1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * Linux INET6 implementation 4 * 5 * Authors: 6 * Pedro Roque <roque@di.fc.ul.pt> 7 */ 8 9 #ifndef _NET_IPV6_H 10 #define _NET_IPV6_H 11 12 #include <linux/ipv6.h> 13 #include <linux/hardirq.h> 14 #include <linux/jhash.h> 15 #include <linux/refcount.h> 16 #include <linux/jump_label_ratelimit.h> 17 #include <net/if_inet6.h> 18 #include <net/flow.h> 19 #include <net/flow_dissector.h> 20 #include <net/inet_dscp.h> 21 #include <net/snmp.h> 22 #include <net/netns/hash.h> 23 24 struct ip_tunnel_info; 25 26 #define SIN6_LEN_RFC2133 24 27 28 #define IPV6_MAXPLEN 65535 29 30 /* 31 * NextHeader field of IPv6 header 32 */ 33 34 #define NEXTHDR_HOP 0 /* Hop-by-hop option header. */ 35 #define NEXTHDR_IPV4 4 /* IPv4 in IPv6 */ 36 #define NEXTHDR_TCP 6 /* TCP segment. */ 37 #define NEXTHDR_UDP 17 /* UDP message. */ 38 #define NEXTHDR_IPV6 41 /* IPv6 in IPv6 */ 39 #define NEXTHDR_ROUTING 43 /* Routing header. */ 40 #define NEXTHDR_FRAGMENT 44 /* Fragmentation/reassembly header. */ 41 #define NEXTHDR_GRE 47 /* GRE header. */ 42 #define NEXTHDR_ESP 50 /* Encapsulating security payload. */ 43 #define NEXTHDR_AUTH 51 /* Authentication header. */ 44 #define NEXTHDR_ICMP 58 /* ICMP for IPv6. */ 45 #define NEXTHDR_NONE 59 /* No next header */ 46 #define NEXTHDR_DEST 60 /* Destination options header. */ 47 #define NEXTHDR_SCTP 132 /* SCTP message. */ 48 #define NEXTHDR_MOBILITY 135 /* Mobility header. */ 49 50 #define NEXTHDR_MAX 255 51 52 #define IPV6_DEFAULT_HOPLIMIT 64 53 #define IPV6_DEFAULT_MCASTHOPS 1 54 55 /* Limits on Hop-by-Hop and Destination options. 56 * 57 * Per RFC8200 there is no limit on the maximum number or lengths of options in 58 * Hop-by-Hop or Destination options other then the packet must fit in an MTU. 59 * We allow configurable limits in order to mitigate potential denial of 60 * service attacks. 61 * 62 * There are three limits that may be set: 63 * - Limit the number of options in a Hop-by-Hop or Destination options 64 * extension header 65 * - Limit the byte length of a Hop-by-Hop or Destination options extension 66 * header 67 * - Disallow unknown options 68 * 69 * The limits are expressed in corresponding sysctls: 70 * 71 * ipv6.sysctl.max_dst_opts_cnt 72 * ipv6.sysctl.max_hbh_opts_cnt 73 * ipv6.sysctl.max_dst_opts_len 74 * ipv6.sysctl.max_hbh_opts_len 75 * 76 * max_*_opts_cnt is the number of TLVs that are allowed for Destination 77 * options or Hop-by-Hop options. If the number is less than zero then unknown 78 * TLVs are disallowed and the number of known options that are allowed is the 79 * absolute value. Setting the value to INT_MAX indicates no limit. 80 * 81 * max_*_opts_len is the length limit in bytes of a Destination or 82 * Hop-by-Hop options extension header. Setting the value to INT_MAX 83 * indicates no length limit. 84 * 85 * If a limit is exceeded when processing an extension header the packet is 86 * silently discarded. 87 */ 88 89 /* Default limits for Hop-by-Hop and Destination options */ 90 #define IP6_DEFAULT_MAX_DST_OPTS_CNT 8 91 #define IP6_DEFAULT_MAX_HBH_OPTS_CNT 8 92 #define IP6_DEFAULT_MAX_DST_OPTS_LEN INT_MAX /* No limit */ 93 #define IP6_DEFAULT_MAX_HBH_OPTS_LEN INT_MAX /* No limit */ 94 95 /* 96 * Addr type 97 * 98 * type - unicast | multicast 99 * scope - local | site | global 100 * v4 - compat 101 * v4mapped 102 * any 103 * loopback 104 */ 105 106 #define IPV6_ADDR_ANY 0x0000U 107 108 #define IPV6_ADDR_UNICAST 0x0001U 109 #define IPV6_ADDR_MULTICAST 0x0002U 110 111 #define IPV6_ADDR_LOOPBACK 0x0010U 112 #define IPV6_ADDR_LINKLOCAL 0x0020U 113 #define IPV6_ADDR_SITELOCAL 0x0040U 114 115 #define IPV6_ADDR_COMPATv4 0x0080U 116 117 #define IPV6_ADDR_SCOPE_MASK 0x00f0U 118 119 #define IPV6_ADDR_MAPPED 0x1000U 120 121 /* 122 * Addr scopes 123 */ 124 #define IPV6_ADDR_MC_SCOPE(a) \ 125 ((a)->s6_addr[1] & 0x0f) /* nonstandard */ 126 #define __IPV6_ADDR_SCOPE_INVALID -1 127 #define IPV6_ADDR_SCOPE_NODELOCAL 0x01 128 #define IPV6_ADDR_SCOPE_LINKLOCAL 0x02 129 #define IPV6_ADDR_SCOPE_SITELOCAL 0x05 130 #define IPV6_ADDR_SCOPE_ORGLOCAL 0x08 131 #define IPV6_ADDR_SCOPE_GLOBAL 0x0e 132 133 /* 134 * Addr flags 135 */ 136 #define IPV6_ADDR_MC_FLAG_TRANSIENT(a) \ 137 ((a)->s6_addr[1] & 0x10) 138 #define IPV6_ADDR_MC_FLAG_PREFIX(a) \ 139 ((a)->s6_addr[1] & 0x20) 140 #define IPV6_ADDR_MC_FLAG_RENDEZVOUS(a) \ 141 ((a)->s6_addr[1] & 0x40) 142 143 /* 144 * fragmentation header 145 */ 146 147 struct frag_hdr { 148 __u8 nexthdr; 149 __u8 reserved; 150 __be16 frag_off; 151 __be32 identification; 152 }; 153 154 /* 155 * Jumbo payload option, as described in RFC 2675 2. 156 */ 157 struct hop_jumbo_hdr { 158 u8 nexthdr; 159 u8 hdrlen; 160 u8 tlv_type; /* IPV6_TLV_JUMBO, 0xC2 */ 161 u8 tlv_len; /* 4 */ 162 __be32 jumbo_payload_len; 163 }; 164 165 #define IP6_MF 0x0001 166 #define IP6_OFFSET 0xFFF8 167 168 struct ip6_fraglist_iter { 169 struct ipv6hdr *tmp_hdr; 170 struct sk_buff *frag; 171 int offset; 172 unsigned int hlen; 173 __be32 frag_id; 174 u8 nexthdr; 175 }; 176 177 int ip6_fraglist_init(struct sk_buff *skb, unsigned int hlen, u8 *prevhdr, 178 u8 nexthdr, __be32 frag_id, 179 struct ip6_fraglist_iter *iter); 180 void ip6_fraglist_prepare(struct sk_buff *skb, struct ip6_fraglist_iter *iter); 181 182 static inline struct sk_buff *ip6_fraglist_next(struct ip6_fraglist_iter *iter) 183 { 184 struct sk_buff *skb = iter->frag; 185 186 iter->frag = skb->next; 187 skb_mark_not_on_list(skb); 188 189 return skb; 190 } 191 192 struct ip6_frag_state { 193 u8 *prevhdr; 194 unsigned int hlen; 195 unsigned int mtu; 196 unsigned int left; 197 int offset; 198 int ptr; 199 int hroom; 200 int troom; 201 __be32 frag_id; 202 u8 nexthdr; 203 }; 204 205 void ip6_frag_init(struct sk_buff *skb, unsigned int hlen, unsigned int mtu, 206 unsigned short needed_tailroom, int hdr_room, u8 *prevhdr, 207 u8 nexthdr, __be32 frag_id, struct ip6_frag_state *state); 208 struct sk_buff *ip6_frag_next(struct sk_buff *skb, 209 struct ip6_frag_state *state); 210 211 #define IP6_REPLY_MARK(net, mark) \ 212 ((net)->ipv6.sysctl.fwmark_reflect ? (mark) : 0) 213 214 #include <net/sock.h> 215 216 /* sysctls */ 217 extern int sysctl_mld_max_msf; 218 extern int sysctl_mld_qrv; 219 220 #define _DEVINC(net, statname, mod, idev, field) \ 221 ({ \ 222 struct inet6_dev *_idev = (idev); \ 223 if (likely(_idev != NULL)) \ 224 mod##SNMP_INC_STATS64((_idev)->stats.statname, (field));\ 225 mod##SNMP_INC_STATS64((net)->mib.statname##_statistics, (field));\ 226 }) 227 228 /* per device counters are atomic_long_t */ 229 #define _DEVINCATOMIC(net, statname, mod, idev, field) \ 230 ({ \ 231 struct inet6_dev *_idev = (idev); \ 232 if (likely(_idev != NULL)) \ 233 SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \ 234 mod##SNMP_INC_STATS((net)->mib.statname##_statistics, (field));\ 235 }) 236 237 /* per device and per net counters are atomic_long_t */ 238 #define _DEVINC_ATOMIC_ATOMIC(net, statname, idev, field) \ 239 ({ \ 240 struct inet6_dev *_idev = (idev); \ 241 if (likely(_idev != NULL)) \ 242 SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \ 243 SNMP_INC_STATS_ATOMIC_LONG((net)->mib.statname##_statistics, (field));\ 244 }) 245 246 #define _DEVADD(net, statname, mod, idev, field, val) \ 247 ({ \ 248 struct inet6_dev *_idev = (idev); \ 249 if (likely(_idev != NULL)) \ 250 mod##SNMP_ADD_STATS((_idev)->stats.statname, (field), (val)); \ 251 mod##SNMP_ADD_STATS((net)->mib.statname##_statistics, (field), (val));\ 252 }) 253 254 #define _DEVUPD(net, statname, mod, idev, field, val) \ 255 ({ \ 256 struct inet6_dev *_idev = (idev); \ 257 if (likely(_idev != NULL)) \ 258 mod##SNMP_UPD_PO_STATS((_idev)->stats.statname, field, (val)); \ 259 mod##SNMP_UPD_PO_STATS((net)->mib.statname##_statistics, field, (val));\ 260 }) 261 262 /* MIBs */ 263 264 #define IP6_INC_STATS(net, idev,field) \ 265 _DEVINC(net, ipv6, , idev, field) 266 #define __IP6_INC_STATS(net, idev,field) \ 267 _DEVINC(net, ipv6, __, idev, field) 268 #define IP6_ADD_STATS(net, idev,field,val) \ 269 _DEVADD(net, ipv6, , idev, field, val) 270 #define __IP6_ADD_STATS(net, idev,field,val) \ 271 _DEVADD(net, ipv6, __, idev, field, val) 272 #define IP6_UPD_PO_STATS(net, idev,field,val) \ 273 _DEVUPD(net, ipv6, , idev, field, val) 274 #define __IP6_UPD_PO_STATS(net, idev,field,val) \ 275 _DEVUPD(net, ipv6, __, idev, field, val) 276 #define ICMP6_INC_STATS(net, idev, field) \ 277 _DEVINCATOMIC(net, icmpv6, , idev, field) 278 #define __ICMP6_INC_STATS(net, idev, field) \ 279 _DEVINCATOMIC(net, icmpv6, __, idev, field) 280 281 #define ICMP6MSGOUT_INC_STATS(net, idev, field) \ 282 _DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field +256) 283 #define ICMP6MSGIN_INC_STATS(net, idev, field) \ 284 _DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field) 285 286 struct ip6_ra_chain { 287 struct ip6_ra_chain *next; 288 struct sock *sk; 289 int sel; 290 void (*destructor)(struct sock *); 291 }; 292 293 extern struct ip6_ra_chain *ip6_ra_chain; 294 extern rwlock_t ip6_ra_lock; 295 296 /* 297 This structure is prepared by protocol, when parsing 298 ancillary data and passed to IPv6. 299 */ 300 301 struct ipv6_txoptions { 302 refcount_t refcnt; 303 /* Length of this structure */ 304 int tot_len; 305 306 /* length of extension headers */ 307 308 __u16 opt_flen; /* after fragment hdr */ 309 __u16 opt_nflen; /* before fragment hdr */ 310 311 struct ipv6_opt_hdr *hopopt; 312 struct ipv6_opt_hdr *dst0opt; 313 struct ipv6_rt_hdr *srcrt; /* Routing Header */ 314 struct ipv6_opt_hdr *dst1opt; 315 struct rcu_head rcu; 316 /* Option buffer, as read by IPV6_PKTOPTIONS, starts here. */ 317 }; 318 319 /* flowlabel_reflect sysctl values */ 320 enum flowlabel_reflect { 321 FLOWLABEL_REFLECT_ESTABLISHED = 1, 322 FLOWLABEL_REFLECT_TCP_RESET = 2, 323 FLOWLABEL_REFLECT_ICMPV6_ECHO_REPLIES = 4, 324 }; 325 326 struct ip6_flowlabel { 327 struct ip6_flowlabel __rcu *next; 328 __be32 label; 329 atomic_t users; 330 struct in6_addr dst; 331 struct ipv6_txoptions *opt; 332 unsigned long linger; 333 struct rcu_head rcu; 334 u8 share; 335 union { 336 struct pid *pid; 337 kuid_t uid; 338 } owner; 339 unsigned long lastuse; 340 unsigned long expires; 341 struct net *fl_net; 342 }; 343 344 #define IPV6_FLOWINFO_MASK cpu_to_be32(0x0FFFFFFF) 345 #define IPV6_FLOWLABEL_MASK cpu_to_be32(0x000FFFFF) 346 #define IPV6_FLOWLABEL_STATELESS_FLAG cpu_to_be32(0x00080000) 347 348 #define IPV6_TCLASS_MASK (IPV6_FLOWINFO_MASK & ~IPV6_FLOWLABEL_MASK) 349 #define IPV6_TCLASS_SHIFT 20 350 351 struct ipv6_fl_socklist { 352 struct ipv6_fl_socklist __rcu *next; 353 struct ip6_flowlabel *fl; 354 struct rcu_head rcu; 355 }; 356 357 struct ipcm6_cookie { 358 struct sockcm_cookie sockc; 359 __s16 hlimit; 360 __s16 tclass; 361 __u16 gso_size; 362 __s8 dontfrag; 363 struct ipv6_txoptions *opt; 364 }; 365 366 static inline void ipcm6_init(struct ipcm6_cookie *ipc6) 367 { 368 *ipc6 = (struct ipcm6_cookie) { 369 .hlimit = -1, 370 .tclass = -1, 371 .dontfrag = -1, 372 }; 373 } 374 375 static inline void ipcm6_init_sk(struct ipcm6_cookie *ipc6, 376 const struct ipv6_pinfo *np) 377 { 378 *ipc6 = (struct ipcm6_cookie) { 379 .hlimit = -1, 380 .tclass = np->tclass, 381 .dontfrag = np->dontfrag, 382 }; 383 } 384 385 static inline struct ipv6_txoptions *txopt_get(const struct ipv6_pinfo *np) 386 { 387 struct ipv6_txoptions *opt; 388 389 rcu_read_lock(); 390 opt = rcu_dereference(np->opt); 391 if (opt) { 392 if (!refcount_inc_not_zero(&opt->refcnt)) 393 opt = NULL; 394 else 395 opt = rcu_pointer_handoff(opt); 396 } 397 rcu_read_unlock(); 398 return opt; 399 } 400 401 static inline void txopt_put(struct ipv6_txoptions *opt) 402 { 403 if (opt && refcount_dec_and_test(&opt->refcnt)) 404 kfree_rcu(opt, rcu); 405 } 406 407 #if IS_ENABLED(CONFIG_IPV6) 408 struct ip6_flowlabel *__fl6_sock_lookup(struct sock *sk, __be32 label); 409 410 extern struct static_key_false_deferred ipv6_flowlabel_exclusive; 411 static inline struct ip6_flowlabel *fl6_sock_lookup(struct sock *sk, 412 __be32 label) 413 { 414 if (static_branch_unlikely(&ipv6_flowlabel_exclusive.key) && 415 READ_ONCE(sock_net(sk)->ipv6.flowlabel_has_excl)) 416 return __fl6_sock_lookup(sk, label) ? : ERR_PTR(-ENOENT); 417 418 return NULL; 419 } 420 #endif 421 422 struct ipv6_txoptions *fl6_merge_options(struct ipv6_txoptions *opt_space, 423 struct ip6_flowlabel *fl, 424 struct ipv6_txoptions *fopt); 425 void fl6_free_socklist(struct sock *sk); 426 int ipv6_flowlabel_opt(struct sock *sk, sockptr_t optval, int optlen); 427 int ipv6_flowlabel_opt_get(struct sock *sk, struct in6_flowlabel_req *freq, 428 int flags); 429 int ip6_flowlabel_init(void); 430 void ip6_flowlabel_cleanup(void); 431 bool ip6_autoflowlabel(struct net *net, const struct ipv6_pinfo *np); 432 433 static inline void fl6_sock_release(struct ip6_flowlabel *fl) 434 { 435 if (fl) 436 atomic_dec(&fl->users); 437 } 438 439 enum skb_drop_reason icmpv6_notify(struct sk_buff *skb, u8 type, 440 u8 code, __be32 info); 441 442 void icmpv6_push_pending_frames(struct sock *sk, struct flowi6 *fl6, 443 struct icmp6hdr *thdr, int len); 444 445 int ip6_ra_control(struct sock *sk, int sel); 446 447 int ipv6_parse_hopopts(struct sk_buff *skb); 448 449 struct ipv6_txoptions *ipv6_dup_options(struct sock *sk, 450 struct ipv6_txoptions *opt); 451 struct ipv6_txoptions *ipv6_renew_options(struct sock *sk, 452 struct ipv6_txoptions *opt, 453 int newtype, 454 struct ipv6_opt_hdr *newopt); 455 struct ipv6_txoptions *__ipv6_fixup_options(struct ipv6_txoptions *opt_space, 456 struct ipv6_txoptions *opt); 457 458 static inline struct ipv6_txoptions * 459 ipv6_fixup_options(struct ipv6_txoptions *opt_space, struct ipv6_txoptions *opt) 460 { 461 if (!opt) 462 return NULL; 463 return __ipv6_fixup_options(opt_space, opt); 464 } 465 466 bool ipv6_opt_accepted(const struct sock *sk, const struct sk_buff *skb, 467 const struct inet6_skb_parm *opt); 468 struct ipv6_txoptions *ipv6_update_options(struct sock *sk, 469 struct ipv6_txoptions *opt); 470 471 /* This helper is specialized for BIG TCP needs. 472 * It assumes the hop_jumbo_hdr will immediately follow the IPV6 header. 473 * It assumes headers are already in skb->head. 474 * Returns 0, or IPPROTO_TCP if a BIG TCP packet is there. 475 */ 476 static inline int ipv6_has_hopopt_jumbo(const struct sk_buff *skb) 477 { 478 const struct hop_jumbo_hdr *jhdr; 479 const struct ipv6hdr *nhdr; 480 481 if (likely(skb->len <= GRO_LEGACY_MAX_SIZE)) 482 return 0; 483 484 if (skb->protocol != htons(ETH_P_IPV6)) 485 return 0; 486 487 if (skb_network_offset(skb) + 488 sizeof(struct ipv6hdr) + 489 sizeof(struct hop_jumbo_hdr) > skb_headlen(skb)) 490 return 0; 491 492 nhdr = ipv6_hdr(skb); 493 494 if (nhdr->nexthdr != NEXTHDR_HOP) 495 return 0; 496 497 jhdr = (const struct hop_jumbo_hdr *) (nhdr + 1); 498 if (jhdr->tlv_type != IPV6_TLV_JUMBO || jhdr->hdrlen != 0 || 499 jhdr->nexthdr != IPPROTO_TCP) 500 return 0; 501 return jhdr->nexthdr; 502 } 503 504 /* Return 0 if HBH header is successfully removed 505 * Or if HBH removal is unnecessary (packet is not big TCP) 506 * Return error to indicate dropping the packet 507 */ 508 static inline int ipv6_hopopt_jumbo_remove(struct sk_buff *skb) 509 { 510 const int hophdr_len = sizeof(struct hop_jumbo_hdr); 511 int nexthdr = ipv6_has_hopopt_jumbo(skb); 512 struct ipv6hdr *h6; 513 514 if (!nexthdr) 515 return 0; 516 517 if (skb_cow_head(skb, 0)) 518 return -1; 519 520 /* Remove the HBH header. 521 * Layout: [Ethernet header][IPv6 header][HBH][L4 Header] 522 */ 523 memmove(skb_mac_header(skb) + hophdr_len, skb_mac_header(skb), 524 skb_network_header(skb) - skb_mac_header(skb) + 525 sizeof(struct ipv6hdr)); 526 527 __skb_pull(skb, hophdr_len); 528 skb->network_header += hophdr_len; 529 skb->mac_header += hophdr_len; 530 531 h6 = ipv6_hdr(skb); 532 h6->nexthdr = nexthdr; 533 534 return 0; 535 } 536 537 static inline bool ipv6_accept_ra(struct inet6_dev *idev) 538 { 539 /* If forwarding is enabled, RA are not accepted unless the special 540 * hybrid mode (accept_ra=2) is enabled. 541 */ 542 return idev->cnf.forwarding ? idev->cnf.accept_ra == 2 : 543 idev->cnf.accept_ra; 544 } 545 546 #define IPV6_FRAG_HIGH_THRESH (4 * 1024*1024) /* 4194304 */ 547 #define IPV6_FRAG_LOW_THRESH (3 * 1024*1024) /* 3145728 */ 548 #define IPV6_FRAG_TIMEOUT (60 * HZ) /* 60 seconds */ 549 550 int __ipv6_addr_type(const struct in6_addr *addr); 551 static inline int ipv6_addr_type(const struct in6_addr *addr) 552 { 553 return __ipv6_addr_type(addr) & 0xffff; 554 } 555 556 static inline int ipv6_addr_scope(const struct in6_addr *addr) 557 { 558 return __ipv6_addr_type(addr) & IPV6_ADDR_SCOPE_MASK; 559 } 560 561 static inline int __ipv6_addr_src_scope(int type) 562 { 563 return (type == IPV6_ADDR_ANY) ? __IPV6_ADDR_SCOPE_INVALID : (type >> 16); 564 } 565 566 static inline int ipv6_addr_src_scope(const struct in6_addr *addr) 567 { 568 return __ipv6_addr_src_scope(__ipv6_addr_type(addr)); 569 } 570 571 static inline bool __ipv6_addr_needs_scope_id(int type) 572 { 573 return type & IPV6_ADDR_LINKLOCAL || 574 (type & IPV6_ADDR_MULTICAST && 575 (type & (IPV6_ADDR_LOOPBACK|IPV6_ADDR_LINKLOCAL))); 576 } 577 578 static inline __u32 ipv6_iface_scope_id(const struct in6_addr *addr, int iface) 579 { 580 return __ipv6_addr_needs_scope_id(__ipv6_addr_type(addr)) ? iface : 0; 581 } 582 583 static inline int ipv6_addr_cmp(const struct in6_addr *a1, const struct in6_addr *a2) 584 { 585 return memcmp(a1, a2, sizeof(struct in6_addr)); 586 } 587 588 static inline bool 589 ipv6_masked_addr_cmp(const struct in6_addr *a1, const struct in6_addr *m, 590 const struct in6_addr *a2) 591 { 592 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 593 const unsigned long *ul1 = (const unsigned long *)a1; 594 const unsigned long *ulm = (const unsigned long *)m; 595 const unsigned long *ul2 = (const unsigned long *)a2; 596 597 return !!(((ul1[0] ^ ul2[0]) & ulm[0]) | 598 ((ul1[1] ^ ul2[1]) & ulm[1])); 599 #else 600 return !!(((a1->s6_addr32[0] ^ a2->s6_addr32[0]) & m->s6_addr32[0]) | 601 ((a1->s6_addr32[1] ^ a2->s6_addr32[1]) & m->s6_addr32[1]) | 602 ((a1->s6_addr32[2] ^ a2->s6_addr32[2]) & m->s6_addr32[2]) | 603 ((a1->s6_addr32[3] ^ a2->s6_addr32[3]) & m->s6_addr32[3])); 604 #endif 605 } 606 607 static inline void ipv6_addr_prefix(struct in6_addr *pfx, 608 const struct in6_addr *addr, 609 int plen) 610 { 611 /* caller must guarantee 0 <= plen <= 128 */ 612 int o = plen >> 3, 613 b = plen & 0x7; 614 615 memset(pfx->s6_addr, 0, sizeof(pfx->s6_addr)); 616 memcpy(pfx->s6_addr, addr, o); 617 if (b != 0) 618 pfx->s6_addr[o] = addr->s6_addr[o] & (0xff00 >> b); 619 } 620 621 static inline void ipv6_addr_prefix_copy(struct in6_addr *addr, 622 const struct in6_addr *pfx, 623 int plen) 624 { 625 /* caller must guarantee 0 <= plen <= 128 */ 626 int o = plen >> 3, 627 b = plen & 0x7; 628 629 memcpy(addr->s6_addr, pfx, o); 630 if (b != 0) { 631 addr->s6_addr[o] &= ~(0xff00 >> b); 632 addr->s6_addr[o] |= (pfx->s6_addr[o] & (0xff00 >> b)); 633 } 634 } 635 636 static inline void __ipv6_addr_set_half(__be32 *addr, 637 __be32 wh, __be32 wl) 638 { 639 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 640 #if defined(__BIG_ENDIAN) 641 if (__builtin_constant_p(wh) && __builtin_constant_p(wl)) { 642 *(__force u64 *)addr = ((__force u64)(wh) << 32 | (__force u64)(wl)); 643 return; 644 } 645 #elif defined(__LITTLE_ENDIAN) 646 if (__builtin_constant_p(wl) && __builtin_constant_p(wh)) { 647 *(__force u64 *)addr = ((__force u64)(wl) << 32 | (__force u64)(wh)); 648 return; 649 } 650 #endif 651 #endif 652 addr[0] = wh; 653 addr[1] = wl; 654 } 655 656 static inline void ipv6_addr_set(struct in6_addr *addr, 657 __be32 w1, __be32 w2, 658 __be32 w3, __be32 w4) 659 { 660 __ipv6_addr_set_half(&addr->s6_addr32[0], w1, w2); 661 __ipv6_addr_set_half(&addr->s6_addr32[2], w3, w4); 662 } 663 664 static inline bool ipv6_addr_equal(const struct in6_addr *a1, 665 const struct in6_addr *a2) 666 { 667 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 668 const unsigned long *ul1 = (const unsigned long *)a1; 669 const unsigned long *ul2 = (const unsigned long *)a2; 670 671 return ((ul1[0] ^ ul2[0]) | (ul1[1] ^ ul2[1])) == 0UL; 672 #else 673 return ((a1->s6_addr32[0] ^ a2->s6_addr32[0]) | 674 (a1->s6_addr32[1] ^ a2->s6_addr32[1]) | 675 (a1->s6_addr32[2] ^ a2->s6_addr32[2]) | 676 (a1->s6_addr32[3] ^ a2->s6_addr32[3])) == 0; 677 #endif 678 } 679 680 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 681 static inline bool __ipv6_prefix_equal64_half(const __be64 *a1, 682 const __be64 *a2, 683 unsigned int len) 684 { 685 if (len && ((*a1 ^ *a2) & cpu_to_be64((~0UL) << (64 - len)))) 686 return false; 687 return true; 688 } 689 690 static inline bool ipv6_prefix_equal(const struct in6_addr *addr1, 691 const struct in6_addr *addr2, 692 unsigned int prefixlen) 693 { 694 const __be64 *a1 = (const __be64 *)addr1; 695 const __be64 *a2 = (const __be64 *)addr2; 696 697 if (prefixlen >= 64) { 698 if (a1[0] ^ a2[0]) 699 return false; 700 return __ipv6_prefix_equal64_half(a1 + 1, a2 + 1, prefixlen - 64); 701 } 702 return __ipv6_prefix_equal64_half(a1, a2, prefixlen); 703 } 704 #else 705 static inline bool ipv6_prefix_equal(const struct in6_addr *addr1, 706 const struct in6_addr *addr2, 707 unsigned int prefixlen) 708 { 709 const __be32 *a1 = addr1->s6_addr32; 710 const __be32 *a2 = addr2->s6_addr32; 711 unsigned int pdw, pbi; 712 713 /* check complete u32 in prefix */ 714 pdw = prefixlen >> 5; 715 if (pdw && memcmp(a1, a2, pdw << 2)) 716 return false; 717 718 /* check incomplete u32 in prefix */ 719 pbi = prefixlen & 0x1f; 720 if (pbi && ((a1[pdw] ^ a2[pdw]) & htonl((0xffffffff) << (32 - pbi)))) 721 return false; 722 723 return true; 724 } 725 #endif 726 727 static inline bool ipv6_addr_any(const struct in6_addr *a) 728 { 729 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 730 const unsigned long *ul = (const unsigned long *)a; 731 732 return (ul[0] | ul[1]) == 0UL; 733 #else 734 return (a->s6_addr32[0] | a->s6_addr32[1] | 735 a->s6_addr32[2] | a->s6_addr32[3]) == 0; 736 #endif 737 } 738 739 static inline u32 ipv6_addr_hash(const struct in6_addr *a) 740 { 741 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 742 const unsigned long *ul = (const unsigned long *)a; 743 unsigned long x = ul[0] ^ ul[1]; 744 745 return (u32)(x ^ (x >> 32)); 746 #else 747 return (__force u32)(a->s6_addr32[0] ^ a->s6_addr32[1] ^ 748 a->s6_addr32[2] ^ a->s6_addr32[3]); 749 #endif 750 } 751 752 /* more secured version of ipv6_addr_hash() */ 753 static inline u32 __ipv6_addr_jhash(const struct in6_addr *a, const u32 initval) 754 { 755 return jhash2((__force const u32 *)a->s6_addr32, 756 ARRAY_SIZE(a->s6_addr32), initval); 757 } 758 759 static inline bool ipv6_addr_loopback(const struct in6_addr *a) 760 { 761 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 762 const __be64 *be = (const __be64 *)a; 763 764 return (be[0] | (be[1] ^ cpu_to_be64(1))) == 0UL; 765 #else 766 return (a->s6_addr32[0] | a->s6_addr32[1] | 767 a->s6_addr32[2] | (a->s6_addr32[3] ^ cpu_to_be32(1))) == 0; 768 #endif 769 } 770 771 /* 772 * Note that we must __force cast these to unsigned long to make sparse happy, 773 * since all of the endian-annotated types are fixed size regardless of arch. 774 */ 775 static inline bool ipv6_addr_v4mapped(const struct in6_addr *a) 776 { 777 return ( 778 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 779 *(unsigned long *)a | 780 #else 781 (__force unsigned long)(a->s6_addr32[0] | a->s6_addr32[1]) | 782 #endif 783 (__force unsigned long)(a->s6_addr32[2] ^ 784 cpu_to_be32(0x0000ffff))) == 0UL; 785 } 786 787 static inline bool ipv6_addr_v4mapped_any(const struct in6_addr *a) 788 { 789 return ipv6_addr_v4mapped(a) && ipv4_is_zeronet(a->s6_addr32[3]); 790 } 791 792 static inline bool ipv6_addr_v4mapped_loopback(const struct in6_addr *a) 793 { 794 return ipv6_addr_v4mapped(a) && ipv4_is_loopback(a->s6_addr32[3]); 795 } 796 797 static inline u32 ipv6_portaddr_hash(const struct net *net, 798 const struct in6_addr *addr6, 799 unsigned int port) 800 { 801 unsigned int hash, mix = net_hash_mix(net); 802 803 if (ipv6_addr_any(addr6)) 804 hash = jhash_1word(0, mix); 805 else if (ipv6_addr_v4mapped(addr6)) 806 hash = jhash_1word((__force u32)addr6->s6_addr32[3], mix); 807 else 808 hash = jhash2((__force u32 *)addr6->s6_addr32, 4, mix); 809 810 return hash ^ port; 811 } 812 813 /* 814 * Check for a RFC 4843 ORCHID address 815 * (Overlay Routable Cryptographic Hash Identifiers) 816 */ 817 static inline bool ipv6_addr_orchid(const struct in6_addr *a) 818 { 819 return (a->s6_addr32[0] & htonl(0xfffffff0)) == htonl(0x20010010); 820 } 821 822 static inline bool ipv6_addr_is_multicast(const struct in6_addr *addr) 823 { 824 return (addr->s6_addr32[0] & htonl(0xFF000000)) == htonl(0xFF000000); 825 } 826 827 static inline void ipv6_addr_set_v4mapped(const __be32 addr, 828 struct in6_addr *v4mapped) 829 { 830 ipv6_addr_set(v4mapped, 831 0, 0, 832 htonl(0x0000FFFF), 833 addr); 834 } 835 836 /* 837 * find the first different bit between two addresses 838 * length of address must be a multiple of 32bits 839 */ 840 static inline int __ipv6_addr_diff32(const void *token1, const void *token2, int addrlen) 841 { 842 const __be32 *a1 = token1, *a2 = token2; 843 int i; 844 845 addrlen >>= 2; 846 847 for (i = 0; i < addrlen; i++) { 848 __be32 xb = a1[i] ^ a2[i]; 849 if (xb) 850 return i * 32 + 31 - __fls(ntohl(xb)); 851 } 852 853 /* 854 * we should *never* get to this point since that 855 * would mean the addrs are equal 856 * 857 * However, we do get to it 8) And exacly, when 858 * addresses are equal 8) 859 * 860 * ip route add 1111::/128 via ... 861 * ip route add 1111::/64 via ... 862 * and we are here. 863 * 864 * Ideally, this function should stop comparison 865 * at prefix length. It does not, but it is still OK, 866 * if returned value is greater than prefix length. 867 * --ANK (980803) 868 */ 869 return addrlen << 5; 870 } 871 872 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 873 static inline int __ipv6_addr_diff64(const void *token1, const void *token2, int addrlen) 874 { 875 const __be64 *a1 = token1, *a2 = token2; 876 int i; 877 878 addrlen >>= 3; 879 880 for (i = 0; i < addrlen; i++) { 881 __be64 xb = a1[i] ^ a2[i]; 882 if (xb) 883 return i * 64 + 63 - __fls(be64_to_cpu(xb)); 884 } 885 886 return addrlen << 6; 887 } 888 #endif 889 890 static inline int __ipv6_addr_diff(const void *token1, const void *token2, int addrlen) 891 { 892 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 893 if (__builtin_constant_p(addrlen) && !(addrlen & 7)) 894 return __ipv6_addr_diff64(token1, token2, addrlen); 895 #endif 896 return __ipv6_addr_diff32(token1, token2, addrlen); 897 } 898 899 static inline int ipv6_addr_diff(const struct in6_addr *a1, const struct in6_addr *a2) 900 { 901 return __ipv6_addr_diff(a1, a2, sizeof(struct in6_addr)); 902 } 903 904 __be32 ipv6_select_ident(struct net *net, 905 const struct in6_addr *daddr, 906 const struct in6_addr *saddr); 907 __be32 ipv6_proxy_select_ident(struct net *net, struct sk_buff *skb); 908 909 int ip6_dst_hoplimit(struct dst_entry *dst); 910 911 static inline int ip6_sk_dst_hoplimit(struct ipv6_pinfo *np, struct flowi6 *fl6, 912 struct dst_entry *dst) 913 { 914 int hlimit; 915 916 if (ipv6_addr_is_multicast(&fl6->daddr)) 917 hlimit = np->mcast_hops; 918 else 919 hlimit = np->hop_limit; 920 if (hlimit < 0) 921 hlimit = ip6_dst_hoplimit(dst); 922 return hlimit; 923 } 924 925 /* copy IPv6 saddr & daddr to flow_keys, possibly using 64bit load/store 926 * Equivalent to : flow->v6addrs.src = iph->saddr; 927 * flow->v6addrs.dst = iph->daddr; 928 */ 929 static inline void iph_to_flow_copy_v6addrs(struct flow_keys *flow, 930 const struct ipv6hdr *iph) 931 { 932 BUILD_BUG_ON(offsetof(typeof(flow->addrs), v6addrs.dst) != 933 offsetof(typeof(flow->addrs), v6addrs.src) + 934 sizeof(flow->addrs.v6addrs.src)); 935 memcpy(&flow->addrs.v6addrs, &iph->addrs, sizeof(flow->addrs.v6addrs)); 936 flow->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 937 } 938 939 #if IS_ENABLED(CONFIG_IPV6) 940 941 static inline bool ipv6_can_nonlocal_bind(struct net *net, 942 struct inet_sock *inet) 943 { 944 return net->ipv6.sysctl.ip_nonlocal_bind || 945 test_bit(INET_FLAGS_FREEBIND, &inet->inet_flags) || 946 test_bit(INET_FLAGS_TRANSPARENT, &inet->inet_flags); 947 } 948 949 /* Sysctl settings for net ipv6.auto_flowlabels */ 950 #define IP6_AUTO_FLOW_LABEL_OFF 0 951 #define IP6_AUTO_FLOW_LABEL_OPTOUT 1 952 #define IP6_AUTO_FLOW_LABEL_OPTIN 2 953 #define IP6_AUTO_FLOW_LABEL_FORCED 3 954 955 #define IP6_AUTO_FLOW_LABEL_MAX IP6_AUTO_FLOW_LABEL_FORCED 956 957 #define IP6_DEFAULT_AUTO_FLOW_LABELS IP6_AUTO_FLOW_LABEL_OPTOUT 958 959 static inline __be32 ip6_make_flowlabel(struct net *net, struct sk_buff *skb, 960 __be32 flowlabel, bool autolabel, 961 struct flowi6 *fl6) 962 { 963 u32 hash; 964 965 /* @flowlabel may include more than a flow label, eg, the traffic class. 966 * Here we want only the flow label value. 967 */ 968 flowlabel &= IPV6_FLOWLABEL_MASK; 969 970 if (flowlabel || 971 net->ipv6.sysctl.auto_flowlabels == IP6_AUTO_FLOW_LABEL_OFF || 972 (!autolabel && 973 net->ipv6.sysctl.auto_flowlabels != IP6_AUTO_FLOW_LABEL_FORCED)) 974 return flowlabel; 975 976 hash = skb_get_hash_flowi6(skb, fl6); 977 978 /* Since this is being sent on the wire obfuscate hash a bit 979 * to minimize possbility that any useful information to an 980 * attacker is leaked. Only lower 20 bits are relevant. 981 */ 982 hash = rol32(hash, 16); 983 984 flowlabel = (__force __be32)hash & IPV6_FLOWLABEL_MASK; 985 986 if (net->ipv6.sysctl.flowlabel_state_ranges) 987 flowlabel |= IPV6_FLOWLABEL_STATELESS_FLAG; 988 989 return flowlabel; 990 } 991 992 static inline int ip6_default_np_autolabel(struct net *net) 993 { 994 switch (net->ipv6.sysctl.auto_flowlabels) { 995 case IP6_AUTO_FLOW_LABEL_OFF: 996 case IP6_AUTO_FLOW_LABEL_OPTIN: 997 default: 998 return 0; 999 case IP6_AUTO_FLOW_LABEL_OPTOUT: 1000 case IP6_AUTO_FLOW_LABEL_FORCED: 1001 return 1; 1002 } 1003 } 1004 #else 1005 static inline __be32 ip6_make_flowlabel(struct net *net, struct sk_buff *skb, 1006 __be32 flowlabel, bool autolabel, 1007 struct flowi6 *fl6) 1008 { 1009 return flowlabel; 1010 } 1011 static inline int ip6_default_np_autolabel(struct net *net) 1012 { 1013 return 0; 1014 } 1015 #endif 1016 1017 #if IS_ENABLED(CONFIG_IPV6) 1018 static inline int ip6_multipath_hash_policy(const struct net *net) 1019 { 1020 return net->ipv6.sysctl.multipath_hash_policy; 1021 } 1022 static inline u32 ip6_multipath_hash_fields(const struct net *net) 1023 { 1024 return net->ipv6.sysctl.multipath_hash_fields; 1025 } 1026 #else 1027 static inline int ip6_multipath_hash_policy(const struct net *net) 1028 { 1029 return 0; 1030 } 1031 static inline u32 ip6_multipath_hash_fields(const struct net *net) 1032 { 1033 return 0; 1034 } 1035 #endif 1036 1037 /* 1038 * Header manipulation 1039 */ 1040 static inline void ip6_flow_hdr(struct ipv6hdr *hdr, unsigned int tclass, 1041 __be32 flowlabel) 1042 { 1043 *(__be32 *)hdr = htonl(0x60000000 | (tclass << 20)) | flowlabel; 1044 } 1045 1046 static inline __be32 ip6_flowinfo(const struct ipv6hdr *hdr) 1047 { 1048 return *(__be32 *)hdr & IPV6_FLOWINFO_MASK; 1049 } 1050 1051 static inline __be32 ip6_flowlabel(const struct ipv6hdr *hdr) 1052 { 1053 return *(__be32 *)hdr & IPV6_FLOWLABEL_MASK; 1054 } 1055 1056 static inline u8 ip6_tclass(__be32 flowinfo) 1057 { 1058 return ntohl(flowinfo & IPV6_TCLASS_MASK) >> IPV6_TCLASS_SHIFT; 1059 } 1060 1061 static inline dscp_t ip6_dscp(__be32 flowinfo) 1062 { 1063 return inet_dsfield_to_dscp(ip6_tclass(flowinfo)); 1064 } 1065 1066 static inline __be32 ip6_make_flowinfo(unsigned int tclass, __be32 flowlabel) 1067 { 1068 return htonl(tclass << IPV6_TCLASS_SHIFT) | flowlabel; 1069 } 1070 1071 static inline __be32 flowi6_get_flowlabel(const struct flowi6 *fl6) 1072 { 1073 return fl6->flowlabel & IPV6_FLOWLABEL_MASK; 1074 } 1075 1076 /* 1077 * Prototypes exported by ipv6 1078 */ 1079 1080 /* 1081 * rcv function (called from netdevice level) 1082 */ 1083 1084 int ipv6_rcv(struct sk_buff *skb, struct net_device *dev, 1085 struct packet_type *pt, struct net_device *orig_dev); 1086 void ipv6_list_rcv(struct list_head *head, struct packet_type *pt, 1087 struct net_device *orig_dev); 1088 1089 int ip6_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb); 1090 1091 /* 1092 * upper-layer output functions 1093 */ 1094 int ip6_xmit(const struct sock *sk, struct sk_buff *skb, struct flowi6 *fl6, 1095 __u32 mark, struct ipv6_txoptions *opt, int tclass, u32 priority); 1096 1097 int ip6_find_1stfragopt(struct sk_buff *skb, u8 **nexthdr); 1098 1099 int ip6_append_data(struct sock *sk, 1100 int getfrag(void *from, char *to, int offset, int len, 1101 int odd, struct sk_buff *skb), 1102 void *from, size_t length, int transhdrlen, 1103 struct ipcm6_cookie *ipc6, struct flowi6 *fl6, 1104 struct rt6_info *rt, unsigned int flags); 1105 1106 int ip6_push_pending_frames(struct sock *sk); 1107 1108 void ip6_flush_pending_frames(struct sock *sk); 1109 1110 int ip6_send_skb(struct sk_buff *skb); 1111 1112 struct sk_buff *__ip6_make_skb(struct sock *sk, struct sk_buff_head *queue, 1113 struct inet_cork_full *cork, 1114 struct inet6_cork *v6_cork); 1115 struct sk_buff *ip6_make_skb(struct sock *sk, 1116 int getfrag(void *from, char *to, int offset, 1117 int len, int odd, struct sk_buff *skb), 1118 void *from, size_t length, int transhdrlen, 1119 struct ipcm6_cookie *ipc6, 1120 struct rt6_info *rt, unsigned int flags, 1121 struct inet_cork_full *cork); 1122 1123 static inline struct sk_buff *ip6_finish_skb(struct sock *sk) 1124 { 1125 return __ip6_make_skb(sk, &sk->sk_write_queue, &inet_sk(sk)->cork, 1126 &inet6_sk(sk)->cork); 1127 } 1128 1129 int ip6_dst_lookup(struct net *net, struct sock *sk, struct dst_entry **dst, 1130 struct flowi6 *fl6); 1131 struct dst_entry *ip6_dst_lookup_flow(struct net *net, const struct sock *sk, struct flowi6 *fl6, 1132 const struct in6_addr *final_dst); 1133 struct dst_entry *ip6_sk_dst_lookup_flow(struct sock *sk, struct flowi6 *fl6, 1134 const struct in6_addr *final_dst, 1135 bool connected); 1136 struct dst_entry *ip6_dst_lookup_tunnel(struct sk_buff *skb, 1137 struct net_device *dev, 1138 struct net *net, struct socket *sock, 1139 struct in6_addr *saddr, 1140 const struct ip_tunnel_info *info, 1141 u8 protocol, bool use_cache); 1142 struct dst_entry *ip6_blackhole_route(struct net *net, 1143 struct dst_entry *orig_dst); 1144 1145 /* 1146 * skb processing functions 1147 */ 1148 1149 int ip6_output(struct net *net, struct sock *sk, struct sk_buff *skb); 1150 int ip6_forward(struct sk_buff *skb); 1151 int ip6_input(struct sk_buff *skb); 1152 int ip6_mc_input(struct sk_buff *skb); 1153 void ip6_protocol_deliver_rcu(struct net *net, struct sk_buff *skb, int nexthdr, 1154 bool have_final); 1155 1156 int __ip6_local_out(struct net *net, struct sock *sk, struct sk_buff *skb); 1157 int ip6_local_out(struct net *net, struct sock *sk, struct sk_buff *skb); 1158 1159 /* 1160 * Extension header (options) processing 1161 */ 1162 1163 void ipv6_push_nfrag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt, 1164 u8 *proto, struct in6_addr **daddr_p, 1165 struct in6_addr *saddr); 1166 void ipv6_push_frag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt, 1167 u8 *proto); 1168 1169 int ipv6_skip_exthdr(const struct sk_buff *, int start, u8 *nexthdrp, 1170 __be16 *frag_offp); 1171 1172 bool ipv6_ext_hdr(u8 nexthdr); 1173 1174 enum { 1175 IP6_FH_F_FRAG = (1 << 0), 1176 IP6_FH_F_AUTH = (1 << 1), 1177 IP6_FH_F_SKIP_RH = (1 << 2), 1178 }; 1179 1180 /* find specified header and get offset to it */ 1181 int ipv6_find_hdr(const struct sk_buff *skb, unsigned int *offset, int target, 1182 unsigned short *fragoff, int *fragflg); 1183 1184 int ipv6_find_tlv(const struct sk_buff *skb, int offset, int type); 1185 1186 struct in6_addr *fl6_update_dst(struct flowi6 *fl6, 1187 const struct ipv6_txoptions *opt, 1188 struct in6_addr *orig); 1189 1190 /* 1191 * socket options (ipv6_sockglue.c) 1192 */ 1193 DECLARE_STATIC_KEY_FALSE(ip6_min_hopcount); 1194 1195 int do_ipv6_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 1196 unsigned int optlen); 1197 int ipv6_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 1198 unsigned int optlen); 1199 int do_ipv6_getsockopt(struct sock *sk, int level, int optname, 1200 sockptr_t optval, sockptr_t optlen); 1201 int ipv6_getsockopt(struct sock *sk, int level, int optname, 1202 char __user *optval, int __user *optlen); 1203 1204 int __ip6_datagram_connect(struct sock *sk, struct sockaddr *addr, 1205 int addr_len); 1206 int ip6_datagram_connect(struct sock *sk, struct sockaddr *addr, int addr_len); 1207 int ip6_datagram_connect_v6_only(struct sock *sk, struct sockaddr *addr, 1208 int addr_len); 1209 int ip6_datagram_dst_update(struct sock *sk, bool fix_sk_saddr); 1210 void ip6_datagram_release_cb(struct sock *sk); 1211 1212 int ipv6_recv_error(struct sock *sk, struct msghdr *msg, int len, 1213 int *addr_len); 1214 int ipv6_recv_rxpmtu(struct sock *sk, struct msghdr *msg, int len, 1215 int *addr_len); 1216 void ipv6_icmp_error(struct sock *sk, struct sk_buff *skb, int err, __be16 port, 1217 u32 info, u8 *payload); 1218 void ipv6_local_error(struct sock *sk, int err, struct flowi6 *fl6, u32 info); 1219 void ipv6_local_rxpmtu(struct sock *sk, struct flowi6 *fl6, u32 mtu); 1220 1221 void inet6_cleanup_sock(struct sock *sk); 1222 void inet6_sock_destruct(struct sock *sk); 1223 int inet6_release(struct socket *sock); 1224 int inet6_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len); 1225 int inet6_bind_sk(struct sock *sk, struct sockaddr *uaddr, int addr_len); 1226 int inet6_getname(struct socket *sock, struct sockaddr *uaddr, 1227 int peer); 1228 int inet6_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg); 1229 int inet6_compat_ioctl(struct socket *sock, unsigned int cmd, 1230 unsigned long arg); 1231 1232 int inet6_hash_connect(struct inet_timewait_death_row *death_row, 1233 struct sock *sk); 1234 int inet6_sendmsg(struct socket *sock, struct msghdr *msg, size_t size); 1235 int inet6_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 1236 int flags); 1237 1238 /* 1239 * reassembly.c 1240 */ 1241 extern const struct proto_ops inet6_stream_ops; 1242 extern const struct proto_ops inet6_dgram_ops; 1243 extern const struct proto_ops inet6_sockraw_ops; 1244 1245 struct group_source_req; 1246 struct group_filter; 1247 1248 int ip6_mc_source(int add, int omode, struct sock *sk, 1249 struct group_source_req *pgsr); 1250 int ip6_mc_msfilter(struct sock *sk, struct group_filter *gsf, 1251 struct sockaddr_storage *list); 1252 int ip6_mc_msfget(struct sock *sk, struct group_filter *gsf, 1253 sockptr_t optval, size_t ss_offset); 1254 1255 #ifdef CONFIG_PROC_FS 1256 int ac6_proc_init(struct net *net); 1257 void ac6_proc_exit(struct net *net); 1258 int raw6_proc_init(void); 1259 void raw6_proc_exit(void); 1260 int tcp6_proc_init(struct net *net); 1261 void tcp6_proc_exit(struct net *net); 1262 int udp6_proc_init(struct net *net); 1263 void udp6_proc_exit(struct net *net); 1264 int udplite6_proc_init(void); 1265 void udplite6_proc_exit(void); 1266 int ipv6_misc_proc_init(void); 1267 void ipv6_misc_proc_exit(void); 1268 int snmp6_register_dev(struct inet6_dev *idev); 1269 int snmp6_unregister_dev(struct inet6_dev *idev); 1270 1271 #else 1272 static inline int ac6_proc_init(struct net *net) { return 0; } 1273 static inline void ac6_proc_exit(struct net *net) { } 1274 static inline int snmp6_register_dev(struct inet6_dev *idev) { return 0; } 1275 static inline int snmp6_unregister_dev(struct inet6_dev *idev) { return 0; } 1276 #endif 1277 1278 #ifdef CONFIG_SYSCTL 1279 struct ctl_table *ipv6_icmp_sysctl_init(struct net *net); 1280 size_t ipv6_icmp_sysctl_table_size(void); 1281 struct ctl_table *ipv6_route_sysctl_init(struct net *net); 1282 size_t ipv6_route_sysctl_table_size(struct net *net); 1283 int ipv6_sysctl_register(void); 1284 void ipv6_sysctl_unregister(void); 1285 #endif 1286 1287 int ipv6_sock_mc_join(struct sock *sk, int ifindex, 1288 const struct in6_addr *addr); 1289 int ipv6_sock_mc_join_ssm(struct sock *sk, int ifindex, 1290 const struct in6_addr *addr, unsigned int mode); 1291 int ipv6_sock_mc_drop(struct sock *sk, int ifindex, 1292 const struct in6_addr *addr); 1293 1294 static inline int ip6_sock_set_v6only(struct sock *sk) 1295 { 1296 if (inet_sk(sk)->inet_num) 1297 return -EINVAL; 1298 lock_sock(sk); 1299 sk->sk_ipv6only = true; 1300 release_sock(sk); 1301 return 0; 1302 } 1303 1304 static inline void ip6_sock_set_recverr(struct sock *sk) 1305 { 1306 lock_sock(sk); 1307 inet6_sk(sk)->recverr = true; 1308 release_sock(sk); 1309 } 1310 1311 static inline int __ip6_sock_set_addr_preferences(struct sock *sk, int val) 1312 { 1313 unsigned int pref = 0; 1314 unsigned int prefmask = ~0; 1315 1316 /* check PUBLIC/TMP/PUBTMP_DEFAULT conflicts */ 1317 switch (val & (IPV6_PREFER_SRC_PUBLIC | 1318 IPV6_PREFER_SRC_TMP | 1319 IPV6_PREFER_SRC_PUBTMP_DEFAULT)) { 1320 case IPV6_PREFER_SRC_PUBLIC: 1321 pref |= IPV6_PREFER_SRC_PUBLIC; 1322 prefmask &= ~(IPV6_PREFER_SRC_PUBLIC | 1323 IPV6_PREFER_SRC_TMP); 1324 break; 1325 case IPV6_PREFER_SRC_TMP: 1326 pref |= IPV6_PREFER_SRC_TMP; 1327 prefmask &= ~(IPV6_PREFER_SRC_PUBLIC | 1328 IPV6_PREFER_SRC_TMP); 1329 break; 1330 case IPV6_PREFER_SRC_PUBTMP_DEFAULT: 1331 prefmask &= ~(IPV6_PREFER_SRC_PUBLIC | 1332 IPV6_PREFER_SRC_TMP); 1333 break; 1334 case 0: 1335 break; 1336 default: 1337 return -EINVAL; 1338 } 1339 1340 /* check HOME/COA conflicts */ 1341 switch (val & (IPV6_PREFER_SRC_HOME | IPV6_PREFER_SRC_COA)) { 1342 case IPV6_PREFER_SRC_HOME: 1343 prefmask &= ~IPV6_PREFER_SRC_COA; 1344 break; 1345 case IPV6_PREFER_SRC_COA: 1346 pref |= IPV6_PREFER_SRC_COA; 1347 break; 1348 case 0: 1349 break; 1350 default: 1351 return -EINVAL; 1352 } 1353 1354 /* check CGA/NONCGA conflicts */ 1355 switch (val & (IPV6_PREFER_SRC_CGA|IPV6_PREFER_SRC_NONCGA)) { 1356 case IPV6_PREFER_SRC_CGA: 1357 case IPV6_PREFER_SRC_NONCGA: 1358 case 0: 1359 break; 1360 default: 1361 return -EINVAL; 1362 } 1363 1364 inet6_sk(sk)->srcprefs = (inet6_sk(sk)->srcprefs & prefmask) | pref; 1365 return 0; 1366 } 1367 1368 static inline int ip6_sock_set_addr_preferences(struct sock *sk, int val) 1369 { 1370 int ret; 1371 1372 lock_sock(sk); 1373 ret = __ip6_sock_set_addr_preferences(sk, val); 1374 release_sock(sk); 1375 return ret; 1376 } 1377 1378 static inline void ip6_sock_set_recvpktinfo(struct sock *sk) 1379 { 1380 lock_sock(sk); 1381 inet6_sk(sk)->rxopt.bits.rxinfo = true; 1382 release_sock(sk); 1383 } 1384 1385 #endif /* _NET_IPV6_H */ 1386