1 /* 2 * Linux INET6 implementation 3 * 4 * Authors: 5 * Pedro Roque <roque@di.fc.ul.pt> 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 */ 12 13 #ifndef _NET_IPV6_H 14 #define _NET_IPV6_H 15 16 #include <linux/ipv6.h> 17 #include <linux/hardirq.h> 18 #include <linux/jhash.h> 19 #include <net/if_inet6.h> 20 #include <net/ndisc.h> 21 #include <net/flow.h> 22 #include <net/flow_dissector.h> 23 #include <net/snmp.h> 24 25 #define SIN6_LEN_RFC2133 24 26 27 #define IPV6_MAXPLEN 65535 28 29 /* 30 * NextHeader field of IPv6 header 31 */ 32 33 #define NEXTHDR_HOP 0 /* Hop-by-hop option header. */ 34 #define NEXTHDR_TCP 6 /* TCP segment. */ 35 #define NEXTHDR_UDP 17 /* UDP message. */ 36 #define NEXTHDR_IPV6 41 /* IPv6 in IPv6 */ 37 #define NEXTHDR_ROUTING 43 /* Routing header. */ 38 #define NEXTHDR_FRAGMENT 44 /* Fragmentation/reassembly header. */ 39 #define NEXTHDR_GRE 47 /* GRE header. */ 40 #define NEXTHDR_ESP 50 /* Encapsulating security payload. */ 41 #define NEXTHDR_AUTH 51 /* Authentication header. */ 42 #define NEXTHDR_ICMP 58 /* ICMP for IPv6. */ 43 #define NEXTHDR_NONE 59 /* No next header */ 44 #define NEXTHDR_DEST 60 /* Destination options header. */ 45 #define NEXTHDR_SCTP 132 /* SCTP message. */ 46 #define NEXTHDR_MOBILITY 135 /* Mobility header. */ 47 48 #define NEXTHDR_MAX 255 49 50 #define IPV6_DEFAULT_HOPLIMIT 64 51 #define IPV6_DEFAULT_MCASTHOPS 1 52 53 /* 54 * Addr type 55 * 56 * type - unicast | multicast 57 * scope - local | site | global 58 * v4 - compat 59 * v4mapped 60 * any 61 * loopback 62 */ 63 64 #define IPV6_ADDR_ANY 0x0000U 65 66 #define IPV6_ADDR_UNICAST 0x0001U 67 #define IPV6_ADDR_MULTICAST 0x0002U 68 69 #define IPV6_ADDR_LOOPBACK 0x0010U 70 #define IPV6_ADDR_LINKLOCAL 0x0020U 71 #define IPV6_ADDR_SITELOCAL 0x0040U 72 73 #define IPV6_ADDR_COMPATv4 0x0080U 74 75 #define IPV6_ADDR_SCOPE_MASK 0x00f0U 76 77 #define IPV6_ADDR_MAPPED 0x1000U 78 79 /* 80 * Addr scopes 81 */ 82 #define IPV6_ADDR_MC_SCOPE(a) \ 83 ((a)->s6_addr[1] & 0x0f) /* nonstandard */ 84 #define __IPV6_ADDR_SCOPE_INVALID -1 85 #define IPV6_ADDR_SCOPE_NODELOCAL 0x01 86 #define IPV6_ADDR_SCOPE_LINKLOCAL 0x02 87 #define IPV6_ADDR_SCOPE_SITELOCAL 0x05 88 #define IPV6_ADDR_SCOPE_ORGLOCAL 0x08 89 #define IPV6_ADDR_SCOPE_GLOBAL 0x0e 90 91 /* 92 * Addr flags 93 */ 94 #define IPV6_ADDR_MC_FLAG_TRANSIENT(a) \ 95 ((a)->s6_addr[1] & 0x10) 96 #define IPV6_ADDR_MC_FLAG_PREFIX(a) \ 97 ((a)->s6_addr[1] & 0x20) 98 #define IPV6_ADDR_MC_FLAG_RENDEZVOUS(a) \ 99 ((a)->s6_addr[1] & 0x40) 100 101 /* 102 * fragmentation header 103 */ 104 105 struct frag_hdr { 106 __u8 nexthdr; 107 __u8 reserved; 108 __be16 frag_off; 109 __be32 identification; 110 }; 111 112 #define IP6_MF 0x0001 113 #define IP6_OFFSET 0xFFF8 114 115 #define IP6_REPLY_MARK(net, mark) \ 116 ((net)->ipv6.sysctl.fwmark_reflect ? (mark) : 0) 117 118 #include <net/sock.h> 119 120 /* sysctls */ 121 extern int sysctl_mld_max_msf; 122 extern int sysctl_mld_qrv; 123 124 #define _DEVINC(net, statname, mod, idev, field) \ 125 ({ \ 126 struct inet6_dev *_idev = (idev); \ 127 if (likely(_idev != NULL)) \ 128 mod##SNMP_INC_STATS64((_idev)->stats.statname, (field));\ 129 mod##SNMP_INC_STATS64((net)->mib.statname##_statistics, (field));\ 130 }) 131 132 /* per device counters are atomic_long_t */ 133 #define _DEVINCATOMIC(net, statname, mod, idev, field) \ 134 ({ \ 135 struct inet6_dev *_idev = (idev); \ 136 if (likely(_idev != NULL)) \ 137 SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \ 138 mod##SNMP_INC_STATS((net)->mib.statname##_statistics, (field));\ 139 }) 140 141 /* per device and per net counters are atomic_long_t */ 142 #define _DEVINC_ATOMIC_ATOMIC(net, statname, idev, field) \ 143 ({ \ 144 struct inet6_dev *_idev = (idev); \ 145 if (likely(_idev != NULL)) \ 146 SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \ 147 SNMP_INC_STATS_ATOMIC_LONG((net)->mib.statname##_statistics, (field));\ 148 }) 149 150 #define _DEVADD(net, statname, mod, idev, field, val) \ 151 ({ \ 152 struct inet6_dev *_idev = (idev); \ 153 if (likely(_idev != NULL)) \ 154 mod##SNMP_ADD_STATS((_idev)->stats.statname, (field), (val)); \ 155 mod##SNMP_ADD_STATS((net)->mib.statname##_statistics, (field), (val));\ 156 }) 157 158 #define _DEVUPD(net, statname, mod, idev, field, val) \ 159 ({ \ 160 struct inet6_dev *_idev = (idev); \ 161 if (likely(_idev != NULL)) \ 162 mod##SNMP_UPD_PO_STATS((_idev)->stats.statname, field, (val)); \ 163 mod##SNMP_UPD_PO_STATS((net)->mib.statname##_statistics, field, (val));\ 164 }) 165 166 /* MIBs */ 167 168 #define IP6_INC_STATS(net, idev,field) \ 169 _DEVINC(net, ipv6, , idev, field) 170 #define __IP6_INC_STATS(net, idev,field) \ 171 _DEVINC(net, ipv6, __, idev, field) 172 #define IP6_ADD_STATS(net, idev,field,val) \ 173 _DEVADD(net, ipv6, , idev, field, val) 174 #define __IP6_ADD_STATS(net, idev,field,val) \ 175 _DEVADD(net, ipv6, __, idev, field, val) 176 #define IP6_UPD_PO_STATS(net, idev,field,val) \ 177 _DEVUPD(net, ipv6, , idev, field, val) 178 #define __IP6_UPD_PO_STATS(net, idev,field,val) \ 179 _DEVUPD(net, ipv6, __, idev, field, val) 180 #define ICMP6_INC_STATS(net, idev, field) \ 181 _DEVINCATOMIC(net, icmpv6, , idev, field) 182 #define __ICMP6_INC_STATS(net, idev, field) \ 183 _DEVINCATOMIC(net, icmpv6, __, idev, field) 184 185 #define ICMP6MSGOUT_INC_STATS(net, idev, field) \ 186 _DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field +256) 187 #define ICMP6MSGIN_INC_STATS(net, idev, field) \ 188 _DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field) 189 190 struct ip6_ra_chain { 191 struct ip6_ra_chain *next; 192 struct sock *sk; 193 int sel; 194 void (*destructor)(struct sock *); 195 }; 196 197 extern struct ip6_ra_chain *ip6_ra_chain; 198 extern rwlock_t ip6_ra_lock; 199 200 /* 201 This structure is prepared by protocol, when parsing 202 ancillary data and passed to IPv6. 203 */ 204 205 struct ipv6_txoptions { 206 atomic_t refcnt; 207 /* Length of this structure */ 208 int tot_len; 209 210 /* length of extension headers */ 211 212 __u16 opt_flen; /* after fragment hdr */ 213 __u16 opt_nflen; /* before fragment hdr */ 214 215 struct ipv6_opt_hdr *hopopt; 216 struct ipv6_opt_hdr *dst0opt; 217 struct ipv6_rt_hdr *srcrt; /* Routing Header */ 218 struct ipv6_opt_hdr *dst1opt; 219 struct rcu_head rcu; 220 /* Option buffer, as read by IPV6_PKTOPTIONS, starts here. */ 221 }; 222 223 struct ip6_flowlabel { 224 struct ip6_flowlabel __rcu *next; 225 __be32 label; 226 atomic_t users; 227 struct in6_addr dst; 228 struct ipv6_txoptions *opt; 229 unsigned long linger; 230 struct rcu_head rcu; 231 u8 share; 232 union { 233 struct pid *pid; 234 kuid_t uid; 235 } owner; 236 unsigned long lastuse; 237 unsigned long expires; 238 struct net *fl_net; 239 }; 240 241 #define IPV6_FLOWINFO_MASK cpu_to_be32(0x0FFFFFFF) 242 #define IPV6_FLOWLABEL_MASK cpu_to_be32(0x000FFFFF) 243 #define IPV6_FLOWLABEL_STATELESS_FLAG cpu_to_be32(0x00080000) 244 245 #define IPV6_TCLASS_MASK (IPV6_FLOWINFO_MASK & ~IPV6_FLOWLABEL_MASK) 246 #define IPV6_TCLASS_SHIFT 20 247 248 struct ipv6_fl_socklist { 249 struct ipv6_fl_socklist __rcu *next; 250 struct ip6_flowlabel *fl; 251 struct rcu_head rcu; 252 }; 253 254 struct ipcm6_cookie { 255 __s16 hlimit; 256 __s16 tclass; 257 __s8 dontfrag; 258 struct ipv6_txoptions *opt; 259 }; 260 261 static inline struct ipv6_txoptions *txopt_get(const struct ipv6_pinfo *np) 262 { 263 struct ipv6_txoptions *opt; 264 265 rcu_read_lock(); 266 opt = rcu_dereference(np->opt); 267 if (opt) { 268 if (!atomic_inc_not_zero(&opt->refcnt)) 269 opt = NULL; 270 else 271 opt = rcu_pointer_handoff(opt); 272 } 273 rcu_read_unlock(); 274 return opt; 275 } 276 277 static inline void txopt_put(struct ipv6_txoptions *opt) 278 { 279 if (opt && atomic_dec_and_test(&opt->refcnt)) 280 kfree_rcu(opt, rcu); 281 } 282 283 struct ip6_flowlabel *fl6_sock_lookup(struct sock *sk, __be32 label); 284 struct ipv6_txoptions *fl6_merge_options(struct ipv6_txoptions *opt_space, 285 struct ip6_flowlabel *fl, 286 struct ipv6_txoptions *fopt); 287 void fl6_free_socklist(struct sock *sk); 288 int ipv6_flowlabel_opt(struct sock *sk, char __user *optval, int optlen); 289 int ipv6_flowlabel_opt_get(struct sock *sk, struct in6_flowlabel_req *freq, 290 int flags); 291 int ip6_flowlabel_init(void); 292 void ip6_flowlabel_cleanup(void); 293 294 static inline void fl6_sock_release(struct ip6_flowlabel *fl) 295 { 296 if (fl) 297 atomic_dec(&fl->users); 298 } 299 300 void icmpv6_notify(struct sk_buff *skb, u8 type, u8 code, __be32 info); 301 302 int icmpv6_push_pending_frames(struct sock *sk, struct flowi6 *fl6, 303 struct icmp6hdr *thdr, int len); 304 305 int ip6_ra_control(struct sock *sk, int sel); 306 307 int ipv6_parse_hopopts(struct sk_buff *skb); 308 309 struct ipv6_txoptions *ipv6_dup_options(struct sock *sk, 310 struct ipv6_txoptions *opt); 311 struct ipv6_txoptions *ipv6_renew_options(struct sock *sk, 312 struct ipv6_txoptions *opt, 313 int newtype, 314 struct ipv6_opt_hdr __user *newopt, 315 int newoptlen); 316 struct ipv6_txoptions * 317 ipv6_renew_options_kern(struct sock *sk, 318 struct ipv6_txoptions *opt, 319 int newtype, 320 struct ipv6_opt_hdr *newopt, 321 int newoptlen); 322 struct ipv6_txoptions *ipv6_fixup_options(struct ipv6_txoptions *opt_space, 323 struct ipv6_txoptions *opt); 324 325 bool ipv6_opt_accepted(const struct sock *sk, const struct sk_buff *skb, 326 const struct inet6_skb_parm *opt); 327 struct ipv6_txoptions *ipv6_update_options(struct sock *sk, 328 struct ipv6_txoptions *opt); 329 330 static inline bool ipv6_accept_ra(struct inet6_dev *idev) 331 { 332 /* If forwarding is enabled, RA are not accepted unless the special 333 * hybrid mode (accept_ra=2) is enabled. 334 */ 335 return idev->cnf.forwarding ? idev->cnf.accept_ra == 2 : 336 idev->cnf.accept_ra; 337 } 338 339 #if IS_ENABLED(CONFIG_IPV6) 340 static inline int ip6_frag_mem(struct net *net) 341 { 342 return sum_frag_mem_limit(&net->ipv6.frags); 343 } 344 #endif 345 346 #define IPV6_FRAG_HIGH_THRESH (4 * 1024*1024) /* 4194304 */ 347 #define IPV6_FRAG_LOW_THRESH (3 * 1024*1024) /* 3145728 */ 348 #define IPV6_FRAG_TIMEOUT (60 * HZ) /* 60 seconds */ 349 350 int __ipv6_addr_type(const struct in6_addr *addr); 351 static inline int ipv6_addr_type(const struct in6_addr *addr) 352 { 353 return __ipv6_addr_type(addr) & 0xffff; 354 } 355 356 static inline int ipv6_addr_scope(const struct in6_addr *addr) 357 { 358 return __ipv6_addr_type(addr) & IPV6_ADDR_SCOPE_MASK; 359 } 360 361 static inline int __ipv6_addr_src_scope(int type) 362 { 363 return (type == IPV6_ADDR_ANY) ? __IPV6_ADDR_SCOPE_INVALID : (type >> 16); 364 } 365 366 static inline int ipv6_addr_src_scope(const struct in6_addr *addr) 367 { 368 return __ipv6_addr_src_scope(__ipv6_addr_type(addr)); 369 } 370 371 static inline bool __ipv6_addr_needs_scope_id(int type) 372 { 373 return type & IPV6_ADDR_LINKLOCAL || 374 (type & IPV6_ADDR_MULTICAST && 375 (type & (IPV6_ADDR_LOOPBACK|IPV6_ADDR_LINKLOCAL))); 376 } 377 378 static inline __u32 ipv6_iface_scope_id(const struct in6_addr *addr, int iface) 379 { 380 return __ipv6_addr_needs_scope_id(__ipv6_addr_type(addr)) ? iface : 0; 381 } 382 383 static inline int ipv6_addr_cmp(const struct in6_addr *a1, const struct in6_addr *a2) 384 { 385 return memcmp(a1, a2, sizeof(struct in6_addr)); 386 } 387 388 static inline bool 389 ipv6_masked_addr_cmp(const struct in6_addr *a1, const struct in6_addr *m, 390 const struct in6_addr *a2) 391 { 392 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 393 const unsigned long *ul1 = (const unsigned long *)a1; 394 const unsigned long *ulm = (const unsigned long *)m; 395 const unsigned long *ul2 = (const unsigned long *)a2; 396 397 return !!(((ul1[0] ^ ul2[0]) & ulm[0]) | 398 ((ul1[1] ^ ul2[1]) & ulm[1])); 399 #else 400 return !!(((a1->s6_addr32[0] ^ a2->s6_addr32[0]) & m->s6_addr32[0]) | 401 ((a1->s6_addr32[1] ^ a2->s6_addr32[1]) & m->s6_addr32[1]) | 402 ((a1->s6_addr32[2] ^ a2->s6_addr32[2]) & m->s6_addr32[2]) | 403 ((a1->s6_addr32[3] ^ a2->s6_addr32[3]) & m->s6_addr32[3])); 404 #endif 405 } 406 407 static inline void ipv6_addr_prefix(struct in6_addr *pfx, 408 const struct in6_addr *addr, 409 int plen) 410 { 411 /* caller must guarantee 0 <= plen <= 128 */ 412 int o = plen >> 3, 413 b = plen & 0x7; 414 415 memset(pfx->s6_addr, 0, sizeof(pfx->s6_addr)); 416 memcpy(pfx->s6_addr, addr, o); 417 if (b != 0) 418 pfx->s6_addr[o] = addr->s6_addr[o] & (0xff00 >> b); 419 } 420 421 static inline void ipv6_addr_prefix_copy(struct in6_addr *addr, 422 const struct in6_addr *pfx, 423 int plen) 424 { 425 /* caller must guarantee 0 <= plen <= 128 */ 426 int o = plen >> 3, 427 b = plen & 0x7; 428 429 memcpy(addr->s6_addr, pfx, o); 430 if (b != 0) { 431 addr->s6_addr[o] &= ~(0xff00 >> b); 432 addr->s6_addr[o] |= (pfx->s6_addr[o] & (0xff00 >> b)); 433 } 434 } 435 436 static inline void __ipv6_addr_set_half(__be32 *addr, 437 __be32 wh, __be32 wl) 438 { 439 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 440 #if defined(__BIG_ENDIAN) 441 if (__builtin_constant_p(wh) && __builtin_constant_p(wl)) { 442 *(__force u64 *)addr = ((__force u64)(wh) << 32 | (__force u64)(wl)); 443 return; 444 } 445 #elif defined(__LITTLE_ENDIAN) 446 if (__builtin_constant_p(wl) && __builtin_constant_p(wh)) { 447 *(__force u64 *)addr = ((__force u64)(wl) << 32 | (__force u64)(wh)); 448 return; 449 } 450 #endif 451 #endif 452 addr[0] = wh; 453 addr[1] = wl; 454 } 455 456 static inline void ipv6_addr_set(struct in6_addr *addr, 457 __be32 w1, __be32 w2, 458 __be32 w3, __be32 w4) 459 { 460 __ipv6_addr_set_half(&addr->s6_addr32[0], w1, w2); 461 __ipv6_addr_set_half(&addr->s6_addr32[2], w3, w4); 462 } 463 464 static inline bool ipv6_addr_equal(const struct in6_addr *a1, 465 const struct in6_addr *a2) 466 { 467 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 468 const unsigned long *ul1 = (const unsigned long *)a1; 469 const unsigned long *ul2 = (const unsigned long *)a2; 470 471 return ((ul1[0] ^ ul2[0]) | (ul1[1] ^ ul2[1])) == 0UL; 472 #else 473 return ((a1->s6_addr32[0] ^ a2->s6_addr32[0]) | 474 (a1->s6_addr32[1] ^ a2->s6_addr32[1]) | 475 (a1->s6_addr32[2] ^ a2->s6_addr32[2]) | 476 (a1->s6_addr32[3] ^ a2->s6_addr32[3])) == 0; 477 #endif 478 } 479 480 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 481 static inline bool __ipv6_prefix_equal64_half(const __be64 *a1, 482 const __be64 *a2, 483 unsigned int len) 484 { 485 if (len && ((*a1 ^ *a2) & cpu_to_be64((~0UL) << (64 - len)))) 486 return false; 487 return true; 488 } 489 490 static inline bool ipv6_prefix_equal(const struct in6_addr *addr1, 491 const struct in6_addr *addr2, 492 unsigned int prefixlen) 493 { 494 const __be64 *a1 = (const __be64 *)addr1; 495 const __be64 *a2 = (const __be64 *)addr2; 496 497 if (prefixlen >= 64) { 498 if (a1[0] ^ a2[0]) 499 return false; 500 return __ipv6_prefix_equal64_half(a1 + 1, a2 + 1, prefixlen - 64); 501 } 502 return __ipv6_prefix_equal64_half(a1, a2, prefixlen); 503 } 504 #else 505 static inline bool ipv6_prefix_equal(const struct in6_addr *addr1, 506 const struct in6_addr *addr2, 507 unsigned int prefixlen) 508 { 509 const __be32 *a1 = addr1->s6_addr32; 510 const __be32 *a2 = addr2->s6_addr32; 511 unsigned int pdw, pbi; 512 513 /* check complete u32 in prefix */ 514 pdw = prefixlen >> 5; 515 if (pdw && memcmp(a1, a2, pdw << 2)) 516 return false; 517 518 /* check incomplete u32 in prefix */ 519 pbi = prefixlen & 0x1f; 520 if (pbi && ((a1[pdw] ^ a2[pdw]) & htonl((0xffffffff) << (32 - pbi)))) 521 return false; 522 523 return true; 524 } 525 #endif 526 527 struct inet_frag_queue; 528 529 enum ip6_defrag_users { 530 IP6_DEFRAG_LOCAL_DELIVER, 531 IP6_DEFRAG_CONNTRACK_IN, 532 __IP6_DEFRAG_CONNTRACK_IN = IP6_DEFRAG_CONNTRACK_IN + USHRT_MAX, 533 IP6_DEFRAG_CONNTRACK_OUT, 534 __IP6_DEFRAG_CONNTRACK_OUT = IP6_DEFRAG_CONNTRACK_OUT + USHRT_MAX, 535 IP6_DEFRAG_CONNTRACK_BRIDGE_IN, 536 __IP6_DEFRAG_CONNTRACK_BRIDGE_IN = IP6_DEFRAG_CONNTRACK_BRIDGE_IN + USHRT_MAX, 537 }; 538 539 struct ip6_create_arg { 540 __be32 id; 541 u32 user; 542 const struct in6_addr *src; 543 const struct in6_addr *dst; 544 int iif; 545 u8 ecn; 546 }; 547 548 void ip6_frag_init(struct inet_frag_queue *q, const void *a); 549 bool ip6_frag_match(const struct inet_frag_queue *q, const void *a); 550 551 /* 552 * Equivalent of ipv4 struct ip 553 */ 554 struct frag_queue { 555 struct inet_frag_queue q; 556 557 __be32 id; /* fragment id */ 558 u32 user; 559 struct in6_addr saddr; 560 struct in6_addr daddr; 561 562 int iif; 563 unsigned int csum; 564 __u16 nhoffset; 565 u8 ecn; 566 }; 567 568 void ip6_expire_frag_queue(struct net *net, struct frag_queue *fq, 569 struct inet_frags *frags); 570 571 static inline bool ipv6_addr_any(const struct in6_addr *a) 572 { 573 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 574 const unsigned long *ul = (const unsigned long *)a; 575 576 return (ul[0] | ul[1]) == 0UL; 577 #else 578 return (a->s6_addr32[0] | a->s6_addr32[1] | 579 a->s6_addr32[2] | a->s6_addr32[3]) == 0; 580 #endif 581 } 582 583 static inline u32 ipv6_addr_hash(const struct in6_addr *a) 584 { 585 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 586 const unsigned long *ul = (const unsigned long *)a; 587 unsigned long x = ul[0] ^ ul[1]; 588 589 return (u32)(x ^ (x >> 32)); 590 #else 591 return (__force u32)(a->s6_addr32[0] ^ a->s6_addr32[1] ^ 592 a->s6_addr32[2] ^ a->s6_addr32[3]); 593 #endif 594 } 595 596 /* more secured version of ipv6_addr_hash() */ 597 static inline u32 __ipv6_addr_jhash(const struct in6_addr *a, const u32 initval) 598 { 599 u32 v = (__force u32)a->s6_addr32[0] ^ (__force u32)a->s6_addr32[1]; 600 601 return jhash_3words(v, 602 (__force u32)a->s6_addr32[2], 603 (__force u32)a->s6_addr32[3], 604 initval); 605 } 606 607 static inline bool ipv6_addr_loopback(const struct in6_addr *a) 608 { 609 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 610 const __be64 *be = (const __be64 *)a; 611 612 return (be[0] | (be[1] ^ cpu_to_be64(1))) == 0UL; 613 #else 614 return (a->s6_addr32[0] | a->s6_addr32[1] | 615 a->s6_addr32[2] | (a->s6_addr32[3] ^ cpu_to_be32(1))) == 0; 616 #endif 617 } 618 619 /* 620 * Note that we must __force cast these to unsigned long to make sparse happy, 621 * since all of the endian-annotated types are fixed size regardless of arch. 622 */ 623 static inline bool ipv6_addr_v4mapped(const struct in6_addr *a) 624 { 625 return ( 626 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 627 *(unsigned long *)a | 628 #else 629 (__force unsigned long)(a->s6_addr32[0] | a->s6_addr32[1]) | 630 #endif 631 (__force unsigned long)(a->s6_addr32[2] ^ 632 cpu_to_be32(0x0000ffff))) == 0UL; 633 } 634 635 /* 636 * Check for a RFC 4843 ORCHID address 637 * (Overlay Routable Cryptographic Hash Identifiers) 638 */ 639 static inline bool ipv6_addr_orchid(const struct in6_addr *a) 640 { 641 return (a->s6_addr32[0] & htonl(0xfffffff0)) == htonl(0x20010010); 642 } 643 644 static inline bool ipv6_addr_is_multicast(const struct in6_addr *addr) 645 { 646 return (addr->s6_addr32[0] & htonl(0xFF000000)) == htonl(0xFF000000); 647 } 648 649 static inline void ipv6_addr_set_v4mapped(const __be32 addr, 650 struct in6_addr *v4mapped) 651 { 652 ipv6_addr_set(v4mapped, 653 0, 0, 654 htonl(0x0000FFFF), 655 addr); 656 } 657 658 /* 659 * find the first different bit between two addresses 660 * length of address must be a multiple of 32bits 661 */ 662 static inline int __ipv6_addr_diff32(const void *token1, const void *token2, int addrlen) 663 { 664 const __be32 *a1 = token1, *a2 = token2; 665 int i; 666 667 addrlen >>= 2; 668 669 for (i = 0; i < addrlen; i++) { 670 __be32 xb = a1[i] ^ a2[i]; 671 if (xb) 672 return i * 32 + 31 - __fls(ntohl(xb)); 673 } 674 675 /* 676 * we should *never* get to this point since that 677 * would mean the addrs are equal 678 * 679 * However, we do get to it 8) And exacly, when 680 * addresses are equal 8) 681 * 682 * ip route add 1111::/128 via ... 683 * ip route add 1111::/64 via ... 684 * and we are here. 685 * 686 * Ideally, this function should stop comparison 687 * at prefix length. It does not, but it is still OK, 688 * if returned value is greater than prefix length. 689 * --ANK (980803) 690 */ 691 return addrlen << 5; 692 } 693 694 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 695 static inline int __ipv6_addr_diff64(const void *token1, const void *token2, int addrlen) 696 { 697 const __be64 *a1 = token1, *a2 = token2; 698 int i; 699 700 addrlen >>= 3; 701 702 for (i = 0; i < addrlen; i++) { 703 __be64 xb = a1[i] ^ a2[i]; 704 if (xb) 705 return i * 64 + 63 - __fls(be64_to_cpu(xb)); 706 } 707 708 return addrlen << 6; 709 } 710 #endif 711 712 static inline int __ipv6_addr_diff(const void *token1, const void *token2, int addrlen) 713 { 714 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 715 if (__builtin_constant_p(addrlen) && !(addrlen & 7)) 716 return __ipv6_addr_diff64(token1, token2, addrlen); 717 #endif 718 return __ipv6_addr_diff32(token1, token2, addrlen); 719 } 720 721 static inline int ipv6_addr_diff(const struct in6_addr *a1, const struct in6_addr *a2) 722 { 723 return __ipv6_addr_diff(a1, a2, sizeof(struct in6_addr)); 724 } 725 726 __be32 ipv6_select_ident(struct net *net, 727 const struct in6_addr *daddr, 728 const struct in6_addr *saddr); 729 void ipv6_proxy_select_ident(struct net *net, struct sk_buff *skb); 730 731 int ip6_dst_hoplimit(struct dst_entry *dst); 732 733 static inline int ip6_sk_dst_hoplimit(struct ipv6_pinfo *np, struct flowi6 *fl6, 734 struct dst_entry *dst) 735 { 736 int hlimit; 737 738 if (ipv6_addr_is_multicast(&fl6->daddr)) 739 hlimit = np->mcast_hops; 740 else 741 hlimit = np->hop_limit; 742 if (hlimit < 0) 743 hlimit = ip6_dst_hoplimit(dst); 744 return hlimit; 745 } 746 747 /* copy IPv6 saddr & daddr to flow_keys, possibly using 64bit load/store 748 * Equivalent to : flow->v6addrs.src = iph->saddr; 749 * flow->v6addrs.dst = iph->daddr; 750 */ 751 static inline void iph_to_flow_copy_v6addrs(struct flow_keys *flow, 752 const struct ipv6hdr *iph) 753 { 754 BUILD_BUG_ON(offsetof(typeof(flow->addrs), v6addrs.dst) != 755 offsetof(typeof(flow->addrs), v6addrs.src) + 756 sizeof(flow->addrs.v6addrs.src)); 757 memcpy(&flow->addrs.v6addrs, &iph->saddr, sizeof(flow->addrs.v6addrs)); 758 flow->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 759 } 760 761 #if IS_ENABLED(CONFIG_IPV6) 762 763 /* Sysctl settings for net ipv6.auto_flowlabels */ 764 #define IP6_AUTO_FLOW_LABEL_OFF 0 765 #define IP6_AUTO_FLOW_LABEL_OPTOUT 1 766 #define IP6_AUTO_FLOW_LABEL_OPTIN 2 767 #define IP6_AUTO_FLOW_LABEL_FORCED 3 768 769 #define IP6_AUTO_FLOW_LABEL_MAX IP6_AUTO_FLOW_LABEL_FORCED 770 771 #define IP6_DEFAULT_AUTO_FLOW_LABELS IP6_AUTO_FLOW_LABEL_OPTOUT 772 773 static inline __be32 ip6_make_flowlabel(struct net *net, struct sk_buff *skb, 774 __be32 flowlabel, bool autolabel, 775 struct flowi6 *fl6) 776 { 777 u32 hash; 778 779 if (flowlabel || 780 net->ipv6.sysctl.auto_flowlabels == IP6_AUTO_FLOW_LABEL_OFF || 781 (!autolabel && 782 net->ipv6.sysctl.auto_flowlabels != IP6_AUTO_FLOW_LABEL_FORCED)) 783 return flowlabel; 784 785 hash = skb_get_hash_flowi6(skb, fl6); 786 787 /* Since this is being sent on the wire obfuscate hash a bit 788 * to minimize possbility that any useful information to an 789 * attacker is leaked. Only lower 20 bits are relevant. 790 */ 791 rol32(hash, 16); 792 793 flowlabel = (__force __be32)hash & IPV6_FLOWLABEL_MASK; 794 795 if (net->ipv6.sysctl.flowlabel_state_ranges) 796 flowlabel |= IPV6_FLOWLABEL_STATELESS_FLAG; 797 798 return flowlabel; 799 } 800 801 static inline int ip6_default_np_autolabel(struct net *net) 802 { 803 switch (net->ipv6.sysctl.auto_flowlabels) { 804 case IP6_AUTO_FLOW_LABEL_OFF: 805 case IP6_AUTO_FLOW_LABEL_OPTIN: 806 default: 807 return 0; 808 case IP6_AUTO_FLOW_LABEL_OPTOUT: 809 case IP6_AUTO_FLOW_LABEL_FORCED: 810 return 1; 811 } 812 } 813 #else 814 static inline void ip6_set_txhash(struct sock *sk) { } 815 static inline __be32 ip6_make_flowlabel(struct net *net, struct sk_buff *skb, 816 __be32 flowlabel, bool autolabel, 817 struct flowi6 *fl6) 818 { 819 return flowlabel; 820 } 821 static inline int ip6_default_np_autolabel(struct net *net) 822 { 823 return 0; 824 } 825 #endif 826 827 828 /* 829 * Header manipulation 830 */ 831 static inline void ip6_flow_hdr(struct ipv6hdr *hdr, unsigned int tclass, 832 __be32 flowlabel) 833 { 834 *(__be32 *)hdr = htonl(0x60000000 | (tclass << 20)) | flowlabel; 835 } 836 837 static inline __be32 ip6_flowinfo(const struct ipv6hdr *hdr) 838 { 839 return *(__be32 *)hdr & IPV6_FLOWINFO_MASK; 840 } 841 842 static inline __be32 ip6_flowlabel(const struct ipv6hdr *hdr) 843 { 844 return *(__be32 *)hdr & IPV6_FLOWLABEL_MASK; 845 } 846 847 static inline u8 ip6_tclass(__be32 flowinfo) 848 { 849 return ntohl(flowinfo & IPV6_TCLASS_MASK) >> IPV6_TCLASS_SHIFT; 850 } 851 852 static inline __be32 ip6_make_flowinfo(unsigned int tclass, __be32 flowlabel) 853 { 854 return htonl(tclass << IPV6_TCLASS_SHIFT) | flowlabel; 855 } 856 857 /* 858 * Prototypes exported by ipv6 859 */ 860 861 /* 862 * rcv function (called from netdevice level) 863 */ 864 865 int ipv6_rcv(struct sk_buff *skb, struct net_device *dev, 866 struct packet_type *pt, struct net_device *orig_dev); 867 868 int ip6_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb); 869 870 /* 871 * upper-layer output functions 872 */ 873 int ip6_xmit(const struct sock *sk, struct sk_buff *skb, struct flowi6 *fl6, 874 struct ipv6_txoptions *opt, int tclass); 875 876 int ip6_find_1stfragopt(struct sk_buff *skb, u8 **nexthdr); 877 878 int ip6_append_data(struct sock *sk, 879 int getfrag(void *from, char *to, int offset, int len, 880 int odd, struct sk_buff *skb), 881 void *from, int length, int transhdrlen, 882 struct ipcm6_cookie *ipc6, struct flowi6 *fl6, 883 struct rt6_info *rt, unsigned int flags, 884 const struct sockcm_cookie *sockc); 885 886 int ip6_push_pending_frames(struct sock *sk); 887 888 void ip6_flush_pending_frames(struct sock *sk); 889 890 int ip6_send_skb(struct sk_buff *skb); 891 892 struct sk_buff *__ip6_make_skb(struct sock *sk, struct sk_buff_head *queue, 893 struct inet_cork_full *cork, 894 struct inet6_cork *v6_cork); 895 struct sk_buff *ip6_make_skb(struct sock *sk, 896 int getfrag(void *from, char *to, int offset, 897 int len, int odd, struct sk_buff *skb), 898 void *from, int length, int transhdrlen, 899 struct ipcm6_cookie *ipc6, struct flowi6 *fl6, 900 struct rt6_info *rt, unsigned int flags, 901 const struct sockcm_cookie *sockc); 902 903 static inline struct sk_buff *ip6_finish_skb(struct sock *sk) 904 { 905 return __ip6_make_skb(sk, &sk->sk_write_queue, &inet_sk(sk)->cork, 906 &inet6_sk(sk)->cork); 907 } 908 909 int ip6_dst_lookup(struct net *net, struct sock *sk, struct dst_entry **dst, 910 struct flowi6 *fl6); 911 struct dst_entry *ip6_dst_lookup_flow(const struct sock *sk, struct flowi6 *fl6, 912 const struct in6_addr *final_dst); 913 struct dst_entry *ip6_sk_dst_lookup_flow(struct sock *sk, struct flowi6 *fl6, 914 const struct in6_addr *final_dst); 915 struct dst_entry *ip6_blackhole_route(struct net *net, 916 struct dst_entry *orig_dst); 917 918 /* 919 * skb processing functions 920 */ 921 922 int ip6_output(struct net *net, struct sock *sk, struct sk_buff *skb); 923 int ip6_forward(struct sk_buff *skb); 924 int ip6_input(struct sk_buff *skb); 925 int ip6_mc_input(struct sk_buff *skb); 926 927 int __ip6_local_out(struct net *net, struct sock *sk, struct sk_buff *skb); 928 int ip6_local_out(struct net *net, struct sock *sk, struct sk_buff *skb); 929 930 /* 931 * Extension header (options) processing 932 */ 933 934 void ipv6_push_nfrag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt, 935 u8 *proto, struct in6_addr **daddr_p, 936 struct in6_addr *saddr); 937 void ipv6_push_frag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt, 938 u8 *proto); 939 940 int ipv6_skip_exthdr(const struct sk_buff *, int start, u8 *nexthdrp, 941 __be16 *frag_offp); 942 943 bool ipv6_ext_hdr(u8 nexthdr); 944 945 enum { 946 IP6_FH_F_FRAG = (1 << 0), 947 IP6_FH_F_AUTH = (1 << 1), 948 IP6_FH_F_SKIP_RH = (1 << 2), 949 }; 950 951 /* find specified header and get offset to it */ 952 int ipv6_find_hdr(const struct sk_buff *skb, unsigned int *offset, int target, 953 unsigned short *fragoff, int *fragflg); 954 955 int ipv6_find_tlv(const struct sk_buff *skb, int offset, int type); 956 957 struct in6_addr *fl6_update_dst(struct flowi6 *fl6, 958 const struct ipv6_txoptions *opt, 959 struct in6_addr *orig); 960 961 /* 962 * socket options (ipv6_sockglue.c) 963 */ 964 965 int ipv6_setsockopt(struct sock *sk, int level, int optname, 966 char __user *optval, unsigned int optlen); 967 int ipv6_getsockopt(struct sock *sk, int level, int optname, 968 char __user *optval, int __user *optlen); 969 int compat_ipv6_setsockopt(struct sock *sk, int level, int optname, 970 char __user *optval, unsigned int optlen); 971 int compat_ipv6_getsockopt(struct sock *sk, int level, int optname, 972 char __user *optval, int __user *optlen); 973 974 int __ip6_datagram_connect(struct sock *sk, struct sockaddr *addr, 975 int addr_len); 976 int ip6_datagram_connect(struct sock *sk, struct sockaddr *addr, int addr_len); 977 int ip6_datagram_connect_v6_only(struct sock *sk, struct sockaddr *addr, 978 int addr_len); 979 int ip6_datagram_dst_update(struct sock *sk, bool fix_sk_saddr); 980 void ip6_datagram_release_cb(struct sock *sk); 981 982 int ipv6_recv_error(struct sock *sk, struct msghdr *msg, int len, 983 int *addr_len); 984 int ipv6_recv_rxpmtu(struct sock *sk, struct msghdr *msg, int len, 985 int *addr_len); 986 void ipv6_icmp_error(struct sock *sk, struct sk_buff *skb, int err, __be16 port, 987 u32 info, u8 *payload); 988 void ipv6_local_error(struct sock *sk, int err, struct flowi6 *fl6, u32 info); 989 void ipv6_local_rxpmtu(struct sock *sk, struct flowi6 *fl6, u32 mtu); 990 991 int inet6_release(struct socket *sock); 992 int inet6_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len); 993 int inet6_getname(struct socket *sock, struct sockaddr *uaddr, int *uaddr_len, 994 int peer); 995 int inet6_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg); 996 997 int inet6_hash_connect(struct inet_timewait_death_row *death_row, 998 struct sock *sk); 999 1000 /* 1001 * reassembly.c 1002 */ 1003 extern const struct proto_ops inet6_stream_ops; 1004 extern const struct proto_ops inet6_dgram_ops; 1005 1006 struct group_source_req; 1007 struct group_filter; 1008 1009 int ip6_mc_source(int add, int omode, struct sock *sk, 1010 struct group_source_req *pgsr); 1011 int ip6_mc_msfilter(struct sock *sk, struct group_filter *gsf); 1012 int ip6_mc_msfget(struct sock *sk, struct group_filter *gsf, 1013 struct group_filter __user *optval, int __user *optlen); 1014 1015 #ifdef CONFIG_PROC_FS 1016 int ac6_proc_init(struct net *net); 1017 void ac6_proc_exit(struct net *net); 1018 int raw6_proc_init(void); 1019 void raw6_proc_exit(void); 1020 int tcp6_proc_init(struct net *net); 1021 void tcp6_proc_exit(struct net *net); 1022 int udp6_proc_init(struct net *net); 1023 void udp6_proc_exit(struct net *net); 1024 int udplite6_proc_init(void); 1025 void udplite6_proc_exit(void); 1026 int ipv6_misc_proc_init(void); 1027 void ipv6_misc_proc_exit(void); 1028 int snmp6_register_dev(struct inet6_dev *idev); 1029 int snmp6_unregister_dev(struct inet6_dev *idev); 1030 1031 #else 1032 static inline int ac6_proc_init(struct net *net) { return 0; } 1033 static inline void ac6_proc_exit(struct net *net) { } 1034 static inline int snmp6_register_dev(struct inet6_dev *idev) { return 0; } 1035 static inline int snmp6_unregister_dev(struct inet6_dev *idev) { return 0; } 1036 #endif 1037 1038 #ifdef CONFIG_SYSCTL 1039 extern struct ctl_table ipv6_route_table_template[]; 1040 1041 struct ctl_table *ipv6_icmp_sysctl_init(struct net *net); 1042 struct ctl_table *ipv6_route_sysctl_init(struct net *net); 1043 int ipv6_sysctl_register(void); 1044 void ipv6_sysctl_unregister(void); 1045 #endif 1046 1047 int ipv6_sock_mc_join(struct sock *sk, int ifindex, 1048 const struct in6_addr *addr); 1049 int ipv6_sock_mc_drop(struct sock *sk, int ifindex, 1050 const struct in6_addr *addr); 1051 #endif /* _NET_IPV6_H */ 1052