1 /* 2 * mac80211 <-> driver interface 3 * 4 * Copyright 2002-2005, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #ifndef MAC80211_H 14 #define MAC80211_H 15 16 #include <linux/bug.h> 17 #include <linux/kernel.h> 18 #include <linux/if_ether.h> 19 #include <linux/skbuff.h> 20 #include <linux/ieee80211.h> 21 #include <net/cfg80211.h> 22 #include <asm/unaligned.h> 23 24 /** 25 * DOC: Introduction 26 * 27 * mac80211 is the Linux stack for 802.11 hardware that implements 28 * only partial functionality in hard- or firmware. This document 29 * defines the interface between mac80211 and low-level hardware 30 * drivers. 31 */ 32 33 /** 34 * DOC: Calling mac80211 from interrupts 35 * 36 * Only ieee80211_tx_status_irqsafe() and ieee80211_rx_irqsafe() can be 37 * called in hardware interrupt context. The low-level driver must not call any 38 * other functions in hardware interrupt context. If there is a need for such 39 * call, the low-level driver should first ACK the interrupt and perform the 40 * IEEE 802.11 code call after this, e.g. from a scheduled workqueue or even 41 * tasklet function. 42 * 43 * NOTE: If the driver opts to use the _irqsafe() functions, it may not also 44 * use the non-IRQ-safe functions! 45 */ 46 47 /** 48 * DOC: Warning 49 * 50 * If you're reading this document and not the header file itself, it will 51 * be incomplete because not all documentation has been converted yet. 52 */ 53 54 /** 55 * DOC: Frame format 56 * 57 * As a general rule, when frames are passed between mac80211 and the driver, 58 * they start with the IEEE 802.11 header and include the same octets that are 59 * sent over the air except for the FCS which should be calculated by the 60 * hardware. 61 * 62 * There are, however, various exceptions to this rule for advanced features: 63 * 64 * The first exception is for hardware encryption and decryption offload 65 * where the IV/ICV may or may not be generated in hardware. 66 * 67 * Secondly, when the hardware handles fragmentation, the frame handed to 68 * the driver from mac80211 is the MSDU, not the MPDU. 69 * 70 * Finally, for received frames, the driver is able to indicate that it has 71 * filled a radiotap header and put that in front of the frame; if it does 72 * not do so then mac80211 may add this under certain circumstances. 73 */ 74 75 /** 76 * DOC: mac80211 workqueue 77 * 78 * mac80211 provides its own workqueue for drivers and internal mac80211 use. 79 * The workqueue is a single threaded workqueue and can only be accessed by 80 * helpers for sanity checking. Drivers must ensure all work added onto the 81 * mac80211 workqueue should be cancelled on the driver stop() callback. 82 * 83 * mac80211 will flushed the workqueue upon interface removal and during 84 * suspend. 85 * 86 * All work performed on the mac80211 workqueue must not acquire the RTNL lock. 87 * 88 */ 89 90 struct device; 91 92 /** 93 * enum ieee80211_max_queues - maximum number of queues 94 * 95 * @IEEE80211_MAX_QUEUES: Maximum number of regular device queues. 96 */ 97 enum ieee80211_max_queues { 98 IEEE80211_MAX_QUEUES = 16, 99 }; 100 101 #define IEEE80211_INVAL_HW_QUEUE 0xff 102 103 /** 104 * enum ieee80211_ac_numbers - AC numbers as used in mac80211 105 * @IEEE80211_AC_VO: voice 106 * @IEEE80211_AC_VI: video 107 * @IEEE80211_AC_BE: best effort 108 * @IEEE80211_AC_BK: background 109 */ 110 enum ieee80211_ac_numbers { 111 IEEE80211_AC_VO = 0, 112 IEEE80211_AC_VI = 1, 113 IEEE80211_AC_BE = 2, 114 IEEE80211_AC_BK = 3, 115 }; 116 #define IEEE80211_NUM_ACS 4 117 118 /** 119 * struct ieee80211_tx_queue_params - transmit queue configuration 120 * 121 * The information provided in this structure is required for QoS 122 * transmit queue configuration. Cf. IEEE 802.11 7.3.2.29. 123 * 124 * @aifs: arbitration interframe space [0..255] 125 * @cw_min: minimum contention window [a value of the form 126 * 2^n-1 in the range 1..32767] 127 * @cw_max: maximum contention window [like @cw_min] 128 * @txop: maximum burst time in units of 32 usecs, 0 meaning disabled 129 * @uapsd: is U-APSD mode enabled for the queue 130 */ 131 struct ieee80211_tx_queue_params { 132 u16 txop; 133 u16 cw_min; 134 u16 cw_max; 135 u8 aifs; 136 bool uapsd; 137 }; 138 139 struct ieee80211_low_level_stats { 140 unsigned int dot11ACKFailureCount; 141 unsigned int dot11RTSFailureCount; 142 unsigned int dot11FCSErrorCount; 143 unsigned int dot11RTSSuccessCount; 144 }; 145 146 /** 147 * enum ieee80211_bss_change - BSS change notification flags 148 * 149 * These flags are used with the bss_info_changed() callback 150 * to indicate which BSS parameter changed. 151 * 152 * @BSS_CHANGED_ASSOC: association status changed (associated/disassociated), 153 * also implies a change in the AID. 154 * @BSS_CHANGED_ERP_CTS_PROT: CTS protection changed 155 * @BSS_CHANGED_ERP_PREAMBLE: preamble changed 156 * @BSS_CHANGED_ERP_SLOT: slot timing changed 157 * @BSS_CHANGED_HT: 802.11n parameters changed 158 * @BSS_CHANGED_BASIC_RATES: Basic rateset changed 159 * @BSS_CHANGED_BEACON_INT: Beacon interval changed 160 * @BSS_CHANGED_BSSID: BSSID changed, for whatever 161 * reason (IBSS and managed mode) 162 * @BSS_CHANGED_BEACON: Beacon data changed, retrieve 163 * new beacon (beaconing modes) 164 * @BSS_CHANGED_BEACON_ENABLED: Beaconing should be 165 * enabled/disabled (beaconing modes) 166 * @BSS_CHANGED_CQM: Connection quality monitor config changed 167 * @BSS_CHANGED_IBSS: IBSS join status changed 168 * @BSS_CHANGED_ARP_FILTER: Hardware ARP filter address list or state changed. 169 * @BSS_CHANGED_QOS: QoS for this association was enabled/disabled. Note 170 * that it is only ever disabled for station mode. 171 * @BSS_CHANGED_IDLE: Idle changed for this BSS/interface. 172 * @BSS_CHANGED_SSID: SSID changed for this BSS (AP mode) 173 * @BSS_CHANGED_AP_PROBE_RESP: Probe Response changed for this BSS (AP mode) 174 */ 175 enum ieee80211_bss_change { 176 BSS_CHANGED_ASSOC = 1<<0, 177 BSS_CHANGED_ERP_CTS_PROT = 1<<1, 178 BSS_CHANGED_ERP_PREAMBLE = 1<<2, 179 BSS_CHANGED_ERP_SLOT = 1<<3, 180 BSS_CHANGED_HT = 1<<4, 181 BSS_CHANGED_BASIC_RATES = 1<<5, 182 BSS_CHANGED_BEACON_INT = 1<<6, 183 BSS_CHANGED_BSSID = 1<<7, 184 BSS_CHANGED_BEACON = 1<<8, 185 BSS_CHANGED_BEACON_ENABLED = 1<<9, 186 BSS_CHANGED_CQM = 1<<10, 187 BSS_CHANGED_IBSS = 1<<11, 188 BSS_CHANGED_ARP_FILTER = 1<<12, 189 BSS_CHANGED_QOS = 1<<13, 190 BSS_CHANGED_IDLE = 1<<14, 191 BSS_CHANGED_SSID = 1<<15, 192 BSS_CHANGED_AP_PROBE_RESP = 1<<16, 193 194 /* when adding here, make sure to change ieee80211_reconfig */ 195 }; 196 197 /* 198 * The maximum number of IPv4 addresses listed for ARP filtering. If the number 199 * of addresses for an interface increase beyond this value, hardware ARP 200 * filtering will be disabled. 201 */ 202 #define IEEE80211_BSS_ARP_ADDR_LIST_LEN 4 203 204 /** 205 * enum ieee80211_rssi_event - RSSI threshold event 206 * An indicator for when RSSI goes below/above a certain threshold. 207 * @RSSI_EVENT_HIGH: AP's rssi crossed the high threshold set by the driver. 208 * @RSSI_EVENT_LOW: AP's rssi crossed the low threshold set by the driver. 209 */ 210 enum ieee80211_rssi_event { 211 RSSI_EVENT_HIGH, 212 RSSI_EVENT_LOW, 213 }; 214 215 /** 216 * struct ieee80211_bss_conf - holds the BSS's changing parameters 217 * 218 * This structure keeps information about a BSS (and an association 219 * to that BSS) that can change during the lifetime of the BSS. 220 * 221 * @assoc: association status 222 * @ibss_joined: indicates whether this station is part of an IBSS 223 * or not 224 * @aid: association ID number, valid only when @assoc is true 225 * @use_cts_prot: use CTS protection 226 * @use_short_preamble: use 802.11b short preamble; 227 * if the hardware cannot handle this it must set the 228 * IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE hardware flag 229 * @use_short_slot: use short slot time (only relevant for ERP); 230 * if the hardware cannot handle this it must set the 231 * IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE hardware flag 232 * @dtim_period: num of beacons before the next DTIM, for beaconing, 233 * valid in station mode only while @assoc is true and if also 234 * requested by %IEEE80211_HW_NEED_DTIM_PERIOD (cf. also hw conf 235 * @ps_dtim_period) 236 * @last_tsf: last beacon's/probe response's TSF timestamp (could be old 237 * as it may have been received during scanning long ago) 238 * @beacon_int: beacon interval 239 * @assoc_capability: capabilities taken from assoc resp 240 * @basic_rates: bitmap of basic rates, each bit stands for an 241 * index into the rate table configured by the driver in 242 * the current band. 243 * @mcast_rate: per-band multicast rate index + 1 (0: disabled) 244 * @bssid: The BSSID for this BSS 245 * @enable_beacon: whether beaconing should be enabled or not 246 * @channel_type: Channel type for this BSS -- the hardware might be 247 * configured for HT40+ while this BSS only uses no-HT, for 248 * example. 249 * @ht_operation_mode: HT operation mode like in &struct ieee80211_ht_operation. 250 * This field is only valid when the channel type is one of the HT types. 251 * @cqm_rssi_thold: Connection quality monitor RSSI threshold, a zero value 252 * implies disabled 253 * @cqm_rssi_hyst: Connection quality monitor RSSI hysteresis 254 * @arp_addr_list: List of IPv4 addresses for hardware ARP filtering. The 255 * may filter ARP queries targeted for other addresses than listed here. 256 * The driver must allow ARP queries targeted for all address listed here 257 * to pass through. An empty list implies no ARP queries need to pass. 258 * @arp_addr_cnt: Number of addresses currently on the list. 259 * @arp_filter_enabled: Enable ARP filtering - if enabled, the hardware may 260 * filter ARP queries based on the @arp_addr_list, if disabled, the 261 * hardware must not perform any ARP filtering. Note, that the filter will 262 * be enabled also in promiscuous mode. 263 * @qos: This is a QoS-enabled BSS. 264 * @idle: This interface is idle. There's also a global idle flag in the 265 * hardware config which may be more appropriate depending on what 266 * your driver/device needs to do. 267 * @ssid: The SSID of the current vif. Only valid in AP-mode. 268 * @ssid_len: Length of SSID given in @ssid. 269 * @hidden_ssid: The SSID of the current vif is hidden. Only valid in AP-mode. 270 */ 271 struct ieee80211_bss_conf { 272 const u8 *bssid; 273 /* association related data */ 274 bool assoc, ibss_joined; 275 u16 aid; 276 /* erp related data */ 277 bool use_cts_prot; 278 bool use_short_preamble; 279 bool use_short_slot; 280 bool enable_beacon; 281 u8 dtim_period; 282 u16 beacon_int; 283 u16 assoc_capability; 284 u64 last_tsf; 285 u32 basic_rates; 286 int mcast_rate[IEEE80211_NUM_BANDS]; 287 u16 ht_operation_mode; 288 s32 cqm_rssi_thold; 289 u32 cqm_rssi_hyst; 290 enum nl80211_channel_type channel_type; 291 __be32 arp_addr_list[IEEE80211_BSS_ARP_ADDR_LIST_LEN]; 292 u8 arp_addr_cnt; 293 bool arp_filter_enabled; 294 bool qos; 295 bool idle; 296 u8 ssid[IEEE80211_MAX_SSID_LEN]; 297 size_t ssid_len; 298 bool hidden_ssid; 299 }; 300 301 /** 302 * enum mac80211_tx_control_flags - flags to describe transmission information/status 303 * 304 * These flags are used with the @flags member of &ieee80211_tx_info. 305 * 306 * @IEEE80211_TX_CTL_REQ_TX_STATUS: require TX status callback for this frame. 307 * @IEEE80211_TX_CTL_ASSIGN_SEQ: The driver has to assign a sequence 308 * number to this frame, taking care of not overwriting the fragment 309 * number and increasing the sequence number only when the 310 * IEEE80211_TX_CTL_FIRST_FRAGMENT flag is set. mac80211 will properly 311 * assign sequence numbers to QoS-data frames but cannot do so correctly 312 * for non-QoS-data and management frames because beacons need them from 313 * that counter as well and mac80211 cannot guarantee proper sequencing. 314 * If this flag is set, the driver should instruct the hardware to 315 * assign a sequence number to the frame or assign one itself. Cf. IEEE 316 * 802.11-2007 7.1.3.4.1 paragraph 3. This flag will always be set for 317 * beacons and always be clear for frames without a sequence number field. 318 * @IEEE80211_TX_CTL_NO_ACK: tell the low level not to wait for an ack 319 * @IEEE80211_TX_CTL_CLEAR_PS_FILT: clear powersave filter for destination 320 * station 321 * @IEEE80211_TX_CTL_FIRST_FRAGMENT: this is a first fragment of the frame 322 * @IEEE80211_TX_CTL_SEND_AFTER_DTIM: send this frame after DTIM beacon 323 * @IEEE80211_TX_CTL_AMPDU: this frame should be sent as part of an A-MPDU 324 * @IEEE80211_TX_CTL_INJECTED: Frame was injected, internal to mac80211. 325 * @IEEE80211_TX_STAT_TX_FILTERED: The frame was not transmitted 326 * because the destination STA was in powersave mode. Note that to 327 * avoid race conditions, the filter must be set by the hardware or 328 * firmware upon receiving a frame that indicates that the station 329 * went to sleep (must be done on device to filter frames already on 330 * the queue) and may only be unset after mac80211 gives the OK for 331 * that by setting the IEEE80211_TX_CTL_CLEAR_PS_FILT (see above), 332 * since only then is it guaranteed that no more frames are in the 333 * hardware queue. 334 * @IEEE80211_TX_STAT_ACK: Frame was acknowledged 335 * @IEEE80211_TX_STAT_AMPDU: The frame was aggregated, so status 336 * is for the whole aggregation. 337 * @IEEE80211_TX_STAT_AMPDU_NO_BACK: no block ack was returned, 338 * so consider using block ack request (BAR). 339 * @IEEE80211_TX_CTL_RATE_CTRL_PROBE: internal to mac80211, can be 340 * set by rate control algorithms to indicate probe rate, will 341 * be cleared for fragmented frames (except on the last fragment) 342 * @IEEE80211_TX_INTFL_NEED_TXPROCESSING: completely internal to mac80211, 343 * used to indicate that a pending frame requires TX processing before 344 * it can be sent out. 345 * @IEEE80211_TX_INTFL_RETRIED: completely internal to mac80211, 346 * used to indicate that a frame was already retried due to PS 347 * @IEEE80211_TX_INTFL_DONT_ENCRYPT: completely internal to mac80211, 348 * used to indicate frame should not be encrypted 349 * @IEEE80211_TX_CTL_NO_PS_BUFFER: This frame is a response to a poll 350 * frame (PS-Poll or uAPSD) or a non-bufferable MMPDU and must 351 * be sent although the station is in powersave mode. 352 * @IEEE80211_TX_CTL_MORE_FRAMES: More frames will be passed to the 353 * transmit function after the current frame, this can be used 354 * by drivers to kick the DMA queue only if unset or when the 355 * queue gets full. 356 * @IEEE80211_TX_INTFL_RETRANSMISSION: This frame is being retransmitted 357 * after TX status because the destination was asleep, it must not 358 * be modified again (no seqno assignment, crypto, etc.) 359 * @IEEE80211_TX_INTFL_NL80211_FRAME_TX: Frame was requested through nl80211 360 * MLME command (internal to mac80211 to figure out whether to send TX 361 * status to user space) 362 * @IEEE80211_TX_CTL_LDPC: tells the driver to use LDPC for this frame 363 * @IEEE80211_TX_CTL_STBC: Enables Space-Time Block Coding (STBC) for this 364 * frame and selects the maximum number of streams that it can use. 365 * @IEEE80211_TX_CTL_TX_OFFCHAN: Marks this packet to be transmitted on 366 * the off-channel channel when a remain-on-channel offload is done 367 * in hardware -- normal packets still flow and are expected to be 368 * handled properly by the device. 369 * @IEEE80211_TX_INTFL_TKIP_MIC_FAILURE: Marks this packet to be used for TKIP 370 * testing. It will be sent out with incorrect Michael MIC key to allow 371 * TKIP countermeasures to be tested. 372 * @IEEE80211_TX_CTL_NO_CCK_RATE: This frame will be sent at non CCK rate. 373 * This flag is actually used for management frame especially for P2P 374 * frames not being sent at CCK rate in 2GHz band. 375 * @IEEE80211_TX_STATUS_EOSP: This packet marks the end of service period, 376 * when its status is reported the service period ends. For frames in 377 * an SP that mac80211 transmits, it is already set; for driver frames 378 * the driver may set this flag. It is also used to do the same for 379 * PS-Poll responses. 380 * @IEEE80211_TX_CTL_USE_MINRATE: This frame will be sent at lowest rate. 381 * This flag is used to send nullfunc frame at minimum rate when 382 * the nullfunc is used for connection monitoring purpose. 383 * @IEEE80211_TX_CTL_DONTFRAG: Don't fragment this packet even if it 384 * would be fragmented by size (this is optional, only used for 385 * monitor injection). 386 * 387 * Note: If you have to add new flags to the enumeration, then don't 388 * forget to update %IEEE80211_TX_TEMPORARY_FLAGS when necessary. 389 */ 390 enum mac80211_tx_control_flags { 391 IEEE80211_TX_CTL_REQ_TX_STATUS = BIT(0), 392 IEEE80211_TX_CTL_ASSIGN_SEQ = BIT(1), 393 IEEE80211_TX_CTL_NO_ACK = BIT(2), 394 IEEE80211_TX_CTL_CLEAR_PS_FILT = BIT(3), 395 IEEE80211_TX_CTL_FIRST_FRAGMENT = BIT(4), 396 IEEE80211_TX_CTL_SEND_AFTER_DTIM = BIT(5), 397 IEEE80211_TX_CTL_AMPDU = BIT(6), 398 IEEE80211_TX_CTL_INJECTED = BIT(7), 399 IEEE80211_TX_STAT_TX_FILTERED = BIT(8), 400 IEEE80211_TX_STAT_ACK = BIT(9), 401 IEEE80211_TX_STAT_AMPDU = BIT(10), 402 IEEE80211_TX_STAT_AMPDU_NO_BACK = BIT(11), 403 IEEE80211_TX_CTL_RATE_CTRL_PROBE = BIT(12), 404 IEEE80211_TX_INTFL_NEED_TXPROCESSING = BIT(14), 405 IEEE80211_TX_INTFL_RETRIED = BIT(15), 406 IEEE80211_TX_INTFL_DONT_ENCRYPT = BIT(16), 407 IEEE80211_TX_CTL_NO_PS_BUFFER = BIT(17), 408 IEEE80211_TX_CTL_MORE_FRAMES = BIT(18), 409 IEEE80211_TX_INTFL_RETRANSMISSION = BIT(19), 410 /* hole at 20, use later */ 411 IEEE80211_TX_INTFL_NL80211_FRAME_TX = BIT(21), 412 IEEE80211_TX_CTL_LDPC = BIT(22), 413 IEEE80211_TX_CTL_STBC = BIT(23) | BIT(24), 414 IEEE80211_TX_CTL_TX_OFFCHAN = BIT(25), 415 IEEE80211_TX_INTFL_TKIP_MIC_FAILURE = BIT(26), 416 IEEE80211_TX_CTL_NO_CCK_RATE = BIT(27), 417 IEEE80211_TX_STATUS_EOSP = BIT(28), 418 IEEE80211_TX_CTL_USE_MINRATE = BIT(29), 419 IEEE80211_TX_CTL_DONTFRAG = BIT(30), 420 }; 421 422 #define IEEE80211_TX_CTL_STBC_SHIFT 23 423 424 /* 425 * This definition is used as a mask to clear all temporary flags, which are 426 * set by the tx handlers for each transmission attempt by the mac80211 stack. 427 */ 428 #define IEEE80211_TX_TEMPORARY_FLAGS (IEEE80211_TX_CTL_NO_ACK | \ 429 IEEE80211_TX_CTL_CLEAR_PS_FILT | IEEE80211_TX_CTL_FIRST_FRAGMENT | \ 430 IEEE80211_TX_CTL_SEND_AFTER_DTIM | IEEE80211_TX_CTL_AMPDU | \ 431 IEEE80211_TX_STAT_TX_FILTERED | IEEE80211_TX_STAT_ACK | \ 432 IEEE80211_TX_STAT_AMPDU | IEEE80211_TX_STAT_AMPDU_NO_BACK | \ 433 IEEE80211_TX_CTL_RATE_CTRL_PROBE | IEEE80211_TX_CTL_NO_PS_BUFFER | \ 434 IEEE80211_TX_CTL_MORE_FRAMES | IEEE80211_TX_CTL_LDPC | \ 435 IEEE80211_TX_CTL_STBC | IEEE80211_TX_STATUS_EOSP) 436 437 /** 438 * enum mac80211_rate_control_flags - per-rate flags set by the 439 * Rate Control algorithm. 440 * 441 * These flags are set by the Rate control algorithm for each rate during tx, 442 * in the @flags member of struct ieee80211_tx_rate. 443 * 444 * @IEEE80211_TX_RC_USE_RTS_CTS: Use RTS/CTS exchange for this rate. 445 * @IEEE80211_TX_RC_USE_CTS_PROTECT: CTS-to-self protection is required. 446 * This is set if the current BSS requires ERP protection. 447 * @IEEE80211_TX_RC_USE_SHORT_PREAMBLE: Use short preamble. 448 * @IEEE80211_TX_RC_MCS: HT rate. 449 * @IEEE80211_TX_RC_GREEN_FIELD: Indicates whether this rate should be used in 450 * Greenfield mode. 451 * @IEEE80211_TX_RC_40_MHZ_WIDTH: Indicates if the Channel Width should be 40 MHz. 452 * @IEEE80211_TX_RC_DUP_DATA: The frame should be transmitted on both of the 453 * adjacent 20 MHz channels, if the current channel type is 454 * NL80211_CHAN_HT40MINUS or NL80211_CHAN_HT40PLUS. 455 * @IEEE80211_TX_RC_SHORT_GI: Short Guard interval should be used for this rate. 456 */ 457 enum mac80211_rate_control_flags { 458 IEEE80211_TX_RC_USE_RTS_CTS = BIT(0), 459 IEEE80211_TX_RC_USE_CTS_PROTECT = BIT(1), 460 IEEE80211_TX_RC_USE_SHORT_PREAMBLE = BIT(2), 461 462 /* rate index is an MCS rate number instead of an index */ 463 IEEE80211_TX_RC_MCS = BIT(3), 464 IEEE80211_TX_RC_GREEN_FIELD = BIT(4), 465 IEEE80211_TX_RC_40_MHZ_WIDTH = BIT(5), 466 IEEE80211_TX_RC_DUP_DATA = BIT(6), 467 IEEE80211_TX_RC_SHORT_GI = BIT(7), 468 }; 469 470 471 /* there are 40 bytes if you don't need the rateset to be kept */ 472 #define IEEE80211_TX_INFO_DRIVER_DATA_SIZE 40 473 474 /* if you do need the rateset, then you have less space */ 475 #define IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE 24 476 477 /* maximum number of rate stages */ 478 #define IEEE80211_TX_MAX_RATES 5 479 480 /** 481 * struct ieee80211_tx_rate - rate selection/status 482 * 483 * @idx: rate index to attempt to send with 484 * @flags: rate control flags (&enum mac80211_rate_control_flags) 485 * @count: number of tries in this rate before going to the next rate 486 * 487 * A value of -1 for @idx indicates an invalid rate and, if used 488 * in an array of retry rates, that no more rates should be tried. 489 * 490 * When used for transmit status reporting, the driver should 491 * always report the rate along with the flags it used. 492 * 493 * &struct ieee80211_tx_info contains an array of these structs 494 * in the control information, and it will be filled by the rate 495 * control algorithm according to what should be sent. For example, 496 * if this array contains, in the format { <idx>, <count> } the 497 * information 498 * { 3, 2 }, { 2, 2 }, { 1, 4 }, { -1, 0 }, { -1, 0 } 499 * then this means that the frame should be transmitted 500 * up to twice at rate 3, up to twice at rate 2, and up to four 501 * times at rate 1 if it doesn't get acknowledged. Say it gets 502 * acknowledged by the peer after the fifth attempt, the status 503 * information should then contain 504 * { 3, 2 }, { 2, 2 }, { 1, 1 }, { -1, 0 } ... 505 * since it was transmitted twice at rate 3, twice at rate 2 506 * and once at rate 1 after which we received an acknowledgement. 507 */ 508 struct ieee80211_tx_rate { 509 s8 idx; 510 u8 count; 511 u8 flags; 512 } __packed; 513 514 /** 515 * struct ieee80211_tx_info - skb transmit information 516 * 517 * This structure is placed in skb->cb for three uses: 518 * (1) mac80211 TX control - mac80211 tells the driver what to do 519 * (2) driver internal use (if applicable) 520 * (3) TX status information - driver tells mac80211 what happened 521 * 522 * The TX control's sta pointer is only valid during the ->tx call, 523 * it may be NULL. 524 * 525 * @flags: transmit info flags, defined above 526 * @band: the band to transmit on (use for checking for races) 527 * @hw_queue: HW queue to put the frame on, skb_get_queue_mapping() gives the AC 528 * @ack_frame_id: internal frame ID for TX status, used internally 529 * @control: union for control data 530 * @status: union for status data 531 * @driver_data: array of driver_data pointers 532 * @ampdu_ack_len: number of acked aggregated frames. 533 * relevant only if IEEE80211_TX_STAT_AMPDU was set. 534 * @ampdu_len: number of aggregated frames. 535 * relevant only if IEEE80211_TX_STAT_AMPDU was set. 536 * @ack_signal: signal strength of the ACK frame 537 */ 538 struct ieee80211_tx_info { 539 /* common information */ 540 u32 flags; 541 u8 band; 542 543 u8 hw_queue; 544 545 u16 ack_frame_id; 546 547 union { 548 struct { 549 union { 550 /* rate control */ 551 struct { 552 struct ieee80211_tx_rate rates[ 553 IEEE80211_TX_MAX_RATES]; 554 s8 rts_cts_rate_idx; 555 }; 556 /* only needed before rate control */ 557 unsigned long jiffies; 558 }; 559 /* NB: vif can be NULL for injected frames */ 560 struct ieee80211_vif *vif; 561 struct ieee80211_key_conf *hw_key; 562 struct ieee80211_sta *sta; 563 } control; 564 struct { 565 struct ieee80211_tx_rate rates[IEEE80211_TX_MAX_RATES]; 566 u8 ampdu_ack_len; 567 int ack_signal; 568 u8 ampdu_len; 569 u8 antenna; 570 /* 14 bytes free */ 571 } status; 572 struct { 573 struct ieee80211_tx_rate driver_rates[ 574 IEEE80211_TX_MAX_RATES]; 575 void *rate_driver_data[ 576 IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE / sizeof(void *)]; 577 }; 578 void *driver_data[ 579 IEEE80211_TX_INFO_DRIVER_DATA_SIZE / sizeof(void *)]; 580 }; 581 }; 582 583 /** 584 * struct ieee80211_sched_scan_ies - scheduled scan IEs 585 * 586 * This structure is used to pass the appropriate IEs to be used in scheduled 587 * scans for all bands. It contains both the IEs passed from the userspace 588 * and the ones generated by mac80211. 589 * 590 * @ie: array with the IEs for each supported band 591 * @len: array with the total length of the IEs for each band 592 */ 593 struct ieee80211_sched_scan_ies { 594 u8 *ie[IEEE80211_NUM_BANDS]; 595 size_t len[IEEE80211_NUM_BANDS]; 596 }; 597 598 static inline struct ieee80211_tx_info *IEEE80211_SKB_CB(struct sk_buff *skb) 599 { 600 return (struct ieee80211_tx_info *)skb->cb; 601 } 602 603 static inline struct ieee80211_rx_status *IEEE80211_SKB_RXCB(struct sk_buff *skb) 604 { 605 return (struct ieee80211_rx_status *)skb->cb; 606 } 607 608 /** 609 * ieee80211_tx_info_clear_status - clear TX status 610 * 611 * @info: The &struct ieee80211_tx_info to be cleared. 612 * 613 * When the driver passes an skb back to mac80211, it must report 614 * a number of things in TX status. This function clears everything 615 * in the TX status but the rate control information (it does clear 616 * the count since you need to fill that in anyway). 617 * 618 * NOTE: You can only use this function if you do NOT use 619 * info->driver_data! Use info->rate_driver_data 620 * instead if you need only the less space that allows. 621 */ 622 static inline void 623 ieee80211_tx_info_clear_status(struct ieee80211_tx_info *info) 624 { 625 int i; 626 627 BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) != 628 offsetof(struct ieee80211_tx_info, control.rates)); 629 BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) != 630 offsetof(struct ieee80211_tx_info, driver_rates)); 631 BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) != 8); 632 /* clear the rate counts */ 633 for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) 634 info->status.rates[i].count = 0; 635 636 BUILD_BUG_ON( 637 offsetof(struct ieee80211_tx_info, status.ampdu_ack_len) != 23); 638 memset(&info->status.ampdu_ack_len, 0, 639 sizeof(struct ieee80211_tx_info) - 640 offsetof(struct ieee80211_tx_info, status.ampdu_ack_len)); 641 } 642 643 644 /** 645 * enum mac80211_rx_flags - receive flags 646 * 647 * These flags are used with the @flag member of &struct ieee80211_rx_status. 648 * @RX_FLAG_MMIC_ERROR: Michael MIC error was reported on this frame. 649 * Use together with %RX_FLAG_MMIC_STRIPPED. 650 * @RX_FLAG_DECRYPTED: This frame was decrypted in hardware. 651 * @RX_FLAG_MMIC_STRIPPED: the Michael MIC is stripped off this frame, 652 * verification has been done by the hardware. 653 * @RX_FLAG_IV_STRIPPED: The IV/ICV are stripped from this frame. 654 * If this flag is set, the stack cannot do any replay detection 655 * hence the driver or hardware will have to do that. 656 * @RX_FLAG_FAILED_FCS_CRC: Set this flag if the FCS check failed on 657 * the frame. 658 * @RX_FLAG_FAILED_PLCP_CRC: Set this flag if the PCLP check failed on 659 * the frame. 660 * @RX_FLAG_MACTIME_MPDU: The timestamp passed in the RX status (@mactime 661 * field) is valid and contains the time the first symbol of the MPDU 662 * was received. This is useful in monitor mode and for proper IBSS 663 * merging. 664 * @RX_FLAG_SHORTPRE: Short preamble was used for this frame 665 * @RX_FLAG_HT: HT MCS was used and rate_idx is MCS index 666 * @RX_FLAG_40MHZ: HT40 (40 MHz) was used 667 * @RX_FLAG_SHORT_GI: Short guard interval was used 668 * @RX_FLAG_NO_SIGNAL_VAL: The signal strength value is not present. 669 * Valid only for data frames (mainly A-MPDU) 670 * @RX_FLAG_HT_GF: This frame was received in a HT-greenfield transmission, if 671 * the driver fills this value it should add %IEEE80211_RADIOTAP_MCS_HAVE_FMT 672 * to hw.radiotap_mcs_details to advertise that fact 673 */ 674 enum mac80211_rx_flags { 675 RX_FLAG_MMIC_ERROR = 1<<0, 676 RX_FLAG_DECRYPTED = 1<<1, 677 RX_FLAG_MMIC_STRIPPED = 1<<3, 678 RX_FLAG_IV_STRIPPED = 1<<4, 679 RX_FLAG_FAILED_FCS_CRC = 1<<5, 680 RX_FLAG_FAILED_PLCP_CRC = 1<<6, 681 RX_FLAG_MACTIME_MPDU = 1<<7, 682 RX_FLAG_SHORTPRE = 1<<8, 683 RX_FLAG_HT = 1<<9, 684 RX_FLAG_40MHZ = 1<<10, 685 RX_FLAG_SHORT_GI = 1<<11, 686 RX_FLAG_NO_SIGNAL_VAL = 1<<12, 687 RX_FLAG_HT_GF = 1<<13, 688 }; 689 690 /** 691 * struct ieee80211_rx_status - receive status 692 * 693 * The low-level driver should provide this information (the subset 694 * supported by hardware) to the 802.11 code with each received 695 * frame, in the skb's control buffer (cb). 696 * 697 * @mactime: value in microseconds of the 64-bit Time Synchronization Function 698 * (TSF) timer when the first data symbol (MPDU) arrived at the hardware. 699 * @band: the active band when this frame was received 700 * @freq: frequency the radio was tuned to when receiving this frame, in MHz 701 * @signal: signal strength when receiving this frame, either in dBm, in dB or 702 * unspecified depending on the hardware capabilities flags 703 * @IEEE80211_HW_SIGNAL_* 704 * @antenna: antenna used 705 * @rate_idx: index of data rate into band's supported rates or MCS index if 706 * HT rates are use (RX_FLAG_HT) 707 * @flag: %RX_FLAG_* 708 * @rx_flags: internal RX flags for mac80211 709 */ 710 struct ieee80211_rx_status { 711 u64 mactime; 712 enum ieee80211_band band; 713 int freq; 714 int signal; 715 int antenna; 716 int rate_idx; 717 int flag; 718 unsigned int rx_flags; 719 }; 720 721 /** 722 * enum ieee80211_conf_flags - configuration flags 723 * 724 * Flags to define PHY configuration options 725 * 726 * @IEEE80211_CONF_MONITOR: there's a monitor interface present -- use this 727 * to determine for example whether to calculate timestamps for packets 728 * or not, do not use instead of filter flags! 729 * @IEEE80211_CONF_PS: Enable 802.11 power save mode (managed mode only). 730 * This is the power save mode defined by IEEE 802.11-2007 section 11.2, 731 * meaning that the hardware still wakes up for beacons, is able to 732 * transmit frames and receive the possible acknowledgment frames. 733 * Not to be confused with hardware specific wakeup/sleep states, 734 * driver is responsible for that. See the section "Powersave support" 735 * for more. 736 * @IEEE80211_CONF_IDLE: The device is running, but idle; if the flag is set 737 * the driver should be prepared to handle configuration requests but 738 * may turn the device off as much as possible. Typically, this flag will 739 * be set when an interface is set UP but not associated or scanning, but 740 * it can also be unset in that case when monitor interfaces are active. 741 * @IEEE80211_CONF_OFFCHANNEL: The device is currently not on its main 742 * operating channel. 743 */ 744 enum ieee80211_conf_flags { 745 IEEE80211_CONF_MONITOR = (1<<0), 746 IEEE80211_CONF_PS = (1<<1), 747 IEEE80211_CONF_IDLE = (1<<2), 748 IEEE80211_CONF_OFFCHANNEL = (1<<3), 749 }; 750 751 752 /** 753 * enum ieee80211_conf_changed - denotes which configuration changed 754 * 755 * @IEEE80211_CONF_CHANGE_LISTEN_INTERVAL: the listen interval changed 756 * @IEEE80211_CONF_CHANGE_MONITOR: the monitor flag changed 757 * @IEEE80211_CONF_CHANGE_PS: the PS flag or dynamic PS timeout changed 758 * @IEEE80211_CONF_CHANGE_POWER: the TX power changed 759 * @IEEE80211_CONF_CHANGE_CHANNEL: the channel/channel_type changed 760 * @IEEE80211_CONF_CHANGE_RETRY_LIMITS: retry limits changed 761 * @IEEE80211_CONF_CHANGE_IDLE: Idle flag changed 762 * @IEEE80211_CONF_CHANGE_SMPS: Spatial multiplexing powersave mode changed 763 */ 764 enum ieee80211_conf_changed { 765 IEEE80211_CONF_CHANGE_SMPS = BIT(1), 766 IEEE80211_CONF_CHANGE_LISTEN_INTERVAL = BIT(2), 767 IEEE80211_CONF_CHANGE_MONITOR = BIT(3), 768 IEEE80211_CONF_CHANGE_PS = BIT(4), 769 IEEE80211_CONF_CHANGE_POWER = BIT(5), 770 IEEE80211_CONF_CHANGE_CHANNEL = BIT(6), 771 IEEE80211_CONF_CHANGE_RETRY_LIMITS = BIT(7), 772 IEEE80211_CONF_CHANGE_IDLE = BIT(8), 773 }; 774 775 /** 776 * enum ieee80211_smps_mode - spatial multiplexing power save mode 777 * 778 * @IEEE80211_SMPS_AUTOMATIC: automatic 779 * @IEEE80211_SMPS_OFF: off 780 * @IEEE80211_SMPS_STATIC: static 781 * @IEEE80211_SMPS_DYNAMIC: dynamic 782 * @IEEE80211_SMPS_NUM_MODES: internal, don't use 783 */ 784 enum ieee80211_smps_mode { 785 IEEE80211_SMPS_AUTOMATIC, 786 IEEE80211_SMPS_OFF, 787 IEEE80211_SMPS_STATIC, 788 IEEE80211_SMPS_DYNAMIC, 789 790 /* keep last */ 791 IEEE80211_SMPS_NUM_MODES, 792 }; 793 794 /** 795 * struct ieee80211_conf - configuration of the device 796 * 797 * This struct indicates how the driver shall configure the hardware. 798 * 799 * @flags: configuration flags defined above 800 * 801 * @listen_interval: listen interval in units of beacon interval 802 * @max_sleep_period: the maximum number of beacon intervals to sleep for 803 * before checking the beacon for a TIM bit (managed mode only); this 804 * value will be only achievable between DTIM frames, the hardware 805 * needs to check for the multicast traffic bit in DTIM beacons. 806 * This variable is valid only when the CONF_PS flag is set. 807 * @ps_dtim_period: The DTIM period of the AP we're connected to, for use 808 * in power saving. Power saving will not be enabled until a beacon 809 * has been received and the DTIM period is known. 810 * @dynamic_ps_timeout: The dynamic powersave timeout (in ms), see the 811 * powersave documentation below. This variable is valid only when 812 * the CONF_PS flag is set. 813 * 814 * @power_level: requested transmit power (in dBm) 815 * 816 * @channel: the channel to tune to 817 * @channel_type: the channel (HT) type 818 * 819 * @long_frame_max_tx_count: Maximum number of transmissions for a "long" frame 820 * (a frame not RTS protected), called "dot11LongRetryLimit" in 802.11, 821 * but actually means the number of transmissions not the number of retries 822 * @short_frame_max_tx_count: Maximum number of transmissions for a "short" 823 * frame, called "dot11ShortRetryLimit" in 802.11, but actually means the 824 * number of transmissions not the number of retries 825 * 826 * @smps_mode: spatial multiplexing powersave mode; note that 827 * %IEEE80211_SMPS_STATIC is used when the device is not 828 * configured for an HT channel 829 */ 830 struct ieee80211_conf { 831 u32 flags; 832 int power_level, dynamic_ps_timeout; 833 int max_sleep_period; 834 835 u16 listen_interval; 836 u8 ps_dtim_period; 837 838 u8 long_frame_max_tx_count, short_frame_max_tx_count; 839 840 struct ieee80211_channel *channel; 841 enum nl80211_channel_type channel_type; 842 enum ieee80211_smps_mode smps_mode; 843 }; 844 845 /** 846 * struct ieee80211_channel_switch - holds the channel switch data 847 * 848 * The information provided in this structure is required for channel switch 849 * operation. 850 * 851 * @timestamp: value in microseconds of the 64-bit Time Synchronization 852 * Function (TSF) timer when the frame containing the channel switch 853 * announcement was received. This is simply the rx.mactime parameter 854 * the driver passed into mac80211. 855 * @block_tx: Indicates whether transmission must be blocked before the 856 * scheduled channel switch, as indicated by the AP. 857 * @channel: the new channel to switch to 858 * @count: the number of TBTT's until the channel switch event 859 */ 860 struct ieee80211_channel_switch { 861 u64 timestamp; 862 bool block_tx; 863 struct ieee80211_channel *channel; 864 u8 count; 865 }; 866 867 /** 868 * enum ieee80211_vif_flags - virtual interface flags 869 * 870 * @IEEE80211_VIF_BEACON_FILTER: the device performs beacon filtering 871 * on this virtual interface to avoid unnecessary CPU wakeups 872 * @IEEE80211_VIF_SUPPORTS_CQM_RSSI: the device can do connection quality 873 * monitoring on this virtual interface -- i.e. it can monitor 874 * connection quality related parameters, such as the RSSI level and 875 * provide notifications if configured trigger levels are reached. 876 */ 877 enum ieee80211_vif_flags { 878 IEEE80211_VIF_BEACON_FILTER = BIT(0), 879 IEEE80211_VIF_SUPPORTS_CQM_RSSI = BIT(1), 880 }; 881 882 /** 883 * struct ieee80211_vif - per-interface data 884 * 885 * Data in this structure is continually present for driver 886 * use during the life of a virtual interface. 887 * 888 * @type: type of this virtual interface 889 * @bss_conf: BSS configuration for this interface, either our own 890 * or the BSS we're associated to 891 * @addr: address of this interface 892 * @p2p: indicates whether this AP or STA interface is a p2p 893 * interface, i.e. a GO or p2p-sta respectively 894 * @driver_flags: flags/capabilities the driver has for this interface, 895 * these need to be set (or cleared) when the interface is added 896 * or, if supported by the driver, the interface type is changed 897 * at runtime, mac80211 will never touch this field 898 * @hw_queue: hardware queue for each AC 899 * @cab_queue: content-after-beacon (DTIM beacon really) queue, AP mode only 900 * @drv_priv: data area for driver use, will always be aligned to 901 * sizeof(void *). 902 */ 903 struct ieee80211_vif { 904 enum nl80211_iftype type; 905 struct ieee80211_bss_conf bss_conf; 906 u8 addr[ETH_ALEN]; 907 bool p2p; 908 909 u8 cab_queue; 910 u8 hw_queue[IEEE80211_NUM_ACS]; 911 912 u32 driver_flags; 913 914 /* must be last */ 915 u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *)))); 916 }; 917 918 static inline bool ieee80211_vif_is_mesh(struct ieee80211_vif *vif) 919 { 920 #ifdef CONFIG_MAC80211_MESH 921 return vif->type == NL80211_IFTYPE_MESH_POINT; 922 #endif 923 return false; 924 } 925 926 /** 927 * enum ieee80211_key_flags - key flags 928 * 929 * These flags are used for communication about keys between the driver 930 * and mac80211, with the @flags parameter of &struct ieee80211_key_conf. 931 * 932 * @IEEE80211_KEY_FLAG_WMM_STA: Set by mac80211, this flag indicates 933 * that the STA this key will be used with could be using QoS. 934 * @IEEE80211_KEY_FLAG_GENERATE_IV: This flag should be set by the 935 * driver to indicate that it requires IV generation for this 936 * particular key. 937 * @IEEE80211_KEY_FLAG_GENERATE_MMIC: This flag should be set by 938 * the driver for a TKIP key if it requires Michael MIC 939 * generation in software. 940 * @IEEE80211_KEY_FLAG_PAIRWISE: Set by mac80211, this flag indicates 941 * that the key is pairwise rather then a shared key. 942 * @IEEE80211_KEY_FLAG_SW_MGMT: This flag should be set by the driver for a 943 * CCMP key if it requires CCMP encryption of management frames (MFP) to 944 * be done in software. 945 * @IEEE80211_KEY_FLAG_PUT_IV_SPACE: This flag should be set by the driver 946 * if space should be prepared for the IV, but the IV 947 * itself should not be generated. Do not set together with 948 * @IEEE80211_KEY_FLAG_GENERATE_IV on the same key. 949 */ 950 enum ieee80211_key_flags { 951 IEEE80211_KEY_FLAG_WMM_STA = 1<<0, 952 IEEE80211_KEY_FLAG_GENERATE_IV = 1<<1, 953 IEEE80211_KEY_FLAG_GENERATE_MMIC= 1<<2, 954 IEEE80211_KEY_FLAG_PAIRWISE = 1<<3, 955 IEEE80211_KEY_FLAG_SW_MGMT = 1<<4, 956 IEEE80211_KEY_FLAG_PUT_IV_SPACE = 1<<5, 957 }; 958 959 /** 960 * struct ieee80211_key_conf - key information 961 * 962 * This key information is given by mac80211 to the driver by 963 * the set_key() callback in &struct ieee80211_ops. 964 * 965 * @hw_key_idx: To be set by the driver, this is the key index the driver 966 * wants to be given when a frame is transmitted and needs to be 967 * encrypted in hardware. 968 * @cipher: The key's cipher suite selector. 969 * @flags: key flags, see &enum ieee80211_key_flags. 970 * @keyidx: the key index (0-3) 971 * @keylen: key material length 972 * @key: key material. For ALG_TKIP the key is encoded as a 256-bit (32 byte) 973 * data block: 974 * - Temporal Encryption Key (128 bits) 975 * - Temporal Authenticator Tx MIC Key (64 bits) 976 * - Temporal Authenticator Rx MIC Key (64 bits) 977 * @icv_len: The ICV length for this key type 978 * @iv_len: The IV length for this key type 979 */ 980 struct ieee80211_key_conf { 981 u32 cipher; 982 u8 icv_len; 983 u8 iv_len; 984 u8 hw_key_idx; 985 u8 flags; 986 s8 keyidx; 987 u8 keylen; 988 u8 key[0]; 989 }; 990 991 /** 992 * enum set_key_cmd - key command 993 * 994 * Used with the set_key() callback in &struct ieee80211_ops, this 995 * indicates whether a key is being removed or added. 996 * 997 * @SET_KEY: a key is set 998 * @DISABLE_KEY: a key must be disabled 999 */ 1000 enum set_key_cmd { 1001 SET_KEY, DISABLE_KEY, 1002 }; 1003 1004 /** 1005 * enum ieee80211_sta_state - station state 1006 * 1007 * @IEEE80211_STA_NOTEXIST: station doesn't exist at all, 1008 * this is a special state for add/remove transitions 1009 * @IEEE80211_STA_NONE: station exists without special state 1010 * @IEEE80211_STA_AUTH: station is authenticated 1011 * @IEEE80211_STA_ASSOC: station is associated 1012 * @IEEE80211_STA_AUTHORIZED: station is authorized (802.1X) 1013 */ 1014 enum ieee80211_sta_state { 1015 /* NOTE: These need to be ordered correctly! */ 1016 IEEE80211_STA_NOTEXIST, 1017 IEEE80211_STA_NONE, 1018 IEEE80211_STA_AUTH, 1019 IEEE80211_STA_ASSOC, 1020 IEEE80211_STA_AUTHORIZED, 1021 }; 1022 1023 /** 1024 * struct ieee80211_sta - station table entry 1025 * 1026 * A station table entry represents a station we are possibly 1027 * communicating with. Since stations are RCU-managed in 1028 * mac80211, any ieee80211_sta pointer you get access to must 1029 * either be protected by rcu_read_lock() explicitly or implicitly, 1030 * or you must take good care to not use such a pointer after a 1031 * call to your sta_remove callback that removed it. 1032 * 1033 * @addr: MAC address 1034 * @aid: AID we assigned to the station if we're an AP 1035 * @supp_rates: Bitmap of supported rates (per band) 1036 * @ht_cap: HT capabilities of this STA; restricted to our own TX capabilities 1037 * @wme: indicates whether the STA supports WME. Only valid during AP-mode. 1038 * @drv_priv: data area for driver use, will always be aligned to 1039 * sizeof(void *), size is determined in hw information. 1040 * @uapsd_queues: bitmap of queues configured for uapsd. Only valid 1041 * if wme is supported. 1042 * @max_sp: max Service Period. Only valid if wme is supported. 1043 */ 1044 struct ieee80211_sta { 1045 u32 supp_rates[IEEE80211_NUM_BANDS]; 1046 u8 addr[ETH_ALEN]; 1047 u16 aid; 1048 struct ieee80211_sta_ht_cap ht_cap; 1049 bool wme; 1050 u8 uapsd_queues; 1051 u8 max_sp; 1052 1053 /* must be last */ 1054 u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *)))); 1055 }; 1056 1057 /** 1058 * enum sta_notify_cmd - sta notify command 1059 * 1060 * Used with the sta_notify() callback in &struct ieee80211_ops, this 1061 * indicates if an associated station made a power state transition. 1062 * 1063 * @STA_NOTIFY_SLEEP: a station is now sleeping 1064 * @STA_NOTIFY_AWAKE: a sleeping station woke up 1065 */ 1066 enum sta_notify_cmd { 1067 STA_NOTIFY_SLEEP, STA_NOTIFY_AWAKE, 1068 }; 1069 1070 /** 1071 * enum ieee80211_hw_flags - hardware flags 1072 * 1073 * These flags are used to indicate hardware capabilities to 1074 * the stack. Generally, flags here should have their meaning 1075 * done in a way that the simplest hardware doesn't need setting 1076 * any particular flags. There are some exceptions to this rule, 1077 * however, so you are advised to review these flags carefully. 1078 * 1079 * @IEEE80211_HW_HAS_RATE_CONTROL: 1080 * The hardware or firmware includes rate control, and cannot be 1081 * controlled by the stack. As such, no rate control algorithm 1082 * should be instantiated, and the TX rate reported to userspace 1083 * will be taken from the TX status instead of the rate control 1084 * algorithm. 1085 * Note that this requires that the driver implement a number of 1086 * callbacks so it has the correct information, it needs to have 1087 * the @set_rts_threshold callback and must look at the BSS config 1088 * @use_cts_prot for G/N protection, @use_short_slot for slot 1089 * timing in 2.4 GHz and @use_short_preamble for preambles for 1090 * CCK frames. 1091 * 1092 * @IEEE80211_HW_RX_INCLUDES_FCS: 1093 * Indicates that received frames passed to the stack include 1094 * the FCS at the end. 1095 * 1096 * @IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING: 1097 * Some wireless LAN chipsets buffer broadcast/multicast frames 1098 * for power saving stations in the hardware/firmware and others 1099 * rely on the host system for such buffering. This option is used 1100 * to configure the IEEE 802.11 upper layer to buffer broadcast and 1101 * multicast frames when there are power saving stations so that 1102 * the driver can fetch them with ieee80211_get_buffered_bc(). 1103 * 1104 * @IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE: 1105 * Hardware is not capable of short slot operation on the 2.4 GHz band. 1106 * 1107 * @IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE: 1108 * Hardware is not capable of receiving frames with short preamble on 1109 * the 2.4 GHz band. 1110 * 1111 * @IEEE80211_HW_SIGNAL_UNSPEC: 1112 * Hardware can provide signal values but we don't know its units. We 1113 * expect values between 0 and @max_signal. 1114 * If possible please provide dB or dBm instead. 1115 * 1116 * @IEEE80211_HW_SIGNAL_DBM: 1117 * Hardware gives signal values in dBm, decibel difference from 1118 * one milliwatt. This is the preferred method since it is standardized 1119 * between different devices. @max_signal does not need to be set. 1120 * 1121 * @IEEE80211_HW_SPECTRUM_MGMT: 1122 * Hardware supports spectrum management defined in 802.11h 1123 * Measurement, Channel Switch, Quieting, TPC 1124 * 1125 * @IEEE80211_HW_AMPDU_AGGREGATION: 1126 * Hardware supports 11n A-MPDU aggregation. 1127 * 1128 * @IEEE80211_HW_SUPPORTS_PS: 1129 * Hardware has power save support (i.e. can go to sleep). 1130 * 1131 * @IEEE80211_HW_PS_NULLFUNC_STACK: 1132 * Hardware requires nullfunc frame handling in stack, implies 1133 * stack support for dynamic PS. 1134 * 1135 * @IEEE80211_HW_SUPPORTS_DYNAMIC_PS: 1136 * Hardware has support for dynamic PS. 1137 * 1138 * @IEEE80211_HW_MFP_CAPABLE: 1139 * Hardware supports management frame protection (MFP, IEEE 802.11w). 1140 * 1141 * @IEEE80211_HW_SUPPORTS_STATIC_SMPS: 1142 * Hardware supports static spatial multiplexing powersave, 1143 * ie. can turn off all but one chain even on HT connections 1144 * that should be using more chains. 1145 * 1146 * @IEEE80211_HW_SUPPORTS_DYNAMIC_SMPS: 1147 * Hardware supports dynamic spatial multiplexing powersave, 1148 * ie. can turn off all but one chain and then wake the rest 1149 * up as required after, for example, rts/cts handshake. 1150 * 1151 * @IEEE80211_HW_SUPPORTS_UAPSD: 1152 * Hardware supports Unscheduled Automatic Power Save Delivery 1153 * (U-APSD) in managed mode. The mode is configured with 1154 * conf_tx() operation. 1155 * 1156 * @IEEE80211_HW_REPORTS_TX_ACK_STATUS: 1157 * Hardware can provide ack status reports of Tx frames to 1158 * the stack. 1159 * 1160 * @IEEE80211_HW_CONNECTION_MONITOR: 1161 * The hardware performs its own connection monitoring, including 1162 * periodic keep-alives to the AP and probing the AP on beacon loss. 1163 * When this flag is set, signaling beacon-loss will cause an immediate 1164 * change to disassociated state. 1165 * 1166 * @IEEE80211_HW_NEED_DTIM_PERIOD: 1167 * This device needs to know the DTIM period for the BSS before 1168 * associating. 1169 * 1170 * @IEEE80211_HW_SUPPORTS_PER_STA_GTK: The device's crypto engine supports 1171 * per-station GTKs as used by IBSS RSN or during fast transition. If 1172 * the device doesn't support per-station GTKs, but can be asked not 1173 * to decrypt group addressed frames, then IBSS RSN support is still 1174 * possible but software crypto will be used. Advertise the wiphy flag 1175 * only in that case. 1176 * 1177 * @IEEE80211_HW_AP_LINK_PS: When operating in AP mode the device 1178 * autonomously manages the PS status of connected stations. When 1179 * this flag is set mac80211 will not trigger PS mode for connected 1180 * stations based on the PM bit of incoming frames. 1181 * Use ieee80211_start_ps()/ieee8021_end_ps() to manually configure 1182 * the PS mode of connected stations. 1183 * 1184 * @IEEE80211_HW_TX_AMPDU_SETUP_IN_HW: The device handles TX A-MPDU session 1185 * setup strictly in HW. mac80211 should not attempt to do this in 1186 * software. 1187 * 1188 * @IEEE80211_HW_SCAN_WHILE_IDLE: The device can do hw scan while 1189 * being idle (i.e. mac80211 doesn't have to go idle-off during the 1190 * the scan). 1191 * 1192 * @IEEE80211_HW_WANT_MONITOR_VIF: The driver would like to be informed of 1193 * a virtual monitor interface when monitor interfaces are the only 1194 * active interfaces. 1195 * 1196 * @IEEE80211_HW_QUEUE_CONTROL: The driver wants to control per-interface 1197 * queue mapping in order to use different queues (not just one per AC) 1198 * for different virtual interfaces. See the doc section on HW queue 1199 * control for more details. 1200 */ 1201 enum ieee80211_hw_flags { 1202 IEEE80211_HW_HAS_RATE_CONTROL = 1<<0, 1203 IEEE80211_HW_RX_INCLUDES_FCS = 1<<1, 1204 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING = 1<<2, 1205 IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE = 1<<3, 1206 IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE = 1<<4, 1207 IEEE80211_HW_SIGNAL_UNSPEC = 1<<5, 1208 IEEE80211_HW_SIGNAL_DBM = 1<<6, 1209 IEEE80211_HW_NEED_DTIM_PERIOD = 1<<7, 1210 IEEE80211_HW_SPECTRUM_MGMT = 1<<8, 1211 IEEE80211_HW_AMPDU_AGGREGATION = 1<<9, 1212 IEEE80211_HW_SUPPORTS_PS = 1<<10, 1213 IEEE80211_HW_PS_NULLFUNC_STACK = 1<<11, 1214 IEEE80211_HW_SUPPORTS_DYNAMIC_PS = 1<<12, 1215 IEEE80211_HW_MFP_CAPABLE = 1<<13, 1216 IEEE80211_HW_WANT_MONITOR_VIF = 1<<14, 1217 IEEE80211_HW_SUPPORTS_STATIC_SMPS = 1<<15, 1218 IEEE80211_HW_SUPPORTS_DYNAMIC_SMPS = 1<<16, 1219 IEEE80211_HW_SUPPORTS_UAPSD = 1<<17, 1220 IEEE80211_HW_REPORTS_TX_ACK_STATUS = 1<<18, 1221 IEEE80211_HW_CONNECTION_MONITOR = 1<<19, 1222 IEEE80211_HW_QUEUE_CONTROL = 1<<20, 1223 IEEE80211_HW_SUPPORTS_PER_STA_GTK = 1<<21, 1224 IEEE80211_HW_AP_LINK_PS = 1<<22, 1225 IEEE80211_HW_TX_AMPDU_SETUP_IN_HW = 1<<23, 1226 IEEE80211_HW_SCAN_WHILE_IDLE = 1<<24, 1227 }; 1228 1229 /** 1230 * struct ieee80211_hw - hardware information and state 1231 * 1232 * This structure contains the configuration and hardware 1233 * information for an 802.11 PHY. 1234 * 1235 * @wiphy: This points to the &struct wiphy allocated for this 1236 * 802.11 PHY. You must fill in the @perm_addr and @dev 1237 * members of this structure using SET_IEEE80211_DEV() 1238 * and SET_IEEE80211_PERM_ADDR(). Additionally, all supported 1239 * bands (with channels, bitrates) are registered here. 1240 * 1241 * @conf: &struct ieee80211_conf, device configuration, don't use. 1242 * 1243 * @priv: pointer to private area that was allocated for driver use 1244 * along with this structure. 1245 * 1246 * @flags: hardware flags, see &enum ieee80211_hw_flags. 1247 * 1248 * @extra_tx_headroom: headroom to reserve in each transmit skb 1249 * for use by the driver (e.g. for transmit headers.) 1250 * 1251 * @channel_change_time: time (in microseconds) it takes to change channels. 1252 * 1253 * @max_signal: Maximum value for signal (rssi) in RX information, used 1254 * only when @IEEE80211_HW_SIGNAL_UNSPEC or @IEEE80211_HW_SIGNAL_DB 1255 * 1256 * @max_listen_interval: max listen interval in units of beacon interval 1257 * that HW supports 1258 * 1259 * @queues: number of available hardware transmit queues for 1260 * data packets. WMM/QoS requires at least four, these 1261 * queues need to have configurable access parameters. 1262 * 1263 * @rate_control_algorithm: rate control algorithm for this hardware. 1264 * If unset (NULL), the default algorithm will be used. Must be 1265 * set before calling ieee80211_register_hw(). 1266 * 1267 * @vif_data_size: size (in bytes) of the drv_priv data area 1268 * within &struct ieee80211_vif. 1269 * @sta_data_size: size (in bytes) of the drv_priv data area 1270 * within &struct ieee80211_sta. 1271 * 1272 * @max_rates: maximum number of alternate rate retry stages the hw 1273 * can handle. 1274 * @max_report_rates: maximum number of alternate rate retry stages 1275 * the hw can report back. 1276 * @max_rate_tries: maximum number of tries for each stage 1277 * 1278 * @napi_weight: weight used for NAPI polling. You must specify an 1279 * appropriate value here if a napi_poll operation is provided 1280 * by your driver. 1281 * 1282 * @max_rx_aggregation_subframes: maximum buffer size (number of 1283 * sub-frames) to be used for A-MPDU block ack receiver 1284 * aggregation. 1285 * This is only relevant if the device has restrictions on the 1286 * number of subframes, if it relies on mac80211 to do reordering 1287 * it shouldn't be set. 1288 * 1289 * @max_tx_aggregation_subframes: maximum number of subframes in an 1290 * aggregate an HT driver will transmit, used by the peer as a 1291 * hint to size its reorder buffer. 1292 * 1293 * @offchannel_tx_hw_queue: HW queue ID to use for offchannel TX 1294 * (if %IEEE80211_HW_QUEUE_CONTROL is set) 1295 * 1296 * @radiotap_mcs_details: lists which MCS information can the HW 1297 * reports, by default it is set to _MCS, _GI and _BW but doesn't 1298 * include _FMT. Use %IEEE80211_RADIOTAP_MCS_HAVE_* values, only 1299 * adding _BW is supported today. 1300 */ 1301 struct ieee80211_hw { 1302 struct ieee80211_conf conf; 1303 struct wiphy *wiphy; 1304 const char *rate_control_algorithm; 1305 void *priv; 1306 u32 flags; 1307 unsigned int extra_tx_headroom; 1308 int channel_change_time; 1309 int vif_data_size; 1310 int sta_data_size; 1311 int napi_weight; 1312 u16 queues; 1313 u16 max_listen_interval; 1314 s8 max_signal; 1315 u8 max_rates; 1316 u8 max_report_rates; 1317 u8 max_rate_tries; 1318 u8 max_rx_aggregation_subframes; 1319 u8 max_tx_aggregation_subframes; 1320 u8 offchannel_tx_hw_queue; 1321 u8 radiotap_mcs_details; 1322 }; 1323 1324 /** 1325 * wiphy_to_ieee80211_hw - return a mac80211 driver hw struct from a wiphy 1326 * 1327 * @wiphy: the &struct wiphy which we want to query 1328 * 1329 * mac80211 drivers can use this to get to their respective 1330 * &struct ieee80211_hw. Drivers wishing to get to their own private 1331 * structure can then access it via hw->priv. Note that mac802111 drivers should 1332 * not use wiphy_priv() to try to get their private driver structure as this 1333 * is already used internally by mac80211. 1334 */ 1335 struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy); 1336 1337 /** 1338 * SET_IEEE80211_DEV - set device for 802.11 hardware 1339 * 1340 * @hw: the &struct ieee80211_hw to set the device for 1341 * @dev: the &struct device of this 802.11 device 1342 */ 1343 static inline void SET_IEEE80211_DEV(struct ieee80211_hw *hw, struct device *dev) 1344 { 1345 set_wiphy_dev(hw->wiphy, dev); 1346 } 1347 1348 /** 1349 * SET_IEEE80211_PERM_ADDR - set the permanent MAC address for 802.11 hardware 1350 * 1351 * @hw: the &struct ieee80211_hw to set the MAC address for 1352 * @addr: the address to set 1353 */ 1354 static inline void SET_IEEE80211_PERM_ADDR(struct ieee80211_hw *hw, u8 *addr) 1355 { 1356 memcpy(hw->wiphy->perm_addr, addr, ETH_ALEN); 1357 } 1358 1359 static inline struct ieee80211_rate * 1360 ieee80211_get_tx_rate(const struct ieee80211_hw *hw, 1361 const struct ieee80211_tx_info *c) 1362 { 1363 if (WARN_ON_ONCE(c->control.rates[0].idx < 0)) 1364 return NULL; 1365 return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[0].idx]; 1366 } 1367 1368 static inline struct ieee80211_rate * 1369 ieee80211_get_rts_cts_rate(const struct ieee80211_hw *hw, 1370 const struct ieee80211_tx_info *c) 1371 { 1372 if (c->control.rts_cts_rate_idx < 0) 1373 return NULL; 1374 return &hw->wiphy->bands[c->band]->bitrates[c->control.rts_cts_rate_idx]; 1375 } 1376 1377 static inline struct ieee80211_rate * 1378 ieee80211_get_alt_retry_rate(const struct ieee80211_hw *hw, 1379 const struct ieee80211_tx_info *c, int idx) 1380 { 1381 if (c->control.rates[idx + 1].idx < 0) 1382 return NULL; 1383 return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[idx + 1].idx]; 1384 } 1385 1386 /** 1387 * ieee80211_free_txskb - free TX skb 1388 * @hw: the hardware 1389 * @skb: the skb 1390 * 1391 * Free a transmit skb. Use this funtion when some failure 1392 * to transmit happened and thus status cannot be reported. 1393 */ 1394 void ieee80211_free_txskb(struct ieee80211_hw *hw, struct sk_buff *skb); 1395 1396 /** 1397 * DOC: Hardware crypto acceleration 1398 * 1399 * mac80211 is capable of taking advantage of many hardware 1400 * acceleration designs for encryption and decryption operations. 1401 * 1402 * The set_key() callback in the &struct ieee80211_ops for a given 1403 * device is called to enable hardware acceleration of encryption and 1404 * decryption. The callback takes a @sta parameter that will be NULL 1405 * for default keys or keys used for transmission only, or point to 1406 * the station information for the peer for individual keys. 1407 * Multiple transmission keys with the same key index may be used when 1408 * VLANs are configured for an access point. 1409 * 1410 * When transmitting, the TX control data will use the @hw_key_idx 1411 * selected by the driver by modifying the &struct ieee80211_key_conf 1412 * pointed to by the @key parameter to the set_key() function. 1413 * 1414 * The set_key() call for the %SET_KEY command should return 0 if 1415 * the key is now in use, -%EOPNOTSUPP or -%ENOSPC if it couldn't be 1416 * added; if you return 0 then hw_key_idx must be assigned to the 1417 * hardware key index, you are free to use the full u8 range. 1418 * 1419 * When the cmd is %DISABLE_KEY then it must succeed. 1420 * 1421 * Note that it is permissible to not decrypt a frame even if a key 1422 * for it has been uploaded to hardware, the stack will not make any 1423 * decision based on whether a key has been uploaded or not but rather 1424 * based on the receive flags. 1425 * 1426 * The &struct ieee80211_key_conf structure pointed to by the @key 1427 * parameter is guaranteed to be valid until another call to set_key() 1428 * removes it, but it can only be used as a cookie to differentiate 1429 * keys. 1430 * 1431 * In TKIP some HW need to be provided a phase 1 key, for RX decryption 1432 * acceleration (i.e. iwlwifi). Those drivers should provide update_tkip_key 1433 * handler. 1434 * The update_tkip_key() call updates the driver with the new phase 1 key. 1435 * This happens every time the iv16 wraps around (every 65536 packets). The 1436 * set_key() call will happen only once for each key (unless the AP did 1437 * rekeying), it will not include a valid phase 1 key. The valid phase 1 key is 1438 * provided by update_tkip_key only. The trigger that makes mac80211 call this 1439 * handler is software decryption with wrap around of iv16. 1440 */ 1441 1442 /** 1443 * DOC: Powersave support 1444 * 1445 * mac80211 has support for various powersave implementations. 1446 * 1447 * First, it can support hardware that handles all powersaving by itself, 1448 * such hardware should simply set the %IEEE80211_HW_SUPPORTS_PS hardware 1449 * flag. In that case, it will be told about the desired powersave mode 1450 * with the %IEEE80211_CONF_PS flag depending on the association status. 1451 * The hardware must take care of sending nullfunc frames when necessary, 1452 * i.e. when entering and leaving powersave mode. The hardware is required 1453 * to look at the AID in beacons and signal to the AP that it woke up when 1454 * it finds traffic directed to it. 1455 * 1456 * %IEEE80211_CONF_PS flag enabled means that the powersave mode defined in 1457 * IEEE 802.11-2007 section 11.2 is enabled. This is not to be confused 1458 * with hardware wakeup and sleep states. Driver is responsible for waking 1459 * up the hardware before issuing commands to the hardware and putting it 1460 * back to sleep at appropriate times. 1461 * 1462 * When PS is enabled, hardware needs to wakeup for beacons and receive the 1463 * buffered multicast/broadcast frames after the beacon. Also it must be 1464 * possible to send frames and receive the acknowledment frame. 1465 * 1466 * Other hardware designs cannot send nullfunc frames by themselves and also 1467 * need software support for parsing the TIM bitmap. This is also supported 1468 * by mac80211 by combining the %IEEE80211_HW_SUPPORTS_PS and 1469 * %IEEE80211_HW_PS_NULLFUNC_STACK flags. The hardware is of course still 1470 * required to pass up beacons. The hardware is still required to handle 1471 * waking up for multicast traffic; if it cannot the driver must handle that 1472 * as best as it can, mac80211 is too slow to do that. 1473 * 1474 * Dynamic powersave is an extension to normal powersave in which the 1475 * hardware stays awake for a user-specified period of time after sending a 1476 * frame so that reply frames need not be buffered and therefore delayed to 1477 * the next wakeup. It's compromise of getting good enough latency when 1478 * there's data traffic and still saving significantly power in idle 1479 * periods. 1480 * 1481 * Dynamic powersave is simply supported by mac80211 enabling and disabling 1482 * PS based on traffic. Driver needs to only set %IEEE80211_HW_SUPPORTS_PS 1483 * flag and mac80211 will handle everything automatically. Additionally, 1484 * hardware having support for the dynamic PS feature may set the 1485 * %IEEE80211_HW_SUPPORTS_DYNAMIC_PS flag to indicate that it can support 1486 * dynamic PS mode itself. The driver needs to look at the 1487 * @dynamic_ps_timeout hardware configuration value and use it that value 1488 * whenever %IEEE80211_CONF_PS is set. In this case mac80211 will disable 1489 * dynamic PS feature in stack and will just keep %IEEE80211_CONF_PS 1490 * enabled whenever user has enabled powersave. 1491 * 1492 * Some hardware need to toggle a single shared antenna between WLAN and 1493 * Bluetooth to facilitate co-existence. These types of hardware set 1494 * limitations on the use of host controlled dynamic powersave whenever there 1495 * is simultaneous WLAN and Bluetooth traffic. For these types of hardware, the 1496 * driver may request temporarily going into full power save, in order to 1497 * enable toggling the antenna between BT and WLAN. If the driver requests 1498 * disabling dynamic powersave, the @dynamic_ps_timeout value will be 1499 * temporarily set to zero until the driver re-enables dynamic powersave. 1500 * 1501 * Driver informs U-APSD client support by enabling 1502 * %IEEE80211_HW_SUPPORTS_UAPSD flag. The mode is configured through the 1503 * uapsd paramater in conf_tx() operation. Hardware needs to send the QoS 1504 * Nullfunc frames and stay awake until the service period has ended. To 1505 * utilize U-APSD, dynamic powersave is disabled for voip AC and all frames 1506 * from that AC are transmitted with powersave enabled. 1507 * 1508 * Note: U-APSD client mode is not yet supported with 1509 * %IEEE80211_HW_PS_NULLFUNC_STACK. 1510 */ 1511 1512 /** 1513 * DOC: Beacon filter support 1514 * 1515 * Some hardware have beacon filter support to reduce host cpu wakeups 1516 * which will reduce system power consumption. It usually works so that 1517 * the firmware creates a checksum of the beacon but omits all constantly 1518 * changing elements (TSF, TIM etc). Whenever the checksum changes the 1519 * beacon is forwarded to the host, otherwise it will be just dropped. That 1520 * way the host will only receive beacons where some relevant information 1521 * (for example ERP protection or WMM settings) have changed. 1522 * 1523 * Beacon filter support is advertised with the %IEEE80211_VIF_BEACON_FILTER 1524 * interface capability. The driver needs to enable beacon filter support 1525 * whenever power save is enabled, that is %IEEE80211_CONF_PS is set. When 1526 * power save is enabled, the stack will not check for beacon loss and the 1527 * driver needs to notify about loss of beacons with ieee80211_beacon_loss(). 1528 * 1529 * The time (or number of beacons missed) until the firmware notifies the 1530 * driver of a beacon loss event (which in turn causes the driver to call 1531 * ieee80211_beacon_loss()) should be configurable and will be controlled 1532 * by mac80211 and the roaming algorithm in the future. 1533 * 1534 * Since there may be constantly changing information elements that nothing 1535 * in the software stack cares about, we will, in the future, have mac80211 1536 * tell the driver which information elements are interesting in the sense 1537 * that we want to see changes in them. This will include 1538 * - a list of information element IDs 1539 * - a list of OUIs for the vendor information element 1540 * 1541 * Ideally, the hardware would filter out any beacons without changes in the 1542 * requested elements, but if it cannot support that it may, at the expense 1543 * of some efficiency, filter out only a subset. For example, if the device 1544 * doesn't support checking for OUIs it should pass up all changes in all 1545 * vendor information elements. 1546 * 1547 * Note that change, for the sake of simplification, also includes information 1548 * elements appearing or disappearing from the beacon. 1549 * 1550 * Some hardware supports an "ignore list" instead, just make sure nothing 1551 * that was requested is on the ignore list, and include commonly changing 1552 * information element IDs in the ignore list, for example 11 (BSS load) and 1553 * the various vendor-assigned IEs with unknown contents (128, 129, 133-136, 1554 * 149, 150, 155, 156, 173, 176, 178, 179, 219); for forward compatibility 1555 * it could also include some currently unused IDs. 1556 * 1557 * 1558 * In addition to these capabilities, hardware should support notifying the 1559 * host of changes in the beacon RSSI. This is relevant to implement roaming 1560 * when no traffic is flowing (when traffic is flowing we see the RSSI of 1561 * the received data packets). This can consist in notifying the host when 1562 * the RSSI changes significantly or when it drops below or rises above 1563 * configurable thresholds. In the future these thresholds will also be 1564 * configured by mac80211 (which gets them from userspace) to implement 1565 * them as the roaming algorithm requires. 1566 * 1567 * If the hardware cannot implement this, the driver should ask it to 1568 * periodically pass beacon frames to the host so that software can do the 1569 * signal strength threshold checking. 1570 */ 1571 1572 /** 1573 * DOC: Spatial multiplexing power save 1574 * 1575 * SMPS (Spatial multiplexing power save) is a mechanism to conserve 1576 * power in an 802.11n implementation. For details on the mechanism 1577 * and rationale, please refer to 802.11 (as amended by 802.11n-2009) 1578 * "11.2.3 SM power save". 1579 * 1580 * The mac80211 implementation is capable of sending action frames 1581 * to update the AP about the station's SMPS mode, and will instruct 1582 * the driver to enter the specific mode. It will also announce the 1583 * requested SMPS mode during the association handshake. Hardware 1584 * support for this feature is required, and can be indicated by 1585 * hardware flags. 1586 * 1587 * The default mode will be "automatic", which nl80211/cfg80211 1588 * defines to be dynamic SMPS in (regular) powersave, and SMPS 1589 * turned off otherwise. 1590 * 1591 * To support this feature, the driver must set the appropriate 1592 * hardware support flags, and handle the SMPS flag to the config() 1593 * operation. It will then with this mechanism be instructed to 1594 * enter the requested SMPS mode while associated to an HT AP. 1595 */ 1596 1597 /** 1598 * DOC: Frame filtering 1599 * 1600 * mac80211 requires to see many management frames for proper 1601 * operation, and users may want to see many more frames when 1602 * in monitor mode. However, for best CPU usage and power consumption, 1603 * having as few frames as possible percolate through the stack is 1604 * desirable. Hence, the hardware should filter as much as possible. 1605 * 1606 * To achieve this, mac80211 uses filter flags (see below) to tell 1607 * the driver's configure_filter() function which frames should be 1608 * passed to mac80211 and which should be filtered out. 1609 * 1610 * Before configure_filter() is invoked, the prepare_multicast() 1611 * callback is invoked with the parameters @mc_count and @mc_list 1612 * for the combined multicast address list of all virtual interfaces. 1613 * It's use is optional, and it returns a u64 that is passed to 1614 * configure_filter(). Additionally, configure_filter() has the 1615 * arguments @changed_flags telling which flags were changed and 1616 * @total_flags with the new flag states. 1617 * 1618 * If your device has no multicast address filters your driver will 1619 * need to check both the %FIF_ALLMULTI flag and the @mc_count 1620 * parameter to see whether multicast frames should be accepted 1621 * or dropped. 1622 * 1623 * All unsupported flags in @total_flags must be cleared. 1624 * Hardware does not support a flag if it is incapable of _passing_ 1625 * the frame to the stack. Otherwise the driver must ignore 1626 * the flag, but not clear it. 1627 * You must _only_ clear the flag (announce no support for the 1628 * flag to mac80211) if you are not able to pass the packet type 1629 * to the stack (so the hardware always filters it). 1630 * So for example, you should clear @FIF_CONTROL, if your hardware 1631 * always filters control frames. If your hardware always passes 1632 * control frames to the kernel and is incapable of filtering them, 1633 * you do _not_ clear the @FIF_CONTROL flag. 1634 * This rule applies to all other FIF flags as well. 1635 */ 1636 1637 /** 1638 * DOC: AP support for powersaving clients 1639 * 1640 * In order to implement AP and P2P GO modes, mac80211 has support for 1641 * client powersaving, both "legacy" PS (PS-Poll/null data) and uAPSD. 1642 * There currently is no support for sAPSD. 1643 * 1644 * There is one assumption that mac80211 makes, namely that a client 1645 * will not poll with PS-Poll and trigger with uAPSD at the same time. 1646 * Both are supported, and both can be used by the same client, but 1647 * they can't be used concurrently by the same client. This simplifies 1648 * the driver code. 1649 * 1650 * The first thing to keep in mind is that there is a flag for complete 1651 * driver implementation: %IEEE80211_HW_AP_LINK_PS. If this flag is set, 1652 * mac80211 expects the driver to handle most of the state machine for 1653 * powersaving clients and will ignore the PM bit in incoming frames. 1654 * Drivers then use ieee80211_sta_ps_transition() to inform mac80211 of 1655 * stations' powersave transitions. In this mode, mac80211 also doesn't 1656 * handle PS-Poll/uAPSD. 1657 * 1658 * In the mode without %IEEE80211_HW_AP_LINK_PS, mac80211 will check the 1659 * PM bit in incoming frames for client powersave transitions. When a 1660 * station goes to sleep, we will stop transmitting to it. There is, 1661 * however, a race condition: a station might go to sleep while there is 1662 * data buffered on hardware queues. If the device has support for this 1663 * it will reject frames, and the driver should give the frames back to 1664 * mac80211 with the %IEEE80211_TX_STAT_TX_FILTERED flag set which will 1665 * cause mac80211 to retry the frame when the station wakes up. The 1666 * driver is also notified of powersave transitions by calling its 1667 * @sta_notify callback. 1668 * 1669 * When the station is asleep, it has three choices: it can wake up, 1670 * it can PS-Poll, or it can possibly start a uAPSD service period. 1671 * Waking up is implemented by simply transmitting all buffered (and 1672 * filtered) frames to the station. This is the easiest case. When 1673 * the station sends a PS-Poll or a uAPSD trigger frame, mac80211 1674 * will inform the driver of this with the @allow_buffered_frames 1675 * callback; this callback is optional. mac80211 will then transmit 1676 * the frames as usual and set the %IEEE80211_TX_CTL_NO_PS_BUFFER 1677 * on each frame. The last frame in the service period (or the only 1678 * response to a PS-Poll) also has %IEEE80211_TX_STATUS_EOSP set to 1679 * indicate that it ends the service period; as this frame must have 1680 * TX status report it also sets %IEEE80211_TX_CTL_REQ_TX_STATUS. 1681 * When TX status is reported for this frame, the service period is 1682 * marked has having ended and a new one can be started by the peer. 1683 * 1684 * Additionally, non-bufferable MMPDUs can also be transmitted by 1685 * mac80211 with the %IEEE80211_TX_CTL_NO_PS_BUFFER set in them. 1686 * 1687 * Another race condition can happen on some devices like iwlwifi 1688 * when there are frames queued for the station and it wakes up 1689 * or polls; the frames that are already queued could end up being 1690 * transmitted first instead, causing reordering and/or wrong 1691 * processing of the EOSP. The cause is that allowing frames to be 1692 * transmitted to a certain station is out-of-band communication to 1693 * the device. To allow this problem to be solved, the driver can 1694 * call ieee80211_sta_block_awake() if frames are buffered when it 1695 * is notified that the station went to sleep. When all these frames 1696 * have been filtered (see above), it must call the function again 1697 * to indicate that the station is no longer blocked. 1698 * 1699 * If the driver buffers frames in the driver for aggregation in any 1700 * way, it must use the ieee80211_sta_set_buffered() call when it is 1701 * notified of the station going to sleep to inform mac80211 of any 1702 * TIDs that have frames buffered. Note that when a station wakes up 1703 * this information is reset (hence the requirement to call it when 1704 * informed of the station going to sleep). Then, when a service 1705 * period starts for any reason, @release_buffered_frames is called 1706 * with the number of frames to be released and which TIDs they are 1707 * to come from. In this case, the driver is responsible for setting 1708 * the EOSP (for uAPSD) and MORE_DATA bits in the released frames, 1709 * to help the @more_data paramter is passed to tell the driver if 1710 * there is more data on other TIDs -- the TIDs to release frames 1711 * from are ignored since mac80211 doesn't know how many frames the 1712 * buffers for those TIDs contain. 1713 * 1714 * If the driver also implement GO mode, where absence periods may 1715 * shorten service periods (or abort PS-Poll responses), it must 1716 * filter those response frames except in the case of frames that 1717 * are buffered in the driver -- those must remain buffered to avoid 1718 * reordering. Because it is possible that no frames are released 1719 * in this case, the driver must call ieee80211_sta_eosp_irqsafe() 1720 * to indicate to mac80211 that the service period ended anyway. 1721 * 1722 * Finally, if frames from multiple TIDs are released from mac80211 1723 * but the driver might reorder them, it must clear & set the flags 1724 * appropriately (only the last frame may have %IEEE80211_TX_STATUS_EOSP) 1725 * and also take care of the EOSP and MORE_DATA bits in the frame. 1726 * The driver may also use ieee80211_sta_eosp_irqsafe() in this case. 1727 */ 1728 1729 /** 1730 * DOC: HW queue control 1731 * 1732 * Before HW queue control was introduced, mac80211 only had a single static 1733 * assignment of per-interface AC software queues to hardware queues. This 1734 * was problematic for a few reasons: 1735 * 1) off-channel transmissions might get stuck behind other frames 1736 * 2) multiple virtual interfaces couldn't be handled correctly 1737 * 3) after-DTIM frames could get stuck behind other frames 1738 * 1739 * To solve this, hardware typically uses multiple different queues for all 1740 * the different usages, and this needs to be propagated into mac80211 so it 1741 * won't have the same problem with the software queues. 1742 * 1743 * Therefore, mac80211 now offers the %IEEE80211_HW_QUEUE_CONTROL capability 1744 * flag that tells it that the driver implements its own queue control. To do 1745 * so, the driver will set up the various queues in each &struct ieee80211_vif 1746 * and the offchannel queue in &struct ieee80211_hw. In response, mac80211 will 1747 * use those queue IDs in the hw_queue field of &struct ieee80211_tx_info and 1748 * if necessary will queue the frame on the right software queue that mirrors 1749 * the hardware queue. 1750 * Additionally, the driver has to then use these HW queue IDs for the queue 1751 * management functions (ieee80211_stop_queue() et al.) 1752 * 1753 * The driver is free to set up the queue mappings as needed, multiple virtual 1754 * interfaces may map to the same hardware queues if needed. The setup has to 1755 * happen during add_interface or change_interface callbacks. For example, a 1756 * driver supporting station+station and station+AP modes might decide to have 1757 * 10 hardware queues to handle different scenarios: 1758 * 1759 * 4 AC HW queues for 1st vif: 0, 1, 2, 3 1760 * 4 AC HW queues for 2nd vif: 4, 5, 6, 7 1761 * after-DTIM queue for AP: 8 1762 * off-channel queue: 9 1763 * 1764 * It would then set up the hardware like this: 1765 * hw.offchannel_tx_hw_queue = 9 1766 * 1767 * and the first virtual interface that is added as follows: 1768 * vif.hw_queue[IEEE80211_AC_VO] = 0 1769 * vif.hw_queue[IEEE80211_AC_VI] = 1 1770 * vif.hw_queue[IEEE80211_AC_BE] = 2 1771 * vif.hw_queue[IEEE80211_AC_BK] = 3 1772 * vif.cab_queue = 8 // if AP mode, otherwise %IEEE80211_INVAL_HW_QUEUE 1773 * and the second virtual interface with 4-7. 1774 * 1775 * If queue 6 gets full, for example, mac80211 would only stop the second 1776 * virtual interface's BE queue since virtual interface queues are per AC. 1777 * 1778 * Note that the vif.cab_queue value should be set to %IEEE80211_INVAL_HW_QUEUE 1779 * whenever the queue is not used (i.e. the interface is not in AP mode) if the 1780 * queue could potentially be shared since mac80211 will look at cab_queue when 1781 * a queue is stopped/woken even if the interface is not in AP mode. 1782 */ 1783 1784 /** 1785 * enum ieee80211_filter_flags - hardware filter flags 1786 * 1787 * These flags determine what the filter in hardware should be 1788 * programmed to let through and what should not be passed to the 1789 * stack. It is always safe to pass more frames than requested, 1790 * but this has negative impact on power consumption. 1791 * 1792 * @FIF_PROMISC_IN_BSS: promiscuous mode within your BSS, 1793 * think of the BSS as your network segment and then this corresponds 1794 * to the regular ethernet device promiscuous mode. 1795 * 1796 * @FIF_ALLMULTI: pass all multicast frames, this is used if requested 1797 * by the user or if the hardware is not capable of filtering by 1798 * multicast address. 1799 * 1800 * @FIF_FCSFAIL: pass frames with failed FCS (but you need to set the 1801 * %RX_FLAG_FAILED_FCS_CRC for them) 1802 * 1803 * @FIF_PLCPFAIL: pass frames with failed PLCP CRC (but you need to set 1804 * the %RX_FLAG_FAILED_PLCP_CRC for them 1805 * 1806 * @FIF_BCN_PRBRESP_PROMISC: This flag is set during scanning to indicate 1807 * to the hardware that it should not filter beacons or probe responses 1808 * by BSSID. Filtering them can greatly reduce the amount of processing 1809 * mac80211 needs to do and the amount of CPU wakeups, so you should 1810 * honour this flag if possible. 1811 * 1812 * @FIF_CONTROL: pass control frames (except for PS Poll), if PROMISC_IN_BSS 1813 * is not set then only those addressed to this station. 1814 * 1815 * @FIF_OTHER_BSS: pass frames destined to other BSSes 1816 * 1817 * @FIF_PSPOLL: pass PS Poll frames, if PROMISC_IN_BSS is not set then only 1818 * those addressed to this station. 1819 * 1820 * @FIF_PROBE_REQ: pass probe request frames 1821 */ 1822 enum ieee80211_filter_flags { 1823 FIF_PROMISC_IN_BSS = 1<<0, 1824 FIF_ALLMULTI = 1<<1, 1825 FIF_FCSFAIL = 1<<2, 1826 FIF_PLCPFAIL = 1<<3, 1827 FIF_BCN_PRBRESP_PROMISC = 1<<4, 1828 FIF_CONTROL = 1<<5, 1829 FIF_OTHER_BSS = 1<<6, 1830 FIF_PSPOLL = 1<<7, 1831 FIF_PROBE_REQ = 1<<8, 1832 }; 1833 1834 /** 1835 * enum ieee80211_ampdu_mlme_action - A-MPDU actions 1836 * 1837 * These flags are used with the ampdu_action() callback in 1838 * &struct ieee80211_ops to indicate which action is needed. 1839 * 1840 * Note that drivers MUST be able to deal with a TX aggregation 1841 * session being stopped even before they OK'ed starting it by 1842 * calling ieee80211_start_tx_ba_cb_irqsafe, because the peer 1843 * might receive the addBA frame and send a delBA right away! 1844 * 1845 * @IEEE80211_AMPDU_RX_START: start Rx aggregation 1846 * @IEEE80211_AMPDU_RX_STOP: stop Rx aggregation 1847 * @IEEE80211_AMPDU_TX_START: start Tx aggregation 1848 * @IEEE80211_AMPDU_TX_STOP: stop Tx aggregation 1849 * @IEEE80211_AMPDU_TX_OPERATIONAL: TX aggregation has become operational 1850 */ 1851 enum ieee80211_ampdu_mlme_action { 1852 IEEE80211_AMPDU_RX_START, 1853 IEEE80211_AMPDU_RX_STOP, 1854 IEEE80211_AMPDU_TX_START, 1855 IEEE80211_AMPDU_TX_STOP, 1856 IEEE80211_AMPDU_TX_OPERATIONAL, 1857 }; 1858 1859 /** 1860 * enum ieee80211_frame_release_type - frame release reason 1861 * @IEEE80211_FRAME_RELEASE_PSPOLL: frame released for PS-Poll 1862 * @IEEE80211_FRAME_RELEASE_UAPSD: frame(s) released due to 1863 * frame received on trigger-enabled AC 1864 */ 1865 enum ieee80211_frame_release_type { 1866 IEEE80211_FRAME_RELEASE_PSPOLL, 1867 IEEE80211_FRAME_RELEASE_UAPSD, 1868 }; 1869 1870 /** 1871 * enum ieee80211_rate_control_changed - flags to indicate what changed 1872 * 1873 * @IEEE80211_RC_BW_CHANGED: The bandwidth that can be used to transmit 1874 * to this station changed. 1875 * @IEEE80211_RC_SMPS_CHANGED: The SMPS state of the station changed. 1876 */ 1877 enum ieee80211_rate_control_changed { 1878 IEEE80211_RC_BW_CHANGED = BIT(0), 1879 IEEE80211_RC_SMPS_CHANGED = BIT(1), 1880 }; 1881 1882 /** 1883 * struct ieee80211_ops - callbacks from mac80211 to the driver 1884 * 1885 * This structure contains various callbacks that the driver may 1886 * handle or, in some cases, must handle, for example to configure 1887 * the hardware to a new channel or to transmit a frame. 1888 * 1889 * @tx: Handler that 802.11 module calls for each transmitted frame. 1890 * skb contains the buffer starting from the IEEE 802.11 header. 1891 * The low-level driver should send the frame out based on 1892 * configuration in the TX control data. This handler should, 1893 * preferably, never fail and stop queues appropriately. 1894 * This must be implemented if @tx_frags is not. 1895 * Must be atomic. 1896 * 1897 * @tx_frags: Called to transmit multiple fragments of a single MSDU. 1898 * This handler must consume all fragments, sending out some of 1899 * them only is useless and it can't ask for some of them to be 1900 * queued again. If the frame is not fragmented the queue has a 1901 * single SKB only. To avoid issues with the networking stack 1902 * when TX status is reported the frames should be removed from 1903 * the skb queue. 1904 * If this is used, the tx_info @vif and @sta pointers will be 1905 * invalid -- you must not use them in that case. 1906 * This must be implemented if @tx isn't. 1907 * Must be atomic. 1908 * 1909 * @start: Called before the first netdevice attached to the hardware 1910 * is enabled. This should turn on the hardware and must turn on 1911 * frame reception (for possibly enabled monitor interfaces.) 1912 * Returns negative error codes, these may be seen in userspace, 1913 * or zero. 1914 * When the device is started it should not have a MAC address 1915 * to avoid acknowledging frames before a non-monitor device 1916 * is added. 1917 * Must be implemented and can sleep. 1918 * 1919 * @stop: Called after last netdevice attached to the hardware 1920 * is disabled. This should turn off the hardware (at least 1921 * it must turn off frame reception.) 1922 * May be called right after add_interface if that rejects 1923 * an interface. If you added any work onto the mac80211 workqueue 1924 * you should ensure to cancel it on this callback. 1925 * Must be implemented and can sleep. 1926 * 1927 * @suspend: Suspend the device; mac80211 itself will quiesce before and 1928 * stop transmitting and doing any other configuration, and then 1929 * ask the device to suspend. This is only invoked when WoWLAN is 1930 * configured, otherwise the device is deconfigured completely and 1931 * reconfigured at resume time. 1932 * The driver may also impose special conditions under which it 1933 * wants to use the "normal" suspend (deconfigure), say if it only 1934 * supports WoWLAN when the device is associated. In this case, it 1935 * must return 1 from this function. 1936 * 1937 * @resume: If WoWLAN was configured, this indicates that mac80211 is 1938 * now resuming its operation, after this the device must be fully 1939 * functional again. If this returns an error, the only way out is 1940 * to also unregister the device. If it returns 1, then mac80211 1941 * will also go through the regular complete restart on resume. 1942 * 1943 * @set_wakeup: Enable or disable wakeup when WoWLAN configuration is 1944 * modified. The reason is that device_set_wakeup_enable() is 1945 * supposed to be called when the configuration changes, not only 1946 * in suspend(). 1947 * 1948 * @add_interface: Called when a netdevice attached to the hardware is 1949 * enabled. Because it is not called for monitor mode devices, @start 1950 * and @stop must be implemented. 1951 * The driver should perform any initialization it needs before 1952 * the device can be enabled. The initial configuration for the 1953 * interface is given in the conf parameter. 1954 * The callback may refuse to add an interface by returning a 1955 * negative error code (which will be seen in userspace.) 1956 * Must be implemented and can sleep. 1957 * 1958 * @change_interface: Called when a netdevice changes type. This callback 1959 * is optional, but only if it is supported can interface types be 1960 * switched while the interface is UP. The callback may sleep. 1961 * Note that while an interface is being switched, it will not be 1962 * found by the interface iteration callbacks. 1963 * 1964 * @remove_interface: Notifies a driver that an interface is going down. 1965 * The @stop callback is called after this if it is the last interface 1966 * and no monitor interfaces are present. 1967 * When all interfaces are removed, the MAC address in the hardware 1968 * must be cleared so the device no longer acknowledges packets, 1969 * the mac_addr member of the conf structure is, however, set to the 1970 * MAC address of the device going away. 1971 * Hence, this callback must be implemented. It can sleep. 1972 * 1973 * @config: Handler for configuration requests. IEEE 802.11 code calls this 1974 * function to change hardware configuration, e.g., channel. 1975 * This function should never fail but returns a negative error code 1976 * if it does. The callback can sleep. 1977 * 1978 * @bss_info_changed: Handler for configuration requests related to BSS 1979 * parameters that may vary during BSS's lifespan, and may affect low 1980 * level driver (e.g. assoc/disassoc status, erp parameters). 1981 * This function should not be used if no BSS has been set, unless 1982 * for association indication. The @changed parameter indicates which 1983 * of the bss parameters has changed when a call is made. The callback 1984 * can sleep. 1985 * 1986 * @prepare_multicast: Prepare for multicast filter configuration. 1987 * This callback is optional, and its return value is passed 1988 * to configure_filter(). This callback must be atomic. 1989 * 1990 * @configure_filter: Configure the device's RX filter. 1991 * See the section "Frame filtering" for more information. 1992 * This callback must be implemented and can sleep. 1993 * 1994 * @set_tim: Set TIM bit. mac80211 calls this function when a TIM bit 1995 * must be set or cleared for a given STA. Must be atomic. 1996 * 1997 * @set_key: See the section "Hardware crypto acceleration" 1998 * This callback is only called between add_interface and 1999 * remove_interface calls, i.e. while the given virtual interface 2000 * is enabled. 2001 * Returns a negative error code if the key can't be added. 2002 * The callback can sleep. 2003 * 2004 * @update_tkip_key: See the section "Hardware crypto acceleration" 2005 * This callback will be called in the context of Rx. Called for drivers 2006 * which set IEEE80211_KEY_FLAG_TKIP_REQ_RX_P1_KEY. 2007 * The callback must be atomic. 2008 * 2009 * @set_rekey_data: If the device supports GTK rekeying, for example while the 2010 * host is suspended, it can assign this callback to retrieve the data 2011 * necessary to do GTK rekeying, this is the KEK, KCK and replay counter. 2012 * After rekeying was done it should (for example during resume) notify 2013 * userspace of the new replay counter using ieee80211_gtk_rekey_notify(). 2014 * 2015 * @hw_scan: Ask the hardware to service the scan request, no need to start 2016 * the scan state machine in stack. The scan must honour the channel 2017 * configuration done by the regulatory agent in the wiphy's 2018 * registered bands. The hardware (or the driver) needs to make sure 2019 * that power save is disabled. 2020 * The @req ie/ie_len members are rewritten by mac80211 to contain the 2021 * entire IEs after the SSID, so that drivers need not look at these 2022 * at all but just send them after the SSID -- mac80211 includes the 2023 * (extended) supported rates and HT information (where applicable). 2024 * When the scan finishes, ieee80211_scan_completed() must be called; 2025 * note that it also must be called when the scan cannot finish due to 2026 * any error unless this callback returned a negative error code. 2027 * The callback can sleep. 2028 * 2029 * @cancel_hw_scan: Ask the low-level tp cancel the active hw scan. 2030 * The driver should ask the hardware to cancel the scan (if possible), 2031 * but the scan will be completed only after the driver will call 2032 * ieee80211_scan_completed(). 2033 * This callback is needed for wowlan, to prevent enqueueing a new 2034 * scan_work after the low-level driver was already suspended. 2035 * The callback can sleep. 2036 * 2037 * @sched_scan_start: Ask the hardware to start scanning repeatedly at 2038 * specific intervals. The driver must call the 2039 * ieee80211_sched_scan_results() function whenever it finds results. 2040 * This process will continue until sched_scan_stop is called. 2041 * 2042 * @sched_scan_stop: Tell the hardware to stop an ongoing scheduled scan. 2043 * 2044 * @sw_scan_start: Notifier function that is called just before a software scan 2045 * is started. Can be NULL, if the driver doesn't need this notification. 2046 * The callback can sleep. 2047 * 2048 * @sw_scan_complete: Notifier function that is called just after a 2049 * software scan finished. Can be NULL, if the driver doesn't need 2050 * this notification. 2051 * The callback can sleep. 2052 * 2053 * @get_stats: Return low-level statistics. 2054 * Returns zero if statistics are available. 2055 * The callback can sleep. 2056 * 2057 * @get_tkip_seq: If your device implements TKIP encryption in hardware this 2058 * callback should be provided to read the TKIP transmit IVs (both IV32 2059 * and IV16) for the given key from hardware. 2060 * The callback must be atomic. 2061 * 2062 * @set_frag_threshold: Configuration of fragmentation threshold. Assign this 2063 * if the device does fragmentation by itself; if this callback is 2064 * implemented then the stack will not do fragmentation. 2065 * The callback can sleep. 2066 * 2067 * @set_rts_threshold: Configuration of RTS threshold (if device needs it) 2068 * The callback can sleep. 2069 * 2070 * @sta_add: Notifies low level driver about addition of an associated station, 2071 * AP, IBSS/WDS/mesh peer etc. This callback can sleep. 2072 * 2073 * @sta_remove: Notifies low level driver about removal of an associated 2074 * station, AP, IBSS/WDS/mesh peer etc. This callback can sleep. 2075 * 2076 * @sta_notify: Notifies low level driver about power state transition of an 2077 * associated station, AP, IBSS/WDS/mesh peer etc. For a VIF operating 2078 * in AP mode, this callback will not be called when the flag 2079 * %IEEE80211_HW_AP_LINK_PS is set. Must be atomic. 2080 * 2081 * @sta_state: Notifies low level driver about state transition of a 2082 * station (which can be the AP, a client, IBSS/WDS/mesh peer etc.) 2083 * This callback is mutually exclusive with @sta_add/@sta_remove. 2084 * It must not fail for down transitions but may fail for transitions 2085 * up the list of states. 2086 * The callback can sleep. 2087 * 2088 * @sta_rc_update: Notifies the driver of changes to the bitrates that can be 2089 * used to transmit to the station. The changes are advertised with bits 2090 * from &enum ieee80211_rate_control_changed and the values are reflected 2091 * in the station data. This callback should only be used when the driver 2092 * uses hardware rate control (%IEEE80211_HW_HAS_RATE_CONTROL) since 2093 * otherwise the rate control algorithm is notified directly. 2094 * Must be atomic. 2095 * 2096 * @conf_tx: Configure TX queue parameters (EDCF (aifs, cw_min, cw_max), 2097 * bursting) for a hardware TX queue. 2098 * Returns a negative error code on failure. 2099 * The callback can sleep. 2100 * 2101 * @get_tsf: Get the current TSF timer value from firmware/hardware. Currently, 2102 * this is only used for IBSS mode BSSID merging and debugging. Is not a 2103 * required function. 2104 * The callback can sleep. 2105 * 2106 * @set_tsf: Set the TSF timer to the specified value in the firmware/hardware. 2107 * Currently, this is only used for IBSS mode debugging. Is not a 2108 * required function. 2109 * The callback can sleep. 2110 * 2111 * @reset_tsf: Reset the TSF timer and allow firmware/hardware to synchronize 2112 * with other STAs in the IBSS. This is only used in IBSS mode. This 2113 * function is optional if the firmware/hardware takes full care of 2114 * TSF synchronization. 2115 * The callback can sleep. 2116 * 2117 * @tx_last_beacon: Determine whether the last IBSS beacon was sent by us. 2118 * This is needed only for IBSS mode and the result of this function is 2119 * used to determine whether to reply to Probe Requests. 2120 * Returns non-zero if this device sent the last beacon. 2121 * The callback can sleep. 2122 * 2123 * @ampdu_action: Perform a certain A-MPDU action 2124 * The RA/TID combination determines the destination and TID we want 2125 * the ampdu action to be performed for. The action is defined through 2126 * ieee80211_ampdu_mlme_action. Starting sequence number (@ssn) 2127 * is the first frame we expect to perform the action on. Notice 2128 * that TX/RX_STOP can pass NULL for this parameter. 2129 * The @buf_size parameter is only valid when the action is set to 2130 * %IEEE80211_AMPDU_TX_OPERATIONAL and indicates the peer's reorder 2131 * buffer size (number of subframes) for this session -- the driver 2132 * may neither send aggregates containing more subframes than this 2133 * nor send aggregates in a way that lost frames would exceed the 2134 * buffer size. If just limiting the aggregate size, this would be 2135 * possible with a buf_size of 8: 2136 * - TX: 1.....7 2137 * - RX: 2....7 (lost frame #1) 2138 * - TX: 8..1... 2139 * which is invalid since #1 was now re-transmitted well past the 2140 * buffer size of 8. Correct ways to retransmit #1 would be: 2141 * - TX: 1 or 18 or 81 2142 * Even "189" would be wrong since 1 could be lost again. 2143 * 2144 * Returns a negative error code on failure. 2145 * The callback can sleep. 2146 * 2147 * @get_survey: Return per-channel survey information 2148 * 2149 * @rfkill_poll: Poll rfkill hardware state. If you need this, you also 2150 * need to set wiphy->rfkill_poll to %true before registration, 2151 * and need to call wiphy_rfkill_set_hw_state() in the callback. 2152 * The callback can sleep. 2153 * 2154 * @set_coverage_class: Set slot time for given coverage class as specified 2155 * in IEEE 802.11-2007 section 17.3.8.6 and modify ACK timeout 2156 * accordingly. This callback is not required and may sleep. 2157 * 2158 * @testmode_cmd: Implement a cfg80211 test mode command. 2159 * The callback can sleep. 2160 * @testmode_dump: Implement a cfg80211 test mode dump. The callback can sleep. 2161 * 2162 * @flush: Flush all pending frames from the hardware queue, making sure 2163 * that the hardware queues are empty. If the parameter @drop is set 2164 * to %true, pending frames may be dropped. The callback can sleep. 2165 * 2166 * @channel_switch: Drivers that need (or want) to offload the channel 2167 * switch operation for CSAs received from the AP may implement this 2168 * callback. They must then call ieee80211_chswitch_done() to indicate 2169 * completion of the channel switch. 2170 * 2171 * @napi_poll: Poll Rx queue for incoming data frames. 2172 * 2173 * @set_antenna: Set antenna configuration (tx_ant, rx_ant) on the device. 2174 * Parameters are bitmaps of allowed antennas to use for TX/RX. Drivers may 2175 * reject TX/RX mask combinations they cannot support by returning -EINVAL 2176 * (also see nl80211.h @NL80211_ATTR_WIPHY_ANTENNA_TX). 2177 * 2178 * @get_antenna: Get current antenna configuration from device (tx_ant, rx_ant). 2179 * 2180 * @remain_on_channel: Starts an off-channel period on the given channel, must 2181 * call back to ieee80211_ready_on_channel() when on that channel. Note 2182 * that normal channel traffic is not stopped as this is intended for hw 2183 * offload. Frames to transmit on the off-channel channel are transmitted 2184 * normally except for the %IEEE80211_TX_CTL_TX_OFFCHAN flag. When the 2185 * duration (which will always be non-zero) expires, the driver must call 2186 * ieee80211_remain_on_channel_expired(). This callback may sleep. 2187 * @cancel_remain_on_channel: Requests that an ongoing off-channel period is 2188 * aborted before it expires. This callback may sleep. 2189 * 2190 * @set_ringparam: Set tx and rx ring sizes. 2191 * 2192 * @get_ringparam: Get tx and rx ring current and maximum sizes. 2193 * 2194 * @tx_frames_pending: Check if there is any pending frame in the hardware 2195 * queues before entering power save. 2196 * 2197 * @set_bitrate_mask: Set a mask of rates to be used for rate control selection 2198 * when transmitting a frame. Currently only legacy rates are handled. 2199 * The callback can sleep. 2200 * @rssi_callback: Notify driver when the average RSSI goes above/below 2201 * thresholds that were registered previously. The callback can sleep. 2202 * 2203 * @release_buffered_frames: Release buffered frames according to the given 2204 * parameters. In the case where the driver buffers some frames for 2205 * sleeping stations mac80211 will use this callback to tell the driver 2206 * to release some frames, either for PS-poll or uAPSD. 2207 * Note that if the @more_data paramter is %false the driver must check 2208 * if there are more frames on the given TIDs, and if there are more than 2209 * the frames being released then it must still set the more-data bit in 2210 * the frame. If the @more_data parameter is %true, then of course the 2211 * more-data bit must always be set. 2212 * The @tids parameter tells the driver which TIDs to release frames 2213 * from, for PS-poll it will always have only a single bit set. 2214 * In the case this is used for a PS-poll initiated release, the 2215 * @num_frames parameter will always be 1 so code can be shared. In 2216 * this case the driver must also set %IEEE80211_TX_STATUS_EOSP flag 2217 * on the TX status (and must report TX status) so that the PS-poll 2218 * period is properly ended. This is used to avoid sending multiple 2219 * responses for a retried PS-poll frame. 2220 * In the case this is used for uAPSD, the @num_frames parameter may be 2221 * bigger than one, but the driver may send fewer frames (it must send 2222 * at least one, however). In this case it is also responsible for 2223 * setting the EOSP flag in the QoS header of the frames. Also, when the 2224 * service period ends, the driver must set %IEEE80211_TX_STATUS_EOSP 2225 * on the last frame in the SP. Alternatively, it may call the function 2226 * ieee80211_sta_eosp_irqsafe() to inform mac80211 of the end of the SP. 2227 * This callback must be atomic. 2228 * @allow_buffered_frames: Prepare device to allow the given number of frames 2229 * to go out to the given station. The frames will be sent by mac80211 2230 * via the usual TX path after this call. The TX information for frames 2231 * released will also have the %IEEE80211_TX_CTL_NO_PS_BUFFER flag set 2232 * and the last one will also have %IEEE80211_TX_STATUS_EOSP set. In case 2233 * frames from multiple TIDs are released and the driver might reorder 2234 * them between the TIDs, it must set the %IEEE80211_TX_STATUS_EOSP flag 2235 * on the last frame and clear it on all others and also handle the EOSP 2236 * bit in the QoS header correctly. Alternatively, it can also call the 2237 * ieee80211_sta_eosp_irqsafe() function. 2238 * The @tids parameter is a bitmap and tells the driver which TIDs the 2239 * frames will be on; it will at most have two bits set. 2240 * This callback must be atomic. 2241 * 2242 * @get_et_sset_count: Ethtool API to get string-set count. 2243 * 2244 * @get_et_stats: Ethtool API to get a set of u64 stats. 2245 * 2246 * @get_et_strings: Ethtool API to get a set of strings to describe stats 2247 * and perhaps other supported types of ethtool data-sets. 2248 * 2249 */ 2250 struct ieee80211_ops { 2251 void (*tx)(struct ieee80211_hw *hw, struct sk_buff *skb); 2252 void (*tx_frags)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 2253 struct ieee80211_sta *sta, struct sk_buff_head *skbs); 2254 int (*start)(struct ieee80211_hw *hw); 2255 void (*stop)(struct ieee80211_hw *hw); 2256 #ifdef CONFIG_PM 2257 int (*suspend)(struct ieee80211_hw *hw, struct cfg80211_wowlan *wowlan); 2258 int (*resume)(struct ieee80211_hw *hw); 2259 void (*set_wakeup)(struct ieee80211_hw *hw, bool enabled); 2260 #endif 2261 int (*add_interface)(struct ieee80211_hw *hw, 2262 struct ieee80211_vif *vif); 2263 int (*change_interface)(struct ieee80211_hw *hw, 2264 struct ieee80211_vif *vif, 2265 enum nl80211_iftype new_type, bool p2p); 2266 void (*remove_interface)(struct ieee80211_hw *hw, 2267 struct ieee80211_vif *vif); 2268 int (*config)(struct ieee80211_hw *hw, u32 changed); 2269 void (*bss_info_changed)(struct ieee80211_hw *hw, 2270 struct ieee80211_vif *vif, 2271 struct ieee80211_bss_conf *info, 2272 u32 changed); 2273 2274 u64 (*prepare_multicast)(struct ieee80211_hw *hw, 2275 struct netdev_hw_addr_list *mc_list); 2276 void (*configure_filter)(struct ieee80211_hw *hw, 2277 unsigned int changed_flags, 2278 unsigned int *total_flags, 2279 u64 multicast); 2280 int (*set_tim)(struct ieee80211_hw *hw, struct ieee80211_sta *sta, 2281 bool set); 2282 int (*set_key)(struct ieee80211_hw *hw, enum set_key_cmd cmd, 2283 struct ieee80211_vif *vif, struct ieee80211_sta *sta, 2284 struct ieee80211_key_conf *key); 2285 void (*update_tkip_key)(struct ieee80211_hw *hw, 2286 struct ieee80211_vif *vif, 2287 struct ieee80211_key_conf *conf, 2288 struct ieee80211_sta *sta, 2289 u32 iv32, u16 *phase1key); 2290 void (*set_rekey_data)(struct ieee80211_hw *hw, 2291 struct ieee80211_vif *vif, 2292 struct cfg80211_gtk_rekey_data *data); 2293 int (*hw_scan)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 2294 struct cfg80211_scan_request *req); 2295 void (*cancel_hw_scan)(struct ieee80211_hw *hw, 2296 struct ieee80211_vif *vif); 2297 int (*sched_scan_start)(struct ieee80211_hw *hw, 2298 struct ieee80211_vif *vif, 2299 struct cfg80211_sched_scan_request *req, 2300 struct ieee80211_sched_scan_ies *ies); 2301 void (*sched_scan_stop)(struct ieee80211_hw *hw, 2302 struct ieee80211_vif *vif); 2303 void (*sw_scan_start)(struct ieee80211_hw *hw); 2304 void (*sw_scan_complete)(struct ieee80211_hw *hw); 2305 int (*get_stats)(struct ieee80211_hw *hw, 2306 struct ieee80211_low_level_stats *stats); 2307 void (*get_tkip_seq)(struct ieee80211_hw *hw, u8 hw_key_idx, 2308 u32 *iv32, u16 *iv16); 2309 int (*set_frag_threshold)(struct ieee80211_hw *hw, u32 value); 2310 int (*set_rts_threshold)(struct ieee80211_hw *hw, u32 value); 2311 int (*sta_add)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 2312 struct ieee80211_sta *sta); 2313 int (*sta_remove)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 2314 struct ieee80211_sta *sta); 2315 void (*sta_notify)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 2316 enum sta_notify_cmd, struct ieee80211_sta *sta); 2317 int (*sta_state)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 2318 struct ieee80211_sta *sta, 2319 enum ieee80211_sta_state old_state, 2320 enum ieee80211_sta_state new_state); 2321 void (*sta_rc_update)(struct ieee80211_hw *hw, 2322 struct ieee80211_vif *vif, 2323 struct ieee80211_sta *sta, 2324 u32 changed); 2325 int (*conf_tx)(struct ieee80211_hw *hw, 2326 struct ieee80211_vif *vif, u16 ac, 2327 const struct ieee80211_tx_queue_params *params); 2328 u64 (*get_tsf)(struct ieee80211_hw *hw, struct ieee80211_vif *vif); 2329 void (*set_tsf)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 2330 u64 tsf); 2331 void (*reset_tsf)(struct ieee80211_hw *hw, struct ieee80211_vif *vif); 2332 int (*tx_last_beacon)(struct ieee80211_hw *hw); 2333 int (*ampdu_action)(struct ieee80211_hw *hw, 2334 struct ieee80211_vif *vif, 2335 enum ieee80211_ampdu_mlme_action action, 2336 struct ieee80211_sta *sta, u16 tid, u16 *ssn, 2337 u8 buf_size); 2338 int (*get_survey)(struct ieee80211_hw *hw, int idx, 2339 struct survey_info *survey); 2340 void (*rfkill_poll)(struct ieee80211_hw *hw); 2341 void (*set_coverage_class)(struct ieee80211_hw *hw, u8 coverage_class); 2342 #ifdef CONFIG_NL80211_TESTMODE 2343 int (*testmode_cmd)(struct ieee80211_hw *hw, void *data, int len); 2344 int (*testmode_dump)(struct ieee80211_hw *hw, struct sk_buff *skb, 2345 struct netlink_callback *cb, 2346 void *data, int len); 2347 #endif 2348 void (*flush)(struct ieee80211_hw *hw, bool drop); 2349 void (*channel_switch)(struct ieee80211_hw *hw, 2350 struct ieee80211_channel_switch *ch_switch); 2351 int (*napi_poll)(struct ieee80211_hw *hw, int budget); 2352 int (*set_antenna)(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant); 2353 int (*get_antenna)(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant); 2354 2355 int (*remain_on_channel)(struct ieee80211_hw *hw, 2356 struct ieee80211_channel *chan, 2357 enum nl80211_channel_type channel_type, 2358 int duration); 2359 int (*cancel_remain_on_channel)(struct ieee80211_hw *hw); 2360 int (*set_ringparam)(struct ieee80211_hw *hw, u32 tx, u32 rx); 2361 void (*get_ringparam)(struct ieee80211_hw *hw, 2362 u32 *tx, u32 *tx_max, u32 *rx, u32 *rx_max); 2363 bool (*tx_frames_pending)(struct ieee80211_hw *hw); 2364 int (*set_bitrate_mask)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 2365 const struct cfg80211_bitrate_mask *mask); 2366 void (*rssi_callback)(struct ieee80211_hw *hw, 2367 enum ieee80211_rssi_event rssi_event); 2368 2369 void (*allow_buffered_frames)(struct ieee80211_hw *hw, 2370 struct ieee80211_sta *sta, 2371 u16 tids, int num_frames, 2372 enum ieee80211_frame_release_type reason, 2373 bool more_data); 2374 void (*release_buffered_frames)(struct ieee80211_hw *hw, 2375 struct ieee80211_sta *sta, 2376 u16 tids, int num_frames, 2377 enum ieee80211_frame_release_type reason, 2378 bool more_data); 2379 2380 int (*get_et_sset_count)(struct ieee80211_hw *hw, 2381 struct ieee80211_vif *vif, int sset); 2382 void (*get_et_stats)(struct ieee80211_hw *hw, 2383 struct ieee80211_vif *vif, 2384 struct ethtool_stats *stats, u64 *data); 2385 void (*get_et_strings)(struct ieee80211_hw *hw, 2386 struct ieee80211_vif *vif, 2387 u32 sset, u8 *data); 2388 }; 2389 2390 /** 2391 * ieee80211_alloc_hw - Allocate a new hardware device 2392 * 2393 * This must be called once for each hardware device. The returned pointer 2394 * must be used to refer to this device when calling other functions. 2395 * mac80211 allocates a private data area for the driver pointed to by 2396 * @priv in &struct ieee80211_hw, the size of this area is given as 2397 * @priv_data_len. 2398 * 2399 * @priv_data_len: length of private data 2400 * @ops: callbacks for this device 2401 */ 2402 struct ieee80211_hw *ieee80211_alloc_hw(size_t priv_data_len, 2403 const struct ieee80211_ops *ops); 2404 2405 /** 2406 * ieee80211_register_hw - Register hardware device 2407 * 2408 * You must call this function before any other functions in 2409 * mac80211. Note that before a hardware can be registered, you 2410 * need to fill the contained wiphy's information. 2411 * 2412 * @hw: the device to register as returned by ieee80211_alloc_hw() 2413 */ 2414 int ieee80211_register_hw(struct ieee80211_hw *hw); 2415 2416 /** 2417 * struct ieee80211_tpt_blink - throughput blink description 2418 * @throughput: throughput in Kbit/sec 2419 * @blink_time: blink time in milliseconds 2420 * (full cycle, ie. one off + one on period) 2421 */ 2422 struct ieee80211_tpt_blink { 2423 int throughput; 2424 int blink_time; 2425 }; 2426 2427 /** 2428 * enum ieee80211_tpt_led_trigger_flags - throughput trigger flags 2429 * @IEEE80211_TPT_LEDTRIG_FL_RADIO: enable blinking with radio 2430 * @IEEE80211_TPT_LEDTRIG_FL_WORK: enable blinking when working 2431 * @IEEE80211_TPT_LEDTRIG_FL_CONNECTED: enable blinking when at least one 2432 * interface is connected in some way, including being an AP 2433 */ 2434 enum ieee80211_tpt_led_trigger_flags { 2435 IEEE80211_TPT_LEDTRIG_FL_RADIO = BIT(0), 2436 IEEE80211_TPT_LEDTRIG_FL_WORK = BIT(1), 2437 IEEE80211_TPT_LEDTRIG_FL_CONNECTED = BIT(2), 2438 }; 2439 2440 #ifdef CONFIG_MAC80211_LEDS 2441 extern char *__ieee80211_get_tx_led_name(struct ieee80211_hw *hw); 2442 extern char *__ieee80211_get_rx_led_name(struct ieee80211_hw *hw); 2443 extern char *__ieee80211_get_assoc_led_name(struct ieee80211_hw *hw); 2444 extern char *__ieee80211_get_radio_led_name(struct ieee80211_hw *hw); 2445 extern char *__ieee80211_create_tpt_led_trigger( 2446 struct ieee80211_hw *hw, unsigned int flags, 2447 const struct ieee80211_tpt_blink *blink_table, 2448 unsigned int blink_table_len); 2449 #endif 2450 /** 2451 * ieee80211_get_tx_led_name - get name of TX LED 2452 * 2453 * mac80211 creates a transmit LED trigger for each wireless hardware 2454 * that can be used to drive LEDs if your driver registers a LED device. 2455 * This function returns the name (or %NULL if not configured for LEDs) 2456 * of the trigger so you can automatically link the LED device. 2457 * 2458 * @hw: the hardware to get the LED trigger name for 2459 */ 2460 static inline char *ieee80211_get_tx_led_name(struct ieee80211_hw *hw) 2461 { 2462 #ifdef CONFIG_MAC80211_LEDS 2463 return __ieee80211_get_tx_led_name(hw); 2464 #else 2465 return NULL; 2466 #endif 2467 } 2468 2469 /** 2470 * ieee80211_get_rx_led_name - get name of RX LED 2471 * 2472 * mac80211 creates a receive LED trigger for each wireless hardware 2473 * that can be used to drive LEDs if your driver registers a LED device. 2474 * This function returns the name (or %NULL if not configured for LEDs) 2475 * of the trigger so you can automatically link the LED device. 2476 * 2477 * @hw: the hardware to get the LED trigger name for 2478 */ 2479 static inline char *ieee80211_get_rx_led_name(struct ieee80211_hw *hw) 2480 { 2481 #ifdef CONFIG_MAC80211_LEDS 2482 return __ieee80211_get_rx_led_name(hw); 2483 #else 2484 return NULL; 2485 #endif 2486 } 2487 2488 /** 2489 * ieee80211_get_assoc_led_name - get name of association LED 2490 * 2491 * mac80211 creates a association LED trigger for each wireless hardware 2492 * that can be used to drive LEDs if your driver registers a LED device. 2493 * This function returns the name (or %NULL if not configured for LEDs) 2494 * of the trigger so you can automatically link the LED device. 2495 * 2496 * @hw: the hardware to get the LED trigger name for 2497 */ 2498 static inline char *ieee80211_get_assoc_led_name(struct ieee80211_hw *hw) 2499 { 2500 #ifdef CONFIG_MAC80211_LEDS 2501 return __ieee80211_get_assoc_led_name(hw); 2502 #else 2503 return NULL; 2504 #endif 2505 } 2506 2507 /** 2508 * ieee80211_get_radio_led_name - get name of radio LED 2509 * 2510 * mac80211 creates a radio change LED trigger for each wireless hardware 2511 * that can be used to drive LEDs if your driver registers a LED device. 2512 * This function returns the name (or %NULL if not configured for LEDs) 2513 * of the trigger so you can automatically link the LED device. 2514 * 2515 * @hw: the hardware to get the LED trigger name for 2516 */ 2517 static inline char *ieee80211_get_radio_led_name(struct ieee80211_hw *hw) 2518 { 2519 #ifdef CONFIG_MAC80211_LEDS 2520 return __ieee80211_get_radio_led_name(hw); 2521 #else 2522 return NULL; 2523 #endif 2524 } 2525 2526 /** 2527 * ieee80211_create_tpt_led_trigger - create throughput LED trigger 2528 * @hw: the hardware to create the trigger for 2529 * @flags: trigger flags, see &enum ieee80211_tpt_led_trigger_flags 2530 * @blink_table: the blink table -- needs to be ordered by throughput 2531 * @blink_table_len: size of the blink table 2532 * 2533 * This function returns %NULL (in case of error, or if no LED 2534 * triggers are configured) or the name of the new trigger. 2535 * This function must be called before ieee80211_register_hw(). 2536 */ 2537 static inline char * 2538 ieee80211_create_tpt_led_trigger(struct ieee80211_hw *hw, unsigned int flags, 2539 const struct ieee80211_tpt_blink *blink_table, 2540 unsigned int blink_table_len) 2541 { 2542 #ifdef CONFIG_MAC80211_LEDS 2543 return __ieee80211_create_tpt_led_trigger(hw, flags, blink_table, 2544 blink_table_len); 2545 #else 2546 return NULL; 2547 #endif 2548 } 2549 2550 /** 2551 * ieee80211_unregister_hw - Unregister a hardware device 2552 * 2553 * This function instructs mac80211 to free allocated resources 2554 * and unregister netdevices from the networking subsystem. 2555 * 2556 * @hw: the hardware to unregister 2557 */ 2558 void ieee80211_unregister_hw(struct ieee80211_hw *hw); 2559 2560 /** 2561 * ieee80211_free_hw - free hardware descriptor 2562 * 2563 * This function frees everything that was allocated, including the 2564 * private data for the driver. You must call ieee80211_unregister_hw() 2565 * before calling this function. 2566 * 2567 * @hw: the hardware to free 2568 */ 2569 void ieee80211_free_hw(struct ieee80211_hw *hw); 2570 2571 /** 2572 * ieee80211_restart_hw - restart hardware completely 2573 * 2574 * Call this function when the hardware was restarted for some reason 2575 * (hardware error, ...) and the driver is unable to restore its state 2576 * by itself. mac80211 assumes that at this point the driver/hardware 2577 * is completely uninitialised and stopped, it starts the process by 2578 * calling the ->start() operation. The driver will need to reset all 2579 * internal state that it has prior to calling this function. 2580 * 2581 * @hw: the hardware to restart 2582 */ 2583 void ieee80211_restart_hw(struct ieee80211_hw *hw); 2584 2585 /** ieee80211_napi_schedule - schedule NAPI poll 2586 * 2587 * Use this function to schedule NAPI polling on a device. 2588 * 2589 * @hw: the hardware to start polling 2590 */ 2591 void ieee80211_napi_schedule(struct ieee80211_hw *hw); 2592 2593 /** ieee80211_napi_complete - complete NAPI polling 2594 * 2595 * Use this function to finish NAPI polling on a device. 2596 * 2597 * @hw: the hardware to stop polling 2598 */ 2599 void ieee80211_napi_complete(struct ieee80211_hw *hw); 2600 2601 /** 2602 * ieee80211_rx - receive frame 2603 * 2604 * Use this function to hand received frames to mac80211. The receive 2605 * buffer in @skb must start with an IEEE 802.11 header. In case of a 2606 * paged @skb is used, the driver is recommended to put the ieee80211 2607 * header of the frame on the linear part of the @skb to avoid memory 2608 * allocation and/or memcpy by the stack. 2609 * 2610 * This function may not be called in IRQ context. Calls to this function 2611 * for a single hardware must be synchronized against each other. Calls to 2612 * this function, ieee80211_rx_ni() and ieee80211_rx_irqsafe() may not be 2613 * mixed for a single hardware. 2614 * 2615 * In process context use instead ieee80211_rx_ni(). 2616 * 2617 * @hw: the hardware this frame came in on 2618 * @skb: the buffer to receive, owned by mac80211 after this call 2619 */ 2620 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb); 2621 2622 /** 2623 * ieee80211_rx_irqsafe - receive frame 2624 * 2625 * Like ieee80211_rx() but can be called in IRQ context 2626 * (internally defers to a tasklet.) 2627 * 2628 * Calls to this function, ieee80211_rx() or ieee80211_rx_ni() may not 2629 * be mixed for a single hardware. 2630 * 2631 * @hw: the hardware this frame came in on 2632 * @skb: the buffer to receive, owned by mac80211 after this call 2633 */ 2634 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb); 2635 2636 /** 2637 * ieee80211_rx_ni - receive frame (in process context) 2638 * 2639 * Like ieee80211_rx() but can be called in process context 2640 * (internally disables bottom halves). 2641 * 2642 * Calls to this function, ieee80211_rx() and ieee80211_rx_irqsafe() may 2643 * not be mixed for a single hardware. 2644 * 2645 * @hw: the hardware this frame came in on 2646 * @skb: the buffer to receive, owned by mac80211 after this call 2647 */ 2648 static inline void ieee80211_rx_ni(struct ieee80211_hw *hw, 2649 struct sk_buff *skb) 2650 { 2651 local_bh_disable(); 2652 ieee80211_rx(hw, skb); 2653 local_bh_enable(); 2654 } 2655 2656 /** 2657 * ieee80211_sta_ps_transition - PS transition for connected sta 2658 * 2659 * When operating in AP mode with the %IEEE80211_HW_AP_LINK_PS 2660 * flag set, use this function to inform mac80211 about a connected station 2661 * entering/leaving PS mode. 2662 * 2663 * This function may not be called in IRQ context or with softirqs enabled. 2664 * 2665 * Calls to this function for a single hardware must be synchronized against 2666 * each other. 2667 * 2668 * The function returns -EINVAL when the requested PS mode is already set. 2669 * 2670 * @sta: currently connected sta 2671 * @start: start or stop PS 2672 */ 2673 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start); 2674 2675 /** 2676 * ieee80211_sta_ps_transition_ni - PS transition for connected sta 2677 * (in process context) 2678 * 2679 * Like ieee80211_sta_ps_transition() but can be called in process context 2680 * (internally disables bottom halves). Concurrent call restriction still 2681 * applies. 2682 * 2683 * @sta: currently connected sta 2684 * @start: start or stop PS 2685 */ 2686 static inline int ieee80211_sta_ps_transition_ni(struct ieee80211_sta *sta, 2687 bool start) 2688 { 2689 int ret; 2690 2691 local_bh_disable(); 2692 ret = ieee80211_sta_ps_transition(sta, start); 2693 local_bh_enable(); 2694 2695 return ret; 2696 } 2697 2698 /* 2699 * The TX headroom reserved by mac80211 for its own tx_status functions. 2700 * This is enough for the radiotap header. 2701 */ 2702 #define IEEE80211_TX_STATUS_HEADROOM 14 2703 2704 /** 2705 * ieee80211_sta_set_buffered - inform mac80211 about driver-buffered frames 2706 * @sta: &struct ieee80211_sta pointer for the sleeping station 2707 * @tid: the TID that has buffered frames 2708 * @buffered: indicates whether or not frames are buffered for this TID 2709 * 2710 * If a driver buffers frames for a powersave station instead of passing 2711 * them back to mac80211 for retransmission, the station may still need 2712 * to be told that there are buffered frames via the TIM bit. 2713 * 2714 * This function informs mac80211 whether or not there are frames that are 2715 * buffered in the driver for a given TID; mac80211 can then use this data 2716 * to set the TIM bit (NOTE: This may call back into the driver's set_tim 2717 * call! Beware of the locking!) 2718 * 2719 * If all frames are released to the station (due to PS-poll or uAPSD) 2720 * then the driver needs to inform mac80211 that there no longer are 2721 * frames buffered. However, when the station wakes up mac80211 assumes 2722 * that all buffered frames will be transmitted and clears this data, 2723 * drivers need to make sure they inform mac80211 about all buffered 2724 * frames on the sleep transition (sta_notify() with %STA_NOTIFY_SLEEP). 2725 * 2726 * Note that technically mac80211 only needs to know this per AC, not per 2727 * TID, but since driver buffering will inevitably happen per TID (since 2728 * it is related to aggregation) it is easier to make mac80211 map the 2729 * TID to the AC as required instead of keeping track in all drivers that 2730 * use this API. 2731 */ 2732 void ieee80211_sta_set_buffered(struct ieee80211_sta *sta, 2733 u8 tid, bool buffered); 2734 2735 /** 2736 * ieee80211_tx_status - transmit status callback 2737 * 2738 * Call this function for all transmitted frames after they have been 2739 * transmitted. It is permissible to not call this function for 2740 * multicast frames but this can affect statistics. 2741 * 2742 * This function may not be called in IRQ context. Calls to this function 2743 * for a single hardware must be synchronized against each other. Calls 2744 * to this function, ieee80211_tx_status_ni() and ieee80211_tx_status_irqsafe() 2745 * may not be mixed for a single hardware. 2746 * 2747 * @hw: the hardware the frame was transmitted by 2748 * @skb: the frame that was transmitted, owned by mac80211 after this call 2749 */ 2750 void ieee80211_tx_status(struct ieee80211_hw *hw, 2751 struct sk_buff *skb); 2752 2753 /** 2754 * ieee80211_tx_status_ni - transmit status callback (in process context) 2755 * 2756 * Like ieee80211_tx_status() but can be called in process context. 2757 * 2758 * Calls to this function, ieee80211_tx_status() and 2759 * ieee80211_tx_status_irqsafe() may not be mixed 2760 * for a single hardware. 2761 * 2762 * @hw: the hardware the frame was transmitted by 2763 * @skb: the frame that was transmitted, owned by mac80211 after this call 2764 */ 2765 static inline void ieee80211_tx_status_ni(struct ieee80211_hw *hw, 2766 struct sk_buff *skb) 2767 { 2768 local_bh_disable(); 2769 ieee80211_tx_status(hw, skb); 2770 local_bh_enable(); 2771 } 2772 2773 /** 2774 * ieee80211_tx_status_irqsafe - IRQ-safe transmit status callback 2775 * 2776 * Like ieee80211_tx_status() but can be called in IRQ context 2777 * (internally defers to a tasklet.) 2778 * 2779 * Calls to this function, ieee80211_tx_status() and 2780 * ieee80211_tx_status_ni() may not be mixed for a single hardware. 2781 * 2782 * @hw: the hardware the frame was transmitted by 2783 * @skb: the frame that was transmitted, owned by mac80211 after this call 2784 */ 2785 void ieee80211_tx_status_irqsafe(struct ieee80211_hw *hw, 2786 struct sk_buff *skb); 2787 2788 /** 2789 * ieee80211_report_low_ack - report non-responding station 2790 * 2791 * When operating in AP-mode, call this function to report a non-responding 2792 * connected STA. 2793 * 2794 * @sta: the non-responding connected sta 2795 * @num_packets: number of packets sent to @sta without a response 2796 */ 2797 void ieee80211_report_low_ack(struct ieee80211_sta *sta, u32 num_packets); 2798 2799 /** 2800 * ieee80211_beacon_get_tim - beacon generation function 2801 * @hw: pointer obtained from ieee80211_alloc_hw(). 2802 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 2803 * @tim_offset: pointer to variable that will receive the TIM IE offset. 2804 * Set to 0 if invalid (in non-AP modes). 2805 * @tim_length: pointer to variable that will receive the TIM IE length, 2806 * (including the ID and length bytes!). 2807 * Set to 0 if invalid (in non-AP modes). 2808 * 2809 * If the driver implements beaconing modes, it must use this function to 2810 * obtain the beacon frame/template. 2811 * 2812 * If the beacon frames are generated by the host system (i.e., not in 2813 * hardware/firmware), the driver uses this function to get each beacon 2814 * frame from mac80211 -- it is responsible for calling this function 2815 * before the beacon is needed (e.g. based on hardware interrupt). 2816 * 2817 * If the beacon frames are generated by the device, then the driver 2818 * must use the returned beacon as the template and change the TIM IE 2819 * according to the current DTIM parameters/TIM bitmap. 2820 * 2821 * The driver is responsible for freeing the returned skb. 2822 */ 2823 struct sk_buff *ieee80211_beacon_get_tim(struct ieee80211_hw *hw, 2824 struct ieee80211_vif *vif, 2825 u16 *tim_offset, u16 *tim_length); 2826 2827 /** 2828 * ieee80211_beacon_get - beacon generation function 2829 * @hw: pointer obtained from ieee80211_alloc_hw(). 2830 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 2831 * 2832 * See ieee80211_beacon_get_tim(). 2833 */ 2834 static inline struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw, 2835 struct ieee80211_vif *vif) 2836 { 2837 return ieee80211_beacon_get_tim(hw, vif, NULL, NULL); 2838 } 2839 2840 /** 2841 * ieee80211_proberesp_get - retrieve a Probe Response template 2842 * @hw: pointer obtained from ieee80211_alloc_hw(). 2843 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 2844 * 2845 * Creates a Probe Response template which can, for example, be uploaded to 2846 * hardware. The destination address should be set by the caller. 2847 * 2848 * Can only be called in AP mode. 2849 */ 2850 struct sk_buff *ieee80211_proberesp_get(struct ieee80211_hw *hw, 2851 struct ieee80211_vif *vif); 2852 2853 /** 2854 * ieee80211_pspoll_get - retrieve a PS Poll template 2855 * @hw: pointer obtained from ieee80211_alloc_hw(). 2856 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 2857 * 2858 * Creates a PS Poll a template which can, for example, uploaded to 2859 * hardware. The template must be updated after association so that correct 2860 * AID, BSSID and MAC address is used. 2861 * 2862 * Note: Caller (or hardware) is responsible for setting the 2863 * &IEEE80211_FCTL_PM bit. 2864 */ 2865 struct sk_buff *ieee80211_pspoll_get(struct ieee80211_hw *hw, 2866 struct ieee80211_vif *vif); 2867 2868 /** 2869 * ieee80211_nullfunc_get - retrieve a nullfunc template 2870 * @hw: pointer obtained from ieee80211_alloc_hw(). 2871 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 2872 * 2873 * Creates a Nullfunc template which can, for example, uploaded to 2874 * hardware. The template must be updated after association so that correct 2875 * BSSID and address is used. 2876 * 2877 * Note: Caller (or hardware) is responsible for setting the 2878 * &IEEE80211_FCTL_PM bit as well as Duration and Sequence Control fields. 2879 */ 2880 struct sk_buff *ieee80211_nullfunc_get(struct ieee80211_hw *hw, 2881 struct ieee80211_vif *vif); 2882 2883 /** 2884 * ieee80211_probereq_get - retrieve a Probe Request template 2885 * @hw: pointer obtained from ieee80211_alloc_hw(). 2886 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 2887 * @ssid: SSID buffer 2888 * @ssid_len: length of SSID 2889 * @ie: buffer containing all IEs except SSID for the template 2890 * @ie_len: length of the IE buffer 2891 * 2892 * Creates a Probe Request template which can, for example, be uploaded to 2893 * hardware. 2894 */ 2895 struct sk_buff *ieee80211_probereq_get(struct ieee80211_hw *hw, 2896 struct ieee80211_vif *vif, 2897 const u8 *ssid, size_t ssid_len, 2898 const u8 *ie, size_t ie_len); 2899 2900 /** 2901 * ieee80211_rts_get - RTS frame generation function 2902 * @hw: pointer obtained from ieee80211_alloc_hw(). 2903 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 2904 * @frame: pointer to the frame that is going to be protected by the RTS. 2905 * @frame_len: the frame length (in octets). 2906 * @frame_txctl: &struct ieee80211_tx_info of the frame. 2907 * @rts: The buffer where to store the RTS frame. 2908 * 2909 * If the RTS frames are generated by the host system (i.e., not in 2910 * hardware/firmware), the low-level driver uses this function to receive 2911 * the next RTS frame from the 802.11 code. The low-level is responsible 2912 * for calling this function before and RTS frame is needed. 2913 */ 2914 void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 2915 const void *frame, size_t frame_len, 2916 const struct ieee80211_tx_info *frame_txctl, 2917 struct ieee80211_rts *rts); 2918 2919 /** 2920 * ieee80211_rts_duration - Get the duration field for an RTS frame 2921 * @hw: pointer obtained from ieee80211_alloc_hw(). 2922 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 2923 * @frame_len: the length of the frame that is going to be protected by the RTS. 2924 * @frame_txctl: &struct ieee80211_tx_info of the frame. 2925 * 2926 * If the RTS is generated in firmware, but the host system must provide 2927 * the duration field, the low-level driver uses this function to receive 2928 * the duration field value in little-endian byteorder. 2929 */ 2930 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw, 2931 struct ieee80211_vif *vif, size_t frame_len, 2932 const struct ieee80211_tx_info *frame_txctl); 2933 2934 /** 2935 * ieee80211_ctstoself_get - CTS-to-self frame generation function 2936 * @hw: pointer obtained from ieee80211_alloc_hw(). 2937 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 2938 * @frame: pointer to the frame that is going to be protected by the CTS-to-self. 2939 * @frame_len: the frame length (in octets). 2940 * @frame_txctl: &struct ieee80211_tx_info of the frame. 2941 * @cts: The buffer where to store the CTS-to-self frame. 2942 * 2943 * If the CTS-to-self frames are generated by the host system (i.e., not in 2944 * hardware/firmware), the low-level driver uses this function to receive 2945 * the next CTS-to-self frame from the 802.11 code. The low-level is responsible 2946 * for calling this function before and CTS-to-self frame is needed. 2947 */ 2948 void ieee80211_ctstoself_get(struct ieee80211_hw *hw, 2949 struct ieee80211_vif *vif, 2950 const void *frame, size_t frame_len, 2951 const struct ieee80211_tx_info *frame_txctl, 2952 struct ieee80211_cts *cts); 2953 2954 /** 2955 * ieee80211_ctstoself_duration - Get the duration field for a CTS-to-self frame 2956 * @hw: pointer obtained from ieee80211_alloc_hw(). 2957 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 2958 * @frame_len: the length of the frame that is going to be protected by the CTS-to-self. 2959 * @frame_txctl: &struct ieee80211_tx_info of the frame. 2960 * 2961 * If the CTS-to-self is generated in firmware, but the host system must provide 2962 * the duration field, the low-level driver uses this function to receive 2963 * the duration field value in little-endian byteorder. 2964 */ 2965 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw, 2966 struct ieee80211_vif *vif, 2967 size_t frame_len, 2968 const struct ieee80211_tx_info *frame_txctl); 2969 2970 /** 2971 * ieee80211_generic_frame_duration - Calculate the duration field for a frame 2972 * @hw: pointer obtained from ieee80211_alloc_hw(). 2973 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 2974 * @band: the band to calculate the frame duration on 2975 * @frame_len: the length of the frame. 2976 * @rate: the rate at which the frame is going to be transmitted. 2977 * 2978 * Calculate the duration field of some generic frame, given its 2979 * length and transmission rate (in 100kbps). 2980 */ 2981 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw, 2982 struct ieee80211_vif *vif, 2983 enum ieee80211_band band, 2984 size_t frame_len, 2985 struct ieee80211_rate *rate); 2986 2987 /** 2988 * ieee80211_get_buffered_bc - accessing buffered broadcast and multicast frames 2989 * @hw: pointer as obtained from ieee80211_alloc_hw(). 2990 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 2991 * 2992 * Function for accessing buffered broadcast and multicast frames. If 2993 * hardware/firmware does not implement buffering of broadcast/multicast 2994 * frames when power saving is used, 802.11 code buffers them in the host 2995 * memory. The low-level driver uses this function to fetch next buffered 2996 * frame. In most cases, this is used when generating beacon frame. This 2997 * function returns a pointer to the next buffered skb or NULL if no more 2998 * buffered frames are available. 2999 * 3000 * Note: buffered frames are returned only after DTIM beacon frame was 3001 * generated with ieee80211_beacon_get() and the low-level driver must thus 3002 * call ieee80211_beacon_get() first. ieee80211_get_buffered_bc() returns 3003 * NULL if the previous generated beacon was not DTIM, so the low-level driver 3004 * does not need to check for DTIM beacons separately and should be able to 3005 * use common code for all beacons. 3006 */ 3007 struct sk_buff * 3008 ieee80211_get_buffered_bc(struct ieee80211_hw *hw, struct ieee80211_vif *vif); 3009 3010 /** 3011 * ieee80211_get_tkip_p1k_iv - get a TKIP phase 1 key for IV32 3012 * 3013 * This function returns the TKIP phase 1 key for the given IV32. 3014 * 3015 * @keyconf: the parameter passed with the set key 3016 * @iv32: IV32 to get the P1K for 3017 * @p1k: a buffer to which the key will be written, as 5 u16 values 3018 */ 3019 void ieee80211_get_tkip_p1k_iv(struct ieee80211_key_conf *keyconf, 3020 u32 iv32, u16 *p1k); 3021 3022 /** 3023 * ieee80211_get_tkip_p1k - get a TKIP phase 1 key 3024 * 3025 * This function returns the TKIP phase 1 key for the IV32 taken 3026 * from the given packet. 3027 * 3028 * @keyconf: the parameter passed with the set key 3029 * @skb: the packet to take the IV32 value from that will be encrypted 3030 * with this P1K 3031 * @p1k: a buffer to which the key will be written, as 5 u16 values 3032 */ 3033 static inline void ieee80211_get_tkip_p1k(struct ieee80211_key_conf *keyconf, 3034 struct sk_buff *skb, u16 *p1k) 3035 { 3036 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 3037 const u8 *data = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control); 3038 u32 iv32 = get_unaligned_le32(&data[4]); 3039 3040 ieee80211_get_tkip_p1k_iv(keyconf, iv32, p1k); 3041 } 3042 3043 /** 3044 * ieee80211_get_tkip_rx_p1k - get a TKIP phase 1 key for RX 3045 * 3046 * This function returns the TKIP phase 1 key for the given IV32 3047 * and transmitter address. 3048 * 3049 * @keyconf: the parameter passed with the set key 3050 * @ta: TA that will be used with the key 3051 * @iv32: IV32 to get the P1K for 3052 * @p1k: a buffer to which the key will be written, as 5 u16 values 3053 */ 3054 void ieee80211_get_tkip_rx_p1k(struct ieee80211_key_conf *keyconf, 3055 const u8 *ta, u32 iv32, u16 *p1k); 3056 3057 /** 3058 * ieee80211_get_tkip_p2k - get a TKIP phase 2 key 3059 * 3060 * This function computes the TKIP RC4 key for the IV values 3061 * in the packet. 3062 * 3063 * @keyconf: the parameter passed with the set key 3064 * @skb: the packet to take the IV32/IV16 values from that will be 3065 * encrypted with this key 3066 * @p2k: a buffer to which the key will be written, 16 bytes 3067 */ 3068 void ieee80211_get_tkip_p2k(struct ieee80211_key_conf *keyconf, 3069 struct sk_buff *skb, u8 *p2k); 3070 3071 /** 3072 * struct ieee80211_key_seq - key sequence counter 3073 * 3074 * @tkip: TKIP data, containing IV32 and IV16 in host byte order 3075 * @ccmp: PN data, most significant byte first (big endian, 3076 * reverse order than in packet) 3077 * @aes_cmac: PN data, most significant byte first (big endian, 3078 * reverse order than in packet) 3079 */ 3080 struct ieee80211_key_seq { 3081 union { 3082 struct { 3083 u32 iv32; 3084 u16 iv16; 3085 } tkip; 3086 struct { 3087 u8 pn[6]; 3088 } ccmp; 3089 struct { 3090 u8 pn[6]; 3091 } aes_cmac; 3092 }; 3093 }; 3094 3095 /** 3096 * ieee80211_get_key_tx_seq - get key TX sequence counter 3097 * 3098 * @keyconf: the parameter passed with the set key 3099 * @seq: buffer to receive the sequence data 3100 * 3101 * This function allows a driver to retrieve the current TX IV/PN 3102 * for the given key. It must not be called if IV generation is 3103 * offloaded to the device. 3104 * 3105 * Note that this function may only be called when no TX processing 3106 * can be done concurrently, for example when queues are stopped 3107 * and the stop has been synchronized. 3108 */ 3109 void ieee80211_get_key_tx_seq(struct ieee80211_key_conf *keyconf, 3110 struct ieee80211_key_seq *seq); 3111 3112 /** 3113 * ieee80211_get_key_rx_seq - get key RX sequence counter 3114 * 3115 * @keyconf: the parameter passed with the set key 3116 * @tid: The TID, or -1 for the management frame value (CCMP only); 3117 * the value on TID 0 is also used for non-QoS frames. For 3118 * CMAC, only TID 0 is valid. 3119 * @seq: buffer to receive the sequence data 3120 * 3121 * This function allows a driver to retrieve the current RX IV/PNs 3122 * for the given key. It must not be called if IV checking is done 3123 * by the device and not by mac80211. 3124 * 3125 * Note that this function may only be called when no RX processing 3126 * can be done concurrently. 3127 */ 3128 void ieee80211_get_key_rx_seq(struct ieee80211_key_conf *keyconf, 3129 int tid, struct ieee80211_key_seq *seq); 3130 3131 /** 3132 * ieee80211_gtk_rekey_notify - notify userspace supplicant of rekeying 3133 * @vif: virtual interface the rekeying was done on 3134 * @bssid: The BSSID of the AP, for checking association 3135 * @replay_ctr: the new replay counter after GTK rekeying 3136 * @gfp: allocation flags 3137 */ 3138 void ieee80211_gtk_rekey_notify(struct ieee80211_vif *vif, const u8 *bssid, 3139 const u8 *replay_ctr, gfp_t gfp); 3140 3141 /** 3142 * ieee80211_wake_queue - wake specific queue 3143 * @hw: pointer as obtained from ieee80211_alloc_hw(). 3144 * @queue: queue number (counted from zero). 3145 * 3146 * Drivers should use this function instead of netif_wake_queue. 3147 */ 3148 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue); 3149 3150 /** 3151 * ieee80211_stop_queue - stop specific queue 3152 * @hw: pointer as obtained from ieee80211_alloc_hw(). 3153 * @queue: queue number (counted from zero). 3154 * 3155 * Drivers should use this function instead of netif_stop_queue. 3156 */ 3157 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue); 3158 3159 /** 3160 * ieee80211_queue_stopped - test status of the queue 3161 * @hw: pointer as obtained from ieee80211_alloc_hw(). 3162 * @queue: queue number (counted from zero). 3163 * 3164 * Drivers should use this function instead of netif_stop_queue. 3165 */ 3166 3167 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue); 3168 3169 /** 3170 * ieee80211_stop_queues - stop all queues 3171 * @hw: pointer as obtained from ieee80211_alloc_hw(). 3172 * 3173 * Drivers should use this function instead of netif_stop_queue. 3174 */ 3175 void ieee80211_stop_queues(struct ieee80211_hw *hw); 3176 3177 /** 3178 * ieee80211_wake_queues - wake all queues 3179 * @hw: pointer as obtained from ieee80211_alloc_hw(). 3180 * 3181 * Drivers should use this function instead of netif_wake_queue. 3182 */ 3183 void ieee80211_wake_queues(struct ieee80211_hw *hw); 3184 3185 /** 3186 * ieee80211_scan_completed - completed hardware scan 3187 * 3188 * When hardware scan offload is used (i.e. the hw_scan() callback is 3189 * assigned) this function needs to be called by the driver to notify 3190 * mac80211 that the scan finished. This function can be called from 3191 * any context, including hardirq context. 3192 * 3193 * @hw: the hardware that finished the scan 3194 * @aborted: set to true if scan was aborted 3195 */ 3196 void ieee80211_scan_completed(struct ieee80211_hw *hw, bool aborted); 3197 3198 /** 3199 * ieee80211_sched_scan_results - got results from scheduled scan 3200 * 3201 * When a scheduled scan is running, this function needs to be called by the 3202 * driver whenever there are new scan results available. 3203 * 3204 * @hw: the hardware that is performing scheduled scans 3205 */ 3206 void ieee80211_sched_scan_results(struct ieee80211_hw *hw); 3207 3208 /** 3209 * ieee80211_sched_scan_stopped - inform that the scheduled scan has stopped 3210 * 3211 * When a scheduled scan is running, this function can be called by 3212 * the driver if it needs to stop the scan to perform another task. 3213 * Usual scenarios are drivers that cannot continue the scheduled scan 3214 * while associating, for instance. 3215 * 3216 * @hw: the hardware that is performing scheduled scans 3217 */ 3218 void ieee80211_sched_scan_stopped(struct ieee80211_hw *hw); 3219 3220 /** 3221 * ieee80211_iterate_active_interfaces - iterate active interfaces 3222 * 3223 * This function iterates over the interfaces associated with a given 3224 * hardware that are currently active and calls the callback for them. 3225 * This function allows the iterator function to sleep, when the iterator 3226 * function is atomic @ieee80211_iterate_active_interfaces_atomic can 3227 * be used. 3228 * Does not iterate over a new interface during add_interface() 3229 * 3230 * @hw: the hardware struct of which the interfaces should be iterated over 3231 * @iterator: the iterator function to call 3232 * @data: first argument of the iterator function 3233 */ 3234 void ieee80211_iterate_active_interfaces(struct ieee80211_hw *hw, 3235 void (*iterator)(void *data, u8 *mac, 3236 struct ieee80211_vif *vif), 3237 void *data); 3238 3239 /** 3240 * ieee80211_iterate_active_interfaces_atomic - iterate active interfaces 3241 * 3242 * This function iterates over the interfaces associated with a given 3243 * hardware that are currently active and calls the callback for them. 3244 * This function requires the iterator callback function to be atomic, 3245 * if that is not desired, use @ieee80211_iterate_active_interfaces instead. 3246 * Does not iterate over a new interface during add_interface() 3247 * 3248 * @hw: the hardware struct of which the interfaces should be iterated over 3249 * @iterator: the iterator function to call, cannot sleep 3250 * @data: first argument of the iterator function 3251 */ 3252 void ieee80211_iterate_active_interfaces_atomic(struct ieee80211_hw *hw, 3253 void (*iterator)(void *data, 3254 u8 *mac, 3255 struct ieee80211_vif *vif), 3256 void *data); 3257 3258 /** 3259 * ieee80211_queue_work - add work onto the mac80211 workqueue 3260 * 3261 * Drivers and mac80211 use this to add work onto the mac80211 workqueue. 3262 * This helper ensures drivers are not queueing work when they should not be. 3263 * 3264 * @hw: the hardware struct for the interface we are adding work for 3265 * @work: the work we want to add onto the mac80211 workqueue 3266 */ 3267 void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work); 3268 3269 /** 3270 * ieee80211_queue_delayed_work - add work onto the mac80211 workqueue 3271 * 3272 * Drivers and mac80211 use this to queue delayed work onto the mac80211 3273 * workqueue. 3274 * 3275 * @hw: the hardware struct for the interface we are adding work for 3276 * @dwork: delayable work to queue onto the mac80211 workqueue 3277 * @delay: number of jiffies to wait before queueing 3278 */ 3279 void ieee80211_queue_delayed_work(struct ieee80211_hw *hw, 3280 struct delayed_work *dwork, 3281 unsigned long delay); 3282 3283 /** 3284 * ieee80211_start_tx_ba_session - Start a tx Block Ack session. 3285 * @sta: the station for which to start a BA session 3286 * @tid: the TID to BA on. 3287 * @timeout: session timeout value (in TUs) 3288 * 3289 * Return: success if addBA request was sent, failure otherwise 3290 * 3291 * Although mac80211/low level driver/user space application can estimate 3292 * the need to start aggregation on a certain RA/TID, the session level 3293 * will be managed by the mac80211. 3294 */ 3295 int ieee80211_start_tx_ba_session(struct ieee80211_sta *sta, u16 tid, 3296 u16 timeout); 3297 3298 /** 3299 * ieee80211_start_tx_ba_cb_irqsafe - low level driver ready to aggregate. 3300 * @vif: &struct ieee80211_vif pointer from the add_interface callback 3301 * @ra: receiver address of the BA session recipient. 3302 * @tid: the TID to BA on. 3303 * 3304 * This function must be called by low level driver once it has 3305 * finished with preparations for the BA session. It can be called 3306 * from any context. 3307 */ 3308 void ieee80211_start_tx_ba_cb_irqsafe(struct ieee80211_vif *vif, const u8 *ra, 3309 u16 tid); 3310 3311 /** 3312 * ieee80211_stop_tx_ba_session - Stop a Block Ack session. 3313 * @sta: the station whose BA session to stop 3314 * @tid: the TID to stop BA. 3315 * 3316 * Return: negative error if the TID is invalid, or no aggregation active 3317 * 3318 * Although mac80211/low level driver/user space application can estimate 3319 * the need to stop aggregation on a certain RA/TID, the session level 3320 * will be managed by the mac80211. 3321 */ 3322 int ieee80211_stop_tx_ba_session(struct ieee80211_sta *sta, u16 tid); 3323 3324 /** 3325 * ieee80211_stop_tx_ba_cb_irqsafe - low level driver ready to stop aggregate. 3326 * @vif: &struct ieee80211_vif pointer from the add_interface callback 3327 * @ra: receiver address of the BA session recipient. 3328 * @tid: the desired TID to BA on. 3329 * 3330 * This function must be called by low level driver once it has 3331 * finished with preparations for the BA session tear down. It 3332 * can be called from any context. 3333 */ 3334 void ieee80211_stop_tx_ba_cb_irqsafe(struct ieee80211_vif *vif, const u8 *ra, 3335 u16 tid); 3336 3337 /** 3338 * ieee80211_find_sta - find a station 3339 * 3340 * @vif: virtual interface to look for station on 3341 * @addr: station's address 3342 * 3343 * This function must be called under RCU lock and the 3344 * resulting pointer is only valid under RCU lock as well. 3345 */ 3346 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif, 3347 const u8 *addr); 3348 3349 /** 3350 * ieee80211_find_sta_by_ifaddr - find a station on hardware 3351 * 3352 * @hw: pointer as obtained from ieee80211_alloc_hw() 3353 * @addr: remote station's address 3354 * @localaddr: local address (vif->sdata->vif.addr). Use NULL for 'any'. 3355 * 3356 * This function must be called under RCU lock and the 3357 * resulting pointer is only valid under RCU lock as well. 3358 * 3359 * NOTE: You may pass NULL for localaddr, but then you will just get 3360 * the first STA that matches the remote address 'addr'. 3361 * We can have multiple STA associated with multiple 3362 * logical stations (e.g. consider a station connecting to another 3363 * BSSID on the same AP hardware without disconnecting first). 3364 * In this case, the result of this method with localaddr NULL 3365 * is not reliable. 3366 * 3367 * DO NOT USE THIS FUNCTION with localaddr NULL if at all possible. 3368 */ 3369 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw, 3370 const u8 *addr, 3371 const u8 *localaddr); 3372 3373 /** 3374 * ieee80211_sta_block_awake - block station from waking up 3375 * @hw: the hardware 3376 * @pubsta: the station 3377 * @block: whether to block or unblock 3378 * 3379 * Some devices require that all frames that are on the queues 3380 * for a specific station that went to sleep are flushed before 3381 * a poll response or frames after the station woke up can be 3382 * delivered to that it. Note that such frames must be rejected 3383 * by the driver as filtered, with the appropriate status flag. 3384 * 3385 * This function allows implementing this mode in a race-free 3386 * manner. 3387 * 3388 * To do this, a driver must keep track of the number of frames 3389 * still enqueued for a specific station. If this number is not 3390 * zero when the station goes to sleep, the driver must call 3391 * this function to force mac80211 to consider the station to 3392 * be asleep regardless of the station's actual state. Once the 3393 * number of outstanding frames reaches zero, the driver must 3394 * call this function again to unblock the station. That will 3395 * cause mac80211 to be able to send ps-poll responses, and if 3396 * the station queried in the meantime then frames will also 3397 * be sent out as a result of this. Additionally, the driver 3398 * will be notified that the station woke up some time after 3399 * it is unblocked, regardless of whether the station actually 3400 * woke up while blocked or not. 3401 */ 3402 void ieee80211_sta_block_awake(struct ieee80211_hw *hw, 3403 struct ieee80211_sta *pubsta, bool block); 3404 3405 /** 3406 * ieee80211_sta_eosp - notify mac80211 about end of SP 3407 * @pubsta: the station 3408 * 3409 * When a device transmits frames in a way that it can't tell 3410 * mac80211 in the TX status about the EOSP, it must clear the 3411 * %IEEE80211_TX_STATUS_EOSP bit and call this function instead. 3412 * This applies for PS-Poll as well as uAPSD. 3413 * 3414 * Note that there is no non-_irqsafe version right now as 3415 * it wasn't needed, but just like _tx_status() and _rx() 3416 * must not be mixed in irqsafe/non-irqsafe versions, this 3417 * function must not be mixed with those either. Use the 3418 * all irqsafe, or all non-irqsafe, don't mix! If you need 3419 * the non-irqsafe version of this, you need to add it. 3420 */ 3421 void ieee80211_sta_eosp_irqsafe(struct ieee80211_sta *pubsta); 3422 3423 /** 3424 * ieee80211_iter_keys - iterate keys programmed into the device 3425 * @hw: pointer obtained from ieee80211_alloc_hw() 3426 * @vif: virtual interface to iterate, may be %NULL for all 3427 * @iter: iterator function that will be called for each key 3428 * @iter_data: custom data to pass to the iterator function 3429 * 3430 * This function can be used to iterate all the keys known to 3431 * mac80211, even those that weren't previously programmed into 3432 * the device. This is intended for use in WoWLAN if the device 3433 * needs reprogramming of the keys during suspend. Note that due 3434 * to locking reasons, it is also only safe to call this at few 3435 * spots since it must hold the RTNL and be able to sleep. 3436 * 3437 * The order in which the keys are iterated matches the order 3438 * in which they were originally installed and handed to the 3439 * set_key callback. 3440 */ 3441 void ieee80211_iter_keys(struct ieee80211_hw *hw, 3442 struct ieee80211_vif *vif, 3443 void (*iter)(struct ieee80211_hw *hw, 3444 struct ieee80211_vif *vif, 3445 struct ieee80211_sta *sta, 3446 struct ieee80211_key_conf *key, 3447 void *data), 3448 void *iter_data); 3449 3450 /** 3451 * ieee80211_ap_probereq_get - retrieve a Probe Request template 3452 * @hw: pointer obtained from ieee80211_alloc_hw(). 3453 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 3454 * 3455 * Creates a Probe Request template which can, for example, be uploaded to 3456 * hardware. The template is filled with bssid, ssid and supported rate 3457 * information. This function must only be called from within the 3458 * .bss_info_changed callback function and only in managed mode. The function 3459 * is only useful when the interface is associated, otherwise it will return 3460 * NULL. 3461 */ 3462 struct sk_buff *ieee80211_ap_probereq_get(struct ieee80211_hw *hw, 3463 struct ieee80211_vif *vif); 3464 3465 /** 3466 * ieee80211_beacon_loss - inform hardware does not receive beacons 3467 * 3468 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 3469 * 3470 * When beacon filtering is enabled with %IEEE80211_VIF_BEACON_FILTER and 3471 * %IEEE80211_CONF_PS is set, the driver needs to inform whenever the 3472 * hardware is not receiving beacons with this function. 3473 */ 3474 void ieee80211_beacon_loss(struct ieee80211_vif *vif); 3475 3476 /** 3477 * ieee80211_connection_loss - inform hardware has lost connection to the AP 3478 * 3479 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 3480 * 3481 * When beacon filtering is enabled with %IEEE80211_VIF_BEACON_FILTER, and 3482 * %IEEE80211_CONF_PS and %IEEE80211_HW_CONNECTION_MONITOR are set, the driver 3483 * needs to inform if the connection to the AP has been lost. 3484 * 3485 * This function will cause immediate change to disassociated state, 3486 * without connection recovery attempts. 3487 */ 3488 void ieee80211_connection_loss(struct ieee80211_vif *vif); 3489 3490 /** 3491 * ieee80211_resume_disconnect - disconnect from AP after resume 3492 * 3493 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 3494 * 3495 * Instructs mac80211 to disconnect from the AP after resume. 3496 * Drivers can use this after WoWLAN if they know that the 3497 * connection cannot be kept up, for example because keys were 3498 * used while the device was asleep but the replay counters or 3499 * similar cannot be retrieved from the device during resume. 3500 * 3501 * Note that due to implementation issues, if the driver uses 3502 * the reconfiguration functionality during resume the interface 3503 * will still be added as associated first during resume and then 3504 * disconnect normally later. 3505 * 3506 * This function can only be called from the resume callback and 3507 * the driver must not be holding any of its own locks while it 3508 * calls this function, or at least not any locks it needs in the 3509 * key configuration paths (if it supports HW crypto). 3510 */ 3511 void ieee80211_resume_disconnect(struct ieee80211_vif *vif); 3512 3513 /** 3514 * ieee80211_disable_dyn_ps - force mac80211 to temporarily disable dynamic psm 3515 * 3516 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 3517 * 3518 * Some hardware require full power save to manage simultaneous BT traffic 3519 * on the WLAN frequency. Full PSM is required periodically, whenever there are 3520 * burst of BT traffic. The hardware gets information of BT traffic via 3521 * hardware co-existence lines, and consequentially requests mac80211 to 3522 * (temporarily) enter full psm. 3523 * This function will only temporarily disable dynamic PS, not enable PSM if 3524 * it was not already enabled. 3525 * The driver must make sure to re-enable dynamic PS using 3526 * ieee80211_enable_dyn_ps() if the driver has disabled it. 3527 * 3528 */ 3529 void ieee80211_disable_dyn_ps(struct ieee80211_vif *vif); 3530 3531 /** 3532 * ieee80211_enable_dyn_ps - restore dynamic psm after being disabled 3533 * 3534 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 3535 * 3536 * This function restores dynamic PS after being temporarily disabled via 3537 * ieee80211_disable_dyn_ps(). Each ieee80211_disable_dyn_ps() call must 3538 * be coupled with an eventual call to this function. 3539 * 3540 */ 3541 void ieee80211_enable_dyn_ps(struct ieee80211_vif *vif); 3542 3543 /** 3544 * ieee80211_cqm_rssi_notify - inform a configured connection quality monitoring 3545 * rssi threshold triggered 3546 * 3547 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 3548 * @rssi_event: the RSSI trigger event type 3549 * @gfp: context flags 3550 * 3551 * When the %IEEE80211_VIF_SUPPORTS_CQM_RSSI is set, and a connection quality 3552 * monitoring is configured with an rssi threshold, the driver will inform 3553 * whenever the rssi level reaches the threshold. 3554 */ 3555 void ieee80211_cqm_rssi_notify(struct ieee80211_vif *vif, 3556 enum nl80211_cqm_rssi_threshold_event rssi_event, 3557 gfp_t gfp); 3558 3559 /** 3560 * ieee80211_get_operstate - get the operstate of the vif 3561 * 3562 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 3563 * 3564 * The driver might need to know the operstate of the net_device 3565 * (specifically, whether the link is IF_OPER_UP after resume) 3566 */ 3567 unsigned char ieee80211_get_operstate(struct ieee80211_vif *vif); 3568 3569 /** 3570 * ieee80211_chswitch_done - Complete channel switch process 3571 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 3572 * @success: make the channel switch successful or not 3573 * 3574 * Complete the channel switch post-process: set the new operational channel 3575 * and wake up the suspended queues. 3576 */ 3577 void ieee80211_chswitch_done(struct ieee80211_vif *vif, bool success); 3578 3579 /** 3580 * ieee80211_request_smps - request SM PS transition 3581 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 3582 * @smps_mode: new SM PS mode 3583 * 3584 * This allows the driver to request an SM PS transition in managed 3585 * mode. This is useful when the driver has more information than 3586 * the stack about possible interference, for example by bluetooth. 3587 */ 3588 void ieee80211_request_smps(struct ieee80211_vif *vif, 3589 enum ieee80211_smps_mode smps_mode); 3590 3591 /** 3592 * ieee80211_key_removed - disable hw acceleration for key 3593 * @key_conf: The key hw acceleration should be disabled for 3594 * 3595 * This allows drivers to indicate that the given key has been 3596 * removed from hardware acceleration, due to a new key that 3597 * was added. Don't use this if the key can continue to be used 3598 * for TX, if the key restriction is on RX only it is permitted 3599 * to keep the key for TX only and not call this function. 3600 * 3601 * Due to locking constraints, it may only be called during 3602 * @set_key. This function must be allowed to sleep, and the 3603 * key it tries to disable may still be used until it returns. 3604 */ 3605 void ieee80211_key_removed(struct ieee80211_key_conf *key_conf); 3606 3607 /** 3608 * ieee80211_ready_on_channel - notification of remain-on-channel start 3609 * @hw: pointer as obtained from ieee80211_alloc_hw() 3610 */ 3611 void ieee80211_ready_on_channel(struct ieee80211_hw *hw); 3612 3613 /** 3614 * ieee80211_remain_on_channel_expired - remain_on_channel duration expired 3615 * @hw: pointer as obtained from ieee80211_alloc_hw() 3616 */ 3617 void ieee80211_remain_on_channel_expired(struct ieee80211_hw *hw); 3618 3619 /** 3620 * ieee80211_stop_rx_ba_session - callback to stop existing BA sessions 3621 * 3622 * in order not to harm the system performance and user experience, the device 3623 * may request not to allow any rx ba session and tear down existing rx ba 3624 * sessions based on system constraints such as periodic BT activity that needs 3625 * to limit wlan activity (eg.sco or a2dp)." 3626 * in such cases, the intention is to limit the duration of the rx ppdu and 3627 * therefore prevent the peer device to use a-mpdu aggregation. 3628 * 3629 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 3630 * @ba_rx_bitmap: Bit map of open rx ba per tid 3631 * @addr: & to bssid mac address 3632 */ 3633 void ieee80211_stop_rx_ba_session(struct ieee80211_vif *vif, u16 ba_rx_bitmap, 3634 const u8 *addr); 3635 3636 /** 3637 * ieee80211_send_bar - send a BlockAckReq frame 3638 * 3639 * can be used to flush pending frames from the peer's aggregation reorder 3640 * buffer. 3641 * 3642 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 3643 * @ra: the peer's destination address 3644 * @tid: the TID of the aggregation session 3645 * @ssn: the new starting sequence number for the receiver 3646 */ 3647 void ieee80211_send_bar(struct ieee80211_vif *vif, u8 *ra, u16 tid, u16 ssn); 3648 3649 /* Rate control API */ 3650 3651 /** 3652 * struct ieee80211_tx_rate_control - rate control information for/from RC algo 3653 * 3654 * @hw: The hardware the algorithm is invoked for. 3655 * @sband: The band this frame is being transmitted on. 3656 * @bss_conf: the current BSS configuration 3657 * @skb: the skb that will be transmitted, the control information in it needs 3658 * to be filled in 3659 * @reported_rate: The rate control algorithm can fill this in to indicate 3660 * which rate should be reported to userspace as the current rate and 3661 * used for rate calculations in the mesh network. 3662 * @rts: whether RTS will be used for this frame because it is longer than the 3663 * RTS threshold 3664 * @short_preamble: whether mac80211 will request short-preamble transmission 3665 * if the selected rate supports it 3666 * @max_rate_idx: user-requested maximum (legacy) rate 3667 * (deprecated; this will be removed once drivers get updated to use 3668 * rate_idx_mask) 3669 * @rate_idx_mask: user-requested (legacy) rate mask 3670 * @rate_idx_mcs_mask: user-requested MCS rate mask 3671 * @bss: whether this frame is sent out in AP or IBSS mode 3672 */ 3673 struct ieee80211_tx_rate_control { 3674 struct ieee80211_hw *hw; 3675 struct ieee80211_supported_band *sband; 3676 struct ieee80211_bss_conf *bss_conf; 3677 struct sk_buff *skb; 3678 struct ieee80211_tx_rate reported_rate; 3679 bool rts, short_preamble; 3680 u8 max_rate_idx; 3681 u32 rate_idx_mask; 3682 u8 rate_idx_mcs_mask[IEEE80211_HT_MCS_MASK_LEN]; 3683 bool bss; 3684 }; 3685 3686 struct rate_control_ops { 3687 struct module *module; 3688 const char *name; 3689 void *(*alloc)(struct ieee80211_hw *hw, struct dentry *debugfsdir); 3690 void (*free)(void *priv); 3691 3692 void *(*alloc_sta)(void *priv, struct ieee80211_sta *sta, gfp_t gfp); 3693 void (*rate_init)(void *priv, struct ieee80211_supported_band *sband, 3694 struct ieee80211_sta *sta, void *priv_sta); 3695 void (*rate_update)(void *priv, struct ieee80211_supported_band *sband, 3696 struct ieee80211_sta *sta, void *priv_sta, 3697 u32 changed); 3698 void (*free_sta)(void *priv, struct ieee80211_sta *sta, 3699 void *priv_sta); 3700 3701 void (*tx_status)(void *priv, struct ieee80211_supported_band *sband, 3702 struct ieee80211_sta *sta, void *priv_sta, 3703 struct sk_buff *skb); 3704 void (*get_rate)(void *priv, struct ieee80211_sta *sta, void *priv_sta, 3705 struct ieee80211_tx_rate_control *txrc); 3706 3707 void (*add_sta_debugfs)(void *priv, void *priv_sta, 3708 struct dentry *dir); 3709 void (*remove_sta_debugfs)(void *priv, void *priv_sta); 3710 }; 3711 3712 static inline int rate_supported(struct ieee80211_sta *sta, 3713 enum ieee80211_band band, 3714 int index) 3715 { 3716 return (sta == NULL || sta->supp_rates[band] & BIT(index)); 3717 } 3718 3719 /** 3720 * rate_control_send_low - helper for drivers for management/no-ack frames 3721 * 3722 * Rate control algorithms that agree to use the lowest rate to 3723 * send management frames and NO_ACK data with the respective hw 3724 * retries should use this in the beginning of their mac80211 get_rate 3725 * callback. If true is returned the rate control can simply return. 3726 * If false is returned we guarantee that sta and sta and priv_sta is 3727 * not null. 3728 * 3729 * Rate control algorithms wishing to do more intelligent selection of 3730 * rate for multicast/broadcast frames may choose to not use this. 3731 * 3732 * @sta: &struct ieee80211_sta pointer to the target destination. Note 3733 * that this may be null. 3734 * @priv_sta: private rate control structure. This may be null. 3735 * @txrc: rate control information we sholud populate for mac80211. 3736 */ 3737 bool rate_control_send_low(struct ieee80211_sta *sta, 3738 void *priv_sta, 3739 struct ieee80211_tx_rate_control *txrc); 3740 3741 3742 static inline s8 3743 rate_lowest_index(struct ieee80211_supported_band *sband, 3744 struct ieee80211_sta *sta) 3745 { 3746 int i; 3747 3748 for (i = 0; i < sband->n_bitrates; i++) 3749 if (rate_supported(sta, sband->band, i)) 3750 return i; 3751 3752 /* warn when we cannot find a rate. */ 3753 WARN_ON_ONCE(1); 3754 3755 /* and return 0 (the lowest index) */ 3756 return 0; 3757 } 3758 3759 static inline 3760 bool rate_usable_index_exists(struct ieee80211_supported_band *sband, 3761 struct ieee80211_sta *sta) 3762 { 3763 unsigned int i; 3764 3765 for (i = 0; i < sband->n_bitrates; i++) 3766 if (rate_supported(sta, sband->band, i)) 3767 return true; 3768 return false; 3769 } 3770 3771 int ieee80211_rate_control_register(struct rate_control_ops *ops); 3772 void ieee80211_rate_control_unregister(struct rate_control_ops *ops); 3773 3774 static inline bool 3775 conf_is_ht20(struct ieee80211_conf *conf) 3776 { 3777 return conf->channel_type == NL80211_CHAN_HT20; 3778 } 3779 3780 static inline bool 3781 conf_is_ht40_minus(struct ieee80211_conf *conf) 3782 { 3783 return conf->channel_type == NL80211_CHAN_HT40MINUS; 3784 } 3785 3786 static inline bool 3787 conf_is_ht40_plus(struct ieee80211_conf *conf) 3788 { 3789 return conf->channel_type == NL80211_CHAN_HT40PLUS; 3790 } 3791 3792 static inline bool 3793 conf_is_ht40(struct ieee80211_conf *conf) 3794 { 3795 return conf_is_ht40_minus(conf) || conf_is_ht40_plus(conf); 3796 } 3797 3798 static inline bool 3799 conf_is_ht(struct ieee80211_conf *conf) 3800 { 3801 return conf->channel_type != NL80211_CHAN_NO_HT; 3802 } 3803 3804 static inline enum nl80211_iftype 3805 ieee80211_iftype_p2p(enum nl80211_iftype type, bool p2p) 3806 { 3807 if (p2p) { 3808 switch (type) { 3809 case NL80211_IFTYPE_STATION: 3810 return NL80211_IFTYPE_P2P_CLIENT; 3811 case NL80211_IFTYPE_AP: 3812 return NL80211_IFTYPE_P2P_GO; 3813 default: 3814 break; 3815 } 3816 } 3817 return type; 3818 } 3819 3820 static inline enum nl80211_iftype 3821 ieee80211_vif_type_p2p(struct ieee80211_vif *vif) 3822 { 3823 return ieee80211_iftype_p2p(vif->type, vif->p2p); 3824 } 3825 3826 void ieee80211_enable_rssi_reports(struct ieee80211_vif *vif, 3827 int rssi_min_thold, 3828 int rssi_max_thold); 3829 3830 void ieee80211_disable_rssi_reports(struct ieee80211_vif *vif); 3831 3832 int ieee80211_add_srates_ie(struct ieee80211_vif *vif, 3833 struct sk_buff *skb, bool need_basic); 3834 3835 int ieee80211_add_ext_srates_ie(struct ieee80211_vif *vif, 3836 struct sk_buff *skb, bool need_basic); 3837 3838 /** 3839 * ieee80211_ave_rssi - report the average rssi for the specified interface 3840 * 3841 * @vif: the specified virtual interface 3842 * 3843 * This function return the average rssi value for the requested interface. 3844 * It assumes that the given vif is valid. 3845 */ 3846 int ieee80211_ave_rssi(struct ieee80211_vif *vif); 3847 3848 #endif /* MAC80211_H */ 3849