1 /* 2 * Linux INET6 implementation 3 * 4 * Authors: 5 * Pedro Roque <roque@di.fc.ul.pt> 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 */ 12 13 #ifndef _NET_IPV6_H 14 #define _NET_IPV6_H 15 16 #include <linux/ipv6.h> 17 #include <linux/hardirq.h> 18 #include <linux/jhash.h> 19 #include <net/if_inet6.h> 20 #include <net/ndisc.h> 21 #include <net/flow.h> 22 #include <net/flow_keys.h> 23 #include <net/snmp.h> 24 25 #define SIN6_LEN_RFC2133 24 26 27 #define IPV6_MAXPLEN 65535 28 29 /* 30 * NextHeader field of IPv6 header 31 */ 32 33 #define NEXTHDR_HOP 0 /* Hop-by-hop option header. */ 34 #define NEXTHDR_TCP 6 /* TCP segment. */ 35 #define NEXTHDR_UDP 17 /* UDP message. */ 36 #define NEXTHDR_IPV6 41 /* IPv6 in IPv6 */ 37 #define NEXTHDR_ROUTING 43 /* Routing header. */ 38 #define NEXTHDR_FRAGMENT 44 /* Fragmentation/reassembly header. */ 39 #define NEXTHDR_GRE 47 /* GRE header. */ 40 #define NEXTHDR_ESP 50 /* Encapsulating security payload. */ 41 #define NEXTHDR_AUTH 51 /* Authentication header. */ 42 #define NEXTHDR_ICMP 58 /* ICMP for IPv6. */ 43 #define NEXTHDR_NONE 59 /* No next header */ 44 #define NEXTHDR_DEST 60 /* Destination options header. */ 45 #define NEXTHDR_SCTP 132 /* SCTP message. */ 46 #define NEXTHDR_MOBILITY 135 /* Mobility header. */ 47 48 #define NEXTHDR_MAX 255 49 50 51 52 #define IPV6_DEFAULT_HOPLIMIT 64 53 #define IPV6_DEFAULT_MCASTHOPS 1 54 55 /* 56 * Addr type 57 * 58 * type - unicast | multicast 59 * scope - local | site | global 60 * v4 - compat 61 * v4mapped 62 * any 63 * loopback 64 */ 65 66 #define IPV6_ADDR_ANY 0x0000U 67 68 #define IPV6_ADDR_UNICAST 0x0001U 69 #define IPV6_ADDR_MULTICAST 0x0002U 70 71 #define IPV6_ADDR_LOOPBACK 0x0010U 72 #define IPV6_ADDR_LINKLOCAL 0x0020U 73 #define IPV6_ADDR_SITELOCAL 0x0040U 74 75 #define IPV6_ADDR_COMPATv4 0x0080U 76 77 #define IPV6_ADDR_SCOPE_MASK 0x00f0U 78 79 #define IPV6_ADDR_MAPPED 0x1000U 80 81 /* 82 * Addr scopes 83 */ 84 #define IPV6_ADDR_MC_SCOPE(a) \ 85 ((a)->s6_addr[1] & 0x0f) /* nonstandard */ 86 #define __IPV6_ADDR_SCOPE_INVALID -1 87 #define IPV6_ADDR_SCOPE_NODELOCAL 0x01 88 #define IPV6_ADDR_SCOPE_LINKLOCAL 0x02 89 #define IPV6_ADDR_SCOPE_SITELOCAL 0x05 90 #define IPV6_ADDR_SCOPE_ORGLOCAL 0x08 91 #define IPV6_ADDR_SCOPE_GLOBAL 0x0e 92 93 /* 94 * Addr flags 95 */ 96 #define IPV6_ADDR_MC_FLAG_TRANSIENT(a) \ 97 ((a)->s6_addr[1] & 0x10) 98 #define IPV6_ADDR_MC_FLAG_PREFIX(a) \ 99 ((a)->s6_addr[1] & 0x20) 100 #define IPV6_ADDR_MC_FLAG_RENDEZVOUS(a) \ 101 ((a)->s6_addr[1] & 0x40) 102 103 /* 104 * fragmentation header 105 */ 106 107 struct frag_hdr { 108 __u8 nexthdr; 109 __u8 reserved; 110 __be16 frag_off; 111 __be32 identification; 112 }; 113 114 #define IP6_MF 0x0001 115 #define IP6_OFFSET 0xFFF8 116 117 #define IP6_REPLY_MARK(net, mark) \ 118 ((net)->ipv6.sysctl.fwmark_reflect ? (mark) : 0) 119 120 #include <net/sock.h> 121 122 /* sysctls */ 123 extern int sysctl_mld_max_msf; 124 extern int sysctl_mld_qrv; 125 126 #define _DEVINC(net, statname, modifier, idev, field) \ 127 ({ \ 128 struct inet6_dev *_idev = (idev); \ 129 if (likely(_idev != NULL)) \ 130 SNMP_INC_STATS##modifier((_idev)->stats.statname, (field)); \ 131 SNMP_INC_STATS##modifier((net)->mib.statname##_statistics, (field));\ 132 }) 133 134 /* per device counters are atomic_long_t */ 135 #define _DEVINCATOMIC(net, statname, modifier, idev, field) \ 136 ({ \ 137 struct inet6_dev *_idev = (idev); \ 138 if (likely(_idev != NULL)) \ 139 SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \ 140 SNMP_INC_STATS##modifier((net)->mib.statname##_statistics, (field));\ 141 }) 142 143 /* per device and per net counters are atomic_long_t */ 144 #define _DEVINC_ATOMIC_ATOMIC(net, statname, idev, field) \ 145 ({ \ 146 struct inet6_dev *_idev = (idev); \ 147 if (likely(_idev != NULL)) \ 148 SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \ 149 SNMP_INC_STATS_ATOMIC_LONG((net)->mib.statname##_statistics, (field));\ 150 }) 151 152 #define _DEVADD(net, statname, modifier, idev, field, val) \ 153 ({ \ 154 struct inet6_dev *_idev = (idev); \ 155 if (likely(_idev != NULL)) \ 156 SNMP_ADD_STATS##modifier((_idev)->stats.statname, (field), (val)); \ 157 SNMP_ADD_STATS##modifier((net)->mib.statname##_statistics, (field), (val));\ 158 }) 159 160 #define _DEVUPD(net, statname, modifier, idev, field, val) \ 161 ({ \ 162 struct inet6_dev *_idev = (idev); \ 163 if (likely(_idev != NULL)) \ 164 SNMP_UPD_PO_STATS##modifier((_idev)->stats.statname, field, (val)); \ 165 SNMP_UPD_PO_STATS##modifier((net)->mib.statname##_statistics, field, (val));\ 166 }) 167 168 /* MIBs */ 169 170 #define IP6_INC_STATS(net, idev,field) \ 171 _DEVINC(net, ipv6, 64, idev, field) 172 #define IP6_INC_STATS_BH(net, idev,field) \ 173 _DEVINC(net, ipv6, 64_BH, idev, field) 174 #define IP6_ADD_STATS(net, idev,field,val) \ 175 _DEVADD(net, ipv6, 64, idev, field, val) 176 #define IP6_ADD_STATS_BH(net, idev,field,val) \ 177 _DEVADD(net, ipv6, 64_BH, idev, field, val) 178 #define IP6_UPD_PO_STATS(net, idev,field,val) \ 179 _DEVUPD(net, ipv6, 64, idev, field, val) 180 #define IP6_UPD_PO_STATS_BH(net, idev,field,val) \ 181 _DEVUPD(net, ipv6, 64_BH, idev, field, val) 182 #define ICMP6_INC_STATS(net, idev, field) \ 183 _DEVINCATOMIC(net, icmpv6, , idev, field) 184 #define ICMP6_INC_STATS_BH(net, idev, field) \ 185 _DEVINCATOMIC(net, icmpv6, _BH, idev, field) 186 187 #define ICMP6MSGOUT_INC_STATS(net, idev, field) \ 188 _DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field +256) 189 #define ICMP6MSGOUT_INC_STATS_BH(net, idev, field) \ 190 _DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field +256) 191 #define ICMP6MSGIN_INC_STATS_BH(net, idev, field) \ 192 _DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field) 193 194 struct ip6_ra_chain { 195 struct ip6_ra_chain *next; 196 struct sock *sk; 197 int sel; 198 void (*destructor)(struct sock *); 199 }; 200 201 extern struct ip6_ra_chain *ip6_ra_chain; 202 extern rwlock_t ip6_ra_lock; 203 204 /* 205 This structure is prepared by protocol, when parsing 206 ancillary data and passed to IPv6. 207 */ 208 209 struct ipv6_txoptions { 210 /* Length of this structure */ 211 int tot_len; 212 213 /* length of extension headers */ 214 215 __u16 opt_flen; /* after fragment hdr */ 216 __u16 opt_nflen; /* before fragment hdr */ 217 218 struct ipv6_opt_hdr *hopopt; 219 struct ipv6_opt_hdr *dst0opt; 220 struct ipv6_rt_hdr *srcrt; /* Routing Header */ 221 struct ipv6_opt_hdr *dst1opt; 222 223 /* Option buffer, as read by IPV6_PKTOPTIONS, starts here. */ 224 }; 225 226 struct ip6_flowlabel { 227 struct ip6_flowlabel __rcu *next; 228 __be32 label; 229 atomic_t users; 230 struct in6_addr dst; 231 struct ipv6_txoptions *opt; 232 unsigned long linger; 233 struct rcu_head rcu; 234 u8 share; 235 union { 236 struct pid *pid; 237 kuid_t uid; 238 } owner; 239 unsigned long lastuse; 240 unsigned long expires; 241 struct net *fl_net; 242 }; 243 244 #define IPV6_FLOWINFO_MASK cpu_to_be32(0x0FFFFFFF) 245 #define IPV6_FLOWLABEL_MASK cpu_to_be32(0x000FFFFF) 246 #define IPV6_TCLASS_MASK (IPV6_FLOWINFO_MASK & ~IPV6_FLOWLABEL_MASK) 247 #define IPV6_TCLASS_SHIFT 20 248 249 struct ipv6_fl_socklist { 250 struct ipv6_fl_socklist __rcu *next; 251 struct ip6_flowlabel *fl; 252 struct rcu_head rcu; 253 }; 254 255 struct ip6_flowlabel *fl6_sock_lookup(struct sock *sk, __be32 label); 256 struct ipv6_txoptions *fl6_merge_options(struct ipv6_txoptions *opt_space, 257 struct ip6_flowlabel *fl, 258 struct ipv6_txoptions *fopt); 259 void fl6_free_socklist(struct sock *sk); 260 int ipv6_flowlabel_opt(struct sock *sk, char __user *optval, int optlen); 261 int ipv6_flowlabel_opt_get(struct sock *sk, struct in6_flowlabel_req *freq, 262 int flags); 263 int ip6_flowlabel_init(void); 264 void ip6_flowlabel_cleanup(void); 265 266 static inline void fl6_sock_release(struct ip6_flowlabel *fl) 267 { 268 if (fl) 269 atomic_dec(&fl->users); 270 } 271 272 void icmpv6_notify(struct sk_buff *skb, u8 type, u8 code, __be32 info); 273 274 int icmpv6_push_pending_frames(struct sock *sk, struct flowi6 *fl6, 275 struct icmp6hdr *thdr, int len); 276 277 int ip6_ra_control(struct sock *sk, int sel); 278 279 int ipv6_parse_hopopts(struct sk_buff *skb); 280 281 struct ipv6_txoptions *ipv6_dup_options(struct sock *sk, 282 struct ipv6_txoptions *opt); 283 struct ipv6_txoptions *ipv6_renew_options(struct sock *sk, 284 struct ipv6_txoptions *opt, 285 int newtype, 286 struct ipv6_opt_hdr __user *newopt, 287 int newoptlen); 288 struct ipv6_txoptions *ipv6_fixup_options(struct ipv6_txoptions *opt_space, 289 struct ipv6_txoptions *opt); 290 291 bool ipv6_opt_accepted(const struct sock *sk, const struct sk_buff *skb, 292 const struct inet6_skb_parm *opt); 293 294 static inline bool ipv6_accept_ra(struct inet6_dev *idev) 295 { 296 /* If forwarding is enabled, RA are not accepted unless the special 297 * hybrid mode (accept_ra=2) is enabled. 298 */ 299 return idev->cnf.forwarding ? idev->cnf.accept_ra == 2 : 300 idev->cnf.accept_ra; 301 } 302 303 #if IS_ENABLED(CONFIG_IPV6) 304 static inline int ip6_frag_mem(struct net *net) 305 { 306 return sum_frag_mem_limit(&net->ipv6.frags); 307 } 308 #endif 309 310 #define IPV6_FRAG_HIGH_THRESH (4 * 1024*1024) /* 4194304 */ 311 #define IPV6_FRAG_LOW_THRESH (3 * 1024*1024) /* 3145728 */ 312 #define IPV6_FRAG_TIMEOUT (60 * HZ) /* 60 seconds */ 313 314 int __ipv6_addr_type(const struct in6_addr *addr); 315 static inline int ipv6_addr_type(const struct in6_addr *addr) 316 { 317 return __ipv6_addr_type(addr) & 0xffff; 318 } 319 320 static inline int ipv6_addr_scope(const struct in6_addr *addr) 321 { 322 return __ipv6_addr_type(addr) & IPV6_ADDR_SCOPE_MASK; 323 } 324 325 static inline int __ipv6_addr_src_scope(int type) 326 { 327 return (type == IPV6_ADDR_ANY) ? __IPV6_ADDR_SCOPE_INVALID : (type >> 16); 328 } 329 330 static inline int ipv6_addr_src_scope(const struct in6_addr *addr) 331 { 332 return __ipv6_addr_src_scope(__ipv6_addr_type(addr)); 333 } 334 335 static inline bool __ipv6_addr_needs_scope_id(int type) 336 { 337 return type & IPV6_ADDR_LINKLOCAL || 338 (type & IPV6_ADDR_MULTICAST && 339 (type & (IPV6_ADDR_LOOPBACK|IPV6_ADDR_LINKLOCAL))); 340 } 341 342 static inline __u32 ipv6_iface_scope_id(const struct in6_addr *addr, int iface) 343 { 344 return __ipv6_addr_needs_scope_id(__ipv6_addr_type(addr)) ? iface : 0; 345 } 346 347 static inline int ipv6_addr_cmp(const struct in6_addr *a1, const struct in6_addr *a2) 348 { 349 return memcmp(a1, a2, sizeof(struct in6_addr)); 350 } 351 352 static inline bool 353 ipv6_masked_addr_cmp(const struct in6_addr *a1, const struct in6_addr *m, 354 const struct in6_addr *a2) 355 { 356 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 357 const unsigned long *ul1 = (const unsigned long *)a1; 358 const unsigned long *ulm = (const unsigned long *)m; 359 const unsigned long *ul2 = (const unsigned long *)a2; 360 361 return !!(((ul1[0] ^ ul2[0]) & ulm[0]) | 362 ((ul1[1] ^ ul2[1]) & ulm[1])); 363 #else 364 return !!(((a1->s6_addr32[0] ^ a2->s6_addr32[0]) & m->s6_addr32[0]) | 365 ((a1->s6_addr32[1] ^ a2->s6_addr32[1]) & m->s6_addr32[1]) | 366 ((a1->s6_addr32[2] ^ a2->s6_addr32[2]) & m->s6_addr32[2]) | 367 ((a1->s6_addr32[3] ^ a2->s6_addr32[3]) & m->s6_addr32[3])); 368 #endif 369 } 370 371 static inline void ipv6_addr_prefix(struct in6_addr *pfx, 372 const struct in6_addr *addr, 373 int plen) 374 { 375 /* caller must guarantee 0 <= plen <= 128 */ 376 int o = plen >> 3, 377 b = plen & 0x7; 378 379 memset(pfx->s6_addr, 0, sizeof(pfx->s6_addr)); 380 memcpy(pfx->s6_addr, addr, o); 381 if (b != 0) 382 pfx->s6_addr[o] = addr->s6_addr[o] & (0xff00 >> b); 383 } 384 385 static inline void __ipv6_addr_set_half(__be32 *addr, 386 __be32 wh, __be32 wl) 387 { 388 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 389 #if defined(__BIG_ENDIAN) 390 if (__builtin_constant_p(wh) && __builtin_constant_p(wl)) { 391 *(__force u64 *)addr = ((__force u64)(wh) << 32 | (__force u64)(wl)); 392 return; 393 } 394 #elif defined(__LITTLE_ENDIAN) 395 if (__builtin_constant_p(wl) && __builtin_constant_p(wh)) { 396 *(__force u64 *)addr = ((__force u64)(wl) << 32 | (__force u64)(wh)); 397 return; 398 } 399 #endif 400 #endif 401 addr[0] = wh; 402 addr[1] = wl; 403 } 404 405 static inline void ipv6_addr_set(struct in6_addr *addr, 406 __be32 w1, __be32 w2, 407 __be32 w3, __be32 w4) 408 { 409 __ipv6_addr_set_half(&addr->s6_addr32[0], w1, w2); 410 __ipv6_addr_set_half(&addr->s6_addr32[2], w3, w4); 411 } 412 413 static inline bool ipv6_addr_equal(const struct in6_addr *a1, 414 const struct in6_addr *a2) 415 { 416 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 417 const unsigned long *ul1 = (const unsigned long *)a1; 418 const unsigned long *ul2 = (const unsigned long *)a2; 419 420 return ((ul1[0] ^ ul2[0]) | (ul1[1] ^ ul2[1])) == 0UL; 421 #else 422 return ((a1->s6_addr32[0] ^ a2->s6_addr32[0]) | 423 (a1->s6_addr32[1] ^ a2->s6_addr32[1]) | 424 (a1->s6_addr32[2] ^ a2->s6_addr32[2]) | 425 (a1->s6_addr32[3] ^ a2->s6_addr32[3])) == 0; 426 #endif 427 } 428 429 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 430 static inline bool __ipv6_prefix_equal64_half(const __be64 *a1, 431 const __be64 *a2, 432 unsigned int len) 433 { 434 if (len && ((*a1 ^ *a2) & cpu_to_be64((~0UL) << (64 - len)))) 435 return false; 436 return true; 437 } 438 439 static inline bool ipv6_prefix_equal(const struct in6_addr *addr1, 440 const struct in6_addr *addr2, 441 unsigned int prefixlen) 442 { 443 const __be64 *a1 = (const __be64 *)addr1; 444 const __be64 *a2 = (const __be64 *)addr2; 445 446 if (prefixlen >= 64) { 447 if (a1[0] ^ a2[0]) 448 return false; 449 return __ipv6_prefix_equal64_half(a1 + 1, a2 + 1, prefixlen - 64); 450 } 451 return __ipv6_prefix_equal64_half(a1, a2, prefixlen); 452 } 453 #else 454 static inline bool ipv6_prefix_equal(const struct in6_addr *addr1, 455 const struct in6_addr *addr2, 456 unsigned int prefixlen) 457 { 458 const __be32 *a1 = addr1->s6_addr32; 459 const __be32 *a2 = addr2->s6_addr32; 460 unsigned int pdw, pbi; 461 462 /* check complete u32 in prefix */ 463 pdw = prefixlen >> 5; 464 if (pdw && memcmp(a1, a2, pdw << 2)) 465 return false; 466 467 /* check incomplete u32 in prefix */ 468 pbi = prefixlen & 0x1f; 469 if (pbi && ((a1[pdw] ^ a2[pdw]) & htonl((0xffffffff) << (32 - pbi)))) 470 return false; 471 472 return true; 473 } 474 #endif 475 476 struct inet_frag_queue; 477 478 enum ip6_defrag_users { 479 IP6_DEFRAG_LOCAL_DELIVER, 480 IP6_DEFRAG_CONNTRACK_IN, 481 __IP6_DEFRAG_CONNTRACK_IN = IP6_DEFRAG_CONNTRACK_IN + USHRT_MAX, 482 IP6_DEFRAG_CONNTRACK_OUT, 483 __IP6_DEFRAG_CONNTRACK_OUT = IP6_DEFRAG_CONNTRACK_OUT + USHRT_MAX, 484 IP6_DEFRAG_CONNTRACK_BRIDGE_IN, 485 __IP6_DEFRAG_CONNTRACK_BRIDGE_IN = IP6_DEFRAG_CONNTRACK_BRIDGE_IN + USHRT_MAX, 486 }; 487 488 struct ip6_create_arg { 489 __be32 id; 490 u32 user; 491 const struct in6_addr *src; 492 const struct in6_addr *dst; 493 u8 ecn; 494 }; 495 496 void ip6_frag_init(struct inet_frag_queue *q, const void *a); 497 bool ip6_frag_match(const struct inet_frag_queue *q, const void *a); 498 499 /* 500 * Equivalent of ipv4 struct ip 501 */ 502 struct frag_queue { 503 struct inet_frag_queue q; 504 505 __be32 id; /* fragment id */ 506 u32 user; 507 struct in6_addr saddr; 508 struct in6_addr daddr; 509 510 int iif; 511 unsigned int csum; 512 __u16 nhoffset; 513 u8 ecn; 514 }; 515 516 void ip6_expire_frag_queue(struct net *net, struct frag_queue *fq, 517 struct inet_frags *frags); 518 519 static inline bool ipv6_addr_any(const struct in6_addr *a) 520 { 521 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 522 const unsigned long *ul = (const unsigned long *)a; 523 524 return (ul[0] | ul[1]) == 0UL; 525 #else 526 return (a->s6_addr32[0] | a->s6_addr32[1] | 527 a->s6_addr32[2] | a->s6_addr32[3]) == 0; 528 #endif 529 } 530 531 static inline u32 ipv6_addr_hash(const struct in6_addr *a) 532 { 533 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 534 const unsigned long *ul = (const unsigned long *)a; 535 unsigned long x = ul[0] ^ ul[1]; 536 537 return (u32)(x ^ (x >> 32)); 538 #else 539 return (__force u32)(a->s6_addr32[0] ^ a->s6_addr32[1] ^ 540 a->s6_addr32[2] ^ a->s6_addr32[3]); 541 #endif 542 } 543 544 /* more secured version of ipv6_addr_hash() */ 545 static inline u32 __ipv6_addr_jhash(const struct in6_addr *a, const u32 initval) 546 { 547 u32 v = (__force u32)a->s6_addr32[0] ^ (__force u32)a->s6_addr32[1]; 548 549 return jhash_3words(v, 550 (__force u32)a->s6_addr32[2], 551 (__force u32)a->s6_addr32[3], 552 initval); 553 } 554 555 static inline bool ipv6_addr_loopback(const struct in6_addr *a) 556 { 557 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 558 const __be64 *be = (const __be64 *)a; 559 560 return (be[0] | (be[1] ^ cpu_to_be64(1))) == 0UL; 561 #else 562 return (a->s6_addr32[0] | a->s6_addr32[1] | 563 a->s6_addr32[2] | (a->s6_addr32[3] ^ cpu_to_be32(1))) == 0; 564 #endif 565 } 566 567 /* 568 * Note that we must __force cast these to unsigned long to make sparse happy, 569 * since all of the endian-annotated types are fixed size regardless of arch. 570 */ 571 static inline bool ipv6_addr_v4mapped(const struct in6_addr *a) 572 { 573 return ( 574 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 575 *(unsigned long *)a | 576 #else 577 (__force unsigned long)(a->s6_addr32[0] | a->s6_addr32[1]) | 578 #endif 579 (__force unsigned long)(a->s6_addr32[2] ^ 580 cpu_to_be32(0x0000ffff))) == 0UL; 581 } 582 583 /* 584 * Check for a RFC 4843 ORCHID address 585 * (Overlay Routable Cryptographic Hash Identifiers) 586 */ 587 static inline bool ipv6_addr_orchid(const struct in6_addr *a) 588 { 589 return (a->s6_addr32[0] & htonl(0xfffffff0)) == htonl(0x20010010); 590 } 591 592 static inline bool ipv6_addr_is_multicast(const struct in6_addr *addr) 593 { 594 return (addr->s6_addr32[0] & htonl(0xFF000000)) == htonl(0xFF000000); 595 } 596 597 static inline void ipv6_addr_set_v4mapped(const __be32 addr, 598 struct in6_addr *v4mapped) 599 { 600 ipv6_addr_set(v4mapped, 601 0, 0, 602 htonl(0x0000FFFF), 603 addr); 604 } 605 606 /* 607 * find the first different bit between two addresses 608 * length of address must be a multiple of 32bits 609 */ 610 static inline int __ipv6_addr_diff32(const void *token1, const void *token2, int addrlen) 611 { 612 const __be32 *a1 = token1, *a2 = token2; 613 int i; 614 615 addrlen >>= 2; 616 617 for (i = 0; i < addrlen; i++) { 618 __be32 xb = a1[i] ^ a2[i]; 619 if (xb) 620 return i * 32 + 31 - __fls(ntohl(xb)); 621 } 622 623 /* 624 * we should *never* get to this point since that 625 * would mean the addrs are equal 626 * 627 * However, we do get to it 8) And exacly, when 628 * addresses are equal 8) 629 * 630 * ip route add 1111::/128 via ... 631 * ip route add 1111::/64 via ... 632 * and we are here. 633 * 634 * Ideally, this function should stop comparison 635 * at prefix length. It does not, but it is still OK, 636 * if returned value is greater than prefix length. 637 * --ANK (980803) 638 */ 639 return addrlen << 5; 640 } 641 642 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 643 static inline int __ipv6_addr_diff64(const void *token1, const void *token2, int addrlen) 644 { 645 const __be64 *a1 = token1, *a2 = token2; 646 int i; 647 648 addrlen >>= 3; 649 650 for (i = 0; i < addrlen; i++) { 651 __be64 xb = a1[i] ^ a2[i]; 652 if (xb) 653 return i * 64 + 63 - __fls(be64_to_cpu(xb)); 654 } 655 656 return addrlen << 6; 657 } 658 #endif 659 660 static inline int __ipv6_addr_diff(const void *token1, const void *token2, int addrlen) 661 { 662 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 663 if (__builtin_constant_p(addrlen) && !(addrlen & 7)) 664 return __ipv6_addr_diff64(token1, token2, addrlen); 665 #endif 666 return __ipv6_addr_diff32(token1, token2, addrlen); 667 } 668 669 static inline int ipv6_addr_diff(const struct in6_addr *a1, const struct in6_addr *a2) 670 { 671 return __ipv6_addr_diff(a1, a2, sizeof(struct in6_addr)); 672 } 673 674 void ipv6_proxy_select_ident(struct sk_buff *skb); 675 676 int ip6_dst_hoplimit(struct dst_entry *dst); 677 678 static inline int ip6_sk_dst_hoplimit(struct ipv6_pinfo *np, struct flowi6 *fl6, 679 struct dst_entry *dst) 680 { 681 int hlimit; 682 683 if (ipv6_addr_is_multicast(&fl6->daddr)) 684 hlimit = np->mcast_hops; 685 else 686 hlimit = np->hop_limit; 687 if (hlimit < 0) 688 hlimit = ip6_dst_hoplimit(dst); 689 return hlimit; 690 } 691 692 #if IS_ENABLED(CONFIG_IPV6) 693 static inline void ip6_set_txhash(struct sock *sk) 694 { 695 struct inet_sock *inet = inet_sk(sk); 696 struct ipv6_pinfo *np = inet6_sk(sk); 697 struct flow_keys keys; 698 699 keys.src = (__force __be32)ipv6_addr_hash(&np->saddr); 700 keys.dst = (__force __be32)ipv6_addr_hash(&sk->sk_v6_daddr); 701 keys.port16[0] = inet->inet_sport; 702 keys.port16[1] = inet->inet_dport; 703 704 sk->sk_txhash = flow_hash_from_keys(&keys); 705 } 706 707 static inline __be32 ip6_make_flowlabel(struct net *net, struct sk_buff *skb, 708 __be32 flowlabel, bool autolabel) 709 { 710 if (!flowlabel && (autolabel || net->ipv6.sysctl.auto_flowlabels)) { 711 __be32 hash; 712 713 hash = skb_get_hash(skb); 714 715 /* Since this is being sent on the wire obfuscate hash a bit 716 * to minimize possbility that any useful information to an 717 * attacker is leaked. Only lower 20 bits are relevant. 718 */ 719 hash ^= hash >> 12; 720 721 flowlabel = hash & IPV6_FLOWLABEL_MASK; 722 } 723 724 return flowlabel; 725 } 726 #else 727 static inline void ip6_set_txhash(struct sock *sk) { } 728 static inline __be32 ip6_make_flowlabel(struct net *net, struct sk_buff *skb, 729 __be32 flowlabel, bool autolabel) 730 { 731 return flowlabel; 732 } 733 #endif 734 735 736 /* 737 * Header manipulation 738 */ 739 static inline void ip6_flow_hdr(struct ipv6hdr *hdr, unsigned int tclass, 740 __be32 flowlabel) 741 { 742 *(__be32 *)hdr = htonl(0x60000000 | (tclass << 20)) | flowlabel; 743 } 744 745 static inline __be32 ip6_flowinfo(const struct ipv6hdr *hdr) 746 { 747 return *(__be32 *)hdr & IPV6_FLOWINFO_MASK; 748 } 749 750 static inline __be32 ip6_flowlabel(const struct ipv6hdr *hdr) 751 { 752 return *(__be32 *)hdr & IPV6_FLOWLABEL_MASK; 753 } 754 755 static inline u8 ip6_tclass(__be32 flowinfo) 756 { 757 return ntohl(flowinfo & IPV6_TCLASS_MASK) >> IPV6_TCLASS_SHIFT; 758 } 759 /* 760 * Prototypes exported by ipv6 761 */ 762 763 /* 764 * rcv function (called from netdevice level) 765 */ 766 767 int ipv6_rcv(struct sk_buff *skb, struct net_device *dev, 768 struct packet_type *pt, struct net_device *orig_dev); 769 770 int ip6_rcv_finish(struct sk_buff *skb); 771 772 /* 773 * upper-layer output functions 774 */ 775 int ip6_xmit(struct sock *sk, struct sk_buff *skb, struct flowi6 *fl6, 776 struct ipv6_txoptions *opt, int tclass); 777 778 int ip6_find_1stfragopt(struct sk_buff *skb, u8 **nexthdr); 779 780 int ip6_append_data(struct sock *sk, 781 int getfrag(void *from, char *to, int offset, int len, 782 int odd, struct sk_buff *skb), 783 void *from, int length, int transhdrlen, int hlimit, 784 int tclass, struct ipv6_txoptions *opt, struct flowi6 *fl6, 785 struct rt6_info *rt, unsigned int flags, int dontfrag); 786 787 int ip6_push_pending_frames(struct sock *sk); 788 789 void ip6_flush_pending_frames(struct sock *sk); 790 791 int ip6_dst_lookup(struct sock *sk, struct dst_entry **dst, struct flowi6 *fl6); 792 struct dst_entry *ip6_dst_lookup_flow(struct sock *sk, struct flowi6 *fl6, 793 const struct in6_addr *final_dst); 794 struct dst_entry *ip6_sk_dst_lookup_flow(struct sock *sk, struct flowi6 *fl6, 795 const struct in6_addr *final_dst); 796 struct dst_entry *ip6_blackhole_route(struct net *net, 797 struct dst_entry *orig_dst); 798 799 /* 800 * skb processing functions 801 */ 802 803 int ip6_output(struct sock *sk, struct sk_buff *skb); 804 int ip6_forward(struct sk_buff *skb); 805 int ip6_input(struct sk_buff *skb); 806 int ip6_mc_input(struct sk_buff *skb); 807 808 int __ip6_local_out(struct sk_buff *skb); 809 int ip6_local_out(struct sk_buff *skb); 810 811 /* 812 * Extension header (options) processing 813 */ 814 815 void ipv6_push_nfrag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt, 816 u8 *proto, struct in6_addr **daddr_p); 817 void ipv6_push_frag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt, 818 u8 *proto); 819 820 int ipv6_skip_exthdr(const struct sk_buff *, int start, u8 *nexthdrp, 821 __be16 *frag_offp); 822 823 bool ipv6_ext_hdr(u8 nexthdr); 824 825 enum { 826 IP6_FH_F_FRAG = (1 << 0), 827 IP6_FH_F_AUTH = (1 << 1), 828 IP6_FH_F_SKIP_RH = (1 << 2), 829 }; 830 831 /* find specified header and get offset to it */ 832 int ipv6_find_hdr(const struct sk_buff *skb, unsigned int *offset, int target, 833 unsigned short *fragoff, int *fragflg); 834 835 int ipv6_find_tlv(struct sk_buff *skb, int offset, int type); 836 837 struct in6_addr *fl6_update_dst(struct flowi6 *fl6, 838 const struct ipv6_txoptions *opt, 839 struct in6_addr *orig); 840 841 /* 842 * socket options (ipv6_sockglue.c) 843 */ 844 845 int ipv6_setsockopt(struct sock *sk, int level, int optname, 846 char __user *optval, unsigned int optlen); 847 int ipv6_getsockopt(struct sock *sk, int level, int optname, 848 char __user *optval, int __user *optlen); 849 int compat_ipv6_setsockopt(struct sock *sk, int level, int optname, 850 char __user *optval, unsigned int optlen); 851 int compat_ipv6_getsockopt(struct sock *sk, int level, int optname, 852 char __user *optval, int __user *optlen); 853 854 int ip6_datagram_connect(struct sock *sk, struct sockaddr *addr, int addr_len); 855 int ip6_datagram_connect_v6_only(struct sock *sk, struct sockaddr *addr, 856 int addr_len); 857 858 int ipv6_recv_error(struct sock *sk, struct msghdr *msg, int len, 859 int *addr_len); 860 int ipv6_recv_rxpmtu(struct sock *sk, struct msghdr *msg, int len, 861 int *addr_len); 862 void ipv6_icmp_error(struct sock *sk, struct sk_buff *skb, int err, __be16 port, 863 u32 info, u8 *payload); 864 void ipv6_local_error(struct sock *sk, int err, struct flowi6 *fl6, u32 info); 865 void ipv6_local_rxpmtu(struct sock *sk, struct flowi6 *fl6, u32 mtu); 866 867 int inet6_release(struct socket *sock); 868 int inet6_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len); 869 int inet6_getname(struct socket *sock, struct sockaddr *uaddr, int *uaddr_len, 870 int peer); 871 int inet6_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg); 872 873 int inet6_hash_connect(struct inet_timewait_death_row *death_row, 874 struct sock *sk); 875 876 /* 877 * reassembly.c 878 */ 879 extern const struct proto_ops inet6_stream_ops; 880 extern const struct proto_ops inet6_dgram_ops; 881 882 struct group_source_req; 883 struct group_filter; 884 885 int ip6_mc_source(int add, int omode, struct sock *sk, 886 struct group_source_req *pgsr); 887 int ip6_mc_msfilter(struct sock *sk, struct group_filter *gsf); 888 int ip6_mc_msfget(struct sock *sk, struct group_filter *gsf, 889 struct group_filter __user *optval, int __user *optlen); 890 891 #ifdef CONFIG_PROC_FS 892 int ac6_proc_init(struct net *net); 893 void ac6_proc_exit(struct net *net); 894 int raw6_proc_init(void); 895 void raw6_proc_exit(void); 896 int tcp6_proc_init(struct net *net); 897 void tcp6_proc_exit(struct net *net); 898 int udp6_proc_init(struct net *net); 899 void udp6_proc_exit(struct net *net); 900 int udplite6_proc_init(void); 901 void udplite6_proc_exit(void); 902 int ipv6_misc_proc_init(void); 903 void ipv6_misc_proc_exit(void); 904 int snmp6_register_dev(struct inet6_dev *idev); 905 int snmp6_unregister_dev(struct inet6_dev *idev); 906 907 #else 908 static inline int ac6_proc_init(struct net *net) { return 0; } 909 static inline void ac6_proc_exit(struct net *net) { } 910 static inline int snmp6_register_dev(struct inet6_dev *idev) { return 0; } 911 static inline int snmp6_unregister_dev(struct inet6_dev *idev) { return 0; } 912 #endif 913 914 #ifdef CONFIG_SYSCTL 915 extern struct ctl_table ipv6_route_table_template[]; 916 917 struct ctl_table *ipv6_icmp_sysctl_init(struct net *net); 918 struct ctl_table *ipv6_route_sysctl_init(struct net *net); 919 int ipv6_sysctl_register(void); 920 void ipv6_sysctl_unregister(void); 921 #endif 922 923 #endif /* _NET_IPV6_H */ 924