at cab_queue when 2574 * a queue is stopped/woken even if the interface is not in AP mode. 2575 */ 2576 2577 /** 2578 * enum ieee80211_filter_flags - hardware filter flags 2579 * 2580 * These flags determine what the filter in hardware should be 2581 * programmed to let through and what should not be passed to the 2582 * stack. It is always safe to pass more frames than requested, 2583 * but this has negative impact on power consumption. 2584 * 2585 * @FIF_ALLMULTI: pass all multicast frames, this is used if requested 2586 * by the user or if the hardware is not capable of filtering by 2587 * multicast address. 2588 * 2589 * @FIF_FCSFAIL: pass frames with failed FCS (but you need to set the 2590 * %RX_FLAG_FAILED_FCS_CRC for them) 2591 * 2592 * @FIF_PLCPFAIL: pass frames with failed PLCP CRC (but you need to set 2593 * the %RX_FLAG_FAILED_PLCP_CRC for them 2594 * 2595 * @FIF_BCN_PRBRESP_PROMISC: This flag is set during scanning to indicate 2596 * to the hardware that it should not filter beacons or probe responses 2597 * by BSSID. Filtering them can greatly reduce the amount of processing 2598 * mac80211 needs to do and the amount of CPU wakeups, so you should 2599 * honour this flag if possible. 2600 * 2601 * @FIF_CONTROL: pass control frames (except for PS Poll) addressed to this 2602 * station 2603 * 2604 * @FIF_OTHER_BSS: pass frames destined to other BSSes 2605 * 2606 * @FIF_PSPOLL: pass PS Poll frames 2607 * 2608 * @FIF_PROBE_REQ: pass probe request frames 2609 */ 2610 enum ieee80211_filter_flags { 2611 FIF_ALLMULTI = 1<<1, 2612 FIF_FCSFAIL = 1<<2, 2613 FIF_PLCPFAIL = 1<<3, 2614 FIF_BCN_PRBRESP_PROMISC = 1<<4, 2615 FIF_CONTROL = 1<<5, 2616 FIF_OTHER_BSS = 1<<6, 2617 FIF_PSPOLL = 1<<7, 2618 FIF_PROBE_REQ = 1<<8, 2619 }; 2620 2621 /** 2622 * enum ieee80211_ampdu_mlme_action - A-MPDU actions 2623 * 2624 * These flags are used with the ampdu_action() callback in 2625 * &struct ieee80211_ops to indicate which action is needed. 2626 * 2627 * Note that drivers MUST be able to deal with a TX aggregation 2628 * session being stopped even before they OK'ed starting it by 2629 * calling ieee80211_start_tx_ba_cb_irqsafe, because the peer 2630 * might receive the addBA frame and send a delBA right away! 2631 * 2632 * @IEEE80211_AMPDU_RX_START: start RX aggregation 2633 * @IEEE80211_AMPDU_RX_STOP: stop RX aggregation 2634 * @IEEE80211_AMPDU_TX_START: start TX aggregation 2635 * @IEEE80211_AMPDU_TX_OPERATIONAL: TX aggregation has become operational 2636 * @IEEE80211_AMPDU_TX_STOP_CONT: stop TX aggregation but continue transmitting 2637 * queued packets, now unaggregated. After all packets are transmitted the 2638 * driver has to call ieee80211_stop_tx_ba_cb_irqsafe(). 2639 * @IEEE80211_AMPDU_TX_STOP_FLUSH: stop TX aggregation and flush all packets, 2640 * called when the station is removed. There's no need or reason to call 2641 * ieee80211_stop_tx_ba_cb_irqsafe() in this case as mac80211 assumes the 2642 * session is gone and removes the station. 2643 * @IEEE80211_AMPDU_TX_STOP_FLUSH_CONT: called when TX aggregation is stopped 2644 * but the driver hasn't called ieee80211_stop_tx_ba_cb_irqsafe() yet and 2645 * now the connection is dropped and the station will be removed. Drivers 2646 * should clean up and drop remaining packets when this is called. 2647 */ 2648 enum ieee80211_ampdu_mlme_action { 2649 IEEE80211_AMPDU_RX_START, 2650 IEEE80211_AMPDU_RX_STOP, 2651 IEEE80211_AMPDU_TX_START, 2652 IEEE80211_AMPDU_TX_STOP_CONT, 2653 IEEE80211_AMPDU_TX_STOP_FLUSH, 2654 IEEE80211_AMPDU_TX_STOP_FLUSH_CONT, 2655 IEEE80211_AMPDU_TX_OPERATIONAL, 2656 }; 2657 2658 /** 2659 * enum ieee80211_frame_release_type - frame release reason 2660 * @IEEE80211_FRAME_RELEASE_PSPOLL: frame released for PS-Poll 2661 * @IEEE80211_FRAME_RELEASE_UAPSD: frame(s) released due to 2662 * frame received on trigger-enabled AC 2663 */ 2664 enum ieee80211_frame_release_type { 2665 IEEE80211_FRAME_RELEASE_PSPOLL, 2666 IEEE80211_FRAME_RELEASE_UAPSD, 2667 }; 2668 2669 /** 2670 * enum ieee80211_rate_control_changed - flags to indicate what changed 2671 * 2672 * @IEEE80211_RC_BW_CHANGED: The bandwidth that can be used to transmit 2673 * to this station changed. The actual bandwidth is in the station 2674 * information -- for HT20/40 the IEEE80211_HT_CAP_SUP_WIDTH_20_40 2675 * flag changes, for HT and VHT the bandwidth field changes. 2676 * @IEEE80211_RC_SMPS_CHANGED: The SMPS state of the station changed. 2677 * @IEEE80211_RC_SUPP_RATES_CHANGED: The supported rate set of this peer 2678 * changed (in IBSS mode) due to discovering more information about 2679 * the peer. 2680 * @IEEE80211_RC_NSS_CHANGED: N_SS (number of spatial streams) was changed 2681 * by the peer 2682 */ 2683 enum ieee80211_rate_control_changed { 2684 IEEE80211_RC_BW_CHANGED = BIT(0), 2685 IEEE80211_RC_SMPS_CHANGED = BIT(1), 2686 IEEE80211_RC_SUPP_RATES_CHANGED = BIT(2), 2687 IEEE80211_RC_NSS_CHANGED = BIT(3), 2688 }; 2689 2690 /** 2691 * enum ieee80211_roc_type - remain on channel type 2692 * 2693 * With the support for multi channel contexts and multi channel operations, 2694 * remain on channel operations might be limited/deferred/aborted by other 2695 * flows/operations which have higher priority (and vise versa). 2696 * Specifying the ROC type can be used by devices to prioritize the ROC 2697 * operations compared to other operations/flows. 2698 * 2699 * @IEEE80211_ROC_TYPE_NORMAL: There are no special requirements for this ROC. 2700 * @IEEE80211_ROC_TYPE_MGMT_TX: The remain on channel request is required 2701 * for sending managment frames offchannel. 2702 */ 2703 enum ieee80211_roc_type { 2704 IEEE80211_ROC_TYPE_NORMAL = 0, 2705 IEEE80211_ROC_TYPE_MGMT_TX, 2706 }; 2707 2708 /** 2709 * enum ieee80211_reconfig_complete_type - reconfig type 2710 * 2711 * This enum is used by the reconfig_complete() callback to indicate what 2712 * reconfiguration type was completed. 2713 * 2714 * @IEEE80211_RECONFIG_TYPE_RESTART: hw restart type 2715 * (also due to resume() callback returning 1) 2716 * @IEEE80211_RECONFIG_TYPE_SUSPEND: suspend type (regardless 2717 * of wowlan configuration) 2718 */ 2719 enum ieee80211_reconfig_type { 2720 IEEE80211_RECONFIG_TYPE_RESTART, 2721 IEEE80211_RECONFIG_TYPE_SUSPEND, 2722 }; 2723 2724 /** 2725 * struct ieee80211_ops - callbacks from mac80211 to the driver 2726 * 2727 * This structure contains various callbacks that the driver may 2728 * handle or, in some cases, must handle, for example to configure 2729 * the hardware to a new channel or to transmit a frame. 2730 * 2731 * @tx: Handler that 802.11 module calls for each transmitted frame. 2732 * skb contains the buffer starting from the IEEE 802.11 header. 2733 * The low-level driver should send the frame out based on 2734 * configuration in the TX control data. This handler should, 2735 * preferably, never fail and stop queues appropriately. 2736 * Must be atomic. 2737 * 2738 * @start: Called before the first netdevice attached to the hardware 2739 * is enabled. This should turn on the hardware and must turn on 2740 * frame reception (for possibly enabled monitor interfaces.) 2741 * Returns negative error codes, these may be seen in userspace, 2742 * or zero. 2743 * When the device is started it should not have a MAC address 2744 * to avoid acknowledging frames before a non-monitor device 2745 * is added. 2746 * Must be implemented and can sleep. 2747 * 2748 * @stop: Called after last netdevice attached to the hardware 2749 * is disabled. This should turn off the hardware (at least 2750 * it must turn off frame reception.) 2751 * May be called right after add_interface if that rejects 2752 * an interface. If you added any work onto the mac80211 workqueue 2753 * you should ensure to cancel it on this callback. 2754 * Must be implemented and can sleep. 2755 * 2756 * @suspend: Suspend the device; mac80211 itself will quiesce before and 2757 * stop transmitting and doing any other configuration, and then 2758 * ask the device to suspend. This is only invoked when WoWLAN is 2759 * configured, otherwise the device is deconfigured completely and 2760 * reconfigured at resume time. 2761 * The driver may also impose special conditions under which it 2762 * wants to use the "normal" suspend (deconfigure), say if it only 2763 * supports WoWLAN when the device is associated. In this case, it 2764 * must return 1 from this function. 2765 * 2766 * @resume: If WoWLAN was configured, this indicates that mac80211 is 2767 * now resuming its operation, after this the device must be fully 2768 * functional again. If this returns an error, the only way out is 2769 * to also unregister the device. If it returns 1, then mac80211 2770 * will also go through the regular complete restart on resume. 2771 * 2772 * @set_wakeup: Enable or disable wakeup when WoWLAN configuration is 2773 * modified. The reason is that device_set_wakeup_enable() is 2774 * supposed to be called when the configuration changes, not only 2775 * in suspend(). 2776 * 2777 * @add_interface: Called when a netdevice attached to the hardware is 2778 * enabled. Because it is not called for monitor mode devices, @start 2779 * and @stop must be implemented. 2780 * The driver should perform any initialization it needs before 2781 * the device can be enabled. The initial configuration for the 2782 * interface is given in the conf parameter. 2783 * The callback may refuse to add an interface by returning a 2784 * negative error code (which will be seen in userspace.) 2785 * Must be implemented and can sleep. 2786 * 2787 * @change_interface: Called when a netdevice changes type. This callback 2788 * is optional, but only if it is supported can interface types be 2789 * switched while the interface is UP. The callback may sleep. 2790 * Note that while an interface is being switched, it will not be 2791 * found by the interface iteration callbacks. 2792 * 2793 * @remove_interface: Notifies a driver that an interface is going down. 2794 * The @stop callback is called after this if it is the last interface 2795 * and no monitor interfaces are present. 2796 * When all interfaces are removed, the MAC address in the hardware 2797 * must be cleared so the device no longer acknowledges packets, 2798 * the mac_addr member of the conf structure is, however, set to the 2799 * MAC address of the device going away. 2800 * Hence, this callback must be implemented. It can sleep. 2801 * 2802 * @config: Handler for configuration requests. IEEE 802.11 code calls this 2803 * function to change hardware configuration, e.g., channel. 2804 * This function should never fail but returns a negative error code 2805 * if it does. The callback can sleep. 2806 * 2807 * @bss_info_changed: Handler for configuration requests related to BSS 2808 * parameters that may vary during BSS's lifespan, and may affect low 2809 * level driver (e.g. assoc/disassoc status, erp parameters). 2810 * This function should not be used if no BSS has been set, unless 2811 * for association indication. The @changed parameter indicates which 2812 * of the bss parameters has changed when a call is made. The callback 2813 * can sleep. 2814 * 2815 * @prepare_multicast: Prepare for multicast filter configuration. 2816 * This callback is optional, and its return value is passed 2817 * to configure_filter(). This callback must be atomic. 2818 * 2819 * @configure_filter: Configure the device's RX filter. 2820 * See the section "Frame filtering" for more information. 2821 * This callback must be implemented and can sleep. 2822 * 2823 * @set_tim: Set TIM bit. mac80211 calls this function when a TIM bit 2824 * must be set or cleared for a given STA. Must be atomic. 2825 * 2826 * @set_key: See the section "Hardware crypto acceleration" 2827 * This callback is only called between add_interface and 2828 * remove_interface calls, i.e. while the given virtual interface 2829 * is enabled. 2830 * Returns a negative error code if the key can't be added. 2831 * The callback can sleep. 2832 * 2833 * @update_tkip_key: See the section "Hardware crypto acceleration" 2834 * This callback will be called in the context of Rx. Called for drivers 2835 * which set IEEE80211_KEY_FLAG_TKIP_REQ_RX_P1_KEY. 2836 * The callback must be atomic. 2837 * 2838 * @set_rekey_data: If the device supports GTK rekeying, for example while the 2839 * host is suspended, it can assign this callback to retrieve the data 2840 * necessary to do GTK rekeying, this is the KEK, KCK and replay counter. 2841 * After rekeying was done it should (for example during resume) notify 2842 * userspace of the new replay counter using ieee80211_gtk_rekey_notify(). 2843 * 2844 * @set_default_unicast_key: Set the default (unicast) key index, useful for 2845 * WEP when the device sends data packets autonomously, e.g. for ARP 2846 * offloading. The index can be 0-3, or -1 for unsetting it. 2847 * 2848 * @hw_scan: Ask the hardware to service the scan request, no need to start 2849 * the scan state machine in stack. The scan must honour the channel 2850 * configuration done by the regulatory agent in the wiphy's 2851 * registered bands. The hardware (or the driver) needs to make sure 2852 * that power save is disabled. 2853 * The @req ie/ie_len members are rewritten by mac80211 to contain the 2854 * entire IEs after the SSID, so that drivers need not look at these 2855 * at all but just send them after the SSID -- mac80211 includes the 2856 * (extended) supported rates and HT information (where applicable). 2857 * When the scan finishes, ieee80211_scan_completed() must be called; 2858 * note that it also must be called when the scan cannot finish due to 2859 * any error unless this callback returned a negative error code. 2860 * The callback can sleep. 2861 * 2862 * @cancel_hw_scan: Ask the low-level tp cancel the active hw scan. 2863 * The driver should ask the hardware to cancel the scan (if possible), 2864 * but the scan will be completed only after the driver will call 2865 * ieee80211_scan_completed(). 2866 * This callback is needed for wowlan, to prevent enqueueing a new 2867 * scan_work after the low-level driver was already suspended. 2868 * The callback can sleep. 2869 * 2870 * @sched_scan_start: Ask the hardware to start scanning repeatedly at 2871 * specific intervals. The driver must call the 2872 * ieee80211_sched_scan_results() function whenever it finds results. 2873 * This process will continue until sched_scan_stop is called. 2874 * 2875 * @sched_scan_stop: Tell the hardware to stop an ongoing scheduled scan. 2876 * In this case, ieee80211_sched_scan_stopped() must not be called. 2877 * 2878 * @sw_scan_start: Notifier function that is called just before a software scan 2879 * is started. Can be NULL, if the driver doesn't need this notification. 2880 * The mac_addr parameter allows supporting NL80211_SCAN_FLAG_RANDOM_ADDR, 2881 * the driver may set the NL80211_FEATURE_SCAN_RANDOM_MAC_ADDR flag if it 2882 * can use this parameter. The callback can sleep. 2883 * 2884 * @sw_scan_complete: Notifier function that is called just after a 2885 * software scan finished. Can be NULL, if the driver doesn't need 2886 * this notification. 2887 * The callback can sleep. 2888 * 2889 * @get_stats: Return low-level statistics. 2890 * Returns zero if statistics are available. 2891 * The callback can sleep. 2892 * 2893 * @get_key_seq: If your device implements encryption in hardware and does 2894 * IV/PN assignment then this callback should be provided to read the 2895 * IV/PN for the given key from hardware. 2896 * The callback must be atomic. 2897 * 2898 * @set_frag_threshold: Configuration of fragmentation threshold. Assign this 2899 * if the device does fragmentation by itself; if this callback is 2900 * implemented then the stack will not do fragmentation. 2901 * The callback can sleep. 2902 * 2903 * @set_rts_threshold: Configuration of RTS threshold (if device needs it) 2904 * The callback can sleep. 2905 * 2906 * @sta_add: Notifies low level driver about addition of an associated station, 2907 * AP, IBSS/WDS/mesh peer etc. This callback can sleep. 2908 * 2909 * @sta_remove: Notifies low level driver about removal of an associated 2910 * station, AP, IBSS/WDS/mesh peer etc. Note that after the callback 2911 * returns it isn't safe to use the pointer, not even RCU protected; 2912 * no RCU grace period is guaranteed between returning here and freeing 2913 * the station. See @sta_pre_rcu_remove if needed. 2914 * This callback can sleep. 2915 * 2916 * @sta_add_debugfs: Drivers can use this callback to add debugfs files 2917 * when a station is added to mac80211's station list. This callback 2918 * and @sta_remove_debugfs should be within a CONFIG_MAC80211_DEBUGFS 2919 * conditional. This callback can sleep. 2920 * 2921 * @sta_remove_debugfs: Remove the debugfs files which were added using 2922 * @sta_add_debugfs. This callback can sleep. 2923 * 2924 * @sta_notify: Notifies low level driver about power state transition of an 2925 * associated station, AP, IBSS/WDS/mesh peer etc. For a VIF operating 2926 * in AP mode, this callback will not be called when the flag 2927 * %IEEE80211_HW_AP_LINK_PS is set. Must be atomic. 2928 * 2929 * @sta_state: Notifies low level driver about state transition of a 2930 * station (which can be the AP, a client, IBSS/WDS/mesh peer etc.) 2931 * This callback is mutually exclusive with @sta_add/@sta_remove. 2932 * It must not fail for down transitions but may fail for transitions 2933 * up the list of states. Also note that after the callback returns it 2934 * isn't safe to use the pointer, not even RCU protected - no RCU grace 2935 * period is guaranteed between returning here and freeing the station. 2936 * See @sta_pre_rcu_remove if needed. 2937 * The callback can sleep. 2938 * 2939 * @sta_pre_rcu_remove: Notify driver about station removal before RCU 2940 * synchronisation. This is useful if a driver needs to have station 2941 * pointers protected using RCU, it can then use this call to clear 2942 * the pointers instead of waiting for an RCU grace period to elapse 2943 * in @sta_state. 2944 * The callback can sleep. 2945 * 2946 * @sta_rc_update: Notifies the driver of changes to the bitrates that can be 2947 * used to transmit to the station. The changes are advertised with bits 2948 * from &enum ieee80211_rate_control_changed and the values are reflected 2949 * in the station data. This callback should only be used when the driver 2950 * uses hardware rate control (%IEEE80211_HW_HAS_RATE_CONTROL) since 2951 * otherwise the rate control algorithm is notified directly. 2952 * Must be atomic. 2953 * @sta_rate_tbl_update: Notifies the driver that the rate table changed. This 2954 * is only used if the configured rate control algorithm actually uses 2955 * the new rate table API, and is therefore optional. Must be atomic. 2956 * 2957 * @sta_statistics: Get statistics for this station. For example with beacon 2958 * filtering, the statistics kept by mac80211 might not be accurate, so 2959 * let the driver pre-fill the statistics. The driver can fill most of 2960 * the values (indicating which by setting the filled bitmap), but not 2961 * all of them make sense - see the source for which ones are possible. 2962 * Statistics that the driver doesn't fill will be filled by mac80211. 2963 * The callback can sleep. 2964 * 2965 * @conf_tx: Configure TX queue parameters (EDCF (aifs, cw_min, cw_max), 2966 * bursting) for a hardware TX queue. 2967 * Returns a negative error code on failure. 2968 * The callback can sleep. 2969 * 2970 * @get_tsf: Get the current TSF timer value from firmware/hardware. Currently, 2971 * this is only used for IBSS mode BSSID merging and debugging. Is not a 2972 * required function. 2973 * The callback can sleep. 2974 * 2975 * @set_tsf: Set the TSF timer to the specified value in the firmware/hardware. 2976 * Currently, this is only used for IBSS mode debugging. Is not a 2977 * required function. 2978 * The callback can sleep. 2979 * 2980 * @reset_tsf: Reset the TSF timer and allow firmware/hardware to synchronize 2981 * with other STAs in the IBSS. This is only used in IBSS mode. This 2982 * function is optional if the firmware/hardware takes full care of 2983 * TSF synchronization. 2984 * The callback can sleep. 2985 * 2986 * @tx_last_beacon: Determine whether the last IBSS beacon was sent by us. 2987 * This is needed only for IBSS mode and the result of this function is 2988 * used to determine whether to reply to Probe Requests. 2989 * Returns non-zero if this device sent the last beacon. 2990 * The callback can sleep. 2991 * 2992 * @ampdu_action: Perform a certain A-MPDU action 2993 * The RA/TID combination determines the destination and TID we want 2994 * the ampdu action to be performed for. The action is defined through 2995 * ieee80211_ampdu_mlme_action. Starting sequence number (@ssn) 2996 * is the first frame we expect to perform the action on. Notice 2997 * that TX/RX_STOP can pass NULL for this parameter. 2998 * The @buf_size parameter is only valid when the action is set to 2999 * %IEEE80211_AMPDU_TX_OPERATIONAL and indicates the peer's reorder 3000 * buffer size (number of subframes) for this session -- the driver 3001 * may neither send aggregates containing more subframes than this 3002 * nor send aggregates in a way that lost frames would exceed the 3003 * buffer size. If just limiting the aggregate size, this would be 3004 * possible with a buf_size of 8: 3005 * - TX: 1.....7 3006 * - RX: 2....7 (lost frame #1) 3007 * - TX: 8..1... 3008 * which is invalid since #1 was now re-transmitted well past the 3009 * buffer size of 8. Correct ways to retransmit #1 would be: 3010 * - TX: 1 or 18 or 81 3011 * Even "189" would be wrong since 1 could be lost again. 3012 * 3013 * Returns a negative error code on failure. 3014 * The callback can sleep. 3015 * 3016 * @get_survey: Return per-channel survey information 3017 * 3018 * @rfkill_poll: Poll rfkill hardware state. If you need this, you also 3019 * need to set wiphy->rfkill_poll to %true before registration, 3020 * and need to call wiphy_rfkill_set_hw_state() in the callback. 3021 * The callback can sleep. 3022 * 3023 * @set_coverage_class: Set slot time for given coverage class as specified 3024 * in IEEE 802.11-2007 section 17.3.8.6 and modify ACK timeout 3025 * accordingly; coverage class equals to -1 to enable ACK timeout 3026 * estimation algorithm (dynack). To disable dynack set valid value for 3027 * coverage class. This callback is not required and may sleep. 3028 * 3029 * @testmode_cmd: Implement a cfg80211 test mode command. The passed @vif may 3030 * be %NULL. The callback can sleep. 3031 * @testmode_dump: Implement a cfg80211 test mode dump. The callback can sleep. 3032 * 3033 * @flush: Flush all pending frames from the hardware queue, making sure 3034 * that the hardware queues are empty. The @queues parameter is a bitmap 3035 * of queues to flush, which is useful if different virtual interfaces 3036 * use different hardware queues; it may also indicate all queues. 3037 * If the parameter @drop is set to %true, pending frames may be dropped. 3038 * Note that vif can be NULL. 3039 * The callback can sleep. 3040 * 3041 * @channel_switch: Drivers that need (or want) to offload the channel 3042 * switch operation for CSAs received from the AP may implement this 3043 * callback. They must then call ieee80211_chswitch_done() to indicate 3044 * completion of the channel switch. 3045 * 3046 * @set_antenna: Set antenna configuration (tx_ant, rx_ant) on the device. 3047 * Parameters are bitmaps of allowed antennas to use for TX/RX. Drivers may 3048 * reject TX/RX mask combinations they cannot support by returning -EINVAL 3049 * (also see nl80211.h @NL80211_ATTR_WIPHY_ANTENNA_TX). 3050 * 3051 * @get_antenna: Get current antenna configuration from device (tx_ant, rx_ant). 3052 * 3053 * @remain_on_channel: Starts an off-channel period on the given channel, must 3054 * call back to ieee80211_ready_on_channel() when on that channel. Note 3055 * that normal channel traffic is not stopped as this is intended for hw 3056 * offload. Frames to transmit on the off-channel channel are transmitted 3057 * normally except for the %IEEE80211_TX_CTL_TX_OFFCHAN flag. When the 3058 * duration (which will always be non-zero) expires, the driver must call 3059 * ieee80211_remain_on_channel_expired(). 3060 * Note that this callback may be called while the device is in IDLE and 3061 * must be accepted in this case. 3062 * This callback may sleep. 3063 * @cancel_remain_on_channel: Requests that an ongoing off-channel period is 3064 * aborted before it expires. This callback may sleep. 3065 * 3066 * @set_ringparam: Set tx and rx ring sizes. 3067 * 3068 * @get_ringparam: Get tx and rx ring current and maximum sizes. 3069 * 3070 * @tx_frames_pending: Check if there is any pending frame in the hardware 3071 * queues before entering power save. 3072 * 3073 * @set_bitrate_mask: Set a mask of rates to be used for rate control selection 3074 * when transmitting a frame. Currently only legacy rates are handled. 3075 * The callback can sleep. 3076 * @event_callback: Notify driver about any event in mac80211. See 3077 * &enum ieee80211_event_type for the different types. 3078 * The callback must be atomic. 3079 * 3080 * @release_buffered_frames: Release buffered frames according to the given 3081 * parameters. In the case where the driver buffers some frames for 3082 * sleeping stations mac80211 will use this callback to tell the driver 3083 * to release some frames, either for PS-poll or uAPSD. 3084 * Note that if the @more_data parameter is %false the driver must check 3085 * if there are more frames on the given TIDs, and if there are more than 3086 * the frames being released then it must still set the more-data bit in 3087 * the frame. If the @more_data parameter is %true, then of course the 3088 * more-data bit must always be set. 3089 * The @tids parameter tells the driver which TIDs to release frames 3090 * from, for PS-poll it will always have only a single bit set. 3091 * In the case this is used for a PS-poll initiated release, the 3092 * @num_frames parameter will always be 1 so code can be shared. In 3093 * this case the driver must also set %IEEE80211_TX_STATUS_EOSP flag 3094 * on the TX status (and must report TX status) so that the PS-poll 3095 * period is properly ended. This is used to avoid sending multiple 3096 * responses for a retried PS-poll frame. 3097 * In the case this is used for uAPSD, the @num_frames parameter may be 3098 * bigger than one, but the driver may send fewer frames (it must send 3099 * at least one, however). In this case it is also responsible for 3100 * setting the EOSP flag in the QoS header of the frames. Also, when the 3101 * service period ends, the driver must set %IEEE80211_TX_STATUS_EOSP 3102 * on the last frame in the SP. Alternatively, it may call the function 3103 * ieee80211_sta_eosp() to inform mac80211 of the end of the SP. 3104 * This callback must be atomic. 3105 * @allow_buffered_frames: Prepare device to allow the given number of frames 3106 * to go out to the given station. The frames will be sent by mac80211 3107 * via the usual TX path after this call. The TX information for frames 3108 * released will also have the %IEEE80211_TX_CTL_NO_PS_BUFFER flag set 3109 * and the last one will also have %IEEE80211_TX_STATUS_EOSP set. In case 3110 * frames from multiple TIDs are released and the driver might reorder 3111 * them between the TIDs, it must set the %IEEE80211_TX_STATUS_EOSP flag 3112 * on the last frame and clear it on all others and also handle the EOSP 3113 * bit in the QoS header correctly. Alternatively, it can also call the 3114 * ieee80211_sta_eosp() function. 3115 * The @tids parameter is a bitmap and tells the driver which TIDs the 3116 * frames will be on; it will at most have two bits set. 3117 * This callback must be atomic. 3118 * 3119 * @get_et_sset_count: Ethtool API to get string-set count. 3120 * 3121 * @get_et_stats: Ethtool API to get a set of u64 stats. 3122 * 3123 * @get_et_strings: Ethtool API to get a set of strings to describe stats 3124 * and perhaps other supported types of ethtool data-sets. 3125 * 3126 * @mgd_prepare_tx: Prepare for transmitting a management frame for association 3127 * before associated. In multi-channel scenarios, a virtual interface is 3128 * bound to a channel before it is associated, but as it isn't associated 3129 * yet it need not necessarily be given airtime, in particular since any 3130 * transmission to a P2P GO needs to be synchronized against the GO's 3131 * powersave state. mac80211 will call this function before transmitting a 3132 * management frame prior to having successfully associated to allow the 3133 * driver to give it channel time for the transmission, to get a response 3134 * and to be able to synchronize with the GO. 3135 * The callback will be called before each transmission and upon return 3136 * mac80211 will transmit the frame right away. 3137 * The callback is optional and can (should!) sleep. 3138 * 3139 * @mgd_protect_tdls_discover: Protect a TDLS discovery session. After sending 3140 * a TDLS discovery-request, we expect a reply to arrive on the AP's 3141 * channel. We must stay on the channel (no PSM, scan, etc.), since a TDLS 3142 * setup-response is a direct packet not buffered by the AP. 3143 * mac80211 will call this function just before the transmission of a TDLS 3144 * discovery-request. The recommended period of protection is at least 3145 * 2 * (DTIM period). 3146 * The callback is optional and can sleep. 3147 * 3148 * @add_chanctx: Notifies device driver about new channel context creation. 3149 * @remove_chanctx: Notifies device driver about channel context destruction. 3150 * @change_chanctx: Notifies device driver about channel context changes that 3151 * may happen when combining different virtual interfaces on the same 3152 * channel context with different settings 3153 * @assign_vif_chanctx: Notifies device driver about channel context being bound 3154 * to vif. Possible use is for hw queue remapping. 3155 * @unassign_vif_chanctx: Notifies device driver about channel context being 3156 * unbound from vif. 3157 * @switch_vif_chanctx: switch a number of vifs from one chanctx to 3158 * another, as specified in the list of 3159 * @ieee80211_vif_chanctx_switch passed to the driver, according 3160 * to the mode defined in &ieee80211_chanctx_switch_mode. 3161 * 3162 * @start_ap: Start operation on the AP interface, this is called after all the 3163 * information in bss_conf is set and beacon can be retrieved. A channel 3164 * context is bound before this is called. Note that if the driver uses 3165 * software scan or ROC, this (and @stop_ap) isn't called when the AP is 3166 * just "paused" for scanning/ROC, which is indicated by the beacon being 3167 * disabled/enabled via @bss_info_changed. 3168 * @stop_ap: Stop operation on the AP interface. 3169 * 3170 * @reconfig_complete: Called after a call to ieee80211_restart_hw() and 3171 * during resume, when the reconfiguration has completed. 3172 * This can help the driver implement the reconfiguration step (and 3173 * indicate mac80211 is ready to receive frames). 3174 * This callback may sleep. 3175 * 3176 * @ipv6_addr_change: IPv6 address assignment on the given interface changed. 3177 * Currently, this is only called for managed or P2P client interfaces. 3178 * This callback is optional; it must not sleep. 3179 * 3180 * @channel_switch_beacon: Starts a channel switch to a new channel. 3181 * Beacons are modified to include CSA or ECSA IEs before calling this 3182 * function. The corresponding count fields in these IEs must be 3183 * decremented, and when they reach 1 the driver must call 3184 * ieee80211_csa_finish(). Drivers which use ieee80211_beacon_get() 3185 * get the csa counter decremented by mac80211, but must check if it is 3186 * 1 using ieee80211_csa_is_complete() after the beacon has been 3187 * transmitted and then call ieee80211_csa_finish(). 3188 * If the CSA count starts as zero or 1, this function will not be called, 3189 * since there won't be any time to beacon before the switch anyway. 3190 * @pre_channel_switch: This is an optional callback that is called 3191 * before a channel switch procedure is started (ie. when a STA 3192 * gets a CSA or an userspace initiated channel-switch), allowing 3193 * the driver to prepare for the channel switch. 3194 * @post_channel_switch: This is an optional callback that is called 3195 * after a channel switch procedure is completed, allowing the 3196 * driver to go back to a normal configuration. 3197 * 3198 * @join_ibss: Join an IBSS (on an IBSS interface); this is called after all 3199 * information in bss_conf is set up and the beacon can be retrieved. A 3200 * channel context is bound before this is called. 3201 * @leave_ibss: Leave the IBSS again. 3202 * 3203 * @get_expected_throughput: extract the expected throughput towards the 3204 * specified station. The returned value is expressed in Kbps. It returns 0 3205 * if the RC algorithm does not have proper data to provide. 3206 * 3207 * @get_txpower: get current maximum tx power (in dBm) based on configuration 3208 * and hardware limits. 3209 * 3210 * @tdls_channel_switch: Start channel-switching with a TDLS peer. The driver 3211 * is responsible for continually initiating channel-switching operations 3212 * and returning to the base channel for communication with the AP. The 3213 * driver receives a channel-switch request template and the location of 3214 * the switch-timing IE within the template as part of the invocation. 3215 * The template is valid only within the call, and the driver can 3216 * optionally copy the skb for further re-use. 3217 * @tdls_cancel_channel_switch: Stop channel-switching with a TDLS peer. Both 3218 * peers must be on the base channel when the call completes. 3219 * @tdls_recv_channel_switch: a TDLS channel-switch related frame (request or 3220 * response) has been received from a remote peer. The driver gets 3221 * parameters parsed from the incoming frame and may use them to continue 3222 * an ongoing channel-switch operation. In addition, a channel-switch 3223 * response template is provided, together with the location of the 3224 * switch-timing IE within the template. The skb can only be used within 3225 * the function call. 3226 * 3227 * @wake_tx_queue: Called when new packets have been added to the queue. 3228 */ 3229 struct ieee80211_ops { 3230 void (*tx)(struct ieee80211_hw *hw, 3231 struct ieee80211_tx_control *control, 3232 struct sk_buff *skb); 3233 int (*start)(struct ieee80211_hw *hw); 3234 void (*stop)(struct ieee80211_hw *hw); 3235 #ifdef CONFIG_PM 3236 int (*suspend)(struct ieee80211_hw *hw, struct cfg80211_wowlan *wowlan); 3237 int (*resume)(struct ieee80211_hw *hw); 3238 void (*set_wakeup)(struct ieee80211_hw *hw, bool enabled); 3239 #endif 3240 int (*add_interface)(struct ieee80211_hw *hw, 3241 struct ieee80211_vif *vif); 3242 int (*change_interface)(struct ieee80211_hw *hw, 3243 struct ieee80211_vif *vif, 3244 enum nl80211_iftype new_type, bool p2p); 3245 void (*remove_interface)(struct ieee80211_hw *hw, 3246 struct ieee80211_vif *vif); 3247 int (*config)(struct ieee80211_hw *hw, u32 changed); 3248 void (*bss_info_changed)(struct ieee80211_hw *hw, 3249 struct ieee80211_vif *vif, 3250 struct ieee80211_bss_conf *info, 3251 u32 changed); 3252 3253 int (*start_ap)(struct ieee80211_hw *hw, struct ieee80211_vif *vif); 3254 void (*stop_ap)(struct ieee80211_hw *hw, struct ieee80211_vif *vif); 3255 3256 u64 (*prepare_multicast)(struct ieee80211_hw *hw, 3257 struct netdev_hw_addr_list *mc_list); 3258 void (*configure_filter)(struct ieee80211_hw *hw, 3259 unsigned int changed_flags, 3260 unsigned int *total_flags, 3261 u64 multicast); 3262 int (*set_tim)(struct ieee80211_hw *hw, struct ieee80211_sta *sta, 3263 bool set); 3264 int (*set_key)(struct ieee80211_hw *hw, enum set_key_cmd cmd, 3265 struct ieee80211_vif *vif, struct ieee80211_sta *sta, 3266 struct ieee80211_key_conf *key); 3267 void (*update_tkip_key)(struct ieee80211_hw *hw, 3268 struct ieee80211_vif *vif, 3269 struct ieee80211_key_conf *conf, 3270 struct ieee80211_sta *sta, 3271 u32 iv32, u16 *phase1key); 3272 void (*set_rekey_data)(struct ieee80211_hw *hw, 3273 struct ieee80211_vif *vif, 3274 struct cfg80211_gtk_rekey_data *data); 3275 void (*set_default_unicast_key)(struct ieee80211_hw *hw, 3276 struct ieee80211_vif *vif, int idx); 3277 int (*hw_scan)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 3278 struct ieee80211_scan_request *req); 3279 void (*cancel_hw_scan)(struct ieee80211_hw *hw, 3280 struct ieee80211_vif *vif); 3281 int (*sched_scan_start)(struct ieee80211_hw *hw, 3282 struct ieee80211_vif *vif, 3283 struct cfg80211_sched_scan_request *req, 3284 struct ieee80211_scan_ies *ies); 3285 int (*sched_scan_stop)(struct ieee80211_hw *hw, 3286 struct ieee80211_vif *vif); 3287 void (*sw_scan_start)(struct ieee80211_hw *hw, 3288 struct ieee80211_vif *vif, 3289 const u8 *mac_addr); 3290 void (*sw_scan_complete)(struct ieee80211_hw *hw, 3291 struct ieee80211_vif *vif); 3292 int (*get_stats)(struct ieee80211_hw *hw, 3293 struct ieee80211_low_level_stats *stats); 3294 void (*get_key_seq)(struct ieee80211_hw *hw, 3295 struct ieee80211_key_conf *key, 3296 struct ieee80211_key_seq *seq); 3297 int (*set_frag_threshold)(struct ieee80211_hw *hw, u32 value); 3298 int (*set_rts_threshold)(struct ieee80211_hw *hw, u32 value); 3299 int (*sta_add)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 3300 struct ieee80211_sta *sta); 3301 int (*sta_remove)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 3302 struct ieee80211_sta *sta); 3303 #ifdef CONFIG_MAC80211_DEBUGFS 3304 void (*sta_add_debugfs)(struct ieee80211_hw *hw, 3305 struct ieee80211_vif *vif, 3306 struct ieee80211_sta *sta, 3307 struct dentry *dir); 3308 void (*sta_remove_debugfs)(struct ieee80211_hw *hw, 3309 struct ieee80211_vif *vif, 3310 struct ieee80211_sta *sta, 3311 struct dentry *dir); 3312 #endif 3313 void (*sta_notify)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 3314 enum sta_notify_cmd, struct ieee80211_sta *sta); 3315 int (*sta_state)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 3316 struct ieee80211_sta *sta, 3317 enum ieee80211_sta_state old_state, 3318 enum ieee80211_sta_state new_state); 3319 void (*sta_pre_rcu_remove)(struct ieee80211_hw *hw, 3320 struct ieee80211_vif *vif, 3321 struct ieee80211_sta *sta); 3322 void (*sta_rc_update)(struct ieee80211_hw *hw, 3323 struct ieee80211_vif *vif, 3324 struct ieee80211_sta *sta, 3325 u32 changed); 3326 void (*sta_rate_tbl_update)(struct ieee80211_hw *hw, 3327 struct ieee80211_vif *vif, 3328 struct ieee80211_sta *sta); 3329 void (*sta_statistics)(struct ieee80211_hw *hw, 3330 struct ieee80211_vif *vif, 3331 struct ieee80211_sta *sta, 3332 struct station_info *sinfo); 3333 int (*conf_tx)(struct ieee80211_hw *hw, 3334 struct ieee80211_vif *vif, u16 ac, 3335 const struct ieee80211_tx_queue_params *params); 3336 u64 (*get_tsf)(struct ieee80211_hw *hw, struct ieee80211_vif *vif); 3337 void (*set_tsf)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 3338 u64 tsf); 3339 void (*reset_tsf)(struct ieee80211_hw *hw, struct ieee80211_vif *vif); 3340 int (*tx_last_beacon)(struct ieee80211_hw *hw); 3341 int (*ampdu_action)(struct ieee80211_hw *hw, 3342 struct ieee80211_vif *vif, 3343 enum ieee80211_ampdu_mlme_action action, 3344 struct ieee80211_sta *sta, u16 tid, u16 *ssn, 3345 u8 buf_size); 3346 int (*get_survey)(struct ieee80211_hw *hw, int idx, 3347 struct survey_info *survey); 3348 void (*rfkill_poll)(struct ieee80211_hw *hw); 3349 void (*set_coverage_class)(struct ieee80211_hw *hw, s16 coverage_class); 3350 #ifdef CONFIG_NL80211_TESTMODE 3351 int (*testmode_cmd)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 3352 void *data, int len); 3353 int (*testmode_dump)(struct ieee80211_hw *hw, struct sk_buff *skb, 3354 struct netlink_callback *cb, 3355 void *data, int len); 3356 #endif 3357 void (*flush)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 3358 u32 queues, bool drop); 3359 void (*channel_switch)(struct ieee80211_hw *hw, 3360 struct ieee80211_vif *vif, 3361 struct ieee80211_channel_switch *ch_switch); 3362 int (*set_antenna)(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant); 3363 int (*get_antenna)(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant); 3364 3365 int (*remain_on_channel)(struct ieee80211_hw *hw, 3366 struct ieee80211_vif *vif, 3367 struct ieee80211_channel *chan, 3368 int duration, 3369 enum ieee80211_roc_type type); 3370 int (*cancel_remain_on_channel)(struct ieee80211_hw *hw); 3371 int (*set_ringparam)(struct ieee80211_hw *hw, u32 tx, u32 rx); 3372 void (*get_ringparam)(struct ieee80211_hw *hw, 3373 u32 *tx, u32 *tx_max, u32 *rx, u32 *rx_max); 3374 bool (*tx_frames_pending)(struct ieee80211_hw *hw); 3375 int (*set_bitrate_mask)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 3376 const struct cfg80211_bitrate_mask *mask); 3377 void (*event_callback)(struct ieee80211_hw *hw, 3378 struct ieee80211_vif *vif, 3379 const struct ieee80211_event *event); 3380 3381 void (*allow_buffered_frames)(struct ieee80211_hw *hw, 3382 struct ieee80211_sta *sta, 3383 u16 tids, int num_frames, 3384 enum ieee80211_frame_release_type reason, 3385 bool more_data); 3386 void (*release_buffered_frames)(struct ieee80211_hw *hw, 3387 struct ieee80211_sta *sta, 3388 u16 tids, int num_frames, 3389 enum ieee80211_frame_release_type reason, 3390 bool more_data); 3391 3392 int (*get_et_sset_count)(struct ieee80211_hw *hw, 3393 struct ieee80211_vif *vif, int sset); 3394 void (*get_et_stats)(struct ieee80211_hw *hw, 3395 struct ieee80211_vif *vif, 3396 struct ethtool_stats *stats, u64 *data); 3397 void (*get_et_strings)(struct ieee80211_hw *hw, 3398 struct ieee80211_vif *vif, 3399 u32 sset, u8 *data); 3400 3401 void (*mgd_prepare_tx)(struct ieee80211_hw *hw, 3402 struct ieee80211_vif *vif); 3403 3404 void (*mgd_protect_tdls_discover)(struct ieee80211_hw *hw, 3405 struct ieee80211_vif *vif); 3406 3407 int (*add_chanctx)(struct ieee80211_hw *hw, 3408 struct ieee80211_chanctx_conf *ctx); 3409 void (*remove_chanctx)(struct ieee80211_hw *hw, 3410 struct ieee80211_chanctx_conf *ctx); 3411 void (*change_chanctx)(struct ieee80211_hw *hw, 3412 struct ieee80211_chanctx_conf *ctx, 3413 u32 changed); 3414 int (*assign_vif_chanctx)(struct ieee80211_hw *hw, 3415 struct ieee80211_vif *vif, 3416 struct ieee80211_chanctx_conf *ctx); 3417 void (*unassign_vif_chanctx)(struct ieee80211_hw *hw, 3418 struct ieee80211_vif *vif, 3419 struct ieee80211_chanctx_conf *ctx); 3420 int (*switch_vif_chanctx)(struct ieee80211_hw *hw, 3421 struct ieee80211_vif_chanctx_switch *vifs, 3422 int n_vifs, 3423 enum ieee80211_chanctx_switch_mode mode); 3424 3425 void (*reconfig_complete)(struct ieee80211_hw *hw, 3426 enum ieee80211_reconfig_type reconfig_type); 3427 3428 #if IS_ENABLED(CONFIG_IPV6) 3429 void (*ipv6_addr_change)(struct ieee80211_hw *hw, 3430 struct ieee80211_vif *vif, 3431 struct inet6_dev *idev); 3432 #endif 3433 void (*channel_switch_beacon)(struct ieee80211_hw *hw, 3434 struct ieee80211_vif *vif, 3435 struct cfg80211_chan_def *chandef); 3436 int (*pre_channel_switch)(struct ieee80211_hw *hw, 3437 struct ieee80211_vif *vif, 3438 struct ieee80211_channel_switch *ch_switch); 3439 3440 int (*post_channel_switch)(struct ieee80211_hw *hw, 3441 struct ieee80211_vif *vif); 3442 3443 int (*join_ibss)(struct ieee80211_hw *hw, struct ieee80211_vif *vif); 3444 void (*leave_ibss)(struct ieee80211_hw *hw, struct ieee80211_vif *vif); 3445 u32 (*get_expected_throughput)(struct ieee80211_sta *sta); 3446 int (*get_txpower)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 3447 int *dbm); 3448 3449 int (*tdls_channel_switch)(struct ieee80211_hw *hw, 3450 struct ieee80211_vif *vif, 3451 struct ieee80211_sta *sta, u8 oper_class, 3452 struct cfg80211_chan_def *chandef, 3453 struct sk_buff *tmpl_skb, u32 ch_sw_tm_ie); 3454 void (*tdls_cancel_channel_switch)(struct ieee80211_hw *hw, 3455 struct ieee80211_vif *vif, 3456 struct ieee80211_sta *sta); 3457 void (*tdls_recv_channel_switch)(struct ieee80211_hw *hw, 3458 struct ieee80211_vif *vif, 3459 struct ieee80211_tdls_ch_sw_params *params); 3460 3461 void (*wake_tx_queue)(struct ieee80211_hw *hw, 3462 struct ieee80211_txq *txq); 3463 }; 3464 3465 /** 3466 * ieee80211_alloc_hw_nm - Allocate a new hardware device 3467 * 3468 * This must be called once for each hardware device. The returned pointer 3469 * must be used to refer to this device when calling other functions. 3470 * mac80211 allocates a private data area for the driver pointed to by 3471 * @priv in &struct ieee80211_hw, the size of this area is given as 3472 * @priv_data_len. 3473 * 3474 * @priv_data_len: length of private data 3475 * @ops: callbacks for this device 3476 * @requested_name: Requested name for this device. 3477 * NULL is valid value, and means use the default naming (phy%d) 3478 * 3479 * Return: A pointer to the new hardware device, or %NULL on error. 3480 */ 3481 struct ieee80211_hw *ieee80211_alloc_hw_nm(size_t priv_data_len, 3482 const struct ieee80211_ops *ops, 3483 const char *requested_name); 3484 3485 /** 3486 * ieee80211_alloc_hw - Allocate a new hardware device 3487 * 3488 * This must be called once for each hardware device. The returned pointer 3489 * must be used to refer to this device when calling other functions. 3490 * mac80211 allocates a private data area for the driver pointed to by 3491 * @priv in &struct ieee80211_hw, the size of this area is given as 3492 * @priv_data_len. 3493 * 3494 * @priv_data_len: length of private data 3495 * @ops: callbacks for this device 3496 * 3497 * Return: A pointer to the new hardware device, or %NULL on error. 3498 */ 3499 static inline 3500 struct ieee80211_hw *ieee80211_alloc_hw(size_t priv_data_len, 3501 const struct ieee80211_ops *ops) 3502 { 3503 return ieee80211_alloc_hw_nm(priv_data_len, ops, NULL); 3504 } 3505 3506 /** 3507 * ieee80211_register_hw - Register hardware device 3508 * 3509 * You must call this function before any other functions in 3510 * mac80211. Note that before a hardware can be registered, you 3511 * need to fill the contained wiphy's information. 3512 * 3513 * @hw: the device to register as returned by ieee80211_alloc_hw() 3514 * 3515 * Return: 0 on success. An error code otherwise. 3516 */ 3517 int ieee80211_register_hw(struct ieee80211_hw *hw); 3518 3519 /** 3520 * struct ieee80211_tpt_blink - throughput blink description 3521 * @throughput: throughput in Kbit/sec 3522 * @blink_time: blink time in milliseconds 3523 * (full cycle, ie. one off + one on period) 3524 */ 3525 struct ieee80211_tpt_blink { 3526 int throughput; 3527 int blink_time; 3528 }; 3529 3530 /** 3531 * enum ieee80211_tpt_led_trigger_flags - throughput trigger flags 3532 * @IEEE80211_TPT_LEDTRIG_FL_RADIO: enable blinking with radio 3533 * @IEEE80211_TPT_LEDTRIG_FL_WORK: enable blinking when working 3534 * @IEEE80211_TPT_LEDTRIG_FL_CONNECTED: enable blinking when at least one 3535 * interface is connected in some way, including being an AP 3536 */ 3537 enum ieee80211_tpt_led_trigger_flags { 3538 IEEE80211_TPT_LEDTRIG_FL_RADIO = BIT(0), 3539 IEEE80211_TPT_LEDTRIG_FL_WORK = BIT(1), 3540 IEEE80211_TPT_LEDTRIG_FL_CONNECTED = BIT(2), 3541 }; 3542 3543 #ifdef CONFIG_MAC80211_LEDS 3544 const char *__ieee80211_get_tx_led_name(struct ieee80211_hw *hw); 3545 const char *__ieee80211_get_rx_led_name(struct ieee80211_hw *hw); 3546 const char *__ieee80211_get_assoc_led_name(struct ieee80211_hw *hw); 3547 const char *__ieee80211_get_radio_led_name(struct ieee80211_hw *hw); 3548 const char * 3549 __ieee80211_create_tpt_led_trigger(struct ieee80211_hw *hw, 3550 unsigned int flags, 3551 const struct ieee80211_tpt_blink *blink_table, 3552 unsigned int blink_table_len); 3553 #endif 3554 /** 3555 * ieee80211_get_tx_led_name - get name of TX LED 3556 * 3557 * mac80211 creates a transmit LED trigger for each wireless hardware 3558 * that can be used to drive LEDs if your driver registers a LED device. 3559 * This function returns the name (or %NULL if not configured for LEDs) 3560 * of the trigger so you can automatically link the LED device. 3561 * 3562 * @hw: the hardware to get the LED trigger name for 3563 * 3564 * Return: The name of the LED trigger. %NULL if not configured for LEDs. 3565 */ 3566 static inline const char *ieee80211_get_tx_led_name(struct ieee80211_hw *hw) 3567 { 3568 #ifdef CONFIG_MAC80211_LEDS 3569 return __ieee80211_get_tx_led_name(hw); 3570 #else 3571 return NULL; 3572 #endif 3573 } 3574 3575 /** 3576 * ieee80211_get_rx_led_name - get name of RX LED 3577 * 3578 * mac80211 creates a receive LED trigger for each wireless hardware 3579 * that can be used to drive LEDs if your driver registers a LED device. 3580 * This function returns the name (or %NULL if not configured for LEDs) 3581 * of the trigger so you can automatically link the LED device. 3582 * 3583 * @hw: the hardware to get the LED trigger name for 3584 * 3585 * Return: The name of the LED trigger. %NULL if not configured for LEDs. 3586 */ 3587 static inline const char *ieee80211_get_rx_led_name(struct ieee80211_hw *hw) 3588 { 3589 #ifdef CONFIG_MAC80211_LEDS 3590 return __ieee80211_get_rx_led_name(hw); 3591 #else 3592 return NULL; 3593 #endif 3594 } 3595 3596 /** 3597 * ieee80211_get_assoc_led_name - get name of association LED 3598 * 3599 * mac80211 creates a association LED trigger for each wireless hardware 3600 * that can be used to drive LEDs if your driver registers a LED device. 3601 * This function returns the name (or %NULL if not configured for LEDs) 3602 * of the trigger so you can automatically link the LED device. 3603 * 3604 * @hw: the hardware to get the LED trigger name for 3605 * 3606 * Return: The name of the LED trigger. %NULL if not configured for LEDs. 3607 */ 3608 static inline const char *ieee80211_get_assoc_led_name(struct ieee80211_hw *hw) 3609 { 3610 #ifdef CONFIG_MAC80211_LEDS 3611 return __ieee80211_get_assoc_led_name(hw); 3612 #else 3613 return NULL; 3614 #endif 3615 } 3616 3617 /** 3618 * ieee80211_get_radio_led_name - get name of radio LED 3619 * 3620 * mac80211 creates a radio change LED trigger for each wireless hardware 3621 * that can be used to drive LEDs if your driver registers a LED device. 3622 * This function returns the name (or %NULL if not configured for LEDs) 3623 * of the trigger so you can automatically link the LED device. 3624 * 3625 * @hw: the hardware to get the LED trigger name for 3626 * 3627 * Return: The name of the LED trigger. %NULL if not configured for LEDs. 3628 */ 3629 static inline const char *ieee80211_get_radio_led_name(struct ieee80211_hw *hw) 3630 { 3631 #ifdef CONFIG_MAC80211_LEDS 3632 return __ieee80211_get_radio_led_name(hw); 3633 #else 3634 return NULL; 3635 #endif 3636 } 3637 3638 /** 3639 * ieee80211_create_tpt_led_trigger - create throughput LED trigger 3640 * @hw: the hardware to create the trigger for 3641 * @flags: trigger flags, see &enum ieee80211_tpt_led_trigger_flags 3642 * @blink_table: the blink table -- needs to be ordered by throughput 3643 * @blink_table_len: size of the blink table 3644 * 3645 * Return: %NULL (in case of error, or if no LED triggers are 3646 * configured) or the name of the new trigger. 3647 * 3648 * Note: This function must be called before ieee80211_register_hw(). 3649 */ 3650 static inline const char * 3651 ieee80211_create_tpt_led_trigger(struct ieee80211_hw *hw, unsigned int flags, 3652 const struct ieee80211_tpt_blink *blink_table, 3653 unsigned int blink_table_len) 3654 { 3655 #ifdef CONFIG_MAC80211_LEDS 3656 return __ieee80211_create_tpt_led_trigger(hw, flags, blink_table, 3657 blink_table_len); 3658 #else 3659 return NULL; 3660 #endif 3661 } 3662 3663 /** 3664 * ieee80211_unregister_hw - Unregister a hardware device 3665 * 3666 * This function instructs mac80211 to free allocated resources 3667 * and unregister netdevices from the networking subsystem. 3668 * 3669 * @hw: the hardware to unregister 3670 */ 3671 void ieee80211_unregister_hw(struct ieee80211_hw *hw); 3672 3673 /** 3674 * ieee80211_free_hw - free hardware descriptor 3675 * 3676 * This function frees everything that was allocated, including the 3677 * private data for the driver. You must call ieee80211_unregister_hw() 3678 * before calling this function. 3679 * 3680 * @hw: the hardware to free 3681 */ 3682 void ieee80211_free_hw(struct ieee80211_hw *hw); 3683 3684 /** 3685 * ieee80211_restart_hw - restart hardware completely 3686 * 3687 * Call this function when the hardware was restarted for some reason 3688 * (hardware error, ...) and the driver is unable to restore its state 3689 * by itself. mac80211 assumes that at this point the driver/hardware 3690 * is completely uninitialised and stopped, it starts the process by 3691 * calling the ->start() operation. The driver will need to reset all 3692 * internal state that it has prior to calling this function. 3693 * 3694 * @hw: the hardware to restart 3695 */ 3696 void ieee80211_restart_hw(struct ieee80211_hw *hw); 3697 3698 /** 3699 * ieee80211_napi_add - initialize mac80211 NAPI context 3700 * @hw: the hardware to initialize the NAPI context on 3701 * @napi: the NAPI context to initialize 3702 * @napi_dev: dummy NAPI netdevice, here to not waste the space if the 3703 * driver doesn't use NAPI 3704 * @poll: poll function 3705 * @weight: default weight 3706 * 3707 * See also netif_napi_add(). 3708 */ 3709 void ieee80211_napi_add(struct ieee80211_hw *hw, struct napi_struct *napi, 3710 struct net_device *napi_dev, 3711 int (*poll)(struct napi_struct *, int), 3712 int weight); 3713 3714 /** 3715 * ieee80211_rx - receive frame 3716 * 3717 * Use this function to hand received frames to mac80211. The receive 3718 * buffer in @skb must start with an IEEE 802.11 header. In case of a 3719 * paged @skb is used, the driver is recommended to put the ieee80211 3720 * header of the frame on the linear part of the @skb to avoid memory 3721 * allocation and/or memcpy by the stack. 3722 * 3723 * This function may not be called in IRQ context. Calls to this function 3724 * for a single hardware must be synchronized against each other. Calls to 3725 * this function, ieee80211_rx_ni() and ieee80211_rx_irqsafe() may not be 3726 * mixed for a single hardware. Must not run concurrently with 3727 * ieee80211_tx_status() or ieee80211_tx_status_ni(). 3728 * 3729 * In process context use instead ieee80211_rx_ni(). 3730 * 3731 * @hw: the hardware this frame came in on 3732 * @skb: the buffer to receive, owned by mac80211 after this call 3733 */ 3734 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb); 3735 3736 /** 3737 * ieee80211_rx_irqsafe - receive frame 3738 * 3739 * Like ieee80211_rx() but can be called in IRQ context 3740 * (internally defers to a tasklet.) 3741 * 3742 * Calls to this function, ieee80211_rx() or ieee80211_rx_ni() may not 3743 * be mixed for a single hardware.Must not run concurrently with 3744 * ieee80211_tx_status() or ieee80211_tx_status_ni(). 3745 * 3746 * @hw: the hardware this frame came in on 3747 * @skb: the buffer to receive, owned by mac80211 after this call 3748 */ 3749 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb); 3750 3751 /** 3752 * ieee80211_rx_ni - receive frame (in process context) 3753 * 3754 * Like ieee80211_rx() but can be called in process context 3755 * (internally disables bottom halves). 3756 * 3757 * Calls to this function, ieee80211_rx() and ieee80211_rx_irqsafe() may 3758 * not be mixed for a single hardware. Must not run concurrently with 3759 * ieee80211_tx_status() or ieee80211_tx_status_ni(). 3760 * 3761 * @hw: the hardware this frame came in on 3762 * @skb: the buffer to receive, owned by mac80211 after this call 3763 */ 3764 static inline void ieee80211_rx_ni(struct ieee80211_hw *hw, 3765 struct sk_buff *skb) 3766 { 3767 local_bh_disable(); 3768 ieee80211_rx(hw, skb); 3769 local_bh_enable(); 3770 } 3771 3772 /** 3773 * ieee80211_sta_ps_transition - PS transition for connected sta 3774 * 3775 * When operating in AP mode with the %IEEE80211_HW_AP_LINK_PS 3776 * flag set, use this function to inform mac80211 about a connected station 3777 * entering/leaving PS mode. 3778 * 3779 * This function may not be called in IRQ context or with softirqs enabled. 3780 * 3781 * Calls to this function for a single hardware must be synchronized against 3782 * each other. 3783 * 3784 * @sta: currently connected sta 3785 * @start: start or stop PS 3786 * 3787 * Return: 0 on success. -EINVAL when the requested PS mode is already set. 3788 */ 3789 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start); 3790 3791 /** 3792 * ieee80211_sta_ps_transition_ni - PS transition for connected sta 3793 * (in process context) 3794 * 3795 * Like ieee80211_sta_ps_transition() but can be called in process context 3796 * (internally disables bottom halves). Concurrent call restriction still 3797 * applies. 3798 * 3799 * @sta: currently connected sta 3800 * @start: start or stop PS 3801 * 3802 * Return: Like ieee80211_sta_ps_transition(). 3803 */ 3804 static inline int ieee80211_sta_ps_transition_ni(struct ieee80211_sta *sta, 3805 bool start) 3806 { 3807 int ret; 3808 3809 local_bh_disable(); 3810 ret = ieee80211_sta_ps_transition(sta, start); 3811 local_bh_enable(); 3812 3813 return ret; 3814 } 3815 3816 /* 3817 * The TX headroom reserved by mac80211 for its own tx_status functions. 3818 * This is enough for the radiotap header. 3819 */ 3820 #define IEEE80211_TX_STATUS_HEADROOM 14 3821 3822 /** 3823 * ieee80211_sta_set_buffered - inform mac80211 about driver-buffered frames 3824 * @sta: &struct ieee80211_sta pointer for the sleeping station 3825 * @tid: the TID that has buffered frames 3826 * @buffered: indicates whether or not frames are buffered for this TID 3827 * 3828 * If a driver buffers frames for a powersave station instead of passing 3829 * them back to mac80211 for retransmission, the station may still need 3830 * to be told that there are buffered frames via the TIM bit. 3831 * 3832 * This function informs mac80211 whether or not there are frames that are 3833 * buffered in the driver for a given TID; mac80211 can then use this data 3834 * to set the TIM bit (NOTE: This may call back into the driver's set_tim 3835 * call! Beware of the locking!) 3836 * 3837 * If all frames are released to the station (due to PS-poll or uAPSD) 3838 * then the driver needs to inform mac80211 that there no longer are 3839 * frames buffered. However, when the station wakes up mac80211 assumes 3840 * that all buffered frames will be transmitted and clears this data, 3841 * drivers need to make sure they inform mac80211 about all buffered 3842 * frames on the sleep transition (sta_notify() with %STA_NOTIFY_SLEEP). 3843 * 3844 * Note that technically mac80211 only needs to know this per AC, not per 3845 * TID, but since driver buffering will inevitably happen per TID (since 3846 * it is related to aggregation) it is easier to make mac80211 map the 3847 * TID to the AC as required instead of keeping track in all drivers that 3848 * use this API. 3849 */ 3850 void ieee80211_sta_set_buffered(struct ieee80211_sta *sta, 3851 u8 tid, bool buffered); 3852 3853 /** 3854 * ieee80211_get_tx_rates - get the selected transmit rates for a packet 3855 * 3856 * Call this function in a driver with per-packet rate selection support 3857 * to combine the rate info in the packet tx info with the most recent 3858 * rate selection table for the station entry. 3859 * 3860 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 3861 * @sta: the receiver station to which this packet is sent. 3862 * @skb: the frame to be transmitted. 3863 * @dest: buffer for extracted rate/retry information 3864 * @max_rates: maximum number of rates to fetch 3865 */ 3866 void ieee80211_get_tx_rates(struct ieee80211_vif *vif, 3867 struct ieee80211_sta *sta, 3868 struct sk_buff *skb, 3869 struct ieee80211_tx_rate *dest, 3870 int max_rates); 3871 3872 /** 3873 * ieee80211_tx_status - transmit status callback 3874 * 3875 * Call this function for all transmitted frames after they have been 3876 * transmitted. It is permissible to not call this function for 3877 * multicast frames but this can affect statistics. 3878 * 3879 * This function may not be called in IRQ context. Calls to this function 3880 * for a single hardware must be synchronized against each other. Calls 3881 * to this function, ieee80211_tx_status_ni() and ieee80211_tx_status_irqsafe() 3882 * may not be mixed for a single hardware. Must not run concurrently with 3883 * ieee80211_rx() or ieee80211_rx_ni(). 3884 * 3885 * @hw: the hardware the frame was transmitted by 3886 * @skb: the frame that was transmitted, owned by mac80211 after this call 3887 */ 3888 void ieee80211_tx_status(struct ieee80211_hw *hw, 3889 struct sk_buff *skb); 3890 3891 /** 3892 * ieee80211_tx_status_noskb - transmit status callback without skb 3893 * 3894 * This function can be used as a replacement for ieee80211_tx_status 3895 * in drivers that cannot reliably map tx status information back to 3896 * specific skbs. 3897 * 3898 * Calls to this function for a single hardware must be synchronized 3899 * against each other. Calls to this function, ieee80211_tx_status_ni() 3900 * and ieee80211_tx_status_irqsafe() may not be mixed for a single hardware. 3901 * 3902 * @hw: the hardware the frame was transmitted by 3903 * @sta: the receiver station to which this packet is sent 3904 * (NULL for multicast packets) 3905 * @info: tx status information 3906 */ 3907 void ieee80211_tx_status_noskb(struct ieee80211_hw *hw, 3908 struct ieee80211_sta *sta, 3909 struct ieee80211_tx_info *info); 3910 3911 /** 3912 * ieee80211_tx_status_ni - transmit status callback (in process context) 3913 * 3914 * Like ieee80211_tx_status() but can be called in process context. 3915 * 3916 * Calls to this function, ieee80211_tx_status() and 3917 * ieee80211_tx_status_irqsafe() may not be mixed 3918 * for a single hardware. 3919 * 3920 * @hw: the hardware the frame was transmitted by 3921 * @skb: the frame that was transmitted, owned by mac80211 after this call 3922 */ 3923 static inline void ieee80211_tx_status_ni(struct ieee80211_hw *hw, 3924 struct sk_buff *skb) 3925 { 3926 local_bh_disable(); 3927 ieee80211_tx_status(hw, skb); 3928 local_bh_enable(); 3929 } 3930 3931 /** 3932 * ieee80211_tx_status_irqsafe - IRQ-safe transmit status callback 3933 * 3934 * Like ieee80211_tx_status() but can be called in IRQ context 3935 * (internally defers to a tasklet.) 3936 * 3937 * Calls to this function, ieee80211_tx_status() and 3938 * ieee80211_tx_status_ni() may not be mixed for a single hardware. 3939 * 3940 * @hw: the hardware the frame was transmitted by 3941 * @skb: the frame that was transmitted, owned by mac80211 after this call 3942 */ 3943 void ieee80211_tx_status_irqsafe(struct ieee80211_hw *hw, 3944 struct sk_buff *skb); 3945 3946 /** 3947 * ieee80211_report_low_ack - report non-responding station 3948 * 3949 * When operating in AP-mode, call this function to report a non-responding 3950 * connected STA. 3951 * 3952 * @sta: the non-responding connected sta 3953 * @num_packets: number of packets sent to @sta without a response 3954 */ 3955 void ieee80211_report_low_ack(struct ieee80211_sta *sta, u32 num_packets); 3956 3957 #define IEEE80211_MAX_CSA_COUNTERS_NUM 2 3958 3959 /** 3960 * struct ieee80211_mutable_offsets - mutable beacon offsets 3961 * @tim_offset: position of TIM element 3962 * @tim_length: size of TIM element 3963 * @csa_counter_offs: array of IEEE80211_MAX_CSA_COUNTERS_NUM offsets 3964 * to CSA counters. This array can contain zero values which 3965 * should be ignored. 3966 */ 3967 struct ieee80211_mutable_offsets { 3968 u16 tim_offset; 3969 u16 tim_length; 3970 3971 u16 csa_counter_offs[IEEE80211_MAX_CSA_COUNTERS_NUM]; 3972 }; 3973 3974 /** 3975 * ieee80211_beacon_get_template - beacon template generation function 3976 * @hw: pointer obtained from ieee80211_alloc_hw(). 3977 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 3978 * @offs: &struct ieee80211_mutable_offsets pointer to struct that will 3979 * receive the offsets that may be updated by the driver. 3980 * 3981 * If the driver implements beaconing modes, it must use this function to 3982 * obtain the beacon template. 3983 * 3984 * This function should be used if the beacon frames are generated by the 3985 * device, and then the driver must use the returned beacon as the template 3986 * The driver or the device are responsible to update the DTIM and, when 3987 * applicable, the CSA count. 3988 * 3989 * The driver is responsible for freeing the returned skb. 3990 * 3991 * Return: The beacon template. %NULL on error. 3992 */ 3993 struct sk_buff * 3994 ieee80211_beacon_get_template(struct ieee80211_hw *hw, 3995 struct ieee80211_vif *vif, 3996 struct ieee80211_mutable_offsets *offs); 3997 3998 /** 3999 * ieee80211_beacon_get_tim - beacon generation function 4000 * @hw: pointer obtained from ieee80211_alloc_hw(). 4001 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 4002 * @tim_offset: pointer to variable that will receive the TIM IE offset. 4003 * Set to 0 if invalid (in non-AP modes). 4004 * @tim_length: pointer to variable that will receive the TIM IE length, 4005 * (including the ID and length bytes!). 4006 * Set to 0 if invalid (in non-AP modes). 4007 * 4008 * If the driver implements beaconing modes, it must use this function to 4009 * obtain the beacon frame. 4010 * 4011 * If the beacon frames are generated by the host system (i.e., not in 4012 * hardware/firmware), the driver uses this function to get each beacon 4013 * frame from mac80211 -- it is responsible for calling this function exactly 4014 * once before the beacon is needed (e.g. based on hardware interrupt). 4015 * 4016 * The driver is responsible for freeing the returned skb. 4017 * 4018 * Return: The beacon template. %NULL on error. 4019 */ 4020 struct sk_buff *ieee80211_beacon_get_tim(struct ieee80211_hw *hw, 4021 struct ieee80211_vif *vif, 4022 u16 *tim_offset, u16 *tim_length); 4023 4024 /** 4025 * ieee80211_beacon_get - beacon generation function 4026 * @hw: pointer obtained from ieee80211_alloc_hw(). 4027 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 4028 * 4029 * See ieee80211_beacon_get_tim(). 4030 * 4031 * Return: See ieee80211_beacon_get_tim(). 4032 */ 4033 static inline struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw, 4034 struct ieee80211_vif *vif) 4035 { 4036 return ieee80211_beacon_get_tim(hw, vif, NULL, NULL); 4037 } 4038 4039 /** 4040 * ieee80211_csa_update_counter - request mac80211 to decrement the csa counter 4041 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 4042 * 4043 * The csa counter should be updated after each beacon transmission. 4044 * This function is called implicitly when 4045 * ieee80211_beacon_get/ieee80211_beacon_get_tim are called, however if the 4046 * beacon frames are generated by the device, the driver should call this 4047 * function after each beacon transmission to sync mac80211's csa counters. 4048 * 4049 * Return: new csa counter value 4050 */ 4051 u8 ieee80211_csa_update_counter(struct ieee80211_vif *vif); 4052 4053 /** 4054 * ieee80211_csa_finish - notify mac80211 about channel switch 4055 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 4056 * 4057 * After a channel switch announcement was scheduled and the counter in this 4058 * announcement hits 1, this function must be called by the driver to 4059 * notify mac80211 that the channel can be changed. 4060 */ 4061 void ieee80211_csa_finish(struct ieee80211_vif *vif); 4062 4063 /** 4064 * ieee80211_csa_is_complete - find out if counters reached 1 4065 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 4066 * 4067 * This function returns whether the channel switch counters reached zero. 4068 */ 4069 bool ieee80211_csa_is_complete(struct ieee80211_vif *vif); 4070 4071 4072 /** 4073 * ieee80211_proberesp_get - retrieve a Probe Response template 4074 * @hw: pointer obtained from ieee80211_alloc_hw(). 4075 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 4076 * 4077 * Creates a Probe Response template which can, for example, be uploaded to 4078 * hardware. The destination address should be set by the caller. 4079 * 4080 * Can only be called in AP mode. 4081 * 4082 * Return: The Probe Response template. %NULL on error. 4083 */ 4084 struct sk_buff *ieee80211_proberesp_get(struct ieee80211_hw *hw, 4085 struct ieee80211_vif *vif); 4086 4087 /** 4088 * ieee80211_pspoll_get - retrieve a PS Poll template 4089 * @hw: pointer obtained from ieee80211_alloc_hw(). 4090 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 4091 * 4092 * Creates a PS Poll a template which can, for example, uploaded to 4093 * hardware. The template must be updated after association so that correct 4094 * AID, BSSID and MAC address is used. 4095 * 4096 * Note: Caller (or hardware) is responsible for setting the 4097 * &IEEE80211_FCTL_PM bit. 4098 * 4099 * Return: The PS Poll template. %NULL on error. 4100 */ 4101 struct sk_buff *ieee80211_pspoll_get(struct ieee80211_hw *hw, 4102 struct ieee80211_vif *vif); 4103 4104 /** 4105 * ieee80211_nullfunc_get - retrieve a nullfunc template 4106 * @hw: pointer obtained from ieee80211_alloc_hw(). 4107 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 4108 * 4109 * Creates a Nullfunc template which can, for example, uploaded to 4110 * hardware. The template must be updated after association so that correct 4111 * BSSID and address is used. 4112 * 4113 * Note: Caller (or hardware) is responsible for setting the 4114 * &IEEE80211_FCTL_PM bit as well as Duration and Sequence Control fields. 4115 * 4116 * Return: The nullfunc template. %NULL on error. 4117 */ 4118 struct sk_buff *ieee80211_nullfunc_get(struct ieee80211_hw *hw, 4119 struct ieee80211_vif *vif); 4120 4121 /** 4122 * ieee80211_probereq_get - retrieve a Probe Request template 4123 * @hw: pointer obtained from ieee80211_alloc_hw(). 4124 * @src_addr: source MAC address 4125 * @ssid: SSID buffer 4126 * @ssid_len: length of SSID 4127 * @tailroom: tailroom to reserve at end of SKB for IEs 4128 * 4129 * Creates a Probe Request template which can, for example, be uploaded to 4130 * hardware. 4131 * 4132 * Return: The Probe Request template. %NULL on error. 4133 */ 4134 struct sk_buff *ieee80211_probereq_get(struct ieee80211_hw *hw, 4135 const u8 *src_addr, 4136 const u8 *ssid, size_t ssid_len, 4137 size_t tailroom); 4138 4139 /** 4140 * ieee80211_rts_get - RTS frame generation function 4141 * @hw: pointer obtained from ieee80211_alloc_hw(). 4142 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 4143 * @frame: pointer to the frame that is going to be protected by the RTS. 4144 * @frame_len: the frame length (in octets). 4145 * @frame_txctl: &struct ieee80211_tx_info of the frame. 4146 * @rts: The buffer where to store the RTS frame. 4147 * 4148 * If the RTS frames are generated by the host system (i.e., not in 4149 * hardware/firmware), the low-level driver uses this function to receive 4150 * the next RTS frame from the 802.11 code. The low-level is responsible 4151 * for calling this function before and RTS frame is needed. 4152 */ 4153 void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 4154 const void *frame, size_t frame_len, 4155 const struct ieee80211_tx_info *frame_txctl, 4156 struct ieee80211_rts *rts); 4157 4158 /** 4159 * ieee80211_rts_duration - Get the duration field for an RTS frame 4160 * @hw: pointer obtained from ieee80211_alloc_hw(). 4161 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 4162 * @frame_len: the length of the frame that is going to be protected by the RTS. 4163 * @frame_txctl: &struct ieee80211_tx_info of the frame. 4164 * 4165 * If the RTS is generated in firmware, but the host system must provide 4166 * the duration field, the low-level driver uses this function to receive 4167 * the duration field value in little-endian byteorder. 4168 * 4169 * Return: The duration. 4170 */ 4171 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw, 4172 struct ieee80211_vif *vif, size_t frame_len, 4173 const struct ieee80211_tx_info *frame_txctl); 4174 4175 /** 4176 * ieee80211_ctstoself_get - CTS-to-self frame generation function 4177 * @hw: pointer obtained from ieee80211_alloc_hw(). 4178 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 4179 * @frame: pointer to the frame that is going to be protected by the CTS-to-self. 4180 * @frame_len: the frame length (in octets). 4181 * @frame_txctl: &struct ieee80211_tx_info of the frame. 4182 * @cts: The buffer where to store the CTS-to-self frame. 4183 * 4184 * If the CTS-to-self frames are generated by the host system (i.e., not in 4185 * hardware/firmware), the low-level driver uses this function to receive 4186 * the next CTS-to-self frame from the 802.11 code. The low-level is responsible 4187 * for calling this function before and CTS-to-self frame is needed. 4188 */ 4189 void ieee80211_ctstoself_get(struct ieee80211_hw *hw, 4190 struct ieee80211_vif *vif, 4191 const void *frame, size_t frame_len, 4192 const struct ieee80211_tx_info *frame_txctl, 4193 struct ieee80211_cts *cts); 4194 4195 /** 4196 * ieee80211_ctstoself_duration - Get the duration field for a CTS-to-self frame 4197 * @hw: pointer obtained from ieee80211_alloc_hw(). 4198 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 4199 * @frame_len: the length of the frame that is going to be protected by the CTS-to-self. 4200 * @frame_txctl: &struct ieee80211_tx_info of the frame. 4201 * 4202 * If the CTS-to-self is generated in firmware, but the host system must provide 4203 * the duration field, the low-level driver uses this function to receive 4204 * the duration field value in little-endian byteorder. 4205 * 4206 * Return: The duration. 4207 */ 4208 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw, 4209 struct ieee80211_vif *vif, 4210 size_t frame_len, 4211 const struct ieee80211_tx_info *frame_txctl); 4212 4213 /** 4214 * ieee80211_generic_frame_duration - Calculate the duration field for a frame 4215 * @hw: pointer obtained from ieee80211_alloc_hw(). 4216 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 4217 * @band: the band to calculate the frame duration on 4218 * @frame_len: the length of the frame. 4219 * @rate: the rate at which the frame is going to be transmitted. 4220 * 4221 * Calculate the duration field of some generic frame, given its 4222 * length and transmission rate (in 100kbps). 4223 * 4224 * Return: The duration. 4225 */ 4226 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw, 4227 struct ieee80211_vif *vif, 4228 enum ieee80211_band band, 4229 size_t frame_len, 4230 struct ieee80211_rate *rate); 4231 4232 /** 4233 * ieee80211_get_buffered_bc - accessing buffered broadcast and multicast frames 4234 * @hw: pointer as obtained from ieee80211_alloc_hw(). 4235 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 4236 * 4237 * Function for accessing buffered broadcast and multicast frames. If 4238 * hardware/firmware does not implement buffering of broadcast/multicast 4239 * frames when power saving is used, 802.11 code buffers them in the host 4240 * memory. The low-level driver uses this function to fetch next buffered 4241 * frame. In most cases, this is used when generating beacon frame. 4242 * 4243 * Return: A pointer to the next buffered skb or NULL if no more buffered 4244 * frames are available. 4245 * 4246 * Note: buffered frames are returned only after DTIM beacon frame was 4247 * generated with ieee80211_beacon_get() and the low-level driver must thus 4248 * call ieee80211_beacon_get() first. ieee80211_get_buffered_bc() returns 4249 * NULL if the previous generated beacon was not DTIM, so the low-level driver 4250 * does not need to check for DTIM beacons separately and should be able to 4251 * use common code for all beacons. 4252 */ 4253 struct sk_buff * 4254 ieee80211_get_buffered_bc(struct ieee80211_hw *hw, struct ieee80211_vif *vif); 4255 4256 /** 4257 * ieee80211_get_tkip_p1k_iv - get a TKIP phase 1 key for IV32 4258 * 4259 * This function returns the TKIP phase 1 key for the given IV32. 4260 * 4261 * @keyconf: the parameter passed with the set key 4262 * @iv32: IV32 to get the P1K for 4263 * @p1k: a buffer to which the key will be written, as 5 u16 values 4264 */ 4265 void ieee80211_get_tkip_p1k_iv(struct ieee80211_key_conf *keyconf, 4266 u32 iv32, u16 *p1k); 4267 4268 /** 4269 * ieee80211_get_tkip_p1k - get a TKIP phase 1 key 4270 * 4271 * This function returns the TKIP phase 1 key for the IV32 taken 4272 * from the given packet. 4273 * 4274 * @keyconf: the parameter passed with the set key 4275 * @skb: the packet to take the IV32 value from that will be encrypted 4276 * with this P1K 4277 * @p1k: a buffer to which the key will be written, as 5 u16 values 4278 */ 4279 static inline void ieee80211_get_tkip_p1k(struct ieee80211_key_conf *keyconf, 4280 struct sk_buff *skb, u16 *p1k) 4281 { 4282 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 4283 const u8 *data = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control); 4284 u32 iv32 = get_unaligned_le32(&data[4]); 4285 4286 ieee80211_get_tkip_p1k_iv(keyconf, iv32, p1k); 4287 } 4288 4289 /** 4290 * ieee80211_get_tkip_rx_p1k - get a TKIP phase 1 key for RX 4291 * 4292 * This function returns the TKIP phase 1 key for the given IV32 4293 * and transmitter address. 4294 * 4295 * @keyconf: the parameter passed with the set key 4296 * @ta: TA that will be used with the key 4297 * @iv32: IV32 to get the P1K for 4298 * @p1k: a buffer to which the key will be written, as 5 u16 values 4299 */ 4300 void ieee80211_get_tkip_rx_p1k(struct ieee80211_key_conf *keyconf, 4301 const u8 *ta, u32 iv32, u16 *p1k); 4302 4303 /** 4304 * ieee80211_get_tkip_p2k - get a TKIP phase 2 key 4305 * 4306 * This function computes the TKIP RC4 key for the IV values 4307 * in the packet. 4308 * 4309 * @keyconf: the parameter passed with the set key 4310 * @skb: the packet to take the IV32/IV16 values from that will be 4311 * encrypted with this key 4312 * @p2k: a buffer to which the key will be written, 16 bytes 4313 */ 4314 void ieee80211_get_tkip_p2k(struct ieee80211_key_conf *keyconf, 4315 struct sk_buff *skb, u8 *p2k); 4316 4317 /** 4318 * ieee80211_aes_cmac_calculate_k1_k2 - calculate the AES-CMAC sub keys 4319 * 4320 * This function computes the two AES-CMAC sub-keys, based on the 4321 * previously installed master key. 4322 * 4323 * @keyconf: the parameter passed with the set key 4324 * @k1: a buffer to be filled with the 1st sub-key 4325 * @k2: a buffer to be filled with the 2nd sub-key 4326 */ 4327 void ieee80211_aes_cmac_calculate_k1_k2(struct ieee80211_key_conf *keyconf, 4328 u8 *k1, u8 *k2); 4329 4330 /** 4331 * ieee80211_get_key_tx_seq - get key TX sequence counter 4332 * 4333 * @keyconf: the parameter passed with the set key 4334 * @seq: buffer to receive the sequence data 4335 * 4336 * This function allows a driver to retrieve the current TX IV/PN 4337 * for the given key. It must not be called if IV generation is 4338 * offloaded to the device. 4339 * 4340 * Note that this function may only be called when no TX processing 4341 * can be done concurrently, for example when queues are stopped 4342 * and the stop has been synchronized. 4343 */ 4344 void ieee80211_get_key_tx_seq(struct ieee80211_key_conf *keyconf, 4345 struct ieee80211_key_seq *seq); 4346 4347 /** 4348 * ieee80211_get_key_rx_seq - get key RX sequence counter 4349 * 4350 * @keyconf: the parameter passed with the set key 4351 * @tid: The TID, or -1 for the management frame value (CCMP/GCMP only); 4352 * the value on TID 0 is also used for non-QoS frames. For 4353 * CMAC, only TID 0 is valid. 4354 * @seq: buffer to receive the sequence data 4355 * 4356 * This function allows a driver to retrieve the current RX IV/PNs 4357 * for the given key. It must not be called if IV checking is done 4358 * by the device and not by mac80211. 4359 * 4360 * Note that this function may only be called when no RX processing 4361 * can be done concurrently. 4362 */ 4363 void ieee80211_get_key_rx_seq(struct ieee80211_key_conf *keyconf, 4364 int tid, struct ieee80211_key_seq *seq); 4365 4366 /** 4367 * ieee80211_set_key_tx_seq - set key TX sequence counter 4368 * 4369 * @keyconf: the parameter passed with the set key 4370 * @seq: new sequence data 4371 * 4372 * This function allows a driver to set the current TX IV/PNs for the 4373 * given key. This is useful when resuming from WoWLAN sleep and the 4374 * device may have transmitted frames using the PTK, e.g. replies to 4375 * ARP requests. 4376 * 4377 * Note that this function may only be called when no TX processing 4378 * can be done concurrently. 4379 */ 4380 void ieee80211_set_key_tx_seq(struct ieee80211_key_conf *keyconf, 4381 struct ieee80211_key_seq *seq); 4382 4383 /** 4384 * ieee80211_set_key_rx_seq - set key RX sequence counter 4385 * 4386 * @keyconf: the parameter passed with the set key 4387 * @tid: The TID, or -1 for the management frame value (CCMP/GCMP only); 4388 * the value on TID 0 is also used for non-QoS frames. For 4389 * CMAC, only TID 0 is valid. 4390 * @seq: new sequence data 4391 * 4392 * This function allows a driver to set the current RX IV/PNs for the 4393 * given key. This is useful when resuming from WoWLAN sleep and GTK 4394 * rekey may have been done while suspended. It should not be called 4395 * if IV checking is done by the device and not by mac80211. 4396 * 4397 * Note that this function may only be called when no RX processing 4398 * can be done concurrently. 4399 */ 4400 void ieee80211_set_key_rx_seq(struct ieee80211_key_conf *keyconf, 4401 int tid, struct ieee80211_key_seq *seq); 4402 4403 /** 4404 * ieee80211_remove_key - remove the given key 4405 * @keyconf: the parameter passed with the set key 4406 * 4407 * Remove the given key. If the key was uploaded to the hardware at the 4408 * time this function is called, it is not deleted in the hardware but 4409 * instead assumed to have been removed already. 4410 * 4411 * Note that due to locking considerations this function can (currently) 4412 * only be called during key iteration (ieee80211_iter_keys().) 4413 */ 4414 void ieee80211_remove_key(struct ieee80211_key_conf *keyconf); 4415 4416 /** 4417 * ieee80211_gtk_rekey_add - add a GTK key from rekeying during WoWLAN 4418 * @vif: the virtual interface to add the key on 4419 * @keyconf: new key data 4420 * 4421 * When GTK rekeying was done while the system was suspended, (a) new 4422 * key(s) will be available. These will be needed by mac80211 for proper 4423 * RX processing, so this function allows setting them. 4424 * 4425 * The function returns the newly allocated key structure, which will 4426 * have similar contents to the passed key configuration but point to 4427 * mac80211-owned memory. In case of errors, the function returns an 4428 * ERR_PTR(), use IS_ERR() etc. 4429 * 4430 * Note that this function assumes the key isn't added to hardware 4431 * acceleration, so no TX will be done with the key. Since it's a GTK 4432 * on managed (station) networks, this is true anyway. If the driver 4433 * calls this function from the resume callback and subsequently uses 4434 * the return code 1 to reconfigure the device, this key will be part 4435 * of the reconfiguration. 4436 * 4437 * Note that the driver should also call ieee80211_set_key_rx_seq() 4438 * for the new key for each TID to set up sequence counters properly. 4439 * 4440 * IMPORTANT: If this replaces a key that is present in the hardware, 4441 * then it will attempt to remove it during this call. In many cases 4442 * this isn't what you want, so call ieee80211_remove_key() first for 4443 * the key that's being replaced. 4444 */ 4445 struct ieee80211_key_conf * 4446 ieee80211_gtk_rekey_add(struct ieee80211_vif *vif, 4447 struct ieee80211_key_conf *keyconf); 4448 4449 /** 4450 * ieee80211_gtk_rekey_notify - notify userspace supplicant of rekeying 4451 * @vif: virtual interface the rekeying was done on 4452 * @bssid: The BSSID of the AP, for checking association 4453 * @replay_ctr: the new replay counter after GTK rekeying 4454 * @gfp: allocation flags 4455 */ 4456 void ieee80211_gtk_rekey_notify(struct ieee80211_vif *vif, const u8 *bssid, 4457 const u8 *replay_ctr, gfp_t gfp); 4458 4459 /** 4460 * ieee80211_wake_queue - wake specific queue 4461 * @hw: pointer as obtained from ieee80211_alloc_hw(). 4462 * @queue: queue number (counted from zero). 4463 * 4464 * Drivers should use this function instead of netif_wake_queue. 4465 */ 4466 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue); 4467 4468 /** 4469 * ieee80211_stop_queue - stop specific queue 4470 * @hw: pointer as obtained from ieee80211_alloc_hw(). 4471 * @queue: queue number (counted from zero). 4472 * 4473 * Drivers should use this function instead of netif_stop_queue. 4474 */ 4475 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue); 4476 4477 /** 4478 * ieee80211_queue_stopped - test status of the queue 4479 * @hw: pointer as obtained from ieee80211_alloc_hw(). 4480 * @queue: queue number (counted from zero). 4481 * 4482 * Drivers should use this function instead of netif_stop_queue. 4483 * 4484 * Return: %true if the queue is stopped. %false otherwise. 4485 */ 4486 4487 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue); 4488 4489 /** 4490 * ieee80211_stop_queues - stop all queues 4491 * @hw: pointer as obtained from ieee80211_alloc_hw(). 4492 * 4493 * Drivers should use this function instead of netif_stop_queue. 4494 */ 4495 void ieee80211_stop_queues(struct ieee80211_hw *hw); 4496 4497 /** 4498 * ieee80211_wake_queues - wake all queues 4499 * @hw: pointer as obtained from ieee80211_alloc_hw(). 4500 * 4501 * Drivers should use this function instead of netif_wake_queue. 4502 */ 4503 void ieee80211_wake_queues(struct ieee80211_hw *hw); 4504 4505 /** 4506 * ieee80211_scan_completed - completed hardware scan 4507 * 4508 * When hardware scan offload is used (i.e. the hw_scan() callback is 4509 * assigned) this function needs to be called by the driver to notify 4510 * mac80211 that the scan finished. This function can be called from 4511 * any context, including hardirq context. 4512 * 4513 * @hw: the hardware that finished the scan 4514 * @aborted: set to true if scan was aborted 4515 */ 4516 void ieee80211_scan_completed(struct ieee80211_hw *hw, bool aborted); 4517 4518 /** 4519 * ieee80211_sched_scan_results - got results from scheduled scan 4520 * 4521 * When a scheduled scan is running, this function needs to be called by the 4522 * driver whenever there are new scan results available. 4523 * 4524 * @hw: the hardware that is performing scheduled scans 4525 */ 4526 void ieee80211_sched_scan_results(struct ieee80211_hw *hw); 4527 4528 /** 4529 * ieee80211_sched_scan_stopped - inform that the scheduled scan has stopped 4530 * 4531 * When a scheduled scan is running, this function can be called by 4532 * the driver if it needs to stop the scan to perform another task. 4533 * Usual scenarios are drivers that cannot continue the scheduled scan 4534 * while associating, for instance. 4535 * 4536 * @hw: the hardware that is performing scheduled scans 4537 */ 4538 void ieee80211_sched_scan_stopped(struct ieee80211_hw *hw); 4539 4540 /** 4541 * enum ieee80211_interface_iteration_flags - interface iteration flags 4542 * @IEEE80211_IFACE_ITER_NORMAL: Iterate over all interfaces that have 4543 * been added to the driver; However, note that during hardware 4544 * reconfiguration (after restart_hw) it will iterate over a new 4545 * interface and over all the existing interfaces even if they 4546 * haven't been re-added to the driver yet. 4547 * @IEEE80211_IFACE_ITER_RESUME_ALL: During resume, iterate over all 4548 * interfaces, even if they haven't been re-added to the driver yet. 4549 * @IEEE80211_IFACE_ITER_ACTIVE: Iterate only active interfaces (netdev is up). 4550 */ 4551 enum ieee80211_interface_iteration_flags { 4552 IEEE80211_IFACE_ITER_NORMAL = 0, 4553 IEEE80211_IFACE_ITER_RESUME_ALL = BIT(0), 4554 IEEE80211_IFACE_ITER_ACTIVE = BIT(1), 4555 }; 4556 4557 /** 4558 * ieee80211_iterate_interfaces - iterate interfaces 4559 * 4560 * This function iterates over the interfaces associated with a given 4561 * hardware and calls the callback for them. This includes active as well as 4562 * inactive interfaces. This function allows the iterator function to sleep. 4563 * Will iterate over a new interface during add_interface(). 4564 * 4565 * @hw: the hardware struct of which the interfaces should be iterated over 4566 * @iter_flags: iteration flags, see &enum ieee80211_interface_iteration_flags 4567 * @iterator: the iterator function to call 4568 * @data: first argument of the iterator function 4569 */ 4570 void ieee80211_iterate_interfaces(struct ieee80211_hw *hw, u32 iter_flags, 4571 void (*iterator)(void *data, u8 *mac, 4572 struct ieee80211_vif *vif), 4573 void *data); 4574 4575 /** 4576 * ieee80211_iterate_active_interfaces - iterate active interfaces 4577 * 4578 * This function iterates over the interfaces associated with a given 4579 * hardware that are currently active and calls the callback for them. 4580 * This function allows the iterator function to sleep, when the iterator 4581 * function is atomic @ieee80211_iterate_active_interfaces_atomic can 4582 * be used. 4583 * Does not iterate over a new interface during add_interface(). 4584 * 4585 * @hw: the hardware struct of which the interfaces should be iterated over 4586 * @iter_flags: iteration flags, see &enum ieee80211_interface_iteration_flags 4587 * @iterator: the iterator function to call 4588 * @data: first argument of the iterator function 4589 */ 4590 static inline void 4591 ieee80211_iterate_active_interfaces(struct ieee80211_hw *hw, u32 iter_flags, 4592 void (*iterator)(void *data, u8 *mac, 4593 struct ieee80211_vif *vif), 4594 void *data) 4595 { 4596 ieee80211_iterate_interfaces(hw, 4597 iter_flags | IEEE80211_IFACE_ITER_ACTIVE, 4598 iterator, data); 4599 } 4600 4601 /** 4602 * ieee80211_iterate_active_interfaces_atomic - iterate active interfaces 4603 * 4604 * This function iterates over the interfaces associated with a given 4605 * hardware that are currently active and calls the callback for them. 4606 * This function requires the iterator callback function to be atomic, 4607 * if that is not desired, use @ieee80211_iterate_active_interfaces instead. 4608 * Does not iterate over a new interface during add_interface(). 4609 * 4610 * @hw: the hardware struct of which the interfaces should be iterated over 4611 * @iter_flags: iteration flags, see &enum ieee80211_interface_iteration_flags 4612 * @iterator: the iterator function to call, cannot sleep 4613 * @data: first argument of the iterator function 4614 */ 4615 void ieee80211_iterate_active_interfaces_atomic(struct ieee80211_hw *hw, 4616 u32 iter_flags, 4617 void (*iterator)(void *data, 4618 u8 *mac, 4619 struct ieee80211_vif *vif), 4620 void *data); 4621 4622 /** 4623 * ieee80211_iterate_active_interfaces_rtnl - iterate active interfaces 4624 * 4625 * This function iterates over the interfaces associated with a given 4626 * hardware that are currently active and calls the callback for them. 4627 * This version can only be used while holding the RTNL. 4628 * 4629 * @hw: the hardware struct of which the interfaces should be iterated over 4630 * @iter_flags: iteration flags, see &enum ieee80211_interface_iteration_flags 4631 * @iterator: the iterator function to call, cannot sleep 4632 * @data: first argument of the iterator function 4633 */ 4634 void ieee80211_iterate_active_interfaces_rtnl(struct ieee80211_hw *hw, 4635 u32 iter_flags, 4636 void (*iterator)(void *data, 4637 u8 *mac, 4638 struct ieee80211_vif *vif), 4639 void *data); 4640 4641 /** 4642 * ieee80211_iterate_stations_atomic - iterate stations 4643 * 4644 * This function iterates over all stations associated with a given 4645 * hardware that are currently uploaded to the driver and calls the callback 4646 * function for them. 4647 * This function requires the iterator callback function to be atomic, 4648 * 4649 * @hw: the hardware struct of which the interfaces should be iterated over 4650 * @iterator: the iterator function to call, cannot sleep 4651 * @data: first argument of the iterator function 4652 */ 4653 void ieee80211_iterate_stations_atomic(struct ieee80211_hw *hw, 4654 void (*iterator)(void *data, 4655 struct ieee80211_sta *sta), 4656 void *data); 4657 /** 4658 * ieee80211_queue_work - add work onto the mac80211 workqueue 4659 * 4660 * Drivers and mac80211 use this to add work onto the mac80211 workqueue. 4661 * This helper ensures drivers are not queueing work when they should not be. 4662 * 4663 * @hw: the hardware struct for the interface we are adding work for 4664 * @work: the work we want to add onto the mac80211 workqueue 4665 */ 4666 void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work); 4667 4668 /** 4669 * ieee80211_queue_delayed_work - add work onto the mac80211 workqueue 4670 * 4671 * Drivers and mac80211 use this to queue delayed work onto the mac80211 4672 * workqueue. 4673 * 4674 * @hw: the hardware struct for the interface we are adding work for 4675 * @dwork: delayable work to queue onto the mac80211 workqueue 4676 * @delay: number of jiffies to wait before queueing 4677 */ 4678 void ieee80211_queue_delayed_work(struct ieee80211_hw *hw, 4679 struct delayed_work *dwork, 4680 unsigned long delay); 4681 4682 /** 4683 * ieee80211_start_tx_ba_session - Start a tx Block Ack session. 4684 * @sta: the station for which to start a BA session 4685 * @tid: the TID to BA on. 4686 * @timeout: session timeout value (in TUs) 4687 * 4688 * Return: success if addBA request was sent, failure otherwise 4689 * 4690 * Although mac80211/low level driver/user space application can estimate 4691 * the need to start aggregation on a certain RA/TID, the session level 4692 * will be managed by the mac80211. 4693 */ 4694 int ieee80211_start_tx_ba_session(struct ieee80211_sta *sta, u16 tid, 4695 u16 timeout); 4696 4697 /** 4698 * ieee80211_start_tx_ba_cb_irqsafe - low level driver ready to aggregate. 4699 * @vif: &struct ieee80211_vif pointer from the add_interface callback 4700 * @ra: receiver address of the BA session recipient. 4701 * @tid: the TID to BA on. 4702 * 4703 * This function must be called by low level driver once it has 4704 * finished with preparations for the BA session. It can be called 4705 * from any context. 4706 */ 4707 void ieee80211_start_tx_ba_cb_irqsafe(struct ieee80211_vif *vif, const u8 *ra, 4708 u16 tid); 4709 4710 /** 4711 * ieee80211_stop_tx_ba_session - Stop a Block Ack session. 4712 * @sta: the station whose BA session to stop 4713 * @tid: the TID to stop BA. 4714 * 4715 * Return: negative error if the TID is invalid, or no aggregation active 4716 * 4717 * Although mac80211/low level driver/user space application can estimate 4718 * the need to stop aggregation on a certain RA/TID, the session level 4719 * will be managed by the mac80211. 4720 */ 4721 int ieee80211_stop_tx_ba_session(struct ieee80211_sta *sta, u16 tid); 4722 4723 /** 4724 * ieee80211_stop_tx_ba_cb_irqsafe - low level driver ready to stop aggregate. 4725 * @vif: &struct ieee80211_vif pointer from the add_interface callback 4726 * @ra: receiver address of the BA session recipient. 4727 * @tid: the desired TID to BA on. 4728 * 4729 * This function must be called by low level driver once it has 4730 * finished with preparations for the BA session tear down. It 4731 * can be called from any context. 4732 */ 4733 void ieee80211_stop_tx_ba_cb_irqsafe(struct ieee80211_vif *vif, const u8 *ra, 4734 u16 tid); 4735 4736 /** 4737 * ieee80211_find_sta - find a station 4738 * 4739 * @vif: virtual interface to look for station on 4740 * @addr: station's address 4741 * 4742 * Return: The station, if found. %NULL otherwise. 4743 * 4744 * Note: This function must be called under RCU lock and the 4745 * resulting pointer is only valid under RCU lock as well. 4746 */ 4747 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif, 4748 const u8 *addr); 4749 4750 /** 4751 * ieee80211_find_sta_by_ifaddr - find a station on hardware 4752 * 4753 * @hw: pointer as obtained from ieee80211_alloc_hw() 4754 * @addr: remote station's address 4755 * @localaddr: local address (vif->sdata->vif.addr). Use NULL for 'any'. 4756 * 4757 * Return: The station, if found. %NULL otherwise. 4758 * 4759 * Note: This function must be called under RCU lock and the 4760 * resulting pointer is only valid under RCU lock as well. 4761 * 4762 * NOTE: You may pass NULL for localaddr, but then you will just get 4763 * the first STA that matches the remote address 'addr'. 4764 * We can have multiple STA associated with multiple 4765 * logical stations (e.g. consider a station connecting to another 4766 * BSSID on the same AP hardware without disconnecting first). 4767 * In this case, the result of this method with localaddr NULL 4768 * is not reliable. 4769 * 4770 * DO NOT USE THIS FUNCTION with localaddr NULL if at all possible. 4771 */ 4772 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw, 4773 const u8 *addr, 4774 const u8 *localaddr); 4775 4776 /** 4777 * ieee80211_sta_block_awake - block station from waking up 4778 * @hw: the hardware 4779 * @pubsta: the station 4780 * @block: whether to block or unblock 4781 * 4782 * Some devices require that all frames that are on the queues 4783 * for a specific station that went to sleep are flushed before 4784 * a poll response or frames after the station woke up can be 4785 * delivered to that it. Note that such frames must be rejected 4786 * by the driver as filtered, with the appropriate status flag. 4787 * 4788 * This function allows implementing this mode in a race-free 4789 * manner. 4790 * 4791 * To do this, a driver must keep track of the number of frames 4792 * still enqueued for a specific station. If this number is not 4793 * zero when the station goes to sleep, the driver must call 4794 * this function to force mac80211 to consider the station to 4795 * be asleep regardless of the station's actual state. Once the 4796 * number of outstanding frames reaches zero, the driver must 4797 * call this function again to unblock the station. That will 4798 * cause mac80211 to be able to send ps-poll responses, and if 4799 * the station queried in the meantime then frames will also 4800 * be sent out as a result of this. Additionally, the driver 4801 * will be notified that the station woke up some time after 4802 * it is unblocked, regardless of whether the station actually 4803 * woke up while blocked or not. 4804 */ 4805 void ieee80211_sta_block_awake(struct ieee80211_hw *hw, 4806 struct ieee80211_sta *pubsta, bool block); 4807 4808 /** 4809 * ieee80211_sta_eosp - notify mac80211 about end of SP 4810 * @pubsta: the station 4811 * 4812 * When a device transmits frames in a way that it can't tell 4813 * mac80211 in the TX status about the EOSP, it must clear the 4814 * %IEEE80211_TX_STATUS_EOSP bit and call this function instead. 4815 * This applies for PS-Poll as well as uAPSD. 4816 * 4817 * Note that just like with _tx_status() and _rx() drivers must 4818 * not mix calls to irqsafe/non-irqsafe versions, this function 4819 * must not be mixed with those either. Use the all irqsafe, or 4820 * all non-irqsafe, don't mix! 4821 * 4822 * NB: the _irqsafe version of this function doesn't exist, no 4823 * driver needs it right now. Don't call this function if 4824 * you'd need the _irqsafe version, look at the git history 4825 * and restore the _irqsafe version! 4826 */ 4827 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta); 4828 4829 /** 4830 * ieee80211_iter_keys - iterate keys programmed into the device 4831 * @hw: pointer obtained from ieee80211_alloc_hw() 4832 * @vif: virtual interface to iterate, may be %NULL for all 4833 * @iter: iterator function that will be called for each key 4834 * @iter_data: custom data to pass to the iterator function 4835 * 4836 * This function can be used to iterate all the keys known to 4837 * mac80211, even those that weren't previously programmed into 4838 * the device. This is intended for use in WoWLAN if the device 4839 * needs reprogramming of the keys during suspend. Note that due 4840 * to locking reasons, it is also only safe to call this at few 4841 * spots since it must hold the RTNL and be able to sleep. 4842 * 4843 * The order in which the keys are iterated matches the order 4844 * in which they were originally installed and handed to the 4845 * set_key callback. 4846 */ 4847 void ieee80211_iter_keys(struct ieee80211_hw *hw, 4848 struct ieee80211_vif *vif, 4849 void (*iter)(struct ieee80211_hw *hw, 4850 struct ieee80211_vif *vif, 4851 struct ieee80211_sta *sta, 4852 struct ieee80211_key_conf *key, 4853 void *data), 4854 void *iter_data); 4855 4856 /** 4857 * ieee80211_iter_chan_contexts_atomic - iterate channel contexts 4858 * @hw: pointre obtained from ieee80211_alloc_hw(). 4859 * @iter: iterator function 4860 * @iter_data: data passed to iterator function 4861 * 4862 * Iterate all active channel contexts. This function is atomic and 4863 * doesn't acquire any locks internally that might be held in other 4864 * places while calling into the driver. 4865 * 4866 * The iterator will not find a context that's being added (during 4867 * the driver callback to add it) but will find it while it's being 4868 * removed. 4869 * 4870 * Note that during hardware restart, all contexts that existed 4871 * before the restart are considered already present so will be 4872 * found while iterating, whether they've been re-added already 4873 * or not. 4874 */ 4875 void ieee80211_iter_chan_contexts_atomic( 4876 struct ieee80211_hw *hw, 4877 void (*iter)(struct ieee80211_hw *hw, 4878 struct ieee80211_chanctx_conf *chanctx_conf, 4879 void *data), 4880 void *iter_data); 4881 4882 /** 4883 * ieee80211_ap_probereq_get - retrieve a Probe Request template 4884 * @hw: pointer obtained from ieee80211_alloc_hw(). 4885 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 4886 * 4887 * Creates a Probe Request template which can, for example, be uploaded to 4888 * hardware. The template is filled with bssid, ssid and supported rate 4889 * information. This function must only be called from within the 4890 * .bss_info_changed callback function and only in managed mode. The function 4891 * is only useful when the interface is associated, otherwise it will return 4892 * %NULL. 4893 * 4894 * Return: The Probe Request template. %NULL on error. 4895 */ 4896 struct sk_buff *ieee80211_ap_probereq_get(struct ieee80211_hw *hw, 4897 struct ieee80211_vif *vif); 4898 4899 /** 4900 * ieee80211_beacon_loss - inform hardware does not receive beacons 4901 * 4902 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 4903 * 4904 * When beacon filtering is enabled with %IEEE80211_VIF_BEACON_FILTER and 4905 * %IEEE80211_CONF_PS is set, the driver needs to inform whenever the 4906 * hardware is not receiving beacons with this function. 4907 */ 4908 void ieee80211_beacon_loss(struct ieee80211_vif *vif); 4909 4910 /** 4911 * ieee80211_connection_loss - inform hardware has lost connection to the AP 4912 * 4913 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 4914 * 4915 * When beacon filtering is enabled with %IEEE80211_VIF_BEACON_FILTER, and 4916 * %IEEE80211_CONF_PS and %IEEE80211_HW_CONNECTION_MONITOR are set, the driver 4917 * needs to inform if the connection to the AP has been lost. 4918 * The function may also be called if the connection needs to be terminated 4919 * for some other reason, even if %IEEE80211_HW_CONNECTION_MONITOR isn't set. 4920 * 4921 * This function will cause immediate change to disassociated state, 4922 * without connection recovery attempts. 4923 */ 4924 void ieee80211_connection_loss(struct ieee80211_vif *vif); 4925 4926 /** 4927 * ieee80211_resume_disconnect - disconnect from AP after resume 4928 * 4929 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 4930 * 4931 * Instructs mac80211 to disconnect from the AP after resume. 4932 * Drivers can use this after WoWLAN if they know that the 4933 * connection cannot be kept up, for example because keys were 4934 * used while the device was asleep but the replay counters or 4935 * similar cannot be retrieved from the device during resume. 4936 * 4937 * Note that due to implementation issues, if the driver uses 4938 * the reconfiguration functionality during resume the interface 4939 * will still be added as associated first during resume and then 4940 * disconnect normally later. 4941 * 4942 * This function can only be called from the resume callback and 4943 * the driver must not be holding any of its own locks while it 4944 * calls this function, or at least not any locks it needs in the 4945 * key configuration paths (if it supports HW crypto). 4946 */ 4947 void ieee80211_resume_disconnect(struct ieee80211_vif *vif); 4948 4949 /** 4950 * ieee80211_cqm_rssi_notify - inform a configured connection quality monitoring 4951 * rssi threshold triggered 4952 * 4953 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 4954 * @rssi_event: the RSSI trigger event type 4955 * @gfp: context flags 4956 * 4957 * When the %IEEE80211_VIF_SUPPORTS_CQM_RSSI is set, and a connection quality 4958 * monitoring is configured with an rssi threshold, the driver will inform 4959 * whenever the rssi level reaches the threshold. 4960 */ 4961 void ieee80211_cqm_rssi_notify(struct ieee80211_vif *vif, 4962 enum nl80211_cqm_rssi_threshold_event rssi_event, 4963 gfp_t gfp); 4964 4965 /** 4966 * ieee80211_cqm_beacon_loss_notify - inform CQM of beacon loss 4967 * 4968 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 4969 * @gfp: context flags 4970 */ 4971 void ieee80211_cqm_beacon_loss_notify(struct ieee80211_vif *vif, gfp_t gfp); 4972 4973 /** 4974 * ieee80211_radar_detected - inform that a radar was detected 4975 * 4976 * @hw: pointer as obtained from ieee80211_alloc_hw() 4977 */ 4978 void ieee80211_radar_detected(struct ieee80211_hw *hw); 4979 4980 /** 4981 * ieee80211_chswitch_done - Complete channel switch process 4982 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 4983 * @success: make the channel switch successful or not 4984 * 4985 * Complete the channel switch post-process: set the new operational channel 4986 * and wake up the suspended queues. 4987 */ 4988 void ieee80211_chswitch_done(struct ieee80211_vif *vif, bool success); 4989 4990 /** 4991 * ieee80211_request_smps - request SM PS transition 4992 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 4993 * @smps_mode: new SM PS mode 4994 * 4995 * This allows the driver to request an SM PS transition in managed 4996 * mode. This is useful when the driver has more information than 4997 * the stack about possible interference, for example by bluetooth. 4998 */ 4999 void ieee80211_request_smps(struct ieee80211_vif *vif, 5000 enum ieee80211_smps_mode smps_mode); 5001 5002 /** 5003 * ieee80211_ready_on_channel - notification of remain-on-channel start 5004 * @hw: pointer as obtained from ieee80211_alloc_hw() 5005 */ 5006 void ieee80211_ready_on_channel(struct ieee80211_hw *hw); 5007 5008 /** 5009 * ieee80211_remain_on_channel_expired - remain_on_channel duration expired 5010 * @hw: pointer as obtained from ieee80211_alloc_hw() 5011 */ 5012 void ieee80211_remain_on_channel_expired(struct ieee80211_hw *hw); 5013 5014 /** 5015 * ieee80211_stop_rx_ba_session - callback to stop existing BA sessions 5016 * 5017 * in order not to harm the system performance and user experience, the device 5018 * may request not to allow any rx ba session and tear down existing rx ba 5019 * sessions based on system constraints such as periodic BT activity that needs 5020 * to limit wlan activity (eg.sco or a2dp)." 5021 * in such cases, the intention is to limit the duration of the rx ppdu and 5022 * therefore prevent the peer device to use a-mpdu aggregation. 5023 * 5024 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 5025 * @ba_rx_bitmap: Bit map of open rx ba per tid 5026 * @addr: & to bssid mac address 5027 */ 5028 void ieee80211_stop_rx_ba_session(struct ieee80211_vif *vif, u16 ba_rx_bitmap, 5029 const u8 *addr); 5030 5031 /** 5032 * ieee80211_send_bar - send a BlockAckReq frame 5033 * 5034 * can be used to flush pending frames from the peer's aggregation reorder 5035 * buffer. 5036 * 5037 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 5038 * @ra: the peer's destination address 5039 * @tid: the TID of the aggregation session 5040 * @ssn: the new starting sequence number for the receiver 5041 */ 5042 void ieee80211_send_bar(struct ieee80211_vif *vif, u8 *ra, u16 tid, u16 ssn); 5043 5044 /** 5045 * ieee80211_start_rx_ba_session_offl - start a Rx BA session 5046 * 5047 * Some device drivers may offload part of the Rx aggregation flow including 5048 * AddBa/DelBa negotiation but may otherwise be incapable of full Rx 5049 * reordering. 5050 * 5051 * Create structures responsible for reordering so device drivers may call here 5052 * when they complete AddBa negotiation. 5053 * 5054 * @vif: &struct ieee80211_vif pointer from the add_interface callback 5055 * @addr: station mac address 5056 * @tid: the rx tid 5057 */ 5058 void ieee80211_start_rx_ba_session_offl(struct ieee80211_vif *vif, 5059 const u8 *addr, u16 tid); 5060 5061 /** 5062 * ieee80211_stop_rx_ba_session_offl - stop a Rx BA session 5063 * 5064 * Some device drivers may offload part of the Rx aggregation flow including 5065 * AddBa/DelBa negotiation but may otherwise be incapable of full Rx 5066 * reordering. 5067 * 5068 * Destroy structures responsible for reordering so device drivers may call here 5069 * when they complete DelBa negotiation. 5070 * 5071 * @vif: &struct ieee80211_vif pointer from the add_interface callback 5072 * @addr: station mac address 5073 * @tid: the rx tid 5074 */ 5075 void ieee80211_stop_rx_ba_session_offl(struct ieee80211_vif *vif, 5076 const u8 *addr, u16 tid); 5077 5078 /* Rate control API */ 5079 5080 /** 5081 * struct ieee80211_tx_rate_control - rate control information for/from RC algo 5082 * 5083 * @hw: The hardware the algorithm is invoked for. 5084 * @sband: The band this frame is being transmitted on. 5085 * @bss_conf: the current BSS configuration 5086 * @skb: the skb that will be transmitted, the control information in it needs 5087 * to be filled in 5088 * @reported_rate: The rate control algorithm can fill this in to indicate 5089 * which rate should be reported to userspace as the current rate and 5090 * used for rate calculations in the mesh network. 5091 * @rts: whether RTS will be used for this frame because it is longer than the 5092 * RTS threshold 5093 * @short_preamble: whether mac80211 will request short-preamble transmission 5094 * if the selected rate supports it 5095 * @max_rate_idx: user-requested maximum (legacy) rate 5096 * (deprecated; this will be removed once drivers get updated to use 5097 * rate_idx_mask) 5098 * @rate_idx_mask: user-requested (legacy) rate mask 5099 * @rate_idx_mcs_mask: user-requested MCS rate mask (NULL if not in use) 5100 * @bss: whether this frame is sent out in AP or IBSS mode 5101 */ 5102 struct ieee80211_tx_rate_control { 5103 struct ieee80211_hw *hw; 5104 struct ieee80211_supported_band *sband; 5105 struct ieee80211_bss_conf *bss_conf; 5106 struct sk_buff *skb; 5107 struct ieee80211_tx_rate reported_rate; 5108 bool rts, short_preamble; 5109 u8 max_rate_idx; 5110 u32 rate_idx_mask; 5111 u8 *rate_idx_mcs_mask; 5112 bool bss; 5113 }; 5114 5115 struct rate_control_ops { 5116 const char *name; 5117 void *(*alloc)(struct ieee80211_hw *hw, struct dentry *debugfsdir); 5118 void (*free)(void *priv); 5119 5120 void *(*alloc_sta)(void *priv, struct ieee80211_sta *sta, gfp_t gfp); 5121 void (*rate_init)(void *priv, struct ieee80211_supported_band *sband, 5122 struct cfg80211_chan_def *chandef, 5123 struct ieee80211_sta *sta, void *priv_sta); 5124 void (*rate_update)(void *priv, struct ieee80211_supported_band *sband, 5125 struct cfg80211_chan_def *chandef, 5126 struct ieee80211_sta *sta, void *priv_sta, 5127 u32 changed); 5128 void (*free_sta)(void *priv, struct ieee80211_sta *sta, 5129 void *priv_sta); 5130 5131 void (*tx_status_noskb)(void *priv, 5132 struct ieee80211_supported_band *sband, 5133 struct ieee80211_sta *sta, void *priv_sta, 5134 struct ieee80211_tx_info *info); 5135 void (*tx_status)(void *priv, struct ieee80211_supported_band *sband, 5136 struct ieee80211_sta *sta, void *priv_sta, 5137 struct sk_buff *skb); 5138 void (*get_rate)(void *priv, struct ieee80211_sta *sta, void *priv_sta, 5139 struct ieee80211_tx_rate_control *txrc); 5140 5141 void (*add_sta_debugfs)(void *priv, void *priv_sta, 5142 struct dentry *dir); 5143 void (*remove_sta_debugfs)(void *priv, void *priv_sta); 5144 5145 u32 (*get_expected_throughput)(void *priv_sta); 5146 }; 5147 5148 static inline int rate_supported(struct ieee80211_sta *sta, 5149 enum ieee80211_band band, 5150 int index) 5151 { 5152 return (sta == NULL || sta->supp_rates[band] & BIT(index)); 5153 } 5154 5155 /** 5156 * rate_control_send_low - helper for drivers for management/no-ack frames 5157 * 5158 * Rate control algorithms that agree to use the lowest rate to 5159 * send management frames and NO_ACK data with the respective hw 5160 * retries should use this in the beginning of their mac80211 get_rate 5161 * callback. If true is returned the rate control can simply return. 5162 * If false is returned we guarantee that sta and sta and priv_sta is 5163 * not null. 5164 * 5165 * Rate control algorithms wishing to do more intelligent selection of 5166 * rate for multicast/broadcast frames may choose to not use this. 5167 * 5168 * @sta: &struct ieee80211_sta pointer to the target destination. Note 5169 * that this may be null. 5170 * @priv_sta: private rate control structure. This may be null. 5171 * @txrc: rate control information we sholud populate for mac80211. 5172 */ 5173 bool rate_control_send_low(struct ieee80211_sta *sta, 5174 void *priv_sta, 5175 struct ieee80211_tx_rate_control *txrc); 5176 5177 5178 static inline s8 5179 rate_lowest_index(struct ieee80211_supported_band *sband, 5180 struct ieee80211_sta *sta) 5181 { 5182 int i; 5183 5184 for (i = 0; i < sband->n_bitrates; i++) 5185 if (rate_supported(sta, sband->band, i)) 5186 return i; 5187 5188 /* warn when we cannot find a rate. */ 5189 WARN_ON_ONCE(1); 5190 5191 /* and return 0 (the lowest index) */ 5192 return 0; 5193 } 5194 5195 static inline 5196 bool rate_usable_index_exists(struct ieee80211_supported_band *sband, 5197 struct ieee80211_sta *sta) 5198 { 5199 unsigned int i; 5200 5201 for (i = 0; i < sband->n_bitrates; i++) 5202 if (rate_supported(sta, sband->band, i)) 5203 return true; 5204 return false; 5205 } 5206 5207 /** 5208 * rate_control_set_rates - pass the sta rate selection to mac80211/driver 5209 * 5210 * When not doing a rate control probe to test rates, rate control should pass 5211 * its rate selection to mac80211. If the driver supports receiving a station 5212 * rate table, it will use it to ensure that frames are always sent based on 5213 * the most recent rate control module decision. 5214 * 5215 * @hw: pointer as obtained from ieee80211_alloc_hw() 5216 * @pubsta: &struct ieee80211_sta pointer to the target destination. 5217 * @rates: new tx rate set to be used for this station. 5218 */ 5219 int rate_control_set_rates(struct ieee80211_hw *hw, 5220 struct ieee80211_sta *pubsta, 5221 struct ieee80211_sta_rates *rates); 5222 5223 int ieee80211_rate_control_register(const struct rate_control_ops *ops); 5224 void ieee80211_rate_control_unregister(const struct rate_control_ops *ops); 5225 5226 static inline bool 5227 conf_is_ht20(struct ieee80211_conf *conf) 5228 { 5229 return conf->chandef.width == NL80211_CHAN_WIDTH_20; 5230 } 5231 5232 static inline bool 5233 conf_is_ht40_minus(struct ieee80211_conf *conf) 5234 { 5235 return conf->chandef.width == NL80211_CHAN_WIDTH_40 && 5236 conf->chandef.center_freq1 < conf->chandef.chan->center_freq; 5237 } 5238 5239 static inline bool 5240 conf_is_ht40_plus(struct ieee80211_conf *conf) 5241 { 5242 return conf->chandef.width == NL80211_CHAN_WIDTH_40 && 5243 conf->chandef.center_freq1 > conf->chandef.chan->center_freq; 5244 } 5245 5246 static inline bool 5247 conf_is_ht40(struct ieee80211_conf *conf) 5248 { 5249 return conf->chandef.width == NL80211_CHAN_WIDTH_40; 5250 } 5251 5252 static inline bool 5253 conf_is_ht(struct ieee80211_conf *conf) 5254 { 5255 return (conf->chandef.width != NL80211_CHAN_WIDTH_5) && 5256 (conf->chandef.width != NL80211_CHAN_WIDTH_10) && 5257 (conf->chandef.width != NL80211_CHAN_WIDTH_20_NOHT); 5258 } 5259 5260 static inline enum nl80211_iftype 5261 ieee80211_iftype_p2p(enum nl80211_iftype type, bool p2p) 5262 { 5263 if (p2p) { 5264 switch (type) { 5265 case NL80211_IFTYPE_STATION: 5266 return NL80211_IFTYPE_P2P_CLIENT; 5267 case NL80211_IFTYPE_AP: 5268 return NL80211_IFTYPE_P2P_GO; 5269 default: 5270 break; 5271 } 5272 } 5273 return type; 5274 } 5275 5276 static inline enum nl80211_iftype 5277 ieee80211_vif_type_p2p(struct ieee80211_vif *vif) 5278 { 5279 return ieee80211_iftype_p2p(vif->type, vif->p2p); 5280 } 5281 5282 void ieee80211_enable_rssi_reports(struct ieee80211_vif *vif, 5283 int rssi_min_thold, 5284 int rssi_max_thold); 5285 5286 void ieee80211_disable_rssi_reports(struct ieee80211_vif *vif); 5287 5288 /** 5289 * ieee80211_ave_rssi - report the average RSSI for the specified interface 5290 * 5291 * @vif: the specified virtual interface 5292 * 5293 * Note: This function assumes that the given vif is valid. 5294 * 5295 * Return: The average RSSI value for the requested interface, or 0 if not 5296 * applicable. 5297 */ 5298 int ieee80211_ave_rssi(struct ieee80211_vif *vif); 5299 5300 /** 5301 * ieee80211_report_wowlan_wakeup - report WoWLAN wakeup 5302 * @vif: virtual interface 5303 * @wakeup: wakeup reason(s) 5304 * @gfp: allocation flags 5305 * 5306 * See cfg80211_report_wowlan_wakeup(). 5307 */ 5308 void ieee80211_report_wowlan_wakeup(struct ieee80211_vif *vif, 5309 struct cfg80211_wowlan_wakeup *wakeup, 5310 gfp_t gfp); 5311 5312 /** 5313 * ieee80211_tx_prepare_skb - prepare an 802.11 skb for transmission 5314 * @hw: pointer as obtained from ieee80211_alloc_hw() 5315 * @vif: virtual interface 5316 * @skb: frame to be sent from within the driver 5317 * @band: the band to transmit on 5318 * @sta: optional pointer to get the station to send the frame to 5319 * 5320 * Note: must be called under RCU lock 5321 */ 5322 bool ieee80211_tx_prepare_skb(struct ieee80211_hw *hw, 5323 struct ieee80211_vif *vif, struct sk_buff *skb, 5324 int band, struct ieee80211_sta **sta); 5325 5326 /** 5327 * struct ieee80211_noa_data - holds temporary data for tracking P2P NoA state 5328 * 5329 * @next_tsf: TSF timestamp of the next absent state change 5330 * @has_next_tsf: next absent state change event pending 5331 * 5332 * @absent: descriptor bitmask, set if GO is currently absent 5333 * 5334 * private: 5335 * 5336 * @count: count fields from the NoA descriptors 5337 * @desc: adjusted data from the NoA 5338 */ 5339 struct ieee80211_noa_data { 5340 u32 next_tsf; 5341 bool has_next_tsf; 5342 5343 u8 absent; 5344 5345 u8 count[IEEE80211_P2P_NOA_DESC_MAX]; 5346 struct { 5347 u32 start; 5348 u32 duration; 5349 u32 interval; 5350 } desc[IEEE80211_P2P_NOA_DESC_MAX]; 5351 }; 5352 5353 /** 5354 * ieee80211_parse_p2p_noa - initialize NoA tracking data from P2P IE 5355 * 5356 * @attr: P2P NoA IE 5357 * @data: NoA tracking data 5358 * @tsf: current TSF timestamp 5359 * 5360 * Return: number of successfully parsed descriptors 5361 */ 5362 int ieee80211_parse_p2p_noa(const struct ieee80211_p2p_noa_attr *attr, 5363 struct ieee80211_noa_data *data, u32 tsf); 5364 5365 /** 5366 * ieee80211_update_p2p_noa - get next pending P2P GO absent state change 5367 * 5368 * @data: NoA tracking data 5369 * @tsf: current TSF timestamp 5370 */ 5371 void ieee80211_update_p2p_noa(struct ieee80211_noa_data *data, u32 tsf); 5372 5373 /** 5374 * ieee80211_tdls_oper - request userspace to perform a TDLS operation 5375 * @vif: virtual interface 5376 * @peer: the peer's destination address 5377 * @oper: the requested TDLS operation 5378 * @reason_code: reason code for the operation, valid for TDLS teardown 5379 * @gfp: allocation flags 5380 * 5381 * See cfg80211_tdls_oper_request(). 5382 */ 5383 void ieee80211_tdls_oper_request(struct ieee80211_vif *vif, const u8 *peer, 5384 enum nl80211_tdls_operation oper, 5385 u16 reason_code, gfp_t gfp); 5386 5387 /** 5388 * ieee80211_reserve_tid - request to reserve a specific TID 5389 * 5390 * There is sometimes a need (such as in TDLS) for blocking the driver from 5391 * using a specific TID so that the FW can use it for certain operations such 5392 * as sending PTI requests. To make sure that the driver doesn't use that TID, 5393 * this function must be called as it flushes out packets on this TID and marks 5394 * it as blocked, so that any transmit for the station on this TID will be 5395 * redirected to the alternative TID in the same AC. 5396 * 5397 * Note that this function blocks and may call back into the driver, so it 5398 * should be called without driver locks held. Also note this function should 5399 * only be called from the driver's @sta_state callback. 5400 * 5401 * @sta: the station to reserve the TID for 5402 * @tid: the TID to reserve 5403 * 5404 * Returns: 0 on success, else on failure 5405 */ 5406 int ieee80211_reserve_tid(struct ieee80211_sta *sta, u8 tid); 5407 5408 /** 5409 * ieee80211_unreserve_tid - request to unreserve a specific TID 5410 * 5411 * Once there is no longer any need for reserving a certain TID, this function 5412 * should be called, and no longer will packets have their TID modified for 5413 * preventing use of this TID in the driver. 5414 * 5415 * Note that this function blocks and acquires a lock, so it should be called 5416 * without driver locks held. Also note this function should only be called 5417 * from the driver's @sta_state callback. 5418 * 5419 * @sta: the station 5420 * @tid: the TID to unreserve 5421 */ 5422 void ieee80211_unreserve_tid(struct ieee80211_sta *sta, u8 tid); 5423 5424 /** 5425 * ieee80211_tx_dequeue - dequeue a packet from a software tx queue 5426 * 5427 * @hw: pointer as obtained from ieee80211_alloc_hw() 5428 * @txq: pointer obtained from station or virtual interface 5429 * 5430 * Returns the skb if successful, %NULL if no frame was available. 5431 */ 5432 struct sk_buff *ieee80211_tx_dequeue(struct ieee80211_hw *hw, 5433 struct ieee80211_txq *txq); 5434 #endif /* MAC80211_H */ 5435