xref: /linux/include/net/mac80211.h (revision 6ee738610f41b59733f63718f0bdbcba7d3a3f12)
1 /*
2  * mac80211 <-> driver interface
3  *
4  * Copyright 2002-2005, Devicescape Software, Inc.
5  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
6  * Copyright 2007-2008	Johannes Berg <johannes@sipsolutions.net>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #ifndef MAC80211_H
14 #define MAC80211_H
15 
16 #include <linux/kernel.h>
17 #include <linux/if_ether.h>
18 #include <linux/skbuff.h>
19 #include <linux/wireless.h>
20 #include <linux/device.h>
21 #include <linux/ieee80211.h>
22 #include <net/cfg80211.h>
23 
24 /**
25  * DOC: Introduction
26  *
27  * mac80211 is the Linux stack for 802.11 hardware that implements
28  * only partial functionality in hard- or firmware. This document
29  * defines the interface between mac80211 and low-level hardware
30  * drivers.
31  */
32 
33 /**
34  * DOC: Calling mac80211 from interrupts
35  *
36  * Only ieee80211_tx_status_irqsafe() and ieee80211_rx_irqsafe() can be
37  * called in hardware interrupt context. The low-level driver must not call any
38  * other functions in hardware interrupt context. If there is a need for such
39  * call, the low-level driver should first ACK the interrupt and perform the
40  * IEEE 802.11 code call after this, e.g. from a scheduled workqueue or even
41  * tasklet function.
42  *
43  * NOTE: If the driver opts to use the _irqsafe() functions, it may not also
44  *	 use the non-IRQ-safe functions!
45  */
46 
47 /**
48  * DOC: Warning
49  *
50  * If you're reading this document and not the header file itself, it will
51  * be incomplete because not all documentation has been converted yet.
52  */
53 
54 /**
55  * DOC: Frame format
56  *
57  * As a general rule, when frames are passed between mac80211 and the driver,
58  * they start with the IEEE 802.11 header and include the same octets that are
59  * sent over the air except for the FCS which should be calculated by the
60  * hardware.
61  *
62  * There are, however, various exceptions to this rule for advanced features:
63  *
64  * The first exception is for hardware encryption and decryption offload
65  * where the IV/ICV may or may not be generated in hardware.
66  *
67  * Secondly, when the hardware handles fragmentation, the frame handed to
68  * the driver from mac80211 is the MSDU, not the MPDU.
69  *
70  * Finally, for received frames, the driver is able to indicate that it has
71  * filled a radiotap header and put that in front of the frame; if it does
72  * not do so then mac80211 may add this under certain circumstances.
73  */
74 
75 /**
76  * DOC: mac80211 workqueue
77  *
78  * mac80211 provides its own workqueue for drivers and internal mac80211 use.
79  * The workqueue is a single threaded workqueue and can only be accessed by
80  * helpers for sanity checking. Drivers must ensure all work added onto the
81  * mac80211 workqueue should be cancelled on the driver stop() callback.
82  *
83  * mac80211 will flushed the workqueue upon interface removal and during
84  * suspend.
85  *
86  * All work performed on the mac80211 workqueue must not acquire the RTNL lock.
87  *
88  */
89 
90 /**
91  * enum ieee80211_max_queues - maximum number of queues
92  *
93  * @IEEE80211_MAX_QUEUES: Maximum number of regular device queues.
94  */
95 enum ieee80211_max_queues {
96 	IEEE80211_MAX_QUEUES =		4,
97 };
98 
99 /**
100  * struct ieee80211_tx_queue_params - transmit queue configuration
101  *
102  * The information provided in this structure is required for QoS
103  * transmit queue configuration. Cf. IEEE 802.11 7.3.2.29.
104  *
105  * @aifs: arbitration interframe space [0..255]
106  * @cw_min: minimum contention window [a value of the form
107  *	2^n-1 in the range 1..32767]
108  * @cw_max: maximum contention window [like @cw_min]
109  * @txop: maximum burst time in units of 32 usecs, 0 meaning disabled
110  */
111 struct ieee80211_tx_queue_params {
112 	u16 txop;
113 	u16 cw_min;
114 	u16 cw_max;
115 	u8 aifs;
116 };
117 
118 /**
119  * struct ieee80211_tx_queue_stats - transmit queue statistics
120  *
121  * @len: number of packets in queue
122  * @limit: queue length limit
123  * @count: number of frames sent
124  */
125 struct ieee80211_tx_queue_stats {
126 	unsigned int len;
127 	unsigned int limit;
128 	unsigned int count;
129 };
130 
131 struct ieee80211_low_level_stats {
132 	unsigned int dot11ACKFailureCount;
133 	unsigned int dot11RTSFailureCount;
134 	unsigned int dot11FCSErrorCount;
135 	unsigned int dot11RTSSuccessCount;
136 };
137 
138 /**
139  * enum ieee80211_bss_change - BSS change notification flags
140  *
141  * These flags are used with the bss_info_changed() callback
142  * to indicate which BSS parameter changed.
143  *
144  * @BSS_CHANGED_ASSOC: association status changed (associated/disassociated),
145  *	also implies a change in the AID.
146  * @BSS_CHANGED_ERP_CTS_PROT: CTS protection changed
147  * @BSS_CHANGED_ERP_PREAMBLE: preamble changed
148  * @BSS_CHANGED_ERP_SLOT: slot timing changed
149  * @BSS_CHANGED_HT: 802.11n parameters changed
150  * @BSS_CHANGED_BASIC_RATES: Basic rateset changed
151  * @BSS_CHANGED_BEACON_INT: Beacon interval changed
152  * @BSS_CHANGED_BSSID: BSSID changed, for whatever
153  *	reason (IBSS and managed mode)
154  * @BSS_CHANGED_BEACON: Beacon data changed, retrieve
155  *	new beacon (beaconing modes)
156  * @BSS_CHANGED_BEACON_ENABLED: Beaconing should be
157  *	enabled/disabled (beaconing modes)
158  */
159 enum ieee80211_bss_change {
160 	BSS_CHANGED_ASSOC		= 1<<0,
161 	BSS_CHANGED_ERP_CTS_PROT	= 1<<1,
162 	BSS_CHANGED_ERP_PREAMBLE	= 1<<2,
163 	BSS_CHANGED_ERP_SLOT		= 1<<3,
164 	BSS_CHANGED_HT                  = 1<<4,
165 	BSS_CHANGED_BASIC_RATES		= 1<<5,
166 	BSS_CHANGED_BEACON_INT		= 1<<6,
167 	BSS_CHANGED_BSSID		= 1<<7,
168 	BSS_CHANGED_BEACON		= 1<<8,
169 	BSS_CHANGED_BEACON_ENABLED	= 1<<9,
170 };
171 
172 /**
173  * struct ieee80211_bss_conf - holds the BSS's changing parameters
174  *
175  * This structure keeps information about a BSS (and an association
176  * to that BSS) that can change during the lifetime of the BSS.
177  *
178  * @assoc: association status
179  * @aid: association ID number, valid only when @assoc is true
180  * @use_cts_prot: use CTS protection
181  * @use_short_preamble: use 802.11b short preamble;
182  *	if the hardware cannot handle this it must set the
183  *	IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE hardware flag
184  * @use_short_slot: use short slot time (only relevant for ERP);
185  *	if the hardware cannot handle this it must set the
186  *	IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE hardware flag
187  * @dtim_period: num of beacons before the next DTIM, for PSM
188  * @timestamp: beacon timestamp
189  * @beacon_int: beacon interval
190  * @assoc_capability: capabilities taken from assoc resp
191  * @basic_rates: bitmap of basic rates, each bit stands for an
192  *	index into the rate table configured by the driver in
193  *	the current band.
194  * @bssid: The BSSID for this BSS
195  * @enable_beacon: whether beaconing should be enabled or not
196  * @ht_operation_mode: HT operation mode (like in &struct ieee80211_ht_info).
197  *	This field is only valid when the channel type is one of the HT types.
198  */
199 struct ieee80211_bss_conf {
200 	const u8 *bssid;
201 	/* association related data */
202 	bool assoc;
203 	u16 aid;
204 	/* erp related data */
205 	bool use_cts_prot;
206 	bool use_short_preamble;
207 	bool use_short_slot;
208 	bool enable_beacon;
209 	u8 dtim_period;
210 	u16 beacon_int;
211 	u16 assoc_capability;
212 	u64 timestamp;
213 	u32 basic_rates;
214 	u16 ht_operation_mode;
215 };
216 
217 /**
218  * enum mac80211_tx_control_flags - flags to describe transmission information/status
219  *
220  * These flags are used with the @flags member of &ieee80211_tx_info.
221  *
222  * @IEEE80211_TX_CTL_REQ_TX_STATUS: request TX status callback for this frame.
223  * @IEEE80211_TX_CTL_ASSIGN_SEQ: The driver has to assign a sequence
224  *	number to this frame, taking care of not overwriting the fragment
225  *	number and increasing the sequence number only when the
226  *	IEEE80211_TX_CTL_FIRST_FRAGMENT flag is set. mac80211 will properly
227  *	assign sequence numbers to QoS-data frames but cannot do so correctly
228  *	for non-QoS-data and management frames because beacons need them from
229  *	that counter as well and mac80211 cannot guarantee proper sequencing.
230  *	If this flag is set, the driver should instruct the hardware to
231  *	assign a sequence number to the frame or assign one itself. Cf. IEEE
232  *	802.11-2007 7.1.3.4.1 paragraph 3. This flag will always be set for
233  *	beacons and always be clear for frames without a sequence number field.
234  * @IEEE80211_TX_CTL_NO_ACK: tell the low level not to wait for an ack
235  * @IEEE80211_TX_CTL_CLEAR_PS_FILT: clear powersave filter for destination
236  *	station
237  * @IEEE80211_TX_CTL_FIRST_FRAGMENT: this is a first fragment of the frame
238  * @IEEE80211_TX_CTL_SEND_AFTER_DTIM: send this frame after DTIM beacon
239  * @IEEE80211_TX_CTL_AMPDU: this frame should be sent as part of an A-MPDU
240  * @IEEE80211_TX_CTL_INJECTED: Frame was injected, internal to mac80211.
241  * @IEEE80211_TX_STAT_TX_FILTERED: The frame was not transmitted
242  *	because the destination STA was in powersave mode. Note that to
243  *	avoid race conditions, the filter must be set by the hardware or
244  *	firmware upon receiving a frame that indicates that the station
245  *	went to sleep (must be done on device to filter frames already on
246  *	the queue) and may only be unset after mac80211 gives the OK for
247  *	that by setting the IEEE80211_TX_CTL_CLEAR_PS_FILT (see above),
248  *	since only then is it guaranteed that no more frames are in the
249  *	hardware queue.
250  * @IEEE80211_TX_STAT_ACK: Frame was acknowledged
251  * @IEEE80211_TX_STAT_AMPDU: The frame was aggregated, so status
252  * 	is for the whole aggregation.
253  * @IEEE80211_TX_STAT_AMPDU_NO_BACK: no block ack was returned,
254  * 	so consider using block ack request (BAR).
255  * @IEEE80211_TX_CTL_RATE_CTRL_PROBE: internal to mac80211, can be
256  *	set by rate control algorithms to indicate probe rate, will
257  *	be cleared for fragmented frames (except on the last fragment)
258  * @IEEE80211_TX_INTFL_RCALGO: mac80211 internal flag, do not test or
259  *	set this flag in the driver; indicates that the rate control
260  *	algorithm was used and should be notified of TX status
261  * @IEEE80211_TX_INTFL_NEED_TXPROCESSING: completely internal to mac80211,
262  *	used to indicate that a pending frame requires TX processing before
263  *	it can be sent out.
264  * @IEEE80211_TX_INTFL_RETRIED: completely internal to mac80211,
265  *	used to indicate that a frame was already retried due to PS
266  * @IEEE80211_TX_INTFL_DONT_ENCRYPT: completely internal to mac80211,
267  *	used to indicate frame should not be encrypted
268  * @IEEE80211_TX_CTL_PSPOLL_RESPONSE: (internal?)
269  *	This frame is a response to a PS-poll frame and should be sent
270  *	although the station is in powersave mode.
271  * @IEEE80211_TX_CTL_MORE_FRAMES: More frames will be passed to the
272  *	transmit function after the current frame, this can be used
273  *	by drivers to kick the DMA queue only if unset or when the
274  *	queue gets full.
275  */
276 enum mac80211_tx_control_flags {
277 	IEEE80211_TX_CTL_REQ_TX_STATUS		= BIT(0),
278 	IEEE80211_TX_CTL_ASSIGN_SEQ		= BIT(1),
279 	IEEE80211_TX_CTL_NO_ACK			= BIT(2),
280 	IEEE80211_TX_CTL_CLEAR_PS_FILT		= BIT(3),
281 	IEEE80211_TX_CTL_FIRST_FRAGMENT		= BIT(4),
282 	IEEE80211_TX_CTL_SEND_AFTER_DTIM	= BIT(5),
283 	IEEE80211_TX_CTL_AMPDU			= BIT(6),
284 	IEEE80211_TX_CTL_INJECTED		= BIT(7),
285 	IEEE80211_TX_STAT_TX_FILTERED		= BIT(8),
286 	IEEE80211_TX_STAT_ACK			= BIT(9),
287 	IEEE80211_TX_STAT_AMPDU			= BIT(10),
288 	IEEE80211_TX_STAT_AMPDU_NO_BACK		= BIT(11),
289 	IEEE80211_TX_CTL_RATE_CTRL_PROBE	= BIT(12),
290 	IEEE80211_TX_INTFL_RCALGO		= BIT(13),
291 	IEEE80211_TX_INTFL_NEED_TXPROCESSING	= BIT(14),
292 	IEEE80211_TX_INTFL_RETRIED		= BIT(15),
293 	IEEE80211_TX_INTFL_DONT_ENCRYPT		= BIT(16),
294 	IEEE80211_TX_CTL_PSPOLL_RESPONSE	= BIT(17),
295 	IEEE80211_TX_CTL_MORE_FRAMES		= BIT(18),
296 };
297 
298 /**
299  * enum mac80211_rate_control_flags - per-rate flags set by the
300  *	Rate Control algorithm.
301  *
302  * These flags are set by the Rate control algorithm for each rate during tx,
303  * in the @flags member of struct ieee80211_tx_rate.
304  *
305  * @IEEE80211_TX_RC_USE_RTS_CTS: Use RTS/CTS exchange for this rate.
306  * @IEEE80211_TX_RC_USE_CTS_PROTECT: CTS-to-self protection is required.
307  *	This is set if the current BSS requires ERP protection.
308  * @IEEE80211_TX_RC_USE_SHORT_PREAMBLE: Use short preamble.
309  * @IEEE80211_TX_RC_MCS: HT rate.
310  * @IEEE80211_TX_RC_GREEN_FIELD: Indicates whether this rate should be used in
311  *	Greenfield mode.
312  * @IEEE80211_TX_RC_40_MHZ_WIDTH: Indicates if the Channel Width should be 40 MHz.
313  * @IEEE80211_TX_RC_DUP_DATA: The frame should be transmitted on both of the
314  *	adjacent 20 MHz channels, if the current channel type is
315  *	NL80211_CHAN_HT40MINUS or NL80211_CHAN_HT40PLUS.
316  * @IEEE80211_TX_RC_SHORT_GI: Short Guard interval should be used for this rate.
317  */
318 enum mac80211_rate_control_flags {
319 	IEEE80211_TX_RC_USE_RTS_CTS		= BIT(0),
320 	IEEE80211_TX_RC_USE_CTS_PROTECT		= BIT(1),
321 	IEEE80211_TX_RC_USE_SHORT_PREAMBLE	= BIT(2),
322 
323 	/* rate index is an MCS rate number instead of an index */
324 	IEEE80211_TX_RC_MCS			= BIT(3),
325 	IEEE80211_TX_RC_GREEN_FIELD		= BIT(4),
326 	IEEE80211_TX_RC_40_MHZ_WIDTH		= BIT(5),
327 	IEEE80211_TX_RC_DUP_DATA		= BIT(6),
328 	IEEE80211_TX_RC_SHORT_GI		= BIT(7),
329 };
330 
331 
332 /* there are 40 bytes if you don't need the rateset to be kept */
333 #define IEEE80211_TX_INFO_DRIVER_DATA_SIZE 40
334 
335 /* if you do need the rateset, then you have less space */
336 #define IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE 24
337 
338 /* maximum number of rate stages */
339 #define IEEE80211_TX_MAX_RATES	5
340 
341 /**
342  * struct ieee80211_tx_rate - rate selection/status
343  *
344  * @idx: rate index to attempt to send with
345  * @flags: rate control flags (&enum mac80211_rate_control_flags)
346  * @count: number of tries in this rate before going to the next rate
347  *
348  * A value of -1 for @idx indicates an invalid rate and, if used
349  * in an array of retry rates, that no more rates should be tried.
350  *
351  * When used for transmit status reporting, the driver should
352  * always report the rate along with the flags it used.
353  *
354  * &struct ieee80211_tx_info contains an array of these structs
355  * in the control information, and it will be filled by the rate
356  * control algorithm according to what should be sent. For example,
357  * if this array contains, in the format { <idx>, <count> } the
358  * information
359  *    { 3, 2 }, { 2, 2 }, { 1, 4 }, { -1, 0 }, { -1, 0 }
360  * then this means that the frame should be transmitted
361  * up to twice at rate 3, up to twice at rate 2, and up to four
362  * times at rate 1 if it doesn't get acknowledged. Say it gets
363  * acknowledged by the peer after the fifth attempt, the status
364  * information should then contain
365  *   { 3, 2 }, { 2, 2 }, { 1, 1 }, { -1, 0 } ...
366  * since it was transmitted twice at rate 3, twice at rate 2
367  * and once at rate 1 after which we received an acknowledgement.
368  */
369 struct ieee80211_tx_rate {
370 	s8 idx;
371 	u8 count;
372 	u8 flags;
373 } __attribute__((packed));
374 
375 /**
376  * struct ieee80211_tx_info - skb transmit information
377  *
378  * This structure is placed in skb->cb for three uses:
379  *  (1) mac80211 TX control - mac80211 tells the driver what to do
380  *  (2) driver internal use (if applicable)
381  *  (3) TX status information - driver tells mac80211 what happened
382  *
383  * The TX control's sta pointer is only valid during the ->tx call,
384  * it may be NULL.
385  *
386  * @flags: transmit info flags, defined above
387  * @band: the band to transmit on (use for checking for races)
388  * @antenna_sel_tx: antenna to use, 0 for automatic diversity
389  * @pad: padding, ignore
390  * @control: union for control data
391  * @status: union for status data
392  * @driver_data: array of driver_data pointers
393  * @ampdu_ack_len: number of aggregated frames.
394  * 	relevant only if IEEE80211_TX_STATUS_AMPDU was set.
395  * @ampdu_ack_map: block ack bit map for the aggregation.
396  * 	relevant only if IEEE80211_TX_STATUS_AMPDU was set.
397  * @ack_signal: signal strength of the ACK frame
398  */
399 struct ieee80211_tx_info {
400 	/* common information */
401 	u32 flags;
402 	u8 band;
403 
404 	u8 antenna_sel_tx;
405 
406 	/* 2 byte hole */
407 	u8 pad[2];
408 
409 	union {
410 		struct {
411 			union {
412 				/* rate control */
413 				struct {
414 					struct ieee80211_tx_rate rates[
415 						IEEE80211_TX_MAX_RATES];
416 					s8 rts_cts_rate_idx;
417 				};
418 				/* only needed before rate control */
419 				unsigned long jiffies;
420 			};
421 			/* NB: vif can be NULL for injected frames */
422 			struct ieee80211_vif *vif;
423 			struct ieee80211_key_conf *hw_key;
424 			struct ieee80211_sta *sta;
425 		} control;
426 		struct {
427 			struct ieee80211_tx_rate rates[IEEE80211_TX_MAX_RATES];
428 			u8 ampdu_ack_len;
429 			u64 ampdu_ack_map;
430 			int ack_signal;
431 			/* 8 bytes free */
432 		} status;
433 		struct {
434 			struct ieee80211_tx_rate driver_rates[
435 				IEEE80211_TX_MAX_RATES];
436 			void *rate_driver_data[
437 				IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE / sizeof(void *)];
438 		};
439 		void *driver_data[
440 			IEEE80211_TX_INFO_DRIVER_DATA_SIZE / sizeof(void *)];
441 	};
442 };
443 
444 static inline struct ieee80211_tx_info *IEEE80211_SKB_CB(struct sk_buff *skb)
445 {
446 	return (struct ieee80211_tx_info *)skb->cb;
447 }
448 
449 static inline struct ieee80211_rx_status *IEEE80211_SKB_RXCB(struct sk_buff *skb)
450 {
451 	return (struct ieee80211_rx_status *)skb->cb;
452 }
453 
454 /**
455  * ieee80211_tx_info_clear_status - clear TX status
456  *
457  * @info: The &struct ieee80211_tx_info to be cleared.
458  *
459  * When the driver passes an skb back to mac80211, it must report
460  * a number of things in TX status. This function clears everything
461  * in the TX status but the rate control information (it does clear
462  * the count since you need to fill that in anyway).
463  *
464  * NOTE: You can only use this function if you do NOT use
465  *	 info->driver_data! Use info->rate_driver_data
466  *	 instead if you need only the less space that allows.
467  */
468 static inline void
469 ieee80211_tx_info_clear_status(struct ieee80211_tx_info *info)
470 {
471 	int i;
472 
473 	BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) !=
474 		     offsetof(struct ieee80211_tx_info, control.rates));
475 	BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) !=
476 		     offsetof(struct ieee80211_tx_info, driver_rates));
477 	BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) != 8);
478 	/* clear the rate counts */
479 	for (i = 0; i < IEEE80211_TX_MAX_RATES; i++)
480 		info->status.rates[i].count = 0;
481 
482 	BUILD_BUG_ON(
483 	    offsetof(struct ieee80211_tx_info, status.ampdu_ack_len) != 23);
484 	memset(&info->status.ampdu_ack_len, 0,
485 	       sizeof(struct ieee80211_tx_info) -
486 	       offsetof(struct ieee80211_tx_info, status.ampdu_ack_len));
487 }
488 
489 
490 /**
491  * enum mac80211_rx_flags - receive flags
492  *
493  * These flags are used with the @flag member of &struct ieee80211_rx_status.
494  * @RX_FLAG_MMIC_ERROR: Michael MIC error was reported on this frame.
495  *	Use together with %RX_FLAG_MMIC_STRIPPED.
496  * @RX_FLAG_DECRYPTED: This frame was decrypted in hardware.
497  * @RX_FLAG_RADIOTAP: This frame starts with a radiotap header.
498  * @RX_FLAG_MMIC_STRIPPED: the Michael MIC is stripped off this frame,
499  *	verification has been done by the hardware.
500  * @RX_FLAG_IV_STRIPPED: The IV/ICV are stripped from this frame.
501  *	If this flag is set, the stack cannot do any replay detection
502  *	hence the driver or hardware will have to do that.
503  * @RX_FLAG_FAILED_FCS_CRC: Set this flag if the FCS check failed on
504  *	the frame.
505  * @RX_FLAG_FAILED_PLCP_CRC: Set this flag if the PCLP check failed on
506  *	the frame.
507  * @RX_FLAG_TSFT: The timestamp passed in the RX status (@mactime field)
508  *	is valid. This is useful in monitor mode and necessary for beacon frames
509  *	to enable IBSS merging.
510  * @RX_FLAG_SHORTPRE: Short preamble was used for this frame
511  * @RX_FLAG_HT: HT MCS was used and rate_idx is MCS index
512  * @RX_FLAG_40MHZ: HT40 (40 MHz) was used
513  * @RX_FLAG_SHORT_GI: Short guard interval was used
514  */
515 enum mac80211_rx_flags {
516 	RX_FLAG_MMIC_ERROR	= 1<<0,
517 	RX_FLAG_DECRYPTED	= 1<<1,
518 	RX_FLAG_RADIOTAP	= 1<<2,
519 	RX_FLAG_MMIC_STRIPPED	= 1<<3,
520 	RX_FLAG_IV_STRIPPED	= 1<<4,
521 	RX_FLAG_FAILED_FCS_CRC	= 1<<5,
522 	RX_FLAG_FAILED_PLCP_CRC = 1<<6,
523 	RX_FLAG_TSFT		= 1<<7,
524 	RX_FLAG_SHORTPRE	= 1<<8,
525 	RX_FLAG_HT		= 1<<9,
526 	RX_FLAG_40MHZ		= 1<<10,
527 	RX_FLAG_SHORT_GI	= 1<<11,
528 };
529 
530 /**
531  * struct ieee80211_rx_status - receive status
532  *
533  * The low-level driver should provide this information (the subset
534  * supported by hardware) to the 802.11 code with each received
535  * frame, in the skb's control buffer (cb).
536  *
537  * @mactime: value in microseconds of the 64-bit Time Synchronization Function
538  * 	(TSF) timer when the first data symbol (MPDU) arrived at the hardware.
539  * @band: the active band when this frame was received
540  * @freq: frequency the radio was tuned to when receiving this frame, in MHz
541  * @signal: signal strength when receiving this frame, either in dBm, in dB or
542  *	unspecified depending on the hardware capabilities flags
543  *	@IEEE80211_HW_SIGNAL_*
544  * @noise: noise when receiving this frame, in dBm.
545  * @qual: overall signal quality indication, in percent (0-100).
546  * @antenna: antenna used
547  * @rate_idx: index of data rate into band's supported rates or MCS index if
548  *	HT rates are use (RX_FLAG_HT)
549  * @flag: %RX_FLAG_*
550  */
551 struct ieee80211_rx_status {
552 	u64 mactime;
553 	enum ieee80211_band band;
554 	int freq;
555 	int signal;
556 	int noise;
557 	int qual;
558 	int antenna;
559 	int rate_idx;
560 	int flag;
561 };
562 
563 /**
564  * enum ieee80211_conf_flags - configuration flags
565  *
566  * Flags to define PHY configuration options
567  *
568  * @IEEE80211_CONF_RADIOTAP: add radiotap header at receive time (if supported)
569  * @IEEE80211_CONF_PS: Enable 802.11 power save mode (managed mode only)
570  * @IEEE80211_CONF_IDLE: The device is running, but idle; if the flag is set
571  *	the driver should be prepared to handle configuration requests but
572  *	may turn the device off as much as possible. Typically, this flag will
573  *	be set when an interface is set UP but not associated or scanning, but
574  *	it can also be unset in that case when monitor interfaces are active.
575  */
576 enum ieee80211_conf_flags {
577 	IEEE80211_CONF_RADIOTAP		= (1<<0),
578 	IEEE80211_CONF_PS		= (1<<1),
579 	IEEE80211_CONF_IDLE		= (1<<2),
580 };
581 
582 
583 /**
584  * enum ieee80211_conf_changed - denotes which configuration changed
585  *
586  * @IEEE80211_CONF_CHANGE_LISTEN_INTERVAL: the listen interval changed
587  * @IEEE80211_CONF_CHANGE_RADIOTAP: the radiotap flag changed
588  * @IEEE80211_CONF_CHANGE_PS: the PS flag or dynamic PS timeout changed
589  * @IEEE80211_CONF_CHANGE_POWER: the TX power changed
590  * @IEEE80211_CONF_CHANGE_CHANNEL: the channel/channel_type changed
591  * @IEEE80211_CONF_CHANGE_RETRY_LIMITS: retry limits changed
592  * @IEEE80211_CONF_CHANGE_IDLE: Idle flag changed
593  */
594 enum ieee80211_conf_changed {
595 	IEEE80211_CONF_CHANGE_LISTEN_INTERVAL	= BIT(2),
596 	IEEE80211_CONF_CHANGE_RADIOTAP		= BIT(3),
597 	IEEE80211_CONF_CHANGE_PS		= BIT(4),
598 	IEEE80211_CONF_CHANGE_POWER		= BIT(5),
599 	IEEE80211_CONF_CHANGE_CHANNEL		= BIT(6),
600 	IEEE80211_CONF_CHANGE_RETRY_LIMITS	= BIT(7),
601 	IEEE80211_CONF_CHANGE_IDLE		= BIT(8),
602 };
603 
604 /**
605  * struct ieee80211_conf - configuration of the device
606  *
607  * This struct indicates how the driver shall configure the hardware.
608  *
609  * @flags: configuration flags defined above
610  *
611  * @listen_interval: listen interval in units of beacon interval
612  * @max_sleep_period: the maximum number of beacon intervals to sleep for
613  *	before checking the beacon for a TIM bit (managed mode only); this
614  *	value will be only achievable between DTIM frames, the hardware
615  *	needs to check for the multicast traffic bit in DTIM beacons.
616  *	This variable is valid only when the CONF_PS flag is set.
617  * @dynamic_ps_timeout: The dynamic powersave timeout (in ms), see the
618  *	powersave documentation below. This variable is valid only when
619  *	the CONF_PS flag is set.
620  *
621  * @power_level: requested transmit power (in dBm)
622  *
623  * @channel: the channel to tune to
624  * @channel_type: the channel (HT) type
625  *
626  * @long_frame_max_tx_count: Maximum number of transmissions for a "long" frame
627  *    (a frame not RTS protected), called "dot11LongRetryLimit" in 802.11,
628  *    but actually means the number of transmissions not the number of retries
629  * @short_frame_max_tx_count: Maximum number of transmissions for a "short"
630  *    frame, called "dot11ShortRetryLimit" in 802.11, but actually means the
631  *    number of transmissions not the number of retries
632  */
633 struct ieee80211_conf {
634 	u32 flags;
635 	int power_level, dynamic_ps_timeout;
636 	int max_sleep_period;
637 
638 	u16 listen_interval;
639 
640 	u8 long_frame_max_tx_count, short_frame_max_tx_count;
641 
642 	struct ieee80211_channel *channel;
643 	enum nl80211_channel_type channel_type;
644 };
645 
646 /**
647  * struct ieee80211_vif - per-interface data
648  *
649  * Data in this structure is continually present for driver
650  * use during the life of a virtual interface.
651  *
652  * @type: type of this virtual interface
653  * @bss_conf: BSS configuration for this interface, either our own
654  *	or the BSS we're associated to
655  * @drv_priv: data area for driver use, will always be aligned to
656  *	sizeof(void *).
657  */
658 struct ieee80211_vif {
659 	enum nl80211_iftype type;
660 	struct ieee80211_bss_conf bss_conf;
661 	/* must be last */
662 	u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *))));
663 };
664 
665 static inline bool ieee80211_vif_is_mesh(struct ieee80211_vif *vif)
666 {
667 #ifdef CONFIG_MAC80211_MESH
668 	return vif->type == NL80211_IFTYPE_MESH_POINT;
669 #endif
670 	return false;
671 }
672 
673 /**
674  * struct ieee80211_if_init_conf - initial configuration of an interface
675  *
676  * @vif: pointer to a driver-use per-interface structure. The pointer
677  *	itself is also used for various functions including
678  *	ieee80211_beacon_get() and ieee80211_get_buffered_bc().
679  * @type: one of &enum nl80211_iftype constants. Determines the type of
680  *	added/removed interface.
681  * @mac_addr: pointer to MAC address of the interface. This pointer is valid
682  *	until the interface is removed (i.e. it cannot be used after
683  *	remove_interface() callback was called for this interface).
684  *
685  * This structure is used in add_interface() and remove_interface()
686  * callbacks of &struct ieee80211_hw.
687  *
688  * When you allow multiple interfaces to be added to your PHY, take care
689  * that the hardware can actually handle multiple MAC addresses. However,
690  * also take care that when there's no interface left with mac_addr != %NULL
691  * you remove the MAC address from the device to avoid acknowledging packets
692  * in pure monitor mode.
693  */
694 struct ieee80211_if_init_conf {
695 	enum nl80211_iftype type;
696 	struct ieee80211_vif *vif;
697 	void *mac_addr;
698 };
699 
700 /**
701  * enum ieee80211_key_alg - key algorithm
702  * @ALG_WEP: WEP40 or WEP104
703  * @ALG_TKIP: TKIP
704  * @ALG_CCMP: CCMP (AES)
705  * @ALG_AES_CMAC: AES-128-CMAC
706  */
707 enum ieee80211_key_alg {
708 	ALG_WEP,
709 	ALG_TKIP,
710 	ALG_CCMP,
711 	ALG_AES_CMAC,
712 };
713 
714 /**
715  * enum ieee80211_key_flags - key flags
716  *
717  * These flags are used for communication about keys between the driver
718  * and mac80211, with the @flags parameter of &struct ieee80211_key_conf.
719  *
720  * @IEEE80211_KEY_FLAG_WMM_STA: Set by mac80211, this flag indicates
721  *	that the STA this key will be used with could be using QoS.
722  * @IEEE80211_KEY_FLAG_GENERATE_IV: This flag should be set by the
723  *	driver to indicate that it requires IV generation for this
724  *	particular key.
725  * @IEEE80211_KEY_FLAG_GENERATE_MMIC: This flag should be set by
726  *	the driver for a TKIP key if it requires Michael MIC
727  *	generation in software.
728  * @IEEE80211_KEY_FLAG_PAIRWISE: Set by mac80211, this flag indicates
729  *	that the key is pairwise rather then a shared key.
730  * @IEEE80211_KEY_FLAG_SW_MGMT: This flag should be set by the driver for a
731  *	CCMP key if it requires CCMP encryption of management frames (MFP) to
732  *	be done in software.
733  */
734 enum ieee80211_key_flags {
735 	IEEE80211_KEY_FLAG_WMM_STA	= 1<<0,
736 	IEEE80211_KEY_FLAG_GENERATE_IV	= 1<<1,
737 	IEEE80211_KEY_FLAG_GENERATE_MMIC= 1<<2,
738 	IEEE80211_KEY_FLAG_PAIRWISE	= 1<<3,
739 	IEEE80211_KEY_FLAG_SW_MGMT	= 1<<4,
740 };
741 
742 /**
743  * struct ieee80211_key_conf - key information
744  *
745  * This key information is given by mac80211 to the driver by
746  * the set_key() callback in &struct ieee80211_ops.
747  *
748  * @hw_key_idx: To be set by the driver, this is the key index the driver
749  *	wants to be given when a frame is transmitted and needs to be
750  *	encrypted in hardware.
751  * @alg: The key algorithm.
752  * @flags: key flags, see &enum ieee80211_key_flags.
753  * @keyidx: the key index (0-3)
754  * @keylen: key material length
755  * @key: key material. For ALG_TKIP the key is encoded as a 256-bit (32 byte)
756  * 	data block:
757  * 	- Temporal Encryption Key (128 bits)
758  * 	- Temporal Authenticator Tx MIC Key (64 bits)
759  * 	- Temporal Authenticator Rx MIC Key (64 bits)
760  * @icv_len: The ICV length for this key type
761  * @iv_len: The IV length for this key type
762  */
763 struct ieee80211_key_conf {
764 	enum ieee80211_key_alg alg;
765 	u8 icv_len;
766 	u8 iv_len;
767 	u8 hw_key_idx;
768 	u8 flags;
769 	s8 keyidx;
770 	u8 keylen;
771 	u8 key[0];
772 };
773 
774 /**
775  * enum set_key_cmd - key command
776  *
777  * Used with the set_key() callback in &struct ieee80211_ops, this
778  * indicates whether a key is being removed or added.
779  *
780  * @SET_KEY: a key is set
781  * @DISABLE_KEY: a key must be disabled
782  */
783 enum set_key_cmd {
784 	SET_KEY, DISABLE_KEY,
785 };
786 
787 /**
788  * struct ieee80211_sta - station table entry
789  *
790  * A station table entry represents a station we are possibly
791  * communicating with. Since stations are RCU-managed in
792  * mac80211, any ieee80211_sta pointer you get access to must
793  * either be protected by rcu_read_lock() explicitly or implicitly,
794  * or you must take good care to not use such a pointer after a
795  * call to your sta_notify callback that removed it.
796  *
797  * @addr: MAC address
798  * @aid: AID we assigned to the station if we're an AP
799  * @supp_rates: Bitmap of supported rates (per band)
800  * @ht_cap: HT capabilities of this STA; restricted to our own TX capabilities
801  * @drv_priv: data area for driver use, will always be aligned to
802  *	sizeof(void *), size is determined in hw information.
803  */
804 struct ieee80211_sta {
805 	u32 supp_rates[IEEE80211_NUM_BANDS];
806 	u8 addr[ETH_ALEN];
807 	u16 aid;
808 	struct ieee80211_sta_ht_cap ht_cap;
809 
810 	/* must be last */
811 	u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *))));
812 };
813 
814 /**
815  * enum sta_notify_cmd - sta notify command
816  *
817  * Used with the sta_notify() callback in &struct ieee80211_ops, this
818  * indicates addition and removal of a station to station table,
819  * or if a associated station made a power state transition.
820  *
821  * @STA_NOTIFY_ADD: a station was added to the station table
822  * @STA_NOTIFY_REMOVE: a station being removed from the station table
823  * @STA_NOTIFY_SLEEP: a station is now sleeping
824  * @STA_NOTIFY_AWAKE: a sleeping station woke up
825  */
826 enum sta_notify_cmd {
827 	STA_NOTIFY_ADD, STA_NOTIFY_REMOVE,
828 	STA_NOTIFY_SLEEP, STA_NOTIFY_AWAKE,
829 };
830 
831 /**
832  * enum ieee80211_tkip_key_type - get tkip key
833  *
834  * Used by drivers which need to get a tkip key for skb. Some drivers need a
835  * phase 1 key, others need a phase 2 key. A single function allows the driver
836  * to get the key, this enum indicates what type of key is required.
837  *
838  * @IEEE80211_TKIP_P1_KEY: the driver needs a phase 1 key
839  * @IEEE80211_TKIP_P2_KEY: the driver needs a phase 2 key
840  */
841 enum ieee80211_tkip_key_type {
842 	IEEE80211_TKIP_P1_KEY,
843 	IEEE80211_TKIP_P2_KEY,
844 };
845 
846 /**
847  * enum ieee80211_hw_flags - hardware flags
848  *
849  * These flags are used to indicate hardware capabilities to
850  * the stack. Generally, flags here should have their meaning
851  * done in a way that the simplest hardware doesn't need setting
852  * any particular flags. There are some exceptions to this rule,
853  * however, so you are advised to review these flags carefully.
854  *
855  * @IEEE80211_HW_RX_INCLUDES_FCS:
856  *	Indicates that received frames passed to the stack include
857  *	the FCS at the end.
858  *
859  * @IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING:
860  *	Some wireless LAN chipsets buffer broadcast/multicast frames
861  *	for power saving stations in the hardware/firmware and others
862  *	rely on the host system for such buffering. This option is used
863  *	to configure the IEEE 802.11 upper layer to buffer broadcast and
864  *	multicast frames when there are power saving stations so that
865  *	the driver can fetch them with ieee80211_get_buffered_bc().
866  *
867  * @IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE:
868  *	Hardware is not capable of short slot operation on the 2.4 GHz band.
869  *
870  * @IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE:
871  *	Hardware is not capable of receiving frames with short preamble on
872  *	the 2.4 GHz band.
873  *
874  * @IEEE80211_HW_SIGNAL_UNSPEC:
875  *	Hardware can provide signal values but we don't know its units. We
876  *	expect values between 0 and @max_signal.
877  *	If possible please provide dB or dBm instead.
878  *
879  * @IEEE80211_HW_SIGNAL_DBM:
880  *	Hardware gives signal values in dBm, decibel difference from
881  *	one milliwatt. This is the preferred method since it is standardized
882  *	between different devices. @max_signal does not need to be set.
883  *
884  * @IEEE80211_HW_NOISE_DBM:
885  *	Hardware can provide noise (radio interference) values in units dBm,
886  *      decibel difference from one milliwatt.
887  *
888  * @IEEE80211_HW_SPECTRUM_MGMT:
889  * 	Hardware supports spectrum management defined in 802.11h
890  * 	Measurement, Channel Switch, Quieting, TPC
891  *
892  * @IEEE80211_HW_AMPDU_AGGREGATION:
893  *	Hardware supports 11n A-MPDU aggregation.
894  *
895  * @IEEE80211_HW_SUPPORTS_PS:
896  *	Hardware has power save support (i.e. can go to sleep).
897  *
898  * @IEEE80211_HW_PS_NULLFUNC_STACK:
899  *	Hardware requires nullfunc frame handling in stack, implies
900  *	stack support for dynamic PS.
901  *
902  * @IEEE80211_HW_SUPPORTS_DYNAMIC_PS:
903  *	Hardware has support for dynamic PS.
904  *
905  * @IEEE80211_HW_MFP_CAPABLE:
906  *	Hardware supports management frame protection (MFP, IEEE 802.11w).
907  *
908  * @IEEE80211_HW_BEACON_FILTER:
909  *	Hardware supports dropping of irrelevant beacon frames to
910  *	avoid waking up cpu.
911  */
912 enum ieee80211_hw_flags {
913 	IEEE80211_HW_RX_INCLUDES_FCS			= 1<<1,
914 	IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING	= 1<<2,
915 	IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE		= 1<<3,
916 	IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE	= 1<<4,
917 	IEEE80211_HW_SIGNAL_UNSPEC			= 1<<5,
918 	IEEE80211_HW_SIGNAL_DBM				= 1<<6,
919 	IEEE80211_HW_NOISE_DBM				= 1<<7,
920 	IEEE80211_HW_SPECTRUM_MGMT			= 1<<8,
921 	IEEE80211_HW_AMPDU_AGGREGATION			= 1<<9,
922 	IEEE80211_HW_SUPPORTS_PS			= 1<<10,
923 	IEEE80211_HW_PS_NULLFUNC_STACK			= 1<<11,
924 	IEEE80211_HW_SUPPORTS_DYNAMIC_PS		= 1<<12,
925 	IEEE80211_HW_MFP_CAPABLE			= 1<<13,
926 	IEEE80211_HW_BEACON_FILTER			= 1<<14,
927 };
928 
929 /**
930  * struct ieee80211_hw - hardware information and state
931  *
932  * This structure contains the configuration and hardware
933  * information for an 802.11 PHY.
934  *
935  * @wiphy: This points to the &struct wiphy allocated for this
936  *	802.11 PHY. You must fill in the @perm_addr and @dev
937  *	members of this structure using SET_IEEE80211_DEV()
938  *	and SET_IEEE80211_PERM_ADDR(). Additionally, all supported
939  *	bands (with channels, bitrates) are registered here.
940  *
941  * @conf: &struct ieee80211_conf, device configuration, don't use.
942  *
943  * @priv: pointer to private area that was allocated for driver use
944  *	along with this structure.
945  *
946  * @flags: hardware flags, see &enum ieee80211_hw_flags.
947  *
948  * @extra_tx_headroom: headroom to reserve in each transmit skb
949  *	for use by the driver (e.g. for transmit headers.)
950  *
951  * @channel_change_time: time (in microseconds) it takes to change channels.
952  *
953  * @max_signal: Maximum value for signal (rssi) in RX information, used
954  *     only when @IEEE80211_HW_SIGNAL_UNSPEC or @IEEE80211_HW_SIGNAL_DB
955  *
956  * @max_listen_interval: max listen interval in units of beacon interval
957  *     that HW supports
958  *
959  * @queues: number of available hardware transmit queues for
960  *	data packets. WMM/QoS requires at least four, these
961  *	queues need to have configurable access parameters.
962  *
963  * @rate_control_algorithm: rate control algorithm for this hardware.
964  *	If unset (NULL), the default algorithm will be used. Must be
965  *	set before calling ieee80211_register_hw().
966  *
967  * @vif_data_size: size (in bytes) of the drv_priv data area
968  *	within &struct ieee80211_vif.
969  * @sta_data_size: size (in bytes) of the drv_priv data area
970  *	within &struct ieee80211_sta.
971  *
972  * @max_rates: maximum number of alternate rate retry stages
973  * @max_rate_tries: maximum number of tries for each stage
974  */
975 struct ieee80211_hw {
976 	struct ieee80211_conf conf;
977 	struct wiphy *wiphy;
978 	const char *rate_control_algorithm;
979 	void *priv;
980 	u32 flags;
981 	unsigned int extra_tx_headroom;
982 	int channel_change_time;
983 	int vif_data_size;
984 	int sta_data_size;
985 	u16 queues;
986 	u16 max_listen_interval;
987 	s8 max_signal;
988 	u8 max_rates;
989 	u8 max_rate_tries;
990 };
991 
992 /**
993  * wiphy_to_ieee80211_hw - return a mac80211 driver hw struct from a wiphy
994  *
995  * @wiphy: the &struct wiphy which we want to query
996  *
997  * mac80211 drivers can use this to get to their respective
998  * &struct ieee80211_hw. Drivers wishing to get to their own private
999  * structure can then access it via hw->priv. Note that mac802111 drivers should
1000  * not use wiphy_priv() to try to get their private driver structure as this
1001  * is already used internally by mac80211.
1002  */
1003 struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy);
1004 
1005 /**
1006  * SET_IEEE80211_DEV - set device for 802.11 hardware
1007  *
1008  * @hw: the &struct ieee80211_hw to set the device for
1009  * @dev: the &struct device of this 802.11 device
1010  */
1011 static inline void SET_IEEE80211_DEV(struct ieee80211_hw *hw, struct device *dev)
1012 {
1013 	set_wiphy_dev(hw->wiphy, dev);
1014 }
1015 
1016 /**
1017  * SET_IEEE80211_PERM_ADDR - set the permanent MAC address for 802.11 hardware
1018  *
1019  * @hw: the &struct ieee80211_hw to set the MAC address for
1020  * @addr: the address to set
1021  */
1022 static inline void SET_IEEE80211_PERM_ADDR(struct ieee80211_hw *hw, u8 *addr)
1023 {
1024 	memcpy(hw->wiphy->perm_addr, addr, ETH_ALEN);
1025 }
1026 
1027 static inline struct ieee80211_rate *
1028 ieee80211_get_tx_rate(const struct ieee80211_hw *hw,
1029 		      const struct ieee80211_tx_info *c)
1030 {
1031 	if (WARN_ON(c->control.rates[0].idx < 0))
1032 		return NULL;
1033 	return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[0].idx];
1034 }
1035 
1036 static inline struct ieee80211_rate *
1037 ieee80211_get_rts_cts_rate(const struct ieee80211_hw *hw,
1038 			   const struct ieee80211_tx_info *c)
1039 {
1040 	if (c->control.rts_cts_rate_idx < 0)
1041 		return NULL;
1042 	return &hw->wiphy->bands[c->band]->bitrates[c->control.rts_cts_rate_idx];
1043 }
1044 
1045 static inline struct ieee80211_rate *
1046 ieee80211_get_alt_retry_rate(const struct ieee80211_hw *hw,
1047 			     const struct ieee80211_tx_info *c, int idx)
1048 {
1049 	if (c->control.rates[idx + 1].idx < 0)
1050 		return NULL;
1051 	return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[idx + 1].idx];
1052 }
1053 
1054 /**
1055  * DOC: Hardware crypto acceleration
1056  *
1057  * mac80211 is capable of taking advantage of many hardware
1058  * acceleration designs for encryption and decryption operations.
1059  *
1060  * The set_key() callback in the &struct ieee80211_ops for a given
1061  * device is called to enable hardware acceleration of encryption and
1062  * decryption. The callback takes a @sta parameter that will be NULL
1063  * for default keys or keys used for transmission only, or point to
1064  * the station information for the peer for individual keys.
1065  * Multiple transmission keys with the same key index may be used when
1066  * VLANs are configured for an access point.
1067  *
1068  * When transmitting, the TX control data will use the @hw_key_idx
1069  * selected by the driver by modifying the &struct ieee80211_key_conf
1070  * pointed to by the @key parameter to the set_key() function.
1071  *
1072  * The set_key() call for the %SET_KEY command should return 0 if
1073  * the key is now in use, -%EOPNOTSUPP or -%ENOSPC if it couldn't be
1074  * added; if you return 0 then hw_key_idx must be assigned to the
1075  * hardware key index, you are free to use the full u8 range.
1076  *
1077  * When the cmd is %DISABLE_KEY then it must succeed.
1078  *
1079  * Note that it is permissible to not decrypt a frame even if a key
1080  * for it has been uploaded to hardware, the stack will not make any
1081  * decision based on whether a key has been uploaded or not but rather
1082  * based on the receive flags.
1083  *
1084  * The &struct ieee80211_key_conf structure pointed to by the @key
1085  * parameter is guaranteed to be valid until another call to set_key()
1086  * removes it, but it can only be used as a cookie to differentiate
1087  * keys.
1088  *
1089  * In TKIP some HW need to be provided a phase 1 key, for RX decryption
1090  * acceleration (i.e. iwlwifi). Those drivers should provide update_tkip_key
1091  * handler.
1092  * The update_tkip_key() call updates the driver with the new phase 1 key.
1093  * This happens everytime the iv16 wraps around (every 65536 packets). The
1094  * set_key() call will happen only once for each key (unless the AP did
1095  * rekeying), it will not include a valid phase 1 key. The valid phase 1 key is
1096  * provided by update_tkip_key only. The trigger that makes mac80211 call this
1097  * handler is software decryption with wrap around of iv16.
1098  */
1099 
1100 /**
1101  * DOC: Powersave support
1102  *
1103  * mac80211 has support for various powersave implementations.
1104  *
1105  * First, it can support hardware that handles all powersaving by
1106  * itself, such hardware should simply set the %IEEE80211_HW_SUPPORTS_PS
1107  * hardware flag. In that case, it will be told about the desired
1108  * powersave mode depending on the association status, and the driver
1109  * must take care of sending nullfunc frames when necessary, i.e. when
1110  * entering and leaving powersave mode. The driver is required to look at
1111  * the AID in beacons and signal to the AP that it woke up when it finds
1112  * traffic directed to it. This mode supports dynamic PS by simply
1113  * enabling/disabling PS.
1114  *
1115  * Additionally, such hardware may set the %IEEE80211_HW_SUPPORTS_DYNAMIC_PS
1116  * flag to indicate that it can support dynamic PS mode itself (see below).
1117  *
1118  * Other hardware designs cannot send nullfunc frames by themselves and also
1119  * need software support for parsing the TIM bitmap. This is also supported
1120  * by mac80211 by combining the %IEEE80211_HW_SUPPORTS_PS and
1121  * %IEEE80211_HW_PS_NULLFUNC_STACK flags. The hardware is of course still
1122  * required to pass up beacons. The hardware is still required to handle
1123  * waking up for multicast traffic; if it cannot the driver must handle that
1124  * as best as it can, mac80211 is too slow.
1125  *
1126  * Dynamic powersave mode is an extension to normal powersave mode in which
1127  * the hardware stays awake for a user-specified period of time after sending
1128  * a frame so that reply frames need not be buffered and therefore delayed
1129  * to the next wakeup. This can either be supported by hardware, in which case
1130  * the driver needs to look at the @dynamic_ps_timeout hardware configuration
1131  * value, or by the stack if all nullfunc handling is in the stack.
1132  */
1133 
1134 /**
1135  * DOC: Beacon filter support
1136  *
1137  * Some hardware have beacon filter support to reduce host cpu wakeups
1138  * which will reduce system power consumption. It usuallly works so that
1139  * the firmware creates a checksum of the beacon but omits all constantly
1140  * changing elements (TSF, TIM etc). Whenever the checksum changes the
1141  * beacon is forwarded to the host, otherwise it will be just dropped. That
1142  * way the host will only receive beacons where some relevant information
1143  * (for example ERP protection or WMM settings) have changed.
1144  *
1145  * Beacon filter support is advertised with the %IEEE80211_HW_BEACON_FILTER
1146  * hardware capability. The driver needs to enable beacon filter support
1147  * whenever power save is enabled, that is %IEEE80211_CONF_PS is set. When
1148  * power save is enabled, the stack will not check for beacon loss and the
1149  * driver needs to notify about loss of beacons with ieee80211_beacon_loss().
1150  *
1151  * The time (or number of beacons missed) until the firmware notifies the
1152  * driver of a beacon loss event (which in turn causes the driver to call
1153  * ieee80211_beacon_loss()) should be configurable and will be controlled
1154  * by mac80211 and the roaming algorithm in the future.
1155  *
1156  * Since there may be constantly changing information elements that nothing
1157  * in the software stack cares about, we will, in the future, have mac80211
1158  * tell the driver which information elements are interesting in the sense
1159  * that we want to see changes in them. This will include
1160  *  - a list of information element IDs
1161  *  - a list of OUIs for the vendor information element
1162  *
1163  * Ideally, the hardware would filter out any beacons without changes in the
1164  * requested elements, but if it cannot support that it may, at the expense
1165  * of some efficiency, filter out only a subset. For example, if the device
1166  * doesn't support checking for OUIs it should pass up all changes in all
1167  * vendor information elements.
1168  *
1169  * Note that change, for the sake of simplification, also includes information
1170  * elements appearing or disappearing from the beacon.
1171  *
1172  * Some hardware supports an "ignore list" instead, just make sure nothing
1173  * that was requested is on the ignore list, and include commonly changing
1174  * information element IDs in the ignore list, for example 11 (BSS load) and
1175  * the various vendor-assigned IEs with unknown contents (128, 129, 133-136,
1176  * 149, 150, 155, 156, 173, 176, 178, 179, 219); for forward compatibility
1177  * it could also include some currently unused IDs.
1178  *
1179  *
1180  * In addition to these capabilities, hardware should support notifying the
1181  * host of changes in the beacon RSSI. This is relevant to implement roaming
1182  * when no traffic is flowing (when traffic is flowing we see the RSSI of
1183  * the received data packets). This can consist in notifying the host when
1184  * the RSSI changes significantly or when it drops below or rises above
1185  * configurable thresholds. In the future these thresholds will also be
1186  * configured by mac80211 (which gets them from userspace) to implement
1187  * them as the roaming algorithm requires.
1188  *
1189  * If the hardware cannot implement this, the driver should ask it to
1190  * periodically pass beacon frames to the host so that software can do the
1191  * signal strength threshold checking.
1192  */
1193 
1194 /**
1195  * DOC: Frame filtering
1196  *
1197  * mac80211 requires to see many management frames for proper
1198  * operation, and users may want to see many more frames when
1199  * in monitor mode. However, for best CPU usage and power consumption,
1200  * having as few frames as possible percolate through the stack is
1201  * desirable. Hence, the hardware should filter as much as possible.
1202  *
1203  * To achieve this, mac80211 uses filter flags (see below) to tell
1204  * the driver's configure_filter() function which frames should be
1205  * passed to mac80211 and which should be filtered out.
1206  *
1207  * Before configure_filter() is invoked, the prepare_multicast()
1208  * callback is invoked with the parameters @mc_count and @mc_list
1209  * for the combined multicast address list of all virtual interfaces.
1210  * It's use is optional, and it returns a u64 that is passed to
1211  * configure_filter(). Additionally, configure_filter() has the
1212  * arguments @changed_flags telling which flags were changed and
1213  * @total_flags with the new flag states.
1214  *
1215  * If your device has no multicast address filters your driver will
1216  * need to check both the %FIF_ALLMULTI flag and the @mc_count
1217  * parameter to see whether multicast frames should be accepted
1218  * or dropped.
1219  *
1220  * All unsupported flags in @total_flags must be cleared.
1221  * Hardware does not support a flag if it is incapable of _passing_
1222  * the frame to the stack. Otherwise the driver must ignore
1223  * the flag, but not clear it.
1224  * You must _only_ clear the flag (announce no support for the
1225  * flag to mac80211) if you are not able to pass the packet type
1226  * to the stack (so the hardware always filters it).
1227  * So for example, you should clear @FIF_CONTROL, if your hardware
1228  * always filters control frames. If your hardware always passes
1229  * control frames to the kernel and is incapable of filtering them,
1230  * you do _not_ clear the @FIF_CONTROL flag.
1231  * This rule applies to all other FIF flags as well.
1232  */
1233 
1234 /**
1235  * enum ieee80211_filter_flags - hardware filter flags
1236  *
1237  * These flags determine what the filter in hardware should be
1238  * programmed to let through and what should not be passed to the
1239  * stack. It is always safe to pass more frames than requested,
1240  * but this has negative impact on power consumption.
1241  *
1242  * @FIF_PROMISC_IN_BSS: promiscuous mode within your BSS,
1243  *	think of the BSS as your network segment and then this corresponds
1244  *	to the regular ethernet device promiscuous mode.
1245  *
1246  * @FIF_ALLMULTI: pass all multicast frames, this is used if requested
1247  *	by the user or if the hardware is not capable of filtering by
1248  *	multicast address.
1249  *
1250  * @FIF_FCSFAIL: pass frames with failed FCS (but you need to set the
1251  *	%RX_FLAG_FAILED_FCS_CRC for them)
1252  *
1253  * @FIF_PLCPFAIL: pass frames with failed PLCP CRC (but you need to set
1254  *	the %RX_FLAG_FAILED_PLCP_CRC for them
1255  *
1256  * @FIF_BCN_PRBRESP_PROMISC: This flag is set during scanning to indicate
1257  *	to the hardware that it should not filter beacons or probe responses
1258  *	by BSSID. Filtering them can greatly reduce the amount of processing
1259  *	mac80211 needs to do and the amount of CPU wakeups, so you should
1260  *	honour this flag if possible.
1261  *
1262  * @FIF_CONTROL: pass control frames (except for PS Poll), if PROMISC_IN_BSS
1263  *  is not set then only those addressed to this station.
1264  *
1265  * @FIF_OTHER_BSS: pass frames destined to other BSSes
1266  *
1267  * @FIF_PSPOLL: pass PS Poll frames, if PROMISC_IN_BSS  is not set then only
1268  *  those addressed to this station.
1269  */
1270 enum ieee80211_filter_flags {
1271 	FIF_PROMISC_IN_BSS	= 1<<0,
1272 	FIF_ALLMULTI		= 1<<1,
1273 	FIF_FCSFAIL		= 1<<2,
1274 	FIF_PLCPFAIL		= 1<<3,
1275 	FIF_BCN_PRBRESP_PROMISC	= 1<<4,
1276 	FIF_CONTROL		= 1<<5,
1277 	FIF_OTHER_BSS		= 1<<6,
1278 	FIF_PSPOLL		= 1<<7,
1279 };
1280 
1281 /**
1282  * enum ieee80211_ampdu_mlme_action - A-MPDU actions
1283  *
1284  * These flags are used with the ampdu_action() callback in
1285  * &struct ieee80211_ops to indicate which action is needed.
1286  *
1287  * Note that drivers MUST be able to deal with a TX aggregation
1288  * session being stopped even before they OK'ed starting it by
1289  * calling ieee80211_start_tx_ba_cb(_irqsafe), because the peer
1290  * might receive the addBA frame and send a delBA right away!
1291  *
1292  * @IEEE80211_AMPDU_RX_START: start Rx aggregation
1293  * @IEEE80211_AMPDU_RX_STOP: stop Rx aggregation
1294  * @IEEE80211_AMPDU_TX_START: start Tx aggregation
1295  * @IEEE80211_AMPDU_TX_STOP: stop Tx aggregation
1296  * @IEEE80211_AMPDU_TX_OPERATIONAL: TX aggregation has become operational
1297  */
1298 enum ieee80211_ampdu_mlme_action {
1299 	IEEE80211_AMPDU_RX_START,
1300 	IEEE80211_AMPDU_RX_STOP,
1301 	IEEE80211_AMPDU_TX_START,
1302 	IEEE80211_AMPDU_TX_STOP,
1303 	IEEE80211_AMPDU_TX_OPERATIONAL,
1304 };
1305 
1306 /**
1307  * struct ieee80211_ops - callbacks from mac80211 to the driver
1308  *
1309  * This structure contains various callbacks that the driver may
1310  * handle or, in some cases, must handle, for example to configure
1311  * the hardware to a new channel or to transmit a frame.
1312  *
1313  * @tx: Handler that 802.11 module calls for each transmitted frame.
1314  *	skb contains the buffer starting from the IEEE 802.11 header.
1315  *	The low-level driver should send the frame out based on
1316  *	configuration in the TX control data. This handler should,
1317  *	preferably, never fail and stop queues appropriately, more
1318  *	importantly, however, it must never fail for A-MPDU-queues.
1319  *	This function should return NETDEV_TX_OK except in very
1320  *	limited cases.
1321  *	Must be implemented and atomic.
1322  *
1323  * @start: Called before the first netdevice attached to the hardware
1324  *	is enabled. This should turn on the hardware and must turn on
1325  *	frame reception (for possibly enabled monitor interfaces.)
1326  *	Returns negative error codes, these may be seen in userspace,
1327  *	or zero.
1328  *	When the device is started it should not have a MAC address
1329  *	to avoid acknowledging frames before a non-monitor device
1330  *	is added.
1331  *	Must be implemented.
1332  *
1333  * @stop: Called after last netdevice attached to the hardware
1334  *	is disabled. This should turn off the hardware (at least
1335  *	it must turn off frame reception.)
1336  *	May be called right after add_interface if that rejects
1337  *	an interface. If you added any work onto the mac80211 workqueue
1338  *	you should ensure to cancel it on this callback.
1339  *	Must be implemented.
1340  *
1341  * @add_interface: Called when a netdevice attached to the hardware is
1342  *	enabled. Because it is not called for monitor mode devices, @start
1343  *	and @stop must be implemented.
1344  *	The driver should perform any initialization it needs before
1345  *	the device can be enabled. The initial configuration for the
1346  *	interface is given in the conf parameter.
1347  *	The callback may refuse to add an interface by returning a
1348  *	negative error code (which will be seen in userspace.)
1349  *	Must be implemented.
1350  *
1351  * @remove_interface: Notifies a driver that an interface is going down.
1352  *	The @stop callback is called after this if it is the last interface
1353  *	and no monitor interfaces are present.
1354  *	When all interfaces are removed, the MAC address in the hardware
1355  *	must be cleared so the device no longer acknowledges packets,
1356  *	the mac_addr member of the conf structure is, however, set to the
1357  *	MAC address of the device going away.
1358  *	Hence, this callback must be implemented.
1359  *
1360  * @config: Handler for configuration requests. IEEE 802.11 code calls this
1361  *	function to change hardware configuration, e.g., channel.
1362  *	This function should never fail but returns a negative error code
1363  *	if it does.
1364  *
1365  * @bss_info_changed: Handler for configuration requests related to BSS
1366  *	parameters that may vary during BSS's lifespan, and may affect low
1367  *	level driver (e.g. assoc/disassoc status, erp parameters).
1368  *	This function should not be used if no BSS has been set, unless
1369  *	for association indication. The @changed parameter indicates which
1370  *	of the bss parameters has changed when a call is made.
1371  *
1372  * @prepare_multicast: Prepare for multicast filter configuration.
1373  *	This callback is optional, and its return value is passed
1374  *	to configure_filter(). This callback must be atomic.
1375  *
1376  * @configure_filter: Configure the device's RX filter.
1377  *	See the section "Frame filtering" for more information.
1378  *	This callback must be implemented.
1379  *
1380  * @set_tim: Set TIM bit. mac80211 calls this function when a TIM bit
1381  * 	must be set or cleared for a given STA. Must be atomic.
1382  *
1383  * @set_key: See the section "Hardware crypto acceleration"
1384  *	This callback can sleep, and is only called between add_interface
1385  *	and remove_interface calls, i.e. while the given virtual interface
1386  *	is enabled.
1387  *	Returns a negative error code if the key can't be added.
1388  *
1389  * @update_tkip_key: See the section "Hardware crypto acceleration"
1390  * 	This callback will be called in the context of Rx. Called for drivers
1391  * 	which set IEEE80211_KEY_FLAG_TKIP_REQ_RX_P1_KEY.
1392  *
1393  * @hw_scan: Ask the hardware to service the scan request, no need to start
1394  *	the scan state machine in stack. The scan must honour the channel
1395  *	configuration done by the regulatory agent in the wiphy's
1396  *	registered bands. The hardware (or the driver) needs to make sure
1397  *	that power save is disabled.
1398  *	The @req ie/ie_len members are rewritten by mac80211 to contain the
1399  *	entire IEs after the SSID, so that drivers need not look at these
1400  *	at all but just send them after the SSID -- mac80211 includes the
1401  *	(extended) supported rates and HT information (where applicable).
1402  *	When the scan finishes, ieee80211_scan_completed() must be called;
1403  *	note that it also must be called when the scan cannot finish due to
1404  *	any error unless this callback returned a negative error code.
1405  *
1406  * @sw_scan_start: Notifier function that is called just before a software scan
1407  *	is started. Can be NULL, if the driver doesn't need this notification.
1408  *
1409  * @sw_scan_complete: Notifier function that is called just after a software scan
1410  *	finished. Can be NULL, if the driver doesn't need this notification.
1411  *
1412  * @get_stats: Return low-level statistics.
1413  * 	Returns zero if statistics are available.
1414  *
1415  * @get_tkip_seq: If your device implements TKIP encryption in hardware this
1416  *	callback should be provided to read the TKIP transmit IVs (both IV32
1417  *	and IV16) for the given key from hardware.
1418  *
1419  * @set_rts_threshold: Configuration of RTS threshold (if device needs it)
1420  *
1421  * @sta_notify: Notifies low level driver about addition, removal or power
1422  *	state transition of an associated station, AP,  IBSS/WDS/mesh peer etc.
1423  *	Must be atomic.
1424  *
1425  * @conf_tx: Configure TX queue parameters (EDCF (aifs, cw_min, cw_max),
1426  *	bursting) for a hardware TX queue.
1427  *	Returns a negative error code on failure.
1428  *
1429  * @get_tx_stats: Get statistics of the current TX queue status. This is used
1430  *	to get number of currently queued packets (queue length), maximum queue
1431  *	size (limit), and total number of packets sent using each TX queue
1432  *	(count). The 'stats' pointer points to an array that has hw->queues
1433  *	items.
1434  *
1435  * @get_tsf: Get the current TSF timer value from firmware/hardware. Currently,
1436  *	this is only used for IBSS mode BSSID merging and debugging. Is not a
1437  *	required function.
1438  *
1439  * @set_tsf: Set the TSF timer to the specified value in the firmware/hardware.
1440  *      Currently, this is only used for IBSS mode debugging. Is not a
1441  *	required function.
1442  *
1443  * @reset_tsf: Reset the TSF timer and allow firmware/hardware to synchronize
1444  *	with other STAs in the IBSS. This is only used in IBSS mode. This
1445  *	function is optional if the firmware/hardware takes full care of
1446  *	TSF synchronization.
1447  *
1448  * @tx_last_beacon: Determine whether the last IBSS beacon was sent by us.
1449  *	This is needed only for IBSS mode and the result of this function is
1450  *	used to determine whether to reply to Probe Requests.
1451  *	Returns non-zero if this device sent the last beacon.
1452  *
1453  * @ampdu_action: Perform a certain A-MPDU action
1454  * 	The RA/TID combination determines the destination and TID we want
1455  * 	the ampdu action to be performed for. The action is defined through
1456  * 	ieee80211_ampdu_mlme_action. Starting sequence number (@ssn)
1457  * 	is the first frame we expect to perform the action on. Notice
1458  * 	that TX/RX_STOP can pass NULL for this parameter.
1459  *	Returns a negative error code on failure.
1460  *
1461  * @rfkill_poll: Poll rfkill hardware state. If you need this, you also
1462  *	need to set wiphy->rfkill_poll to %true before registration,
1463  *	and need to call wiphy_rfkill_set_hw_state() in the callback.
1464  *
1465  * @testmode_cmd: Implement a cfg80211 test mode command.
1466  */
1467 struct ieee80211_ops {
1468 	int (*tx)(struct ieee80211_hw *hw, struct sk_buff *skb);
1469 	int (*start)(struct ieee80211_hw *hw);
1470 	void (*stop)(struct ieee80211_hw *hw);
1471 	int (*add_interface)(struct ieee80211_hw *hw,
1472 			     struct ieee80211_if_init_conf *conf);
1473 	void (*remove_interface)(struct ieee80211_hw *hw,
1474 				 struct ieee80211_if_init_conf *conf);
1475 	int (*config)(struct ieee80211_hw *hw, u32 changed);
1476 	void (*bss_info_changed)(struct ieee80211_hw *hw,
1477 				 struct ieee80211_vif *vif,
1478 				 struct ieee80211_bss_conf *info,
1479 				 u32 changed);
1480 	u64 (*prepare_multicast)(struct ieee80211_hw *hw,
1481 				 int mc_count, struct dev_addr_list *mc_list);
1482 	void (*configure_filter)(struct ieee80211_hw *hw,
1483 				 unsigned int changed_flags,
1484 				 unsigned int *total_flags,
1485 				 u64 multicast);
1486 	int (*set_tim)(struct ieee80211_hw *hw, struct ieee80211_sta *sta,
1487 		       bool set);
1488 	int (*set_key)(struct ieee80211_hw *hw, enum set_key_cmd cmd,
1489 		       struct ieee80211_vif *vif, struct ieee80211_sta *sta,
1490 		       struct ieee80211_key_conf *key);
1491 	void (*update_tkip_key)(struct ieee80211_hw *hw,
1492 			struct ieee80211_key_conf *conf, const u8 *address,
1493 			u32 iv32, u16 *phase1key);
1494 	int (*hw_scan)(struct ieee80211_hw *hw,
1495 		       struct cfg80211_scan_request *req);
1496 	void (*sw_scan_start)(struct ieee80211_hw *hw);
1497 	void (*sw_scan_complete)(struct ieee80211_hw *hw);
1498 	int (*get_stats)(struct ieee80211_hw *hw,
1499 			 struct ieee80211_low_level_stats *stats);
1500 	void (*get_tkip_seq)(struct ieee80211_hw *hw, u8 hw_key_idx,
1501 			     u32 *iv32, u16 *iv16);
1502 	int (*set_rts_threshold)(struct ieee80211_hw *hw, u32 value);
1503 	void (*sta_notify)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1504 			enum sta_notify_cmd, struct ieee80211_sta *sta);
1505 	int (*conf_tx)(struct ieee80211_hw *hw, u16 queue,
1506 		       const struct ieee80211_tx_queue_params *params);
1507 	int (*get_tx_stats)(struct ieee80211_hw *hw,
1508 			    struct ieee80211_tx_queue_stats *stats);
1509 	u64 (*get_tsf)(struct ieee80211_hw *hw);
1510 	void (*set_tsf)(struct ieee80211_hw *hw, u64 tsf);
1511 	void (*reset_tsf)(struct ieee80211_hw *hw);
1512 	int (*tx_last_beacon)(struct ieee80211_hw *hw);
1513 	int (*ampdu_action)(struct ieee80211_hw *hw,
1514 			    enum ieee80211_ampdu_mlme_action action,
1515 			    struct ieee80211_sta *sta, u16 tid, u16 *ssn);
1516 
1517 	void (*rfkill_poll)(struct ieee80211_hw *hw);
1518 #ifdef CONFIG_NL80211_TESTMODE
1519 	int (*testmode_cmd)(struct ieee80211_hw *hw, void *data, int len);
1520 #endif
1521 };
1522 
1523 /**
1524  * ieee80211_alloc_hw -  Allocate a new hardware device
1525  *
1526  * This must be called once for each hardware device. The returned pointer
1527  * must be used to refer to this device when calling other functions.
1528  * mac80211 allocates a private data area for the driver pointed to by
1529  * @priv in &struct ieee80211_hw, the size of this area is given as
1530  * @priv_data_len.
1531  *
1532  * @priv_data_len: length of private data
1533  * @ops: callbacks for this device
1534  */
1535 struct ieee80211_hw *ieee80211_alloc_hw(size_t priv_data_len,
1536 					const struct ieee80211_ops *ops);
1537 
1538 /**
1539  * ieee80211_register_hw - Register hardware device
1540  *
1541  * You must call this function before any other functions in
1542  * mac80211. Note that before a hardware can be registered, you
1543  * need to fill the contained wiphy's information.
1544  *
1545  * @hw: the device to register as returned by ieee80211_alloc_hw()
1546  */
1547 int ieee80211_register_hw(struct ieee80211_hw *hw);
1548 
1549 #ifdef CONFIG_MAC80211_LEDS
1550 extern char *__ieee80211_get_tx_led_name(struct ieee80211_hw *hw);
1551 extern char *__ieee80211_get_rx_led_name(struct ieee80211_hw *hw);
1552 extern char *__ieee80211_get_assoc_led_name(struct ieee80211_hw *hw);
1553 extern char *__ieee80211_get_radio_led_name(struct ieee80211_hw *hw);
1554 #endif
1555 /**
1556  * ieee80211_get_tx_led_name - get name of TX LED
1557  *
1558  * mac80211 creates a transmit LED trigger for each wireless hardware
1559  * that can be used to drive LEDs if your driver registers a LED device.
1560  * This function returns the name (or %NULL if not configured for LEDs)
1561  * of the trigger so you can automatically link the LED device.
1562  *
1563  * @hw: the hardware to get the LED trigger name for
1564  */
1565 static inline char *ieee80211_get_tx_led_name(struct ieee80211_hw *hw)
1566 {
1567 #ifdef CONFIG_MAC80211_LEDS
1568 	return __ieee80211_get_tx_led_name(hw);
1569 #else
1570 	return NULL;
1571 #endif
1572 }
1573 
1574 /**
1575  * ieee80211_get_rx_led_name - get name of RX LED
1576  *
1577  * mac80211 creates a receive LED trigger for each wireless hardware
1578  * that can be used to drive LEDs if your driver registers a LED device.
1579  * This function returns the name (or %NULL if not configured for LEDs)
1580  * of the trigger so you can automatically link the LED device.
1581  *
1582  * @hw: the hardware to get the LED trigger name for
1583  */
1584 static inline char *ieee80211_get_rx_led_name(struct ieee80211_hw *hw)
1585 {
1586 #ifdef CONFIG_MAC80211_LEDS
1587 	return __ieee80211_get_rx_led_name(hw);
1588 #else
1589 	return NULL;
1590 #endif
1591 }
1592 
1593 /**
1594  * ieee80211_get_assoc_led_name - get name of association LED
1595  *
1596  * mac80211 creates a association LED trigger for each wireless hardware
1597  * that can be used to drive LEDs if your driver registers a LED device.
1598  * This function returns the name (or %NULL if not configured for LEDs)
1599  * of the trigger so you can automatically link the LED device.
1600  *
1601  * @hw: the hardware to get the LED trigger name for
1602  */
1603 static inline char *ieee80211_get_assoc_led_name(struct ieee80211_hw *hw)
1604 {
1605 #ifdef CONFIG_MAC80211_LEDS
1606 	return __ieee80211_get_assoc_led_name(hw);
1607 #else
1608 	return NULL;
1609 #endif
1610 }
1611 
1612 /**
1613  * ieee80211_get_radio_led_name - get name of radio LED
1614  *
1615  * mac80211 creates a radio change LED trigger for each wireless hardware
1616  * that can be used to drive LEDs if your driver registers a LED device.
1617  * This function returns the name (or %NULL if not configured for LEDs)
1618  * of the trigger so you can automatically link the LED device.
1619  *
1620  * @hw: the hardware to get the LED trigger name for
1621  */
1622 static inline char *ieee80211_get_radio_led_name(struct ieee80211_hw *hw)
1623 {
1624 #ifdef CONFIG_MAC80211_LEDS
1625 	return __ieee80211_get_radio_led_name(hw);
1626 #else
1627 	return NULL;
1628 #endif
1629 }
1630 
1631 /**
1632  * ieee80211_unregister_hw - Unregister a hardware device
1633  *
1634  * This function instructs mac80211 to free allocated resources
1635  * and unregister netdevices from the networking subsystem.
1636  *
1637  * @hw: the hardware to unregister
1638  */
1639 void ieee80211_unregister_hw(struct ieee80211_hw *hw);
1640 
1641 /**
1642  * ieee80211_free_hw - free hardware descriptor
1643  *
1644  * This function frees everything that was allocated, including the
1645  * private data for the driver. You must call ieee80211_unregister_hw()
1646  * before calling this function.
1647  *
1648  * @hw: the hardware to free
1649  */
1650 void ieee80211_free_hw(struct ieee80211_hw *hw);
1651 
1652 /**
1653  * ieee80211_restart_hw - restart hardware completely
1654  *
1655  * Call this function when the hardware was restarted for some reason
1656  * (hardware error, ...) and the driver is unable to restore its state
1657  * by itself. mac80211 assumes that at this point the driver/hardware
1658  * is completely uninitialised and stopped, it starts the process by
1659  * calling the ->start() operation. The driver will need to reset all
1660  * internal state that it has prior to calling this function.
1661  *
1662  * @hw: the hardware to restart
1663  */
1664 void ieee80211_restart_hw(struct ieee80211_hw *hw);
1665 
1666 /**
1667  * ieee80211_rx - receive frame
1668  *
1669  * Use this function to hand received frames to mac80211. The receive
1670  * buffer in @skb must start with an IEEE 802.11 header or a radiotap
1671  * header if %RX_FLAG_RADIOTAP is set in the @status flags.
1672  *
1673  * This function may not be called in IRQ context. Calls to this function
1674  * for a single hardware must be synchronized against each other. Calls
1675  * to this function and ieee80211_rx_irqsafe() may not be mixed for a
1676  * single hardware.
1677  *
1678  * Note that right now, this function must be called with softirqs disabled.
1679  *
1680  * @hw: the hardware this frame came in on
1681  * @skb: the buffer to receive, owned by mac80211 after this call
1682  */
1683 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb);
1684 
1685 /**
1686  * ieee80211_rx_irqsafe - receive frame
1687  *
1688  * Like ieee80211_rx() but can be called in IRQ context
1689  * (internally defers to a tasklet.)
1690  *
1691  * Calls to this function and ieee80211_rx() may not be mixed for a
1692  * single hardware.
1693  *
1694  * @hw: the hardware this frame came in on
1695  * @skb: the buffer to receive, owned by mac80211 after this call
1696  */
1697 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb);
1698 
1699 /**
1700  * ieee80211_tx_status - transmit status callback
1701  *
1702  * Call this function for all transmitted frames after they have been
1703  * transmitted. It is permissible to not call this function for
1704  * multicast frames but this can affect statistics.
1705  *
1706  * This function may not be called in IRQ context. Calls to this function
1707  * for a single hardware must be synchronized against each other. Calls
1708  * to this function and ieee80211_tx_status_irqsafe() may not be mixed
1709  * for a single hardware.
1710  *
1711  * @hw: the hardware the frame was transmitted by
1712  * @skb: the frame that was transmitted, owned by mac80211 after this call
1713  */
1714 void ieee80211_tx_status(struct ieee80211_hw *hw,
1715 			 struct sk_buff *skb);
1716 
1717 /**
1718  * ieee80211_tx_status_irqsafe - IRQ-safe transmit status callback
1719  *
1720  * Like ieee80211_tx_status() but can be called in IRQ context
1721  * (internally defers to a tasklet.)
1722  *
1723  * Calls to this function and ieee80211_tx_status() may not be mixed for a
1724  * single hardware.
1725  *
1726  * @hw: the hardware the frame was transmitted by
1727  * @skb: the frame that was transmitted, owned by mac80211 after this call
1728  */
1729 void ieee80211_tx_status_irqsafe(struct ieee80211_hw *hw,
1730 				 struct sk_buff *skb);
1731 
1732 /**
1733  * ieee80211_beacon_get - beacon generation function
1734  * @hw: pointer obtained from ieee80211_alloc_hw().
1735  * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1736  *
1737  * If the beacon frames are generated by the host system (i.e., not in
1738  * hardware/firmware), the low-level driver uses this function to receive
1739  * the next beacon frame from the 802.11 code. The low-level is responsible
1740  * for calling this function before beacon data is needed (e.g., based on
1741  * hardware interrupt). Returned skb is used only once and low-level driver
1742  * is responsible for freeing it.
1743  */
1744 struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw,
1745 				     struct ieee80211_vif *vif);
1746 
1747 /**
1748  * ieee80211_rts_get - RTS frame generation function
1749  * @hw: pointer obtained from ieee80211_alloc_hw().
1750  * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1751  * @frame: pointer to the frame that is going to be protected by the RTS.
1752  * @frame_len: the frame length (in octets).
1753  * @frame_txctl: &struct ieee80211_tx_info of the frame.
1754  * @rts: The buffer where to store the RTS frame.
1755  *
1756  * If the RTS frames are generated by the host system (i.e., not in
1757  * hardware/firmware), the low-level driver uses this function to receive
1758  * the next RTS frame from the 802.11 code. The low-level is responsible
1759  * for calling this function before and RTS frame is needed.
1760  */
1761 void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1762 		       const void *frame, size_t frame_len,
1763 		       const struct ieee80211_tx_info *frame_txctl,
1764 		       struct ieee80211_rts *rts);
1765 
1766 /**
1767  * ieee80211_rts_duration - Get the duration field for an RTS frame
1768  * @hw: pointer obtained from ieee80211_alloc_hw().
1769  * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1770  * @frame_len: the length of the frame that is going to be protected by the RTS.
1771  * @frame_txctl: &struct ieee80211_tx_info of the frame.
1772  *
1773  * If the RTS is generated in firmware, but the host system must provide
1774  * the duration field, the low-level driver uses this function to receive
1775  * the duration field value in little-endian byteorder.
1776  */
1777 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw,
1778 			      struct ieee80211_vif *vif, size_t frame_len,
1779 			      const struct ieee80211_tx_info *frame_txctl);
1780 
1781 /**
1782  * ieee80211_ctstoself_get - CTS-to-self frame generation function
1783  * @hw: pointer obtained from ieee80211_alloc_hw().
1784  * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1785  * @frame: pointer to the frame that is going to be protected by the CTS-to-self.
1786  * @frame_len: the frame length (in octets).
1787  * @frame_txctl: &struct ieee80211_tx_info of the frame.
1788  * @cts: The buffer where to store the CTS-to-self frame.
1789  *
1790  * If the CTS-to-self frames are generated by the host system (i.e., not in
1791  * hardware/firmware), the low-level driver uses this function to receive
1792  * the next CTS-to-self frame from the 802.11 code. The low-level is responsible
1793  * for calling this function before and CTS-to-self frame is needed.
1794  */
1795 void ieee80211_ctstoself_get(struct ieee80211_hw *hw,
1796 			     struct ieee80211_vif *vif,
1797 			     const void *frame, size_t frame_len,
1798 			     const struct ieee80211_tx_info *frame_txctl,
1799 			     struct ieee80211_cts *cts);
1800 
1801 /**
1802  * ieee80211_ctstoself_duration - Get the duration field for a CTS-to-self frame
1803  * @hw: pointer obtained from ieee80211_alloc_hw().
1804  * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1805  * @frame_len: the length of the frame that is going to be protected by the CTS-to-self.
1806  * @frame_txctl: &struct ieee80211_tx_info of the frame.
1807  *
1808  * If the CTS-to-self is generated in firmware, but the host system must provide
1809  * the duration field, the low-level driver uses this function to receive
1810  * the duration field value in little-endian byteorder.
1811  */
1812 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw,
1813 				    struct ieee80211_vif *vif,
1814 				    size_t frame_len,
1815 				    const struct ieee80211_tx_info *frame_txctl);
1816 
1817 /**
1818  * ieee80211_generic_frame_duration - Calculate the duration field for a frame
1819  * @hw: pointer obtained from ieee80211_alloc_hw().
1820  * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1821  * @frame_len: the length of the frame.
1822  * @rate: the rate at which the frame is going to be transmitted.
1823  *
1824  * Calculate the duration field of some generic frame, given its
1825  * length and transmission rate (in 100kbps).
1826  */
1827 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw,
1828 					struct ieee80211_vif *vif,
1829 					size_t frame_len,
1830 					struct ieee80211_rate *rate);
1831 
1832 /**
1833  * ieee80211_get_buffered_bc - accessing buffered broadcast and multicast frames
1834  * @hw: pointer as obtained from ieee80211_alloc_hw().
1835  * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1836  *
1837  * Function for accessing buffered broadcast and multicast frames. If
1838  * hardware/firmware does not implement buffering of broadcast/multicast
1839  * frames when power saving is used, 802.11 code buffers them in the host
1840  * memory. The low-level driver uses this function to fetch next buffered
1841  * frame. In most cases, this is used when generating beacon frame. This
1842  * function returns a pointer to the next buffered skb or NULL if no more
1843  * buffered frames are available.
1844  *
1845  * Note: buffered frames are returned only after DTIM beacon frame was
1846  * generated with ieee80211_beacon_get() and the low-level driver must thus
1847  * call ieee80211_beacon_get() first. ieee80211_get_buffered_bc() returns
1848  * NULL if the previous generated beacon was not DTIM, so the low-level driver
1849  * does not need to check for DTIM beacons separately and should be able to
1850  * use common code for all beacons.
1851  */
1852 struct sk_buff *
1853 ieee80211_get_buffered_bc(struct ieee80211_hw *hw, struct ieee80211_vif *vif);
1854 
1855 /**
1856  * ieee80211_get_tkip_key - get a TKIP rc4 for skb
1857  *
1858  * This function computes a TKIP rc4 key for an skb. It computes
1859  * a phase 1 key if needed (iv16 wraps around). This function is to
1860  * be used by drivers which can do HW encryption but need to compute
1861  * to phase 1/2 key in SW.
1862  *
1863  * @keyconf: the parameter passed with the set key
1864  * @skb: the skb for which the key is needed
1865  * @type: TBD
1866  * @key: a buffer to which the key will be written
1867  */
1868 void ieee80211_get_tkip_key(struct ieee80211_key_conf *keyconf,
1869 				struct sk_buff *skb,
1870 				enum ieee80211_tkip_key_type type, u8 *key);
1871 /**
1872  * ieee80211_wake_queue - wake specific queue
1873  * @hw: pointer as obtained from ieee80211_alloc_hw().
1874  * @queue: queue number (counted from zero).
1875  *
1876  * Drivers should use this function instead of netif_wake_queue.
1877  */
1878 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue);
1879 
1880 /**
1881  * ieee80211_stop_queue - stop specific queue
1882  * @hw: pointer as obtained from ieee80211_alloc_hw().
1883  * @queue: queue number (counted from zero).
1884  *
1885  * Drivers should use this function instead of netif_stop_queue.
1886  */
1887 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue);
1888 
1889 /**
1890  * ieee80211_queue_stopped - test status of the queue
1891  * @hw: pointer as obtained from ieee80211_alloc_hw().
1892  * @queue: queue number (counted from zero).
1893  *
1894  * Drivers should use this function instead of netif_stop_queue.
1895  */
1896 
1897 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue);
1898 
1899 /**
1900  * ieee80211_stop_queues - stop all queues
1901  * @hw: pointer as obtained from ieee80211_alloc_hw().
1902  *
1903  * Drivers should use this function instead of netif_stop_queue.
1904  */
1905 void ieee80211_stop_queues(struct ieee80211_hw *hw);
1906 
1907 /**
1908  * ieee80211_wake_queues - wake all queues
1909  * @hw: pointer as obtained from ieee80211_alloc_hw().
1910  *
1911  * Drivers should use this function instead of netif_wake_queue.
1912  */
1913 void ieee80211_wake_queues(struct ieee80211_hw *hw);
1914 
1915 /**
1916  * ieee80211_scan_completed - completed hardware scan
1917  *
1918  * When hardware scan offload is used (i.e. the hw_scan() callback is
1919  * assigned) this function needs to be called by the driver to notify
1920  * mac80211 that the scan finished.
1921  *
1922  * @hw: the hardware that finished the scan
1923  * @aborted: set to true if scan was aborted
1924  */
1925 void ieee80211_scan_completed(struct ieee80211_hw *hw, bool aborted);
1926 
1927 /**
1928  * ieee80211_iterate_active_interfaces - iterate active interfaces
1929  *
1930  * This function iterates over the interfaces associated with a given
1931  * hardware that are currently active and calls the callback for them.
1932  * This function allows the iterator function to sleep, when the iterator
1933  * function is atomic @ieee80211_iterate_active_interfaces_atomic can
1934  * be used.
1935  *
1936  * @hw: the hardware struct of which the interfaces should be iterated over
1937  * @iterator: the iterator function to call
1938  * @data: first argument of the iterator function
1939  */
1940 void ieee80211_iterate_active_interfaces(struct ieee80211_hw *hw,
1941 					 void (*iterator)(void *data, u8 *mac,
1942 						struct ieee80211_vif *vif),
1943 					 void *data);
1944 
1945 /**
1946  * ieee80211_iterate_active_interfaces_atomic - iterate active interfaces
1947  *
1948  * This function iterates over the interfaces associated with a given
1949  * hardware that are currently active and calls the callback for them.
1950  * This function requires the iterator callback function to be atomic,
1951  * if that is not desired, use @ieee80211_iterate_active_interfaces instead.
1952  *
1953  * @hw: the hardware struct of which the interfaces should be iterated over
1954  * @iterator: the iterator function to call, cannot sleep
1955  * @data: first argument of the iterator function
1956  */
1957 void ieee80211_iterate_active_interfaces_atomic(struct ieee80211_hw *hw,
1958 						void (*iterator)(void *data,
1959 						    u8 *mac,
1960 						    struct ieee80211_vif *vif),
1961 						void *data);
1962 
1963 /**
1964  * ieee80211_queue_work - add work onto the mac80211 workqueue
1965  *
1966  * Drivers and mac80211 use this to add work onto the mac80211 workqueue.
1967  * This helper ensures drivers are not queueing work when they should not be.
1968  *
1969  * @hw: the hardware struct for the interface we are adding work for
1970  * @work: the work we want to add onto the mac80211 workqueue
1971  */
1972 void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work);
1973 
1974 /**
1975  * ieee80211_queue_delayed_work - add work onto the mac80211 workqueue
1976  *
1977  * Drivers and mac80211 use this to queue delayed work onto the mac80211
1978  * workqueue.
1979  *
1980  * @hw: the hardware struct for the interface we are adding work for
1981  * @dwork: delayable work to queue onto the mac80211 workqueue
1982  * @delay: number of jiffies to wait before queueing
1983  */
1984 void ieee80211_queue_delayed_work(struct ieee80211_hw *hw,
1985 				  struct delayed_work *dwork,
1986 				  unsigned long delay);
1987 
1988 /**
1989  * ieee80211_start_tx_ba_session - Start a tx Block Ack session.
1990  * @hw: pointer as obtained from ieee80211_alloc_hw().
1991  * @ra: receiver address of the BA session recipient
1992  * @tid: the TID to BA on.
1993  *
1994  * Return: success if addBA request was sent, failure otherwise
1995  *
1996  * Although mac80211/low level driver/user space application can estimate
1997  * the need to start aggregation on a certain RA/TID, the session level
1998  * will be managed by the mac80211.
1999  */
2000 int ieee80211_start_tx_ba_session(struct ieee80211_hw *hw, u8 *ra, u16 tid);
2001 
2002 /**
2003  * ieee80211_start_tx_ba_cb - low level driver ready to aggregate.
2004  * @hw: pointer as obtained from ieee80211_alloc_hw().
2005  * @ra: receiver address of the BA session recipient.
2006  * @tid: the TID to BA on.
2007  *
2008  * This function must be called by low level driver once it has
2009  * finished with preparations for the BA session.
2010  */
2011 void ieee80211_start_tx_ba_cb(struct ieee80211_hw *hw, u8 *ra, u16 tid);
2012 
2013 /**
2014  * ieee80211_start_tx_ba_cb_irqsafe - low level driver ready to aggregate.
2015  * @hw: pointer as obtained from ieee80211_alloc_hw().
2016  * @ra: receiver address of the BA session recipient.
2017  * @tid: the TID to BA on.
2018  *
2019  * This function must be called by low level driver once it has
2020  * finished with preparations for the BA session.
2021  * This version of the function is IRQ-safe.
2022  */
2023 void ieee80211_start_tx_ba_cb_irqsafe(struct ieee80211_hw *hw, const u8 *ra,
2024 				      u16 tid);
2025 
2026 /**
2027  * ieee80211_stop_tx_ba_session - Stop a Block Ack session.
2028  * @hw: pointer as obtained from ieee80211_alloc_hw().
2029  * @ra: receiver address of the BA session recipient
2030  * @tid: the TID to stop BA.
2031  * @initiator: if indicates initiator DELBA frame will be sent.
2032  *
2033  * Return: error if no sta with matching da found, success otherwise
2034  *
2035  * Although mac80211/low level driver/user space application can estimate
2036  * the need to stop aggregation on a certain RA/TID, the session level
2037  * will be managed by the mac80211.
2038  */
2039 int ieee80211_stop_tx_ba_session(struct ieee80211_hw *hw,
2040 				 u8 *ra, u16 tid,
2041 				 enum ieee80211_back_parties initiator);
2042 
2043 /**
2044  * ieee80211_stop_tx_ba_cb - low level driver ready to stop aggregate.
2045  * @hw: pointer as obtained from ieee80211_alloc_hw().
2046  * @ra: receiver address of the BA session recipient.
2047  * @tid: the desired TID to BA on.
2048  *
2049  * This function must be called by low level driver once it has
2050  * finished with preparations for the BA session tear down.
2051  */
2052 void ieee80211_stop_tx_ba_cb(struct ieee80211_hw *hw, u8 *ra, u8 tid);
2053 
2054 /**
2055  * ieee80211_stop_tx_ba_cb_irqsafe - low level driver ready to stop aggregate.
2056  * @hw: pointer as obtained from ieee80211_alloc_hw().
2057  * @ra: receiver address of the BA session recipient.
2058  * @tid: the desired TID to BA on.
2059  *
2060  * This function must be called by low level driver once it has
2061  * finished with preparations for the BA session tear down.
2062  * This version of the function is IRQ-safe.
2063  */
2064 void ieee80211_stop_tx_ba_cb_irqsafe(struct ieee80211_hw *hw, const u8 *ra,
2065 				     u16 tid);
2066 
2067 /**
2068  * ieee80211_find_sta - find a station
2069  *
2070  * @hw: pointer as obtained from ieee80211_alloc_hw()
2071  * @addr: station's address
2072  *
2073  * This function must be called under RCU lock and the
2074  * resulting pointer is only valid under RCU lock as well.
2075  */
2076 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_hw *hw,
2077 					 const u8 *addr);
2078 
2079 /**
2080  * ieee80211_beacon_loss - inform hardware does not receive beacons
2081  *
2082  * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
2083  *
2084  * When beacon filtering is enabled with IEEE80211_HW_BEACON_FILTERING and
2085  * IEEE80211_CONF_PS is set, the driver needs to inform whenever the
2086  * hardware is not receiving beacons with this function.
2087  */
2088 void ieee80211_beacon_loss(struct ieee80211_vif *vif);
2089 
2090 /* Rate control API */
2091 
2092 /**
2093  * enum rate_control_changed - flags to indicate which parameter changed
2094  *
2095  * @IEEE80211_RC_HT_CHANGED: The HT parameters of the operating channel have
2096  *	changed, rate control algorithm can update its internal state if needed.
2097  */
2098 enum rate_control_changed {
2099 	IEEE80211_RC_HT_CHANGED = BIT(0)
2100 };
2101 
2102 /**
2103  * struct ieee80211_tx_rate_control - rate control information for/from RC algo
2104  *
2105  * @hw: The hardware the algorithm is invoked for.
2106  * @sband: The band this frame is being transmitted on.
2107  * @bss_conf: the current BSS configuration
2108  * @reported_rate: The rate control algorithm can fill this in to indicate
2109  *	which rate should be reported to userspace as the current rate and
2110  *	used for rate calculations in the mesh network.
2111  * @rts: whether RTS will be used for this frame because it is longer than the
2112  *	RTS threshold
2113  * @short_preamble: whether mac80211 will request short-preamble transmission
2114  *	if the selected rate supports it
2115  * @max_rate_idx: user-requested maximum rate (not MCS for now)
2116  * @skb: the skb that will be transmitted, the control information in it needs
2117  *	to be filled in
2118  */
2119 struct ieee80211_tx_rate_control {
2120 	struct ieee80211_hw *hw;
2121 	struct ieee80211_supported_band *sband;
2122 	struct ieee80211_bss_conf *bss_conf;
2123 	struct sk_buff *skb;
2124 	struct ieee80211_tx_rate reported_rate;
2125 	bool rts, short_preamble;
2126 	u8 max_rate_idx;
2127 };
2128 
2129 struct rate_control_ops {
2130 	struct module *module;
2131 	const char *name;
2132 	void *(*alloc)(struct ieee80211_hw *hw, struct dentry *debugfsdir);
2133 	void (*free)(void *priv);
2134 
2135 	void *(*alloc_sta)(void *priv, struct ieee80211_sta *sta, gfp_t gfp);
2136 	void (*rate_init)(void *priv, struct ieee80211_supported_band *sband,
2137 			  struct ieee80211_sta *sta, void *priv_sta);
2138 	void (*rate_update)(void *priv, struct ieee80211_supported_band *sband,
2139 			    struct ieee80211_sta *sta,
2140 			    void *priv_sta, u32 changed);
2141 	void (*free_sta)(void *priv, struct ieee80211_sta *sta,
2142 			 void *priv_sta);
2143 
2144 	void (*tx_status)(void *priv, struct ieee80211_supported_band *sband,
2145 			  struct ieee80211_sta *sta, void *priv_sta,
2146 			  struct sk_buff *skb);
2147 	void (*get_rate)(void *priv, struct ieee80211_sta *sta, void *priv_sta,
2148 			 struct ieee80211_tx_rate_control *txrc);
2149 
2150 	void (*add_sta_debugfs)(void *priv, void *priv_sta,
2151 				struct dentry *dir);
2152 	void (*remove_sta_debugfs)(void *priv, void *priv_sta);
2153 };
2154 
2155 static inline int rate_supported(struct ieee80211_sta *sta,
2156 				 enum ieee80211_band band,
2157 				 int index)
2158 {
2159 	return (sta == NULL || sta->supp_rates[band] & BIT(index));
2160 }
2161 
2162 /**
2163  * rate_control_send_low - helper for drivers for management/no-ack frames
2164  *
2165  * Rate control algorithms that agree to use the lowest rate to
2166  * send management frames and NO_ACK data with the respective hw
2167  * retries should use this in the beginning of their mac80211 get_rate
2168  * callback. If true is returned the rate control can simply return.
2169  * If false is returned we guarantee that sta and sta and priv_sta is
2170  * not null.
2171  *
2172  * Rate control algorithms wishing to do more intelligent selection of
2173  * rate for multicast/broadcast frames may choose to not use this.
2174  *
2175  * @sta: &struct ieee80211_sta pointer to the target destination. Note
2176  * 	that this may be null.
2177  * @priv_sta: private rate control structure. This may be null.
2178  * @txrc: rate control information we sholud populate for mac80211.
2179  */
2180 bool rate_control_send_low(struct ieee80211_sta *sta,
2181 			   void *priv_sta,
2182 			   struct ieee80211_tx_rate_control *txrc);
2183 
2184 
2185 static inline s8
2186 rate_lowest_index(struct ieee80211_supported_band *sband,
2187 		  struct ieee80211_sta *sta)
2188 {
2189 	int i;
2190 
2191 	for (i = 0; i < sband->n_bitrates; i++)
2192 		if (rate_supported(sta, sband->band, i))
2193 			return i;
2194 
2195 	/* warn when we cannot find a rate. */
2196 	WARN_ON(1);
2197 
2198 	return 0;
2199 }
2200 
2201 static inline
2202 bool rate_usable_index_exists(struct ieee80211_supported_band *sband,
2203 			      struct ieee80211_sta *sta)
2204 {
2205 	unsigned int i;
2206 
2207 	for (i = 0; i < sband->n_bitrates; i++)
2208 		if (rate_supported(sta, sband->band, i))
2209 			return true;
2210 	return false;
2211 }
2212 
2213 int ieee80211_rate_control_register(struct rate_control_ops *ops);
2214 void ieee80211_rate_control_unregister(struct rate_control_ops *ops);
2215 
2216 static inline bool
2217 conf_is_ht20(struct ieee80211_conf *conf)
2218 {
2219 	return conf->channel_type == NL80211_CHAN_HT20;
2220 }
2221 
2222 static inline bool
2223 conf_is_ht40_minus(struct ieee80211_conf *conf)
2224 {
2225 	return conf->channel_type == NL80211_CHAN_HT40MINUS;
2226 }
2227 
2228 static inline bool
2229 conf_is_ht40_plus(struct ieee80211_conf *conf)
2230 {
2231 	return conf->channel_type == NL80211_CHAN_HT40PLUS;
2232 }
2233 
2234 static inline bool
2235 conf_is_ht40(struct ieee80211_conf *conf)
2236 {
2237 	return conf_is_ht40_minus(conf) || conf_is_ht40_plus(conf);
2238 }
2239 
2240 static inline bool
2241 conf_is_ht(struct ieee80211_conf *conf)
2242 {
2243 	return conf->channel_type != NL80211_CHAN_NO_HT;
2244 }
2245 
2246 #endif /* MAC80211_H */
2247