1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * Linux INET6 implementation 4 * 5 * Authors: 6 * Pedro Roque <roque@di.fc.ul.pt> 7 */ 8 9 #ifndef _NET_IPV6_H 10 #define _NET_IPV6_H 11 12 #include <linux/ipv6.h> 13 #include <linux/hardirq.h> 14 #include <linux/jhash.h> 15 #include <linux/refcount.h> 16 #include <linux/jump_label_ratelimit.h> 17 #include <net/if_inet6.h> 18 #include <net/flow.h> 19 #include <net/flow_dissector.h> 20 #include <net/inet_dscp.h> 21 #include <net/snmp.h> 22 #include <net/netns/hash.h> 23 24 struct ip_tunnel_info; 25 26 #define SIN6_LEN_RFC2133 24 27 28 #define IPV6_MAXPLEN 65535 29 30 /* 31 * NextHeader field of IPv6 header 32 */ 33 34 #define NEXTHDR_HOP 0 /* Hop-by-hop option header. */ 35 #define NEXTHDR_IPV4 4 /* IPv4 in IPv6 */ 36 #define NEXTHDR_TCP 6 /* TCP segment. */ 37 #define NEXTHDR_UDP 17 /* UDP message. */ 38 #define NEXTHDR_IPV6 41 /* IPv6 in IPv6 */ 39 #define NEXTHDR_ROUTING 43 /* Routing header. */ 40 #define NEXTHDR_FRAGMENT 44 /* Fragmentation/reassembly header. */ 41 #define NEXTHDR_GRE 47 /* GRE header. */ 42 #define NEXTHDR_ESP 50 /* Encapsulating security payload. */ 43 #define NEXTHDR_AUTH 51 /* Authentication header. */ 44 #define NEXTHDR_ICMP 58 /* ICMP for IPv6. */ 45 #define NEXTHDR_NONE 59 /* No next header */ 46 #define NEXTHDR_DEST 60 /* Destination options header. */ 47 #define NEXTHDR_SCTP 132 /* SCTP message. */ 48 #define NEXTHDR_MOBILITY 135 /* Mobility header. */ 49 50 #define NEXTHDR_MAX 255 51 52 #define IPV6_DEFAULT_HOPLIMIT 64 53 #define IPV6_DEFAULT_MCASTHOPS 1 54 55 /* Limits on Hop-by-Hop and Destination options. 56 * 57 * Per RFC8200 there is no limit on the maximum number or lengths of options in 58 * Hop-by-Hop or Destination options other then the packet must fit in an MTU. 59 * We allow configurable limits in order to mitigate potential denial of 60 * service attacks. 61 * 62 * There are three limits that may be set: 63 * - Limit the number of options in a Hop-by-Hop or Destination options 64 * extension header 65 * - Limit the byte length of a Hop-by-Hop or Destination options extension 66 * header 67 * - Disallow unknown options 68 * 69 * The limits are expressed in corresponding sysctls: 70 * 71 * ipv6.sysctl.max_dst_opts_cnt 72 * ipv6.sysctl.max_hbh_opts_cnt 73 * ipv6.sysctl.max_dst_opts_len 74 * ipv6.sysctl.max_hbh_opts_len 75 * 76 * max_*_opts_cnt is the number of TLVs that are allowed for Destination 77 * options or Hop-by-Hop options. If the number is less than zero then unknown 78 * TLVs are disallowed and the number of known options that are allowed is the 79 * absolute value. Setting the value to INT_MAX indicates no limit. 80 * 81 * max_*_opts_len is the length limit in bytes of a Destination or 82 * Hop-by-Hop options extension header. Setting the value to INT_MAX 83 * indicates no length limit. 84 * 85 * If a limit is exceeded when processing an extension header the packet is 86 * silently discarded. 87 */ 88 89 /* Default limits for Hop-by-Hop and Destination options */ 90 #define IP6_DEFAULT_MAX_DST_OPTS_CNT 8 91 #define IP6_DEFAULT_MAX_HBH_OPTS_CNT 8 92 #define IP6_DEFAULT_MAX_DST_OPTS_LEN INT_MAX /* No limit */ 93 #define IP6_DEFAULT_MAX_HBH_OPTS_LEN INT_MAX /* No limit */ 94 95 /* 96 * Addr type 97 * 98 * type - unicast | multicast 99 * scope - local | site | global 100 * v4 - compat 101 * v4mapped 102 * any 103 * loopback 104 */ 105 106 #define IPV6_ADDR_ANY 0x0000U 107 108 #define IPV6_ADDR_UNICAST 0x0001U 109 #define IPV6_ADDR_MULTICAST 0x0002U 110 111 #define IPV6_ADDR_LOOPBACK 0x0010U 112 #define IPV6_ADDR_LINKLOCAL 0x0020U 113 #define IPV6_ADDR_SITELOCAL 0x0040U 114 115 #define IPV6_ADDR_COMPATv4 0x0080U 116 117 #define IPV6_ADDR_SCOPE_MASK 0x00f0U 118 119 #define IPV6_ADDR_MAPPED 0x1000U 120 121 /* 122 * Addr scopes 123 */ 124 #define IPV6_ADDR_MC_SCOPE(a) \ 125 ((a)->s6_addr[1] & 0x0f) /* nonstandard */ 126 #define __IPV6_ADDR_SCOPE_INVALID -1 127 #define IPV6_ADDR_SCOPE_NODELOCAL 0x01 128 #define IPV6_ADDR_SCOPE_LINKLOCAL 0x02 129 #define IPV6_ADDR_SCOPE_SITELOCAL 0x05 130 #define IPV6_ADDR_SCOPE_ORGLOCAL 0x08 131 #define IPV6_ADDR_SCOPE_GLOBAL 0x0e 132 133 /* 134 * Addr flags 135 */ 136 #define IPV6_ADDR_MC_FLAG_TRANSIENT(a) \ 137 ((a)->s6_addr[1] & 0x10) 138 #define IPV6_ADDR_MC_FLAG_PREFIX(a) \ 139 ((a)->s6_addr[1] & 0x20) 140 #define IPV6_ADDR_MC_FLAG_RENDEZVOUS(a) \ 141 ((a)->s6_addr[1] & 0x40) 142 143 /* 144 * fragmentation header 145 */ 146 147 struct frag_hdr { 148 __u8 nexthdr; 149 __u8 reserved; 150 __be16 frag_off; 151 __be32 identification; 152 }; 153 154 #define IP6_MF 0x0001 155 #define IP6_OFFSET 0xFFF8 156 157 struct ip6_fraglist_iter { 158 struct ipv6hdr *tmp_hdr; 159 struct sk_buff *frag; 160 int offset; 161 unsigned int hlen; 162 __be32 frag_id; 163 u8 nexthdr; 164 }; 165 166 int ip6_fraglist_init(struct sk_buff *skb, unsigned int hlen, u8 *prevhdr, 167 u8 nexthdr, __be32 frag_id, 168 struct ip6_fraglist_iter *iter); 169 void ip6_fraglist_prepare(struct sk_buff *skb, struct ip6_fraglist_iter *iter); 170 171 static inline struct sk_buff *ip6_fraglist_next(struct ip6_fraglist_iter *iter) 172 { 173 struct sk_buff *skb = iter->frag; 174 175 iter->frag = skb->next; 176 skb_mark_not_on_list(skb); 177 178 return skb; 179 } 180 181 struct ip6_frag_state { 182 u8 *prevhdr; 183 unsigned int hlen; 184 unsigned int mtu; 185 unsigned int left; 186 int offset; 187 int ptr; 188 int hroom; 189 int troom; 190 __be32 frag_id; 191 u8 nexthdr; 192 }; 193 194 void ip6_frag_init(struct sk_buff *skb, unsigned int hlen, unsigned int mtu, 195 unsigned short needed_tailroom, int hdr_room, u8 *prevhdr, 196 u8 nexthdr, __be32 frag_id, struct ip6_frag_state *state); 197 struct sk_buff *ip6_frag_next(struct sk_buff *skb, 198 struct ip6_frag_state *state); 199 200 #define IP6_REPLY_MARK(net, mark) \ 201 ((net)->ipv6.sysctl.fwmark_reflect ? (mark) : 0) 202 203 #include <net/sock.h> 204 205 /* sysctls */ 206 extern int sysctl_mld_max_msf; 207 extern int sysctl_mld_qrv; 208 209 #define _DEVINC(net, statname, mod, idev, field) \ 210 ({ \ 211 struct inet6_dev *_idev = (idev); \ 212 if (likely(_idev != NULL)) \ 213 mod##SNMP_INC_STATS64((_idev)->stats.statname, (field));\ 214 mod##SNMP_INC_STATS64((net)->mib.statname##_statistics, (field));\ 215 }) 216 217 /* per device counters are atomic_long_t */ 218 #define _DEVINCATOMIC(net, statname, mod, idev, field) \ 219 ({ \ 220 struct inet6_dev *_idev = (idev); \ 221 if (likely(_idev != NULL)) \ 222 SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \ 223 mod##SNMP_INC_STATS((net)->mib.statname##_statistics, (field));\ 224 }) 225 226 /* per device and per net counters are atomic_long_t */ 227 #define _DEVINC_ATOMIC_ATOMIC(net, statname, idev, field) \ 228 ({ \ 229 struct inet6_dev *_idev = (idev); \ 230 if (likely(_idev != NULL)) \ 231 SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \ 232 SNMP_INC_STATS_ATOMIC_LONG((net)->mib.statname##_statistics, (field));\ 233 }) 234 235 #define _DEVADD(net, statname, mod, idev, field, val) \ 236 ({ \ 237 struct inet6_dev *_idev = (idev); \ 238 if (likely(_idev != NULL)) \ 239 mod##SNMP_ADD_STATS((_idev)->stats.statname, (field), (val)); \ 240 mod##SNMP_ADD_STATS((net)->mib.statname##_statistics, (field), (val));\ 241 }) 242 243 #define _DEVUPD(net, statname, mod, idev, field, val) \ 244 ({ \ 245 struct inet6_dev *_idev = (idev); \ 246 if (likely(_idev != NULL)) \ 247 mod##SNMP_UPD_PO_STATS((_idev)->stats.statname, field, (val)); \ 248 mod##SNMP_UPD_PO_STATS((net)->mib.statname##_statistics, field, (val));\ 249 }) 250 251 /* MIBs */ 252 253 #define IP6_INC_STATS(net, idev,field) \ 254 _DEVINC(net, ipv6, , idev, field) 255 #define __IP6_INC_STATS(net, idev,field) \ 256 _DEVINC(net, ipv6, __, idev, field) 257 #define IP6_ADD_STATS(net, idev,field,val) \ 258 _DEVADD(net, ipv6, , idev, field, val) 259 #define __IP6_ADD_STATS(net, idev,field,val) \ 260 _DEVADD(net, ipv6, __, idev, field, val) 261 #define IP6_UPD_PO_STATS(net, idev,field,val) \ 262 _DEVUPD(net, ipv6, , idev, field, val) 263 #define __IP6_UPD_PO_STATS(net, idev,field,val) \ 264 _DEVUPD(net, ipv6, __, idev, field, val) 265 #define ICMP6_INC_STATS(net, idev, field) \ 266 _DEVINCATOMIC(net, icmpv6, , idev, field) 267 #define __ICMP6_INC_STATS(net, idev, field) \ 268 _DEVINCATOMIC(net, icmpv6, __, idev, field) 269 270 #define ICMP6MSGOUT_INC_STATS(net, idev, field) \ 271 _DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field +256) 272 #define ICMP6MSGIN_INC_STATS(net, idev, field) \ 273 _DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field) 274 275 struct ip6_ra_chain { 276 struct ip6_ra_chain *next; 277 struct sock *sk; 278 int sel; 279 void (*destructor)(struct sock *); 280 }; 281 282 extern struct ip6_ra_chain *ip6_ra_chain; 283 extern rwlock_t ip6_ra_lock; 284 285 /* 286 This structure is prepared by protocol, when parsing 287 ancillary data and passed to IPv6. 288 */ 289 290 struct ipv6_txoptions { 291 refcount_t refcnt; 292 /* Length of this structure */ 293 int tot_len; 294 295 /* length of extension headers */ 296 297 __u16 opt_flen; /* after fragment hdr */ 298 __u16 opt_nflen; /* before fragment hdr */ 299 300 struct ipv6_opt_hdr *hopopt; 301 struct ipv6_opt_hdr *dst0opt; 302 struct ipv6_rt_hdr *srcrt; /* Routing Header */ 303 struct ipv6_opt_hdr *dst1opt; 304 struct rcu_head rcu; 305 /* Option buffer, as read by IPV6_PKTOPTIONS, starts here. */ 306 }; 307 308 /* flowlabel_reflect sysctl values */ 309 enum flowlabel_reflect { 310 FLOWLABEL_REFLECT_ESTABLISHED = 1, 311 FLOWLABEL_REFLECT_TCP_RESET = 2, 312 FLOWLABEL_REFLECT_ICMPV6_ECHO_REPLIES = 4, 313 }; 314 315 struct ip6_flowlabel { 316 struct ip6_flowlabel __rcu *next; 317 __be32 label; 318 atomic_t users; 319 struct in6_addr dst; 320 struct ipv6_txoptions *opt; 321 unsigned long linger; 322 struct rcu_head rcu; 323 u8 share; 324 union { 325 struct pid *pid; 326 kuid_t uid; 327 } owner; 328 unsigned long lastuse; 329 unsigned long expires; 330 struct net *fl_net; 331 }; 332 333 #define IPV6_FLOWINFO_MASK cpu_to_be32(0x0FFFFFFF) 334 #define IPV6_FLOWLABEL_MASK cpu_to_be32(0x000FFFFF) 335 #define IPV6_FLOWLABEL_STATELESS_FLAG cpu_to_be32(0x00080000) 336 337 #define IPV6_TCLASS_MASK (IPV6_FLOWINFO_MASK & ~IPV6_FLOWLABEL_MASK) 338 #define IPV6_TCLASS_SHIFT 20 339 340 struct ipv6_fl_socklist { 341 struct ipv6_fl_socklist __rcu *next; 342 struct ip6_flowlabel *fl; 343 struct rcu_head rcu; 344 }; 345 346 struct ipcm6_cookie { 347 struct sockcm_cookie sockc; 348 __s16 hlimit; 349 __s16 tclass; 350 __u16 gso_size; 351 __s8 dontfrag; 352 struct ipv6_txoptions *opt; 353 }; 354 355 static inline void ipcm6_init(struct ipcm6_cookie *ipc6) 356 { 357 *ipc6 = (struct ipcm6_cookie) { 358 .hlimit = -1, 359 .tclass = -1, 360 .dontfrag = -1, 361 }; 362 } 363 364 static inline void ipcm6_init_sk(struct ipcm6_cookie *ipc6, 365 const struct ipv6_pinfo *np) 366 { 367 *ipc6 = (struct ipcm6_cookie) { 368 .hlimit = -1, 369 .tclass = np->tclass, 370 .dontfrag = np->dontfrag, 371 }; 372 } 373 374 static inline struct ipv6_txoptions *txopt_get(const struct ipv6_pinfo *np) 375 { 376 struct ipv6_txoptions *opt; 377 378 rcu_read_lock(); 379 opt = rcu_dereference(np->opt); 380 if (opt) { 381 if (!refcount_inc_not_zero(&opt->refcnt)) 382 opt = NULL; 383 else 384 opt = rcu_pointer_handoff(opt); 385 } 386 rcu_read_unlock(); 387 return opt; 388 } 389 390 static inline void txopt_put(struct ipv6_txoptions *opt) 391 { 392 if (opt && refcount_dec_and_test(&opt->refcnt)) 393 kfree_rcu(opt, rcu); 394 } 395 396 #if IS_ENABLED(CONFIG_IPV6) 397 struct ip6_flowlabel *__fl6_sock_lookup(struct sock *sk, __be32 label); 398 399 extern struct static_key_false_deferred ipv6_flowlabel_exclusive; 400 static inline struct ip6_flowlabel *fl6_sock_lookup(struct sock *sk, 401 __be32 label) 402 { 403 if (static_branch_unlikely(&ipv6_flowlabel_exclusive.key) && 404 READ_ONCE(sock_net(sk)->ipv6.flowlabel_has_excl)) 405 return __fl6_sock_lookup(sk, label) ? : ERR_PTR(-ENOENT); 406 407 return NULL; 408 } 409 #endif 410 411 struct ipv6_txoptions *fl6_merge_options(struct ipv6_txoptions *opt_space, 412 struct ip6_flowlabel *fl, 413 struct ipv6_txoptions *fopt); 414 void fl6_free_socklist(struct sock *sk); 415 int ipv6_flowlabel_opt(struct sock *sk, sockptr_t optval, int optlen); 416 int ipv6_flowlabel_opt_get(struct sock *sk, struct in6_flowlabel_req *freq, 417 int flags); 418 int ip6_flowlabel_init(void); 419 void ip6_flowlabel_cleanup(void); 420 bool ip6_autoflowlabel(struct net *net, const struct ipv6_pinfo *np); 421 422 static inline void fl6_sock_release(struct ip6_flowlabel *fl) 423 { 424 if (fl) 425 atomic_dec(&fl->users); 426 } 427 428 void icmpv6_notify(struct sk_buff *skb, u8 type, u8 code, __be32 info); 429 430 void icmpv6_push_pending_frames(struct sock *sk, struct flowi6 *fl6, 431 struct icmp6hdr *thdr, int len); 432 433 int ip6_ra_control(struct sock *sk, int sel); 434 435 int ipv6_parse_hopopts(struct sk_buff *skb); 436 437 struct ipv6_txoptions *ipv6_dup_options(struct sock *sk, 438 struct ipv6_txoptions *opt); 439 struct ipv6_txoptions *ipv6_renew_options(struct sock *sk, 440 struct ipv6_txoptions *opt, 441 int newtype, 442 struct ipv6_opt_hdr *newopt); 443 struct ipv6_txoptions *__ipv6_fixup_options(struct ipv6_txoptions *opt_space, 444 struct ipv6_txoptions *opt); 445 446 static inline struct ipv6_txoptions * 447 ipv6_fixup_options(struct ipv6_txoptions *opt_space, struct ipv6_txoptions *opt) 448 { 449 if (!opt) 450 return NULL; 451 return __ipv6_fixup_options(opt_space, opt); 452 } 453 454 bool ipv6_opt_accepted(const struct sock *sk, const struct sk_buff *skb, 455 const struct inet6_skb_parm *opt); 456 struct ipv6_txoptions *ipv6_update_options(struct sock *sk, 457 struct ipv6_txoptions *opt); 458 459 static inline bool ipv6_accept_ra(struct inet6_dev *idev) 460 { 461 /* If forwarding is enabled, RA are not accepted unless the special 462 * hybrid mode (accept_ra=2) is enabled. 463 */ 464 return idev->cnf.forwarding ? idev->cnf.accept_ra == 2 : 465 idev->cnf.accept_ra; 466 } 467 468 #define IPV6_FRAG_HIGH_THRESH (4 * 1024*1024) /* 4194304 */ 469 #define IPV6_FRAG_LOW_THRESH (3 * 1024*1024) /* 3145728 */ 470 #define IPV6_FRAG_TIMEOUT (60 * HZ) /* 60 seconds */ 471 472 int __ipv6_addr_type(const struct in6_addr *addr); 473 static inline int ipv6_addr_type(const struct in6_addr *addr) 474 { 475 return __ipv6_addr_type(addr) & 0xffff; 476 } 477 478 static inline int ipv6_addr_scope(const struct in6_addr *addr) 479 { 480 return __ipv6_addr_type(addr) & IPV6_ADDR_SCOPE_MASK; 481 } 482 483 static inline int __ipv6_addr_src_scope(int type) 484 { 485 return (type == IPV6_ADDR_ANY) ? __IPV6_ADDR_SCOPE_INVALID : (type >> 16); 486 } 487 488 static inline int ipv6_addr_src_scope(const struct in6_addr *addr) 489 { 490 return __ipv6_addr_src_scope(__ipv6_addr_type(addr)); 491 } 492 493 static inline bool __ipv6_addr_needs_scope_id(int type) 494 { 495 return type & IPV6_ADDR_LINKLOCAL || 496 (type & IPV6_ADDR_MULTICAST && 497 (type & (IPV6_ADDR_LOOPBACK|IPV6_ADDR_LINKLOCAL))); 498 } 499 500 static inline __u32 ipv6_iface_scope_id(const struct in6_addr *addr, int iface) 501 { 502 return __ipv6_addr_needs_scope_id(__ipv6_addr_type(addr)) ? iface : 0; 503 } 504 505 static inline int ipv6_addr_cmp(const struct in6_addr *a1, const struct in6_addr *a2) 506 { 507 return memcmp(a1, a2, sizeof(struct in6_addr)); 508 } 509 510 static inline bool 511 ipv6_masked_addr_cmp(const struct in6_addr *a1, const struct in6_addr *m, 512 const struct in6_addr *a2) 513 { 514 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 515 const unsigned long *ul1 = (const unsigned long *)a1; 516 const unsigned long *ulm = (const unsigned long *)m; 517 const unsigned long *ul2 = (const unsigned long *)a2; 518 519 return !!(((ul1[0] ^ ul2[0]) & ulm[0]) | 520 ((ul1[1] ^ ul2[1]) & ulm[1])); 521 #else 522 return !!(((a1->s6_addr32[0] ^ a2->s6_addr32[0]) & m->s6_addr32[0]) | 523 ((a1->s6_addr32[1] ^ a2->s6_addr32[1]) & m->s6_addr32[1]) | 524 ((a1->s6_addr32[2] ^ a2->s6_addr32[2]) & m->s6_addr32[2]) | 525 ((a1->s6_addr32[3] ^ a2->s6_addr32[3]) & m->s6_addr32[3])); 526 #endif 527 } 528 529 static inline void ipv6_addr_prefix(struct in6_addr *pfx, 530 const struct in6_addr *addr, 531 int plen) 532 { 533 /* caller must guarantee 0 <= plen <= 128 */ 534 int o = plen >> 3, 535 b = plen & 0x7; 536 537 memset(pfx->s6_addr, 0, sizeof(pfx->s6_addr)); 538 memcpy(pfx->s6_addr, addr, o); 539 if (b != 0) 540 pfx->s6_addr[o] = addr->s6_addr[o] & (0xff00 >> b); 541 } 542 543 static inline void ipv6_addr_prefix_copy(struct in6_addr *addr, 544 const struct in6_addr *pfx, 545 int plen) 546 { 547 /* caller must guarantee 0 <= plen <= 128 */ 548 int o = plen >> 3, 549 b = plen & 0x7; 550 551 memcpy(addr->s6_addr, pfx, o); 552 if (b != 0) { 553 addr->s6_addr[o] &= ~(0xff00 >> b); 554 addr->s6_addr[o] |= (pfx->s6_addr[o] & (0xff00 >> b)); 555 } 556 } 557 558 static inline void __ipv6_addr_set_half(__be32 *addr, 559 __be32 wh, __be32 wl) 560 { 561 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 562 #if defined(__BIG_ENDIAN) 563 if (__builtin_constant_p(wh) && __builtin_constant_p(wl)) { 564 *(__force u64 *)addr = ((__force u64)(wh) << 32 | (__force u64)(wl)); 565 return; 566 } 567 #elif defined(__LITTLE_ENDIAN) 568 if (__builtin_constant_p(wl) && __builtin_constant_p(wh)) { 569 *(__force u64 *)addr = ((__force u64)(wl) << 32 | (__force u64)(wh)); 570 return; 571 } 572 #endif 573 #endif 574 addr[0] = wh; 575 addr[1] = wl; 576 } 577 578 static inline void ipv6_addr_set(struct in6_addr *addr, 579 __be32 w1, __be32 w2, 580 __be32 w3, __be32 w4) 581 { 582 __ipv6_addr_set_half(&addr->s6_addr32[0], w1, w2); 583 __ipv6_addr_set_half(&addr->s6_addr32[2], w3, w4); 584 } 585 586 static inline bool ipv6_addr_equal(const struct in6_addr *a1, 587 const struct in6_addr *a2) 588 { 589 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 590 const unsigned long *ul1 = (const unsigned long *)a1; 591 const unsigned long *ul2 = (const unsigned long *)a2; 592 593 return ((ul1[0] ^ ul2[0]) | (ul1[1] ^ ul2[1])) == 0UL; 594 #else 595 return ((a1->s6_addr32[0] ^ a2->s6_addr32[0]) | 596 (a1->s6_addr32[1] ^ a2->s6_addr32[1]) | 597 (a1->s6_addr32[2] ^ a2->s6_addr32[2]) | 598 (a1->s6_addr32[3] ^ a2->s6_addr32[3])) == 0; 599 #endif 600 } 601 602 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 603 static inline bool __ipv6_prefix_equal64_half(const __be64 *a1, 604 const __be64 *a2, 605 unsigned int len) 606 { 607 if (len && ((*a1 ^ *a2) & cpu_to_be64((~0UL) << (64 - len)))) 608 return false; 609 return true; 610 } 611 612 static inline bool ipv6_prefix_equal(const struct in6_addr *addr1, 613 const struct in6_addr *addr2, 614 unsigned int prefixlen) 615 { 616 const __be64 *a1 = (const __be64 *)addr1; 617 const __be64 *a2 = (const __be64 *)addr2; 618 619 if (prefixlen >= 64) { 620 if (a1[0] ^ a2[0]) 621 return false; 622 return __ipv6_prefix_equal64_half(a1 + 1, a2 + 1, prefixlen - 64); 623 } 624 return __ipv6_prefix_equal64_half(a1, a2, prefixlen); 625 } 626 #else 627 static inline bool ipv6_prefix_equal(const struct in6_addr *addr1, 628 const struct in6_addr *addr2, 629 unsigned int prefixlen) 630 { 631 const __be32 *a1 = addr1->s6_addr32; 632 const __be32 *a2 = addr2->s6_addr32; 633 unsigned int pdw, pbi; 634 635 /* check complete u32 in prefix */ 636 pdw = prefixlen >> 5; 637 if (pdw && memcmp(a1, a2, pdw << 2)) 638 return false; 639 640 /* check incomplete u32 in prefix */ 641 pbi = prefixlen & 0x1f; 642 if (pbi && ((a1[pdw] ^ a2[pdw]) & htonl((0xffffffff) << (32 - pbi)))) 643 return false; 644 645 return true; 646 } 647 #endif 648 649 static inline bool ipv6_addr_any(const struct in6_addr *a) 650 { 651 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 652 const unsigned long *ul = (const unsigned long *)a; 653 654 return (ul[0] | ul[1]) == 0UL; 655 #else 656 return (a->s6_addr32[0] | a->s6_addr32[1] | 657 a->s6_addr32[2] | a->s6_addr32[3]) == 0; 658 #endif 659 } 660 661 static inline u32 ipv6_addr_hash(const struct in6_addr *a) 662 { 663 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 664 const unsigned long *ul = (const unsigned long *)a; 665 unsigned long x = ul[0] ^ ul[1]; 666 667 return (u32)(x ^ (x >> 32)); 668 #else 669 return (__force u32)(a->s6_addr32[0] ^ a->s6_addr32[1] ^ 670 a->s6_addr32[2] ^ a->s6_addr32[3]); 671 #endif 672 } 673 674 /* more secured version of ipv6_addr_hash() */ 675 static inline u32 __ipv6_addr_jhash(const struct in6_addr *a, const u32 initval) 676 { 677 u32 v = (__force u32)a->s6_addr32[0] ^ (__force u32)a->s6_addr32[1]; 678 679 return jhash_3words(v, 680 (__force u32)a->s6_addr32[2], 681 (__force u32)a->s6_addr32[3], 682 initval); 683 } 684 685 static inline bool ipv6_addr_loopback(const struct in6_addr *a) 686 { 687 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 688 const __be64 *be = (const __be64 *)a; 689 690 return (be[0] | (be[1] ^ cpu_to_be64(1))) == 0UL; 691 #else 692 return (a->s6_addr32[0] | a->s6_addr32[1] | 693 a->s6_addr32[2] | (a->s6_addr32[3] ^ cpu_to_be32(1))) == 0; 694 #endif 695 } 696 697 /* 698 * Note that we must __force cast these to unsigned long to make sparse happy, 699 * since all of the endian-annotated types are fixed size regardless of arch. 700 */ 701 static inline bool ipv6_addr_v4mapped(const struct in6_addr *a) 702 { 703 return ( 704 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 705 *(unsigned long *)a | 706 #else 707 (__force unsigned long)(a->s6_addr32[0] | a->s6_addr32[1]) | 708 #endif 709 (__force unsigned long)(a->s6_addr32[2] ^ 710 cpu_to_be32(0x0000ffff))) == 0UL; 711 } 712 713 static inline bool ipv6_addr_v4mapped_loopback(const struct in6_addr *a) 714 { 715 return ipv6_addr_v4mapped(a) && ipv4_is_loopback(a->s6_addr32[3]); 716 } 717 718 static inline u32 ipv6_portaddr_hash(const struct net *net, 719 const struct in6_addr *addr6, 720 unsigned int port) 721 { 722 unsigned int hash, mix = net_hash_mix(net); 723 724 if (ipv6_addr_any(addr6)) 725 hash = jhash_1word(0, mix); 726 else if (ipv6_addr_v4mapped(addr6)) 727 hash = jhash_1word((__force u32)addr6->s6_addr32[3], mix); 728 else 729 hash = jhash2((__force u32 *)addr6->s6_addr32, 4, mix); 730 731 return hash ^ port; 732 } 733 734 /* 735 * Check for a RFC 4843 ORCHID address 736 * (Overlay Routable Cryptographic Hash Identifiers) 737 */ 738 static inline bool ipv6_addr_orchid(const struct in6_addr *a) 739 { 740 return (a->s6_addr32[0] & htonl(0xfffffff0)) == htonl(0x20010010); 741 } 742 743 static inline bool ipv6_addr_is_multicast(const struct in6_addr *addr) 744 { 745 return (addr->s6_addr32[0] & htonl(0xFF000000)) == htonl(0xFF000000); 746 } 747 748 static inline void ipv6_addr_set_v4mapped(const __be32 addr, 749 struct in6_addr *v4mapped) 750 { 751 ipv6_addr_set(v4mapped, 752 0, 0, 753 htonl(0x0000FFFF), 754 addr); 755 } 756 757 /* 758 * find the first different bit between two addresses 759 * length of address must be a multiple of 32bits 760 */ 761 static inline int __ipv6_addr_diff32(const void *token1, const void *token2, int addrlen) 762 { 763 const __be32 *a1 = token1, *a2 = token2; 764 int i; 765 766 addrlen >>= 2; 767 768 for (i = 0; i < addrlen; i++) { 769 __be32 xb = a1[i] ^ a2[i]; 770 if (xb) 771 return i * 32 + 31 - __fls(ntohl(xb)); 772 } 773 774 /* 775 * we should *never* get to this point since that 776 * would mean the addrs are equal 777 * 778 * However, we do get to it 8) And exacly, when 779 * addresses are equal 8) 780 * 781 * ip route add 1111::/128 via ... 782 * ip route add 1111::/64 via ... 783 * and we are here. 784 * 785 * Ideally, this function should stop comparison 786 * at prefix length. It does not, but it is still OK, 787 * if returned value is greater than prefix length. 788 * --ANK (980803) 789 */ 790 return addrlen << 5; 791 } 792 793 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 794 static inline int __ipv6_addr_diff64(const void *token1, const void *token2, int addrlen) 795 { 796 const __be64 *a1 = token1, *a2 = token2; 797 int i; 798 799 addrlen >>= 3; 800 801 for (i = 0; i < addrlen; i++) { 802 __be64 xb = a1[i] ^ a2[i]; 803 if (xb) 804 return i * 64 + 63 - __fls(be64_to_cpu(xb)); 805 } 806 807 return addrlen << 6; 808 } 809 #endif 810 811 static inline int __ipv6_addr_diff(const void *token1, const void *token2, int addrlen) 812 { 813 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 814 if (__builtin_constant_p(addrlen) && !(addrlen & 7)) 815 return __ipv6_addr_diff64(token1, token2, addrlen); 816 #endif 817 return __ipv6_addr_diff32(token1, token2, addrlen); 818 } 819 820 static inline int ipv6_addr_diff(const struct in6_addr *a1, const struct in6_addr *a2) 821 { 822 return __ipv6_addr_diff(a1, a2, sizeof(struct in6_addr)); 823 } 824 825 __be32 ipv6_select_ident(struct net *net, 826 const struct in6_addr *daddr, 827 const struct in6_addr *saddr); 828 __be32 ipv6_proxy_select_ident(struct net *net, struct sk_buff *skb); 829 830 int ip6_dst_hoplimit(struct dst_entry *dst); 831 832 static inline int ip6_sk_dst_hoplimit(struct ipv6_pinfo *np, struct flowi6 *fl6, 833 struct dst_entry *dst) 834 { 835 int hlimit; 836 837 if (ipv6_addr_is_multicast(&fl6->daddr)) 838 hlimit = np->mcast_hops; 839 else 840 hlimit = np->hop_limit; 841 if (hlimit < 0) 842 hlimit = ip6_dst_hoplimit(dst); 843 return hlimit; 844 } 845 846 /* copy IPv6 saddr & daddr to flow_keys, possibly using 64bit load/store 847 * Equivalent to : flow->v6addrs.src = iph->saddr; 848 * flow->v6addrs.dst = iph->daddr; 849 */ 850 static inline void iph_to_flow_copy_v6addrs(struct flow_keys *flow, 851 const struct ipv6hdr *iph) 852 { 853 BUILD_BUG_ON(offsetof(typeof(flow->addrs), v6addrs.dst) != 854 offsetof(typeof(flow->addrs), v6addrs.src) + 855 sizeof(flow->addrs.v6addrs.src)); 856 memcpy(&flow->addrs.v6addrs, &iph->saddr, sizeof(flow->addrs.v6addrs)); 857 flow->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 858 } 859 860 #if IS_ENABLED(CONFIG_IPV6) 861 862 static inline bool ipv6_can_nonlocal_bind(struct net *net, 863 struct inet_sock *inet) 864 { 865 return net->ipv6.sysctl.ip_nonlocal_bind || 866 inet->freebind || inet->transparent; 867 } 868 869 /* Sysctl settings for net ipv6.auto_flowlabels */ 870 #define IP6_AUTO_FLOW_LABEL_OFF 0 871 #define IP6_AUTO_FLOW_LABEL_OPTOUT 1 872 #define IP6_AUTO_FLOW_LABEL_OPTIN 2 873 #define IP6_AUTO_FLOW_LABEL_FORCED 3 874 875 #define IP6_AUTO_FLOW_LABEL_MAX IP6_AUTO_FLOW_LABEL_FORCED 876 877 #define IP6_DEFAULT_AUTO_FLOW_LABELS IP6_AUTO_FLOW_LABEL_OPTOUT 878 879 static inline __be32 ip6_make_flowlabel(struct net *net, struct sk_buff *skb, 880 __be32 flowlabel, bool autolabel, 881 struct flowi6 *fl6) 882 { 883 u32 hash; 884 885 /* @flowlabel may include more than a flow label, eg, the traffic class. 886 * Here we want only the flow label value. 887 */ 888 flowlabel &= IPV6_FLOWLABEL_MASK; 889 890 if (flowlabel || 891 net->ipv6.sysctl.auto_flowlabels == IP6_AUTO_FLOW_LABEL_OFF || 892 (!autolabel && 893 net->ipv6.sysctl.auto_flowlabels != IP6_AUTO_FLOW_LABEL_FORCED)) 894 return flowlabel; 895 896 hash = skb_get_hash_flowi6(skb, fl6); 897 898 /* Since this is being sent on the wire obfuscate hash a bit 899 * to minimize possbility that any useful information to an 900 * attacker is leaked. Only lower 20 bits are relevant. 901 */ 902 hash = rol32(hash, 16); 903 904 flowlabel = (__force __be32)hash & IPV6_FLOWLABEL_MASK; 905 906 if (net->ipv6.sysctl.flowlabel_state_ranges) 907 flowlabel |= IPV6_FLOWLABEL_STATELESS_FLAG; 908 909 return flowlabel; 910 } 911 912 static inline int ip6_default_np_autolabel(struct net *net) 913 { 914 switch (net->ipv6.sysctl.auto_flowlabels) { 915 case IP6_AUTO_FLOW_LABEL_OFF: 916 case IP6_AUTO_FLOW_LABEL_OPTIN: 917 default: 918 return 0; 919 case IP6_AUTO_FLOW_LABEL_OPTOUT: 920 case IP6_AUTO_FLOW_LABEL_FORCED: 921 return 1; 922 } 923 } 924 #else 925 static inline __be32 ip6_make_flowlabel(struct net *net, struct sk_buff *skb, 926 __be32 flowlabel, bool autolabel, 927 struct flowi6 *fl6) 928 { 929 return flowlabel; 930 } 931 static inline int ip6_default_np_autolabel(struct net *net) 932 { 933 return 0; 934 } 935 #endif 936 937 #if IS_ENABLED(CONFIG_IPV6) 938 static inline int ip6_multipath_hash_policy(const struct net *net) 939 { 940 return net->ipv6.sysctl.multipath_hash_policy; 941 } 942 static inline u32 ip6_multipath_hash_fields(const struct net *net) 943 { 944 return net->ipv6.sysctl.multipath_hash_fields; 945 } 946 #else 947 static inline int ip6_multipath_hash_policy(const struct net *net) 948 { 949 return 0; 950 } 951 static inline u32 ip6_multipath_hash_fields(const struct net *net) 952 { 953 return 0; 954 } 955 #endif 956 957 /* 958 * Header manipulation 959 */ 960 static inline void ip6_flow_hdr(struct ipv6hdr *hdr, unsigned int tclass, 961 __be32 flowlabel) 962 { 963 *(__be32 *)hdr = htonl(0x60000000 | (tclass << 20)) | flowlabel; 964 } 965 966 static inline __be32 ip6_flowinfo(const struct ipv6hdr *hdr) 967 { 968 return *(__be32 *)hdr & IPV6_FLOWINFO_MASK; 969 } 970 971 static inline __be32 ip6_flowlabel(const struct ipv6hdr *hdr) 972 { 973 return *(__be32 *)hdr & IPV6_FLOWLABEL_MASK; 974 } 975 976 static inline u8 ip6_tclass(__be32 flowinfo) 977 { 978 return ntohl(flowinfo & IPV6_TCLASS_MASK) >> IPV6_TCLASS_SHIFT; 979 } 980 981 static inline dscp_t ip6_dscp(__be32 flowinfo) 982 { 983 return inet_dsfield_to_dscp(ip6_tclass(flowinfo)); 984 } 985 986 static inline __be32 ip6_make_flowinfo(unsigned int tclass, __be32 flowlabel) 987 { 988 return htonl(tclass << IPV6_TCLASS_SHIFT) | flowlabel; 989 } 990 991 static inline __be32 flowi6_get_flowlabel(const struct flowi6 *fl6) 992 { 993 return fl6->flowlabel & IPV6_FLOWLABEL_MASK; 994 } 995 996 /* 997 * Prototypes exported by ipv6 998 */ 999 1000 /* 1001 * rcv function (called from netdevice level) 1002 */ 1003 1004 int ipv6_rcv(struct sk_buff *skb, struct net_device *dev, 1005 struct packet_type *pt, struct net_device *orig_dev); 1006 void ipv6_list_rcv(struct list_head *head, struct packet_type *pt, 1007 struct net_device *orig_dev); 1008 1009 int ip6_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb); 1010 1011 /* 1012 * upper-layer output functions 1013 */ 1014 int ip6_xmit(const struct sock *sk, struct sk_buff *skb, struct flowi6 *fl6, 1015 __u32 mark, struct ipv6_txoptions *opt, int tclass, u32 priority); 1016 1017 int ip6_find_1stfragopt(struct sk_buff *skb, u8 **nexthdr); 1018 1019 int ip6_append_data(struct sock *sk, 1020 int getfrag(void *from, char *to, int offset, int len, 1021 int odd, struct sk_buff *skb), 1022 void *from, int length, int transhdrlen, 1023 struct ipcm6_cookie *ipc6, struct flowi6 *fl6, 1024 struct rt6_info *rt, unsigned int flags); 1025 1026 int ip6_push_pending_frames(struct sock *sk); 1027 1028 void ip6_flush_pending_frames(struct sock *sk); 1029 1030 int ip6_send_skb(struct sk_buff *skb); 1031 1032 struct sk_buff *__ip6_make_skb(struct sock *sk, struct sk_buff_head *queue, 1033 struct inet_cork_full *cork, 1034 struct inet6_cork *v6_cork); 1035 struct sk_buff *ip6_make_skb(struct sock *sk, 1036 int getfrag(void *from, char *to, int offset, 1037 int len, int odd, struct sk_buff *skb), 1038 void *from, int length, int transhdrlen, 1039 struct ipcm6_cookie *ipc6, 1040 struct rt6_info *rt, unsigned int flags, 1041 struct inet_cork_full *cork); 1042 1043 static inline struct sk_buff *ip6_finish_skb(struct sock *sk) 1044 { 1045 return __ip6_make_skb(sk, &sk->sk_write_queue, &inet_sk(sk)->cork, 1046 &inet6_sk(sk)->cork); 1047 } 1048 1049 int ip6_dst_lookup(struct net *net, struct sock *sk, struct dst_entry **dst, 1050 struct flowi6 *fl6); 1051 struct dst_entry *ip6_dst_lookup_flow(struct net *net, const struct sock *sk, struct flowi6 *fl6, 1052 const struct in6_addr *final_dst); 1053 struct dst_entry *ip6_sk_dst_lookup_flow(struct sock *sk, struct flowi6 *fl6, 1054 const struct in6_addr *final_dst, 1055 bool connected); 1056 struct dst_entry *ip6_dst_lookup_tunnel(struct sk_buff *skb, 1057 struct net_device *dev, 1058 struct net *net, struct socket *sock, 1059 struct in6_addr *saddr, 1060 const struct ip_tunnel_info *info, 1061 u8 protocol, bool use_cache); 1062 struct dst_entry *ip6_blackhole_route(struct net *net, 1063 struct dst_entry *orig_dst); 1064 1065 /* 1066 * skb processing functions 1067 */ 1068 1069 int ip6_output(struct net *net, struct sock *sk, struct sk_buff *skb); 1070 int ip6_forward(struct sk_buff *skb); 1071 int ip6_input(struct sk_buff *skb); 1072 int ip6_mc_input(struct sk_buff *skb); 1073 void ip6_protocol_deliver_rcu(struct net *net, struct sk_buff *skb, int nexthdr, 1074 bool have_final); 1075 1076 int __ip6_local_out(struct net *net, struct sock *sk, struct sk_buff *skb); 1077 int ip6_local_out(struct net *net, struct sock *sk, struct sk_buff *skb); 1078 1079 /* 1080 * Extension header (options) processing 1081 */ 1082 1083 void ipv6_push_nfrag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt, 1084 u8 *proto, struct in6_addr **daddr_p, 1085 struct in6_addr *saddr); 1086 void ipv6_push_frag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt, 1087 u8 *proto); 1088 1089 int ipv6_skip_exthdr(const struct sk_buff *, int start, u8 *nexthdrp, 1090 __be16 *frag_offp); 1091 1092 bool ipv6_ext_hdr(u8 nexthdr); 1093 1094 enum { 1095 IP6_FH_F_FRAG = (1 << 0), 1096 IP6_FH_F_AUTH = (1 << 1), 1097 IP6_FH_F_SKIP_RH = (1 << 2), 1098 }; 1099 1100 /* find specified header and get offset to it */ 1101 int ipv6_find_hdr(const struct sk_buff *skb, unsigned int *offset, int target, 1102 unsigned short *fragoff, int *fragflg); 1103 1104 int ipv6_find_tlv(const struct sk_buff *skb, int offset, int type); 1105 1106 struct in6_addr *fl6_update_dst(struct flowi6 *fl6, 1107 const struct ipv6_txoptions *opt, 1108 struct in6_addr *orig); 1109 1110 /* 1111 * socket options (ipv6_sockglue.c) 1112 */ 1113 DECLARE_STATIC_KEY_FALSE(ip6_min_hopcount); 1114 1115 int ipv6_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 1116 unsigned int optlen); 1117 int ipv6_getsockopt(struct sock *sk, int level, int optname, 1118 char __user *optval, int __user *optlen); 1119 1120 int __ip6_datagram_connect(struct sock *sk, struct sockaddr *addr, 1121 int addr_len); 1122 int ip6_datagram_connect(struct sock *sk, struct sockaddr *addr, int addr_len); 1123 int ip6_datagram_connect_v6_only(struct sock *sk, struct sockaddr *addr, 1124 int addr_len); 1125 int ip6_datagram_dst_update(struct sock *sk, bool fix_sk_saddr); 1126 void ip6_datagram_release_cb(struct sock *sk); 1127 1128 int ipv6_recv_error(struct sock *sk, struct msghdr *msg, int len, 1129 int *addr_len); 1130 int ipv6_recv_rxpmtu(struct sock *sk, struct msghdr *msg, int len, 1131 int *addr_len); 1132 void ipv6_icmp_error(struct sock *sk, struct sk_buff *skb, int err, __be16 port, 1133 u32 info, u8 *payload); 1134 void ipv6_local_error(struct sock *sk, int err, struct flowi6 *fl6, u32 info); 1135 void ipv6_local_rxpmtu(struct sock *sk, struct flowi6 *fl6, u32 mtu); 1136 1137 int inet6_release(struct socket *sock); 1138 int inet6_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len); 1139 int inet6_getname(struct socket *sock, struct sockaddr *uaddr, 1140 int peer); 1141 int inet6_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg); 1142 int inet6_compat_ioctl(struct socket *sock, unsigned int cmd, 1143 unsigned long arg); 1144 1145 int inet6_hash_connect(struct inet_timewait_death_row *death_row, 1146 struct sock *sk); 1147 int inet6_sendmsg(struct socket *sock, struct msghdr *msg, size_t size); 1148 int inet6_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 1149 int flags); 1150 1151 /* 1152 * reassembly.c 1153 */ 1154 extern const struct proto_ops inet6_stream_ops; 1155 extern const struct proto_ops inet6_dgram_ops; 1156 extern const struct proto_ops inet6_sockraw_ops; 1157 1158 struct group_source_req; 1159 struct group_filter; 1160 1161 int ip6_mc_source(int add, int omode, struct sock *sk, 1162 struct group_source_req *pgsr); 1163 int ip6_mc_msfilter(struct sock *sk, struct group_filter *gsf, 1164 struct sockaddr_storage *list); 1165 int ip6_mc_msfget(struct sock *sk, struct group_filter *gsf, 1166 struct sockaddr_storage __user *p); 1167 1168 #ifdef CONFIG_PROC_FS 1169 int ac6_proc_init(struct net *net); 1170 void ac6_proc_exit(struct net *net); 1171 int raw6_proc_init(void); 1172 void raw6_proc_exit(void); 1173 int tcp6_proc_init(struct net *net); 1174 void tcp6_proc_exit(struct net *net); 1175 int udp6_proc_init(struct net *net); 1176 void udp6_proc_exit(struct net *net); 1177 int udplite6_proc_init(void); 1178 void udplite6_proc_exit(void); 1179 int ipv6_misc_proc_init(void); 1180 void ipv6_misc_proc_exit(void); 1181 int snmp6_register_dev(struct inet6_dev *idev); 1182 int snmp6_unregister_dev(struct inet6_dev *idev); 1183 1184 #else 1185 static inline int ac6_proc_init(struct net *net) { return 0; } 1186 static inline void ac6_proc_exit(struct net *net) { } 1187 static inline int snmp6_register_dev(struct inet6_dev *idev) { return 0; } 1188 static inline int snmp6_unregister_dev(struct inet6_dev *idev) { return 0; } 1189 #endif 1190 1191 #ifdef CONFIG_SYSCTL 1192 struct ctl_table *ipv6_icmp_sysctl_init(struct net *net); 1193 struct ctl_table *ipv6_route_sysctl_init(struct net *net); 1194 int ipv6_sysctl_register(void); 1195 void ipv6_sysctl_unregister(void); 1196 #endif 1197 1198 int ipv6_sock_mc_join(struct sock *sk, int ifindex, 1199 const struct in6_addr *addr); 1200 int ipv6_sock_mc_join_ssm(struct sock *sk, int ifindex, 1201 const struct in6_addr *addr, unsigned int mode); 1202 int ipv6_sock_mc_drop(struct sock *sk, int ifindex, 1203 const struct in6_addr *addr); 1204 1205 static inline int ip6_sock_set_v6only(struct sock *sk) 1206 { 1207 if (inet_sk(sk)->inet_num) 1208 return -EINVAL; 1209 lock_sock(sk); 1210 sk->sk_ipv6only = true; 1211 release_sock(sk); 1212 return 0; 1213 } 1214 1215 static inline void ip6_sock_set_recverr(struct sock *sk) 1216 { 1217 lock_sock(sk); 1218 inet6_sk(sk)->recverr = true; 1219 release_sock(sk); 1220 } 1221 1222 static inline int __ip6_sock_set_addr_preferences(struct sock *sk, int val) 1223 { 1224 unsigned int pref = 0; 1225 unsigned int prefmask = ~0; 1226 1227 /* check PUBLIC/TMP/PUBTMP_DEFAULT conflicts */ 1228 switch (val & (IPV6_PREFER_SRC_PUBLIC | 1229 IPV6_PREFER_SRC_TMP | 1230 IPV6_PREFER_SRC_PUBTMP_DEFAULT)) { 1231 case IPV6_PREFER_SRC_PUBLIC: 1232 pref |= IPV6_PREFER_SRC_PUBLIC; 1233 prefmask &= ~(IPV6_PREFER_SRC_PUBLIC | 1234 IPV6_PREFER_SRC_TMP); 1235 break; 1236 case IPV6_PREFER_SRC_TMP: 1237 pref |= IPV6_PREFER_SRC_TMP; 1238 prefmask &= ~(IPV6_PREFER_SRC_PUBLIC | 1239 IPV6_PREFER_SRC_TMP); 1240 break; 1241 case IPV6_PREFER_SRC_PUBTMP_DEFAULT: 1242 prefmask &= ~(IPV6_PREFER_SRC_PUBLIC | 1243 IPV6_PREFER_SRC_TMP); 1244 break; 1245 case 0: 1246 break; 1247 default: 1248 return -EINVAL; 1249 } 1250 1251 /* check HOME/COA conflicts */ 1252 switch (val & (IPV6_PREFER_SRC_HOME | IPV6_PREFER_SRC_COA)) { 1253 case IPV6_PREFER_SRC_HOME: 1254 prefmask &= ~IPV6_PREFER_SRC_COA; 1255 break; 1256 case IPV6_PREFER_SRC_COA: 1257 pref |= IPV6_PREFER_SRC_COA; 1258 break; 1259 case 0: 1260 break; 1261 default: 1262 return -EINVAL; 1263 } 1264 1265 /* check CGA/NONCGA conflicts */ 1266 switch (val & (IPV6_PREFER_SRC_CGA|IPV6_PREFER_SRC_NONCGA)) { 1267 case IPV6_PREFER_SRC_CGA: 1268 case IPV6_PREFER_SRC_NONCGA: 1269 case 0: 1270 break; 1271 default: 1272 return -EINVAL; 1273 } 1274 1275 inet6_sk(sk)->srcprefs = (inet6_sk(sk)->srcprefs & prefmask) | pref; 1276 return 0; 1277 } 1278 1279 static inline int ip6_sock_set_addr_preferences(struct sock *sk, bool val) 1280 { 1281 int ret; 1282 1283 lock_sock(sk); 1284 ret = __ip6_sock_set_addr_preferences(sk, val); 1285 release_sock(sk); 1286 return ret; 1287 } 1288 1289 static inline void ip6_sock_set_recvpktinfo(struct sock *sk) 1290 { 1291 lock_sock(sk); 1292 inet6_sk(sk)->rxopt.bits.rxinfo = true; 1293 release_sock(sk); 1294 } 1295 1296 #endif /* _NET_IPV6_H */ 1297