1 /* 2 * Linux INET6 implementation 3 * 4 * Authors: 5 * Pedro Roque <roque@di.fc.ul.pt> 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 */ 12 13 #ifndef _NET_IPV6_H 14 #define _NET_IPV6_H 15 16 #include <linux/ipv6.h> 17 #include <linux/hardirq.h> 18 #include <linux/jhash.h> 19 #include <net/if_inet6.h> 20 #include <net/ndisc.h> 21 #include <net/flow.h> 22 #include <net/flow_keys.h> 23 #include <net/snmp.h> 24 25 #define SIN6_LEN_RFC2133 24 26 27 #define IPV6_MAXPLEN 65535 28 29 /* 30 * NextHeader field of IPv6 header 31 */ 32 33 #define NEXTHDR_HOP 0 /* Hop-by-hop option header. */ 34 #define NEXTHDR_TCP 6 /* TCP segment. */ 35 #define NEXTHDR_UDP 17 /* UDP message. */ 36 #define NEXTHDR_IPV6 41 /* IPv6 in IPv6 */ 37 #define NEXTHDR_ROUTING 43 /* Routing header. */ 38 #define NEXTHDR_FRAGMENT 44 /* Fragmentation/reassembly header. */ 39 #define NEXTHDR_GRE 47 /* GRE header. */ 40 #define NEXTHDR_ESP 50 /* Encapsulating security payload. */ 41 #define NEXTHDR_AUTH 51 /* Authentication header. */ 42 #define NEXTHDR_ICMP 58 /* ICMP for IPv6. */ 43 #define NEXTHDR_NONE 59 /* No next header */ 44 #define NEXTHDR_DEST 60 /* Destination options header. */ 45 #define NEXTHDR_SCTP 132 /* SCTP message. */ 46 #define NEXTHDR_MOBILITY 135 /* Mobility header. */ 47 48 #define NEXTHDR_MAX 255 49 50 51 52 #define IPV6_DEFAULT_HOPLIMIT 64 53 #define IPV6_DEFAULT_MCASTHOPS 1 54 55 /* 56 * Addr type 57 * 58 * type - unicast | multicast 59 * scope - local | site | global 60 * v4 - compat 61 * v4mapped 62 * any 63 * loopback 64 */ 65 66 #define IPV6_ADDR_ANY 0x0000U 67 68 #define IPV6_ADDR_UNICAST 0x0001U 69 #define IPV6_ADDR_MULTICAST 0x0002U 70 71 #define IPV6_ADDR_LOOPBACK 0x0010U 72 #define IPV6_ADDR_LINKLOCAL 0x0020U 73 #define IPV6_ADDR_SITELOCAL 0x0040U 74 75 #define IPV6_ADDR_COMPATv4 0x0080U 76 77 #define IPV6_ADDR_SCOPE_MASK 0x00f0U 78 79 #define IPV6_ADDR_MAPPED 0x1000U 80 81 /* 82 * Addr scopes 83 */ 84 #define IPV6_ADDR_MC_SCOPE(a) \ 85 ((a)->s6_addr[1] & 0x0f) /* nonstandard */ 86 #define __IPV6_ADDR_SCOPE_INVALID -1 87 #define IPV6_ADDR_SCOPE_NODELOCAL 0x01 88 #define IPV6_ADDR_SCOPE_LINKLOCAL 0x02 89 #define IPV6_ADDR_SCOPE_SITELOCAL 0x05 90 #define IPV6_ADDR_SCOPE_ORGLOCAL 0x08 91 #define IPV6_ADDR_SCOPE_GLOBAL 0x0e 92 93 /* 94 * Addr flags 95 */ 96 #define IPV6_ADDR_MC_FLAG_TRANSIENT(a) \ 97 ((a)->s6_addr[1] & 0x10) 98 #define IPV6_ADDR_MC_FLAG_PREFIX(a) \ 99 ((a)->s6_addr[1] & 0x20) 100 #define IPV6_ADDR_MC_FLAG_RENDEZVOUS(a) \ 101 ((a)->s6_addr[1] & 0x40) 102 103 /* 104 * fragmentation header 105 */ 106 107 struct frag_hdr { 108 __u8 nexthdr; 109 __u8 reserved; 110 __be16 frag_off; 111 __be32 identification; 112 }; 113 114 #define IP6_MF 0x0001 115 #define IP6_OFFSET 0xFFF8 116 117 #define IP6_REPLY_MARK(net, mark) \ 118 ((net)->ipv6.sysctl.fwmark_reflect ? (mark) : 0) 119 120 #include <net/sock.h> 121 122 /* sysctls */ 123 extern int sysctl_mld_max_msf; 124 125 #define _DEVINC(net, statname, modifier, idev, field) \ 126 ({ \ 127 struct inet6_dev *_idev = (idev); \ 128 if (likely(_idev != NULL)) \ 129 SNMP_INC_STATS##modifier((_idev)->stats.statname, (field)); \ 130 SNMP_INC_STATS##modifier((net)->mib.statname##_statistics, (field));\ 131 }) 132 133 /* per device counters are atomic_long_t */ 134 #define _DEVINCATOMIC(net, statname, modifier, idev, field) \ 135 ({ \ 136 struct inet6_dev *_idev = (idev); \ 137 if (likely(_idev != NULL)) \ 138 SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \ 139 SNMP_INC_STATS##modifier((net)->mib.statname##_statistics, (field));\ 140 }) 141 142 /* per device and per net counters are atomic_long_t */ 143 #define _DEVINC_ATOMIC_ATOMIC(net, statname, idev, field) \ 144 ({ \ 145 struct inet6_dev *_idev = (idev); \ 146 if (likely(_idev != NULL)) \ 147 SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \ 148 SNMP_INC_STATS_ATOMIC_LONG((net)->mib.statname##_statistics, (field));\ 149 }) 150 151 #define _DEVADD(net, statname, modifier, idev, field, val) \ 152 ({ \ 153 struct inet6_dev *_idev = (idev); \ 154 if (likely(_idev != NULL)) \ 155 SNMP_ADD_STATS##modifier((_idev)->stats.statname, (field), (val)); \ 156 SNMP_ADD_STATS##modifier((net)->mib.statname##_statistics, (field), (val));\ 157 }) 158 159 #define _DEVUPD(net, statname, modifier, idev, field, val) \ 160 ({ \ 161 struct inet6_dev *_idev = (idev); \ 162 if (likely(_idev != NULL)) \ 163 SNMP_UPD_PO_STATS##modifier((_idev)->stats.statname, field, (val)); \ 164 SNMP_UPD_PO_STATS##modifier((net)->mib.statname##_statistics, field, (val));\ 165 }) 166 167 /* MIBs */ 168 169 #define IP6_INC_STATS(net, idev,field) \ 170 _DEVINC(net, ipv6, 64, idev, field) 171 #define IP6_INC_STATS_BH(net, idev,field) \ 172 _DEVINC(net, ipv6, 64_BH, idev, field) 173 #define IP6_ADD_STATS(net, idev,field,val) \ 174 _DEVADD(net, ipv6, 64, idev, field, val) 175 #define IP6_ADD_STATS_BH(net, idev,field,val) \ 176 _DEVADD(net, ipv6, 64_BH, idev, field, val) 177 #define IP6_UPD_PO_STATS(net, idev,field,val) \ 178 _DEVUPD(net, ipv6, 64, idev, field, val) 179 #define IP6_UPD_PO_STATS_BH(net, idev,field,val) \ 180 _DEVUPD(net, ipv6, 64_BH, idev, field, val) 181 #define ICMP6_INC_STATS(net, idev, field) \ 182 _DEVINCATOMIC(net, icmpv6, , idev, field) 183 #define ICMP6_INC_STATS_BH(net, idev, field) \ 184 _DEVINCATOMIC(net, icmpv6, _BH, idev, field) 185 186 #define ICMP6MSGOUT_INC_STATS(net, idev, field) \ 187 _DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field +256) 188 #define ICMP6MSGOUT_INC_STATS_BH(net, idev, field) \ 189 _DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field +256) 190 #define ICMP6MSGIN_INC_STATS_BH(net, idev, field) \ 191 _DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field) 192 193 struct ip6_ra_chain { 194 struct ip6_ra_chain *next; 195 struct sock *sk; 196 int sel; 197 void (*destructor)(struct sock *); 198 }; 199 200 extern struct ip6_ra_chain *ip6_ra_chain; 201 extern rwlock_t ip6_ra_lock; 202 203 /* 204 This structure is prepared by protocol, when parsing 205 ancillary data and passed to IPv6. 206 */ 207 208 struct ipv6_txoptions { 209 /* Length of this structure */ 210 int tot_len; 211 212 /* length of extension headers */ 213 214 __u16 opt_flen; /* after fragment hdr */ 215 __u16 opt_nflen; /* before fragment hdr */ 216 217 struct ipv6_opt_hdr *hopopt; 218 struct ipv6_opt_hdr *dst0opt; 219 struct ipv6_rt_hdr *srcrt; /* Routing Header */ 220 struct ipv6_opt_hdr *dst1opt; 221 222 /* Option buffer, as read by IPV6_PKTOPTIONS, starts here. */ 223 }; 224 225 struct ip6_flowlabel { 226 struct ip6_flowlabel __rcu *next; 227 __be32 label; 228 atomic_t users; 229 struct in6_addr dst; 230 struct ipv6_txoptions *opt; 231 unsigned long linger; 232 struct rcu_head rcu; 233 u8 share; 234 union { 235 struct pid *pid; 236 kuid_t uid; 237 } owner; 238 unsigned long lastuse; 239 unsigned long expires; 240 struct net *fl_net; 241 }; 242 243 #define IPV6_FLOWINFO_MASK cpu_to_be32(0x0FFFFFFF) 244 #define IPV6_FLOWLABEL_MASK cpu_to_be32(0x000FFFFF) 245 #define IPV6_TCLASS_MASK (IPV6_FLOWINFO_MASK & ~IPV6_FLOWLABEL_MASK) 246 #define IPV6_TCLASS_SHIFT 20 247 248 struct ipv6_fl_socklist { 249 struct ipv6_fl_socklist __rcu *next; 250 struct ip6_flowlabel *fl; 251 struct rcu_head rcu; 252 }; 253 254 struct ip6_flowlabel *fl6_sock_lookup(struct sock *sk, __be32 label); 255 struct ipv6_txoptions *fl6_merge_options(struct ipv6_txoptions *opt_space, 256 struct ip6_flowlabel *fl, 257 struct ipv6_txoptions *fopt); 258 void fl6_free_socklist(struct sock *sk); 259 int ipv6_flowlabel_opt(struct sock *sk, char __user *optval, int optlen); 260 int ipv6_flowlabel_opt_get(struct sock *sk, struct in6_flowlabel_req *freq, 261 int flags); 262 int ip6_flowlabel_init(void); 263 void ip6_flowlabel_cleanup(void); 264 265 static inline void fl6_sock_release(struct ip6_flowlabel *fl) 266 { 267 if (fl) 268 atomic_dec(&fl->users); 269 } 270 271 void icmpv6_notify(struct sk_buff *skb, u8 type, u8 code, __be32 info); 272 273 int icmpv6_push_pending_frames(struct sock *sk, struct flowi6 *fl6, 274 struct icmp6hdr *thdr, int len); 275 276 int ip6_ra_control(struct sock *sk, int sel); 277 278 int ipv6_parse_hopopts(struct sk_buff *skb); 279 280 struct ipv6_txoptions *ipv6_dup_options(struct sock *sk, 281 struct ipv6_txoptions *opt); 282 struct ipv6_txoptions *ipv6_renew_options(struct sock *sk, 283 struct ipv6_txoptions *opt, 284 int newtype, 285 struct ipv6_opt_hdr __user *newopt, 286 int newoptlen); 287 struct ipv6_txoptions *ipv6_fixup_options(struct ipv6_txoptions *opt_space, 288 struct ipv6_txoptions *opt); 289 290 bool ipv6_opt_accepted(const struct sock *sk, const struct sk_buff *skb); 291 292 static inline bool ipv6_accept_ra(struct inet6_dev *idev) 293 { 294 /* If forwarding is enabled, RA are not accepted unless the special 295 * hybrid mode (accept_ra=2) is enabled. 296 */ 297 return idev->cnf.forwarding ? idev->cnf.accept_ra == 2 : 298 idev->cnf.accept_ra; 299 } 300 301 #if IS_ENABLED(CONFIG_IPV6) 302 static inline int ip6_frag_mem(struct net *net) 303 { 304 return sum_frag_mem_limit(&net->ipv6.frags); 305 } 306 #endif 307 308 #define IPV6_FRAG_HIGH_THRESH (4 * 1024*1024) /* 4194304 */ 309 #define IPV6_FRAG_LOW_THRESH (3 * 1024*1024) /* 3145728 */ 310 #define IPV6_FRAG_TIMEOUT (60 * HZ) /* 60 seconds */ 311 312 int __ipv6_addr_type(const struct in6_addr *addr); 313 static inline int ipv6_addr_type(const struct in6_addr *addr) 314 { 315 return __ipv6_addr_type(addr) & 0xffff; 316 } 317 318 static inline int ipv6_addr_scope(const struct in6_addr *addr) 319 { 320 return __ipv6_addr_type(addr) & IPV6_ADDR_SCOPE_MASK; 321 } 322 323 static inline int __ipv6_addr_src_scope(int type) 324 { 325 return (type == IPV6_ADDR_ANY) ? __IPV6_ADDR_SCOPE_INVALID : (type >> 16); 326 } 327 328 static inline int ipv6_addr_src_scope(const struct in6_addr *addr) 329 { 330 return __ipv6_addr_src_scope(__ipv6_addr_type(addr)); 331 } 332 333 static inline bool __ipv6_addr_needs_scope_id(int type) 334 { 335 return type & IPV6_ADDR_LINKLOCAL || 336 (type & IPV6_ADDR_MULTICAST && 337 (type & (IPV6_ADDR_LOOPBACK|IPV6_ADDR_LINKLOCAL))); 338 } 339 340 static inline __u32 ipv6_iface_scope_id(const struct in6_addr *addr, int iface) 341 { 342 return __ipv6_addr_needs_scope_id(__ipv6_addr_type(addr)) ? iface : 0; 343 } 344 345 static inline int ipv6_addr_cmp(const struct in6_addr *a1, const struct in6_addr *a2) 346 { 347 return memcmp(a1, a2, sizeof(struct in6_addr)); 348 } 349 350 static inline bool 351 ipv6_masked_addr_cmp(const struct in6_addr *a1, const struct in6_addr *m, 352 const struct in6_addr *a2) 353 { 354 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 355 const unsigned long *ul1 = (const unsigned long *)a1; 356 const unsigned long *ulm = (const unsigned long *)m; 357 const unsigned long *ul2 = (const unsigned long *)a2; 358 359 return !!(((ul1[0] ^ ul2[0]) & ulm[0]) | 360 ((ul1[1] ^ ul2[1]) & ulm[1])); 361 #else 362 return !!(((a1->s6_addr32[0] ^ a2->s6_addr32[0]) & m->s6_addr32[0]) | 363 ((a1->s6_addr32[1] ^ a2->s6_addr32[1]) & m->s6_addr32[1]) | 364 ((a1->s6_addr32[2] ^ a2->s6_addr32[2]) & m->s6_addr32[2]) | 365 ((a1->s6_addr32[3] ^ a2->s6_addr32[3]) & m->s6_addr32[3])); 366 #endif 367 } 368 369 static inline void ipv6_addr_prefix(struct in6_addr *pfx, 370 const struct in6_addr *addr, 371 int plen) 372 { 373 /* caller must guarantee 0 <= plen <= 128 */ 374 int o = plen >> 3, 375 b = plen & 0x7; 376 377 memset(pfx->s6_addr, 0, sizeof(pfx->s6_addr)); 378 memcpy(pfx->s6_addr, addr, o); 379 if (b != 0) 380 pfx->s6_addr[o] = addr->s6_addr[o] & (0xff00 >> b); 381 } 382 383 static inline void __ipv6_addr_set_half(__be32 *addr, 384 __be32 wh, __be32 wl) 385 { 386 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 387 #if defined(__BIG_ENDIAN) 388 if (__builtin_constant_p(wh) && __builtin_constant_p(wl)) { 389 *(__force u64 *)addr = ((__force u64)(wh) << 32 | (__force u64)(wl)); 390 return; 391 } 392 #elif defined(__LITTLE_ENDIAN) 393 if (__builtin_constant_p(wl) && __builtin_constant_p(wh)) { 394 *(__force u64 *)addr = ((__force u64)(wl) << 32 | (__force u64)(wh)); 395 return; 396 } 397 #endif 398 #endif 399 addr[0] = wh; 400 addr[1] = wl; 401 } 402 403 static inline void ipv6_addr_set(struct in6_addr *addr, 404 __be32 w1, __be32 w2, 405 __be32 w3, __be32 w4) 406 { 407 __ipv6_addr_set_half(&addr->s6_addr32[0], w1, w2); 408 __ipv6_addr_set_half(&addr->s6_addr32[2], w3, w4); 409 } 410 411 static inline bool ipv6_addr_equal(const struct in6_addr *a1, 412 const struct in6_addr *a2) 413 { 414 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 415 const unsigned long *ul1 = (const unsigned long *)a1; 416 const unsigned long *ul2 = (const unsigned long *)a2; 417 418 return ((ul1[0] ^ ul2[0]) | (ul1[1] ^ ul2[1])) == 0UL; 419 #else 420 return ((a1->s6_addr32[0] ^ a2->s6_addr32[0]) | 421 (a1->s6_addr32[1] ^ a2->s6_addr32[1]) | 422 (a1->s6_addr32[2] ^ a2->s6_addr32[2]) | 423 (a1->s6_addr32[3] ^ a2->s6_addr32[3])) == 0; 424 #endif 425 } 426 427 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 428 static inline bool __ipv6_prefix_equal64_half(const __be64 *a1, 429 const __be64 *a2, 430 unsigned int len) 431 { 432 if (len && ((*a1 ^ *a2) & cpu_to_be64((~0UL) << (64 - len)))) 433 return false; 434 return true; 435 } 436 437 static inline bool ipv6_prefix_equal(const struct in6_addr *addr1, 438 const struct in6_addr *addr2, 439 unsigned int prefixlen) 440 { 441 const __be64 *a1 = (const __be64 *)addr1; 442 const __be64 *a2 = (const __be64 *)addr2; 443 444 if (prefixlen >= 64) { 445 if (a1[0] ^ a2[0]) 446 return false; 447 return __ipv6_prefix_equal64_half(a1 + 1, a2 + 1, prefixlen - 64); 448 } 449 return __ipv6_prefix_equal64_half(a1, a2, prefixlen); 450 } 451 #else 452 static inline bool ipv6_prefix_equal(const struct in6_addr *addr1, 453 const struct in6_addr *addr2, 454 unsigned int prefixlen) 455 { 456 const __be32 *a1 = addr1->s6_addr32; 457 const __be32 *a2 = addr2->s6_addr32; 458 unsigned int pdw, pbi; 459 460 /* check complete u32 in prefix */ 461 pdw = prefixlen >> 5; 462 if (pdw && memcmp(a1, a2, pdw << 2)) 463 return false; 464 465 /* check incomplete u32 in prefix */ 466 pbi = prefixlen & 0x1f; 467 if (pbi && ((a1[pdw] ^ a2[pdw]) & htonl((0xffffffff) << (32 - pbi)))) 468 return false; 469 470 return true; 471 } 472 #endif 473 474 struct inet_frag_queue; 475 476 enum ip6_defrag_users { 477 IP6_DEFRAG_LOCAL_DELIVER, 478 IP6_DEFRAG_CONNTRACK_IN, 479 __IP6_DEFRAG_CONNTRACK_IN = IP6_DEFRAG_CONNTRACK_IN + USHRT_MAX, 480 IP6_DEFRAG_CONNTRACK_OUT, 481 __IP6_DEFRAG_CONNTRACK_OUT = IP6_DEFRAG_CONNTRACK_OUT + USHRT_MAX, 482 IP6_DEFRAG_CONNTRACK_BRIDGE_IN, 483 __IP6_DEFRAG_CONNTRACK_BRIDGE_IN = IP6_DEFRAG_CONNTRACK_BRIDGE_IN + USHRT_MAX, 484 }; 485 486 struct ip6_create_arg { 487 __be32 id; 488 u32 user; 489 const struct in6_addr *src; 490 const struct in6_addr *dst; 491 u8 ecn; 492 }; 493 494 void ip6_frag_init(struct inet_frag_queue *q, const void *a); 495 bool ip6_frag_match(const struct inet_frag_queue *q, const void *a); 496 497 /* 498 * Equivalent of ipv4 struct ip 499 */ 500 struct frag_queue { 501 struct inet_frag_queue q; 502 503 __be32 id; /* fragment id */ 504 u32 user; 505 struct in6_addr saddr; 506 struct in6_addr daddr; 507 508 int iif; 509 unsigned int csum; 510 __u16 nhoffset; 511 u8 ecn; 512 }; 513 514 void ip6_expire_frag_queue(struct net *net, struct frag_queue *fq, 515 struct inet_frags *frags); 516 517 static inline bool ipv6_addr_any(const struct in6_addr *a) 518 { 519 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 520 const unsigned long *ul = (const unsigned long *)a; 521 522 return (ul[0] | ul[1]) == 0UL; 523 #else 524 return (a->s6_addr32[0] | a->s6_addr32[1] | 525 a->s6_addr32[2] | a->s6_addr32[3]) == 0; 526 #endif 527 } 528 529 static inline u32 ipv6_addr_hash(const struct in6_addr *a) 530 { 531 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 532 const unsigned long *ul = (const unsigned long *)a; 533 unsigned long x = ul[0] ^ ul[1]; 534 535 return (u32)(x ^ (x >> 32)); 536 #else 537 return (__force u32)(a->s6_addr32[0] ^ a->s6_addr32[1] ^ 538 a->s6_addr32[2] ^ a->s6_addr32[3]); 539 #endif 540 } 541 542 /* more secured version of ipv6_addr_hash() */ 543 static inline u32 __ipv6_addr_jhash(const struct in6_addr *a, const u32 initval) 544 { 545 u32 v = (__force u32)a->s6_addr32[0] ^ (__force u32)a->s6_addr32[1]; 546 547 return jhash_3words(v, 548 (__force u32)a->s6_addr32[2], 549 (__force u32)a->s6_addr32[3], 550 initval); 551 } 552 553 static inline bool ipv6_addr_loopback(const struct in6_addr *a) 554 { 555 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 556 const __be64 *be = (const __be64 *)a; 557 558 return (be[0] | (be[1] ^ cpu_to_be64(1))) == 0UL; 559 #else 560 return (a->s6_addr32[0] | a->s6_addr32[1] | 561 a->s6_addr32[2] | (a->s6_addr32[3] ^ cpu_to_be32(1))) == 0; 562 #endif 563 } 564 565 /* 566 * Note that we must __force cast these to unsigned long to make sparse happy, 567 * since all of the endian-annotated types are fixed size regardless of arch. 568 */ 569 static inline bool ipv6_addr_v4mapped(const struct in6_addr *a) 570 { 571 return ( 572 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 573 *(unsigned long *)a | 574 #else 575 (__force unsigned long)(a->s6_addr32[0] | a->s6_addr32[1]) | 576 #endif 577 (__force unsigned long)(a->s6_addr32[2] ^ 578 cpu_to_be32(0x0000ffff))) == 0UL; 579 } 580 581 /* 582 * Check for a RFC 4843 ORCHID address 583 * (Overlay Routable Cryptographic Hash Identifiers) 584 */ 585 static inline bool ipv6_addr_orchid(const struct in6_addr *a) 586 { 587 return (a->s6_addr32[0] & htonl(0xfffffff0)) == htonl(0x20010010); 588 } 589 590 static inline bool ipv6_addr_is_multicast(const struct in6_addr *addr) 591 { 592 return (addr->s6_addr32[0] & htonl(0xFF000000)) == htonl(0xFF000000); 593 } 594 595 static inline void ipv6_addr_set_v4mapped(const __be32 addr, 596 struct in6_addr *v4mapped) 597 { 598 ipv6_addr_set(v4mapped, 599 0, 0, 600 htonl(0x0000FFFF), 601 addr); 602 } 603 604 /* 605 * find the first different bit between two addresses 606 * length of address must be a multiple of 32bits 607 */ 608 static inline int __ipv6_addr_diff32(const void *token1, const void *token2, int addrlen) 609 { 610 const __be32 *a1 = token1, *a2 = token2; 611 int i; 612 613 addrlen >>= 2; 614 615 for (i = 0; i < addrlen; i++) { 616 __be32 xb = a1[i] ^ a2[i]; 617 if (xb) 618 return i * 32 + 31 - __fls(ntohl(xb)); 619 } 620 621 /* 622 * we should *never* get to this point since that 623 * would mean the addrs are equal 624 * 625 * However, we do get to it 8) And exacly, when 626 * addresses are equal 8) 627 * 628 * ip route add 1111::/128 via ... 629 * ip route add 1111::/64 via ... 630 * and we are here. 631 * 632 * Ideally, this function should stop comparison 633 * at prefix length. It does not, but it is still OK, 634 * if returned value is greater than prefix length. 635 * --ANK (980803) 636 */ 637 return addrlen << 5; 638 } 639 640 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 641 static inline int __ipv6_addr_diff64(const void *token1, const void *token2, int addrlen) 642 { 643 const __be64 *a1 = token1, *a2 = token2; 644 int i; 645 646 addrlen >>= 3; 647 648 for (i = 0; i < addrlen; i++) { 649 __be64 xb = a1[i] ^ a2[i]; 650 if (xb) 651 return i * 64 + 63 - __fls(be64_to_cpu(xb)); 652 } 653 654 return addrlen << 6; 655 } 656 #endif 657 658 static inline int __ipv6_addr_diff(const void *token1, const void *token2, int addrlen) 659 { 660 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 661 if (__builtin_constant_p(addrlen) && !(addrlen & 7)) 662 return __ipv6_addr_diff64(token1, token2, addrlen); 663 #endif 664 return __ipv6_addr_diff32(token1, token2, addrlen); 665 } 666 667 static inline int ipv6_addr_diff(const struct in6_addr *a1, const struct in6_addr *a2) 668 { 669 return __ipv6_addr_diff(a1, a2, sizeof(struct in6_addr)); 670 } 671 672 int ip6_dst_hoplimit(struct dst_entry *dst); 673 674 static inline int ip6_sk_dst_hoplimit(struct ipv6_pinfo *np, struct flowi6 *fl6, 675 struct dst_entry *dst) 676 { 677 int hlimit; 678 679 if (ipv6_addr_is_multicast(&fl6->daddr)) 680 hlimit = np->mcast_hops; 681 else 682 hlimit = np->hop_limit; 683 if (hlimit < 0) 684 hlimit = ip6_dst_hoplimit(dst); 685 return hlimit; 686 } 687 688 #if IS_ENABLED(CONFIG_IPV6) 689 static inline void ip6_set_txhash(struct sock *sk) 690 { 691 struct inet_sock *inet = inet_sk(sk); 692 struct ipv6_pinfo *np = inet6_sk(sk); 693 struct flow_keys keys; 694 695 keys.src = (__force __be32)ipv6_addr_hash(&np->saddr); 696 keys.dst = (__force __be32)ipv6_addr_hash(&sk->sk_v6_daddr); 697 keys.port16[0] = inet->inet_sport; 698 keys.port16[1] = inet->inet_dport; 699 700 sk->sk_txhash = flow_hash_from_keys(&keys); 701 } 702 703 static inline __be32 ip6_make_flowlabel(struct net *net, struct sk_buff *skb, 704 __be32 flowlabel, bool autolabel) 705 { 706 if (!flowlabel && (autolabel || net->ipv6.sysctl.auto_flowlabels)) { 707 __be32 hash; 708 709 hash = skb_get_hash(skb); 710 711 /* Since this is being sent on the wire obfuscate hash a bit 712 * to minimize possbility that any useful information to an 713 * attacker is leaked. Only lower 20 bits are relevant. 714 */ 715 hash ^= hash >> 12; 716 717 flowlabel = hash & IPV6_FLOWLABEL_MASK; 718 } 719 720 return flowlabel; 721 } 722 #else 723 static inline void ip6_set_txhash(struct sock *sk) { } 724 static inline __be32 ip6_make_flowlabel(struct net *net, struct sk_buff *skb, 725 __be32 flowlabel, bool autolabel) 726 { 727 return flowlabel; 728 } 729 #endif 730 731 732 /* 733 * Header manipulation 734 */ 735 static inline void ip6_flow_hdr(struct ipv6hdr *hdr, unsigned int tclass, 736 __be32 flowlabel) 737 { 738 *(__be32 *)hdr = htonl(0x60000000 | (tclass << 20)) | flowlabel; 739 } 740 741 static inline __be32 ip6_flowinfo(const struct ipv6hdr *hdr) 742 { 743 return *(__be32 *)hdr & IPV6_FLOWINFO_MASK; 744 } 745 746 static inline __be32 ip6_flowlabel(const struct ipv6hdr *hdr) 747 { 748 return *(__be32 *)hdr & IPV6_FLOWLABEL_MASK; 749 } 750 751 static inline u8 ip6_tclass(__be32 flowinfo) 752 { 753 return ntohl(flowinfo & IPV6_TCLASS_MASK) >> IPV6_TCLASS_SHIFT; 754 } 755 /* 756 * Prototypes exported by ipv6 757 */ 758 759 /* 760 * rcv function (called from netdevice level) 761 */ 762 763 int ipv6_rcv(struct sk_buff *skb, struct net_device *dev, 764 struct packet_type *pt, struct net_device *orig_dev); 765 766 int ip6_rcv_finish(struct sk_buff *skb); 767 768 /* 769 * upper-layer output functions 770 */ 771 int ip6_xmit(struct sock *sk, struct sk_buff *skb, struct flowi6 *fl6, 772 struct ipv6_txoptions *opt, int tclass); 773 774 int ip6_find_1stfragopt(struct sk_buff *skb, u8 **nexthdr); 775 776 int ip6_append_data(struct sock *sk, 777 int getfrag(void *from, char *to, int offset, int len, 778 int odd, struct sk_buff *skb), 779 void *from, int length, int transhdrlen, int hlimit, 780 int tclass, struct ipv6_txoptions *opt, struct flowi6 *fl6, 781 struct rt6_info *rt, unsigned int flags, int dontfrag); 782 783 int ip6_push_pending_frames(struct sock *sk); 784 785 void ip6_flush_pending_frames(struct sock *sk); 786 787 int ip6_dst_lookup(struct sock *sk, struct dst_entry **dst, struct flowi6 *fl6); 788 struct dst_entry *ip6_dst_lookup_flow(struct sock *sk, struct flowi6 *fl6, 789 const struct in6_addr *final_dst); 790 struct dst_entry *ip6_sk_dst_lookup_flow(struct sock *sk, struct flowi6 *fl6, 791 const struct in6_addr *final_dst); 792 struct dst_entry *ip6_blackhole_route(struct net *net, 793 struct dst_entry *orig_dst); 794 795 /* 796 * skb processing functions 797 */ 798 799 int ip6_output(struct sock *sk, struct sk_buff *skb); 800 int ip6_forward(struct sk_buff *skb); 801 int ip6_input(struct sk_buff *skb); 802 int ip6_mc_input(struct sk_buff *skb); 803 804 int __ip6_local_out(struct sk_buff *skb); 805 int ip6_local_out(struct sk_buff *skb); 806 807 /* 808 * Extension header (options) processing 809 */ 810 811 void ipv6_push_nfrag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt, 812 u8 *proto, struct in6_addr **daddr_p); 813 void ipv6_push_frag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt, 814 u8 *proto); 815 816 int ipv6_skip_exthdr(const struct sk_buff *, int start, u8 *nexthdrp, 817 __be16 *frag_offp); 818 819 bool ipv6_ext_hdr(u8 nexthdr); 820 821 enum { 822 IP6_FH_F_FRAG = (1 << 0), 823 IP6_FH_F_AUTH = (1 << 1), 824 IP6_FH_F_SKIP_RH = (1 << 2), 825 }; 826 827 /* find specified header and get offset to it */ 828 int ipv6_find_hdr(const struct sk_buff *skb, unsigned int *offset, int target, 829 unsigned short *fragoff, int *fragflg); 830 831 int ipv6_find_tlv(struct sk_buff *skb, int offset, int type); 832 833 struct in6_addr *fl6_update_dst(struct flowi6 *fl6, 834 const struct ipv6_txoptions *opt, 835 struct in6_addr *orig); 836 837 /* 838 * socket options (ipv6_sockglue.c) 839 */ 840 841 int ipv6_setsockopt(struct sock *sk, int level, int optname, 842 char __user *optval, unsigned int optlen); 843 int ipv6_getsockopt(struct sock *sk, int level, int optname, 844 char __user *optval, int __user *optlen); 845 int compat_ipv6_setsockopt(struct sock *sk, int level, int optname, 846 char __user *optval, unsigned int optlen); 847 int compat_ipv6_getsockopt(struct sock *sk, int level, int optname, 848 char __user *optval, int __user *optlen); 849 850 int ip6_datagram_connect(struct sock *sk, struct sockaddr *addr, int addr_len); 851 int ip6_datagram_connect_v6_only(struct sock *sk, struct sockaddr *addr, 852 int addr_len); 853 854 int ipv6_recv_error(struct sock *sk, struct msghdr *msg, int len, 855 int *addr_len); 856 int ipv6_recv_rxpmtu(struct sock *sk, struct msghdr *msg, int len, 857 int *addr_len); 858 void ipv6_icmp_error(struct sock *sk, struct sk_buff *skb, int err, __be16 port, 859 u32 info, u8 *payload); 860 void ipv6_local_error(struct sock *sk, int err, struct flowi6 *fl6, u32 info); 861 void ipv6_local_rxpmtu(struct sock *sk, struct flowi6 *fl6, u32 mtu); 862 863 int inet6_release(struct socket *sock); 864 int inet6_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len); 865 int inet6_getname(struct socket *sock, struct sockaddr *uaddr, int *uaddr_len, 866 int peer); 867 int inet6_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg); 868 869 int inet6_hash_connect(struct inet_timewait_death_row *death_row, 870 struct sock *sk); 871 872 /* 873 * reassembly.c 874 */ 875 extern const struct proto_ops inet6_stream_ops; 876 extern const struct proto_ops inet6_dgram_ops; 877 878 struct group_source_req; 879 struct group_filter; 880 881 int ip6_mc_source(int add, int omode, struct sock *sk, 882 struct group_source_req *pgsr); 883 int ip6_mc_msfilter(struct sock *sk, struct group_filter *gsf); 884 int ip6_mc_msfget(struct sock *sk, struct group_filter *gsf, 885 struct group_filter __user *optval, int __user *optlen); 886 887 #ifdef CONFIG_PROC_FS 888 int ac6_proc_init(struct net *net); 889 void ac6_proc_exit(struct net *net); 890 int raw6_proc_init(void); 891 void raw6_proc_exit(void); 892 int tcp6_proc_init(struct net *net); 893 void tcp6_proc_exit(struct net *net); 894 int udp6_proc_init(struct net *net); 895 void udp6_proc_exit(struct net *net); 896 int udplite6_proc_init(void); 897 void udplite6_proc_exit(void); 898 int ipv6_misc_proc_init(void); 899 void ipv6_misc_proc_exit(void); 900 int snmp6_register_dev(struct inet6_dev *idev); 901 int snmp6_unregister_dev(struct inet6_dev *idev); 902 903 #else 904 static inline int ac6_proc_init(struct net *net) { return 0; } 905 static inline void ac6_proc_exit(struct net *net) { } 906 static inline int snmp6_register_dev(struct inet6_dev *idev) { return 0; } 907 static inline int snmp6_unregister_dev(struct inet6_dev *idev) { return 0; } 908 #endif 909 910 #ifdef CONFIG_SYSCTL 911 extern struct ctl_table ipv6_route_table_template[]; 912 913 struct ctl_table *ipv6_icmp_sysctl_init(struct net *net); 914 struct ctl_table *ipv6_route_sysctl_init(struct net *net); 915 int ipv6_sysctl_register(void); 916 void ipv6_sysctl_unregister(void); 917 #endif 918 919 #endif /* _NET_IPV6_H */ 920