xref: /linux/include/net/ipv6.h (revision 31d166642c7c601c65eccf0ff2e0afe9a0538be2)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Linux INET6 implementation
4  *
5  *	Authors:
6  *	Pedro Roque		<roque@di.fc.ul.pt>
7  */
8 
9 #ifndef _NET_IPV6_H
10 #define _NET_IPV6_H
11 
12 #include <linux/ipv6.h>
13 #include <linux/hardirq.h>
14 #include <linux/jhash.h>
15 #include <linux/refcount.h>
16 #include <net/if_inet6.h>
17 #include <net/ndisc.h>
18 #include <net/flow.h>
19 #include <net/flow_dissector.h>
20 #include <net/snmp.h>
21 #include <net/netns/hash.h>
22 
23 #define SIN6_LEN_RFC2133	24
24 
25 #define IPV6_MAXPLEN		65535
26 
27 /*
28  *	NextHeader field of IPv6 header
29  */
30 
31 #define NEXTHDR_HOP		0	/* Hop-by-hop option header. */
32 #define NEXTHDR_TCP		6	/* TCP segment. */
33 #define NEXTHDR_UDP		17	/* UDP message. */
34 #define NEXTHDR_IPV6		41	/* IPv6 in IPv6 */
35 #define NEXTHDR_ROUTING		43	/* Routing header. */
36 #define NEXTHDR_FRAGMENT	44	/* Fragmentation/reassembly header. */
37 #define NEXTHDR_GRE		47	/* GRE header. */
38 #define NEXTHDR_ESP		50	/* Encapsulating security payload. */
39 #define NEXTHDR_AUTH		51	/* Authentication header. */
40 #define NEXTHDR_ICMP		58	/* ICMP for IPv6. */
41 #define NEXTHDR_NONE		59	/* No next header */
42 #define NEXTHDR_DEST		60	/* Destination options header. */
43 #define NEXTHDR_SCTP		132	/* SCTP message. */
44 #define NEXTHDR_MOBILITY	135	/* Mobility header. */
45 
46 #define NEXTHDR_MAX		255
47 
48 #define IPV6_DEFAULT_HOPLIMIT   64
49 #define IPV6_DEFAULT_MCASTHOPS	1
50 
51 /* Limits on Hop-by-Hop and Destination options.
52  *
53  * Per RFC8200 there is no limit on the maximum number or lengths of options in
54  * Hop-by-Hop or Destination options other then the packet must fit in an MTU.
55  * We allow configurable limits in order to mitigate potential denial of
56  * service attacks.
57  *
58  * There are three limits that may be set:
59  *   - Limit the number of options in a Hop-by-Hop or Destination options
60  *     extension header
61  *   - Limit the byte length of a Hop-by-Hop or Destination options extension
62  *     header
63  *   - Disallow unknown options
64  *
65  * The limits are expressed in corresponding sysctls:
66  *
67  * ipv6.sysctl.max_dst_opts_cnt
68  * ipv6.sysctl.max_hbh_opts_cnt
69  * ipv6.sysctl.max_dst_opts_len
70  * ipv6.sysctl.max_hbh_opts_len
71  *
72  * max_*_opts_cnt is the number of TLVs that are allowed for Destination
73  * options or Hop-by-Hop options. If the number is less than zero then unknown
74  * TLVs are disallowed and the number of known options that are allowed is the
75  * absolute value. Setting the value to INT_MAX indicates no limit.
76  *
77  * max_*_opts_len is the length limit in bytes of a Destination or
78  * Hop-by-Hop options extension header. Setting the value to INT_MAX
79  * indicates no length limit.
80  *
81  * If a limit is exceeded when processing an extension header the packet is
82  * silently discarded.
83  */
84 
85 /* Default limits for Hop-by-Hop and Destination options */
86 #define IP6_DEFAULT_MAX_DST_OPTS_CNT	 8
87 #define IP6_DEFAULT_MAX_HBH_OPTS_CNT	 8
88 #define IP6_DEFAULT_MAX_DST_OPTS_LEN	 INT_MAX /* No limit */
89 #define IP6_DEFAULT_MAX_HBH_OPTS_LEN	 INT_MAX /* No limit */
90 
91 /*
92  *	Addr type
93  *
94  *	type	-	unicast | multicast
95  *	scope	-	local	| site	    | global
96  *	v4	-	compat
97  *	v4mapped
98  *	any
99  *	loopback
100  */
101 
102 #define IPV6_ADDR_ANY		0x0000U
103 
104 #define IPV6_ADDR_UNICAST	0x0001U
105 #define IPV6_ADDR_MULTICAST	0x0002U
106 
107 #define IPV6_ADDR_LOOPBACK	0x0010U
108 #define IPV6_ADDR_LINKLOCAL	0x0020U
109 #define IPV6_ADDR_SITELOCAL	0x0040U
110 
111 #define IPV6_ADDR_COMPATv4	0x0080U
112 
113 #define IPV6_ADDR_SCOPE_MASK	0x00f0U
114 
115 #define IPV6_ADDR_MAPPED	0x1000U
116 
117 /*
118  *	Addr scopes
119  */
120 #define IPV6_ADDR_MC_SCOPE(a)	\
121 	((a)->s6_addr[1] & 0x0f)	/* nonstandard */
122 #define __IPV6_ADDR_SCOPE_INVALID	-1
123 #define IPV6_ADDR_SCOPE_NODELOCAL	0x01
124 #define IPV6_ADDR_SCOPE_LINKLOCAL	0x02
125 #define IPV6_ADDR_SCOPE_SITELOCAL	0x05
126 #define IPV6_ADDR_SCOPE_ORGLOCAL	0x08
127 #define IPV6_ADDR_SCOPE_GLOBAL		0x0e
128 
129 /*
130  *	Addr flags
131  */
132 #define IPV6_ADDR_MC_FLAG_TRANSIENT(a)	\
133 	((a)->s6_addr[1] & 0x10)
134 #define IPV6_ADDR_MC_FLAG_PREFIX(a)	\
135 	((a)->s6_addr[1] & 0x20)
136 #define IPV6_ADDR_MC_FLAG_RENDEZVOUS(a)	\
137 	((a)->s6_addr[1] & 0x40)
138 
139 /*
140  *	fragmentation header
141  */
142 
143 struct frag_hdr {
144 	__u8	nexthdr;
145 	__u8	reserved;
146 	__be16	frag_off;
147 	__be32	identification;
148 };
149 
150 #define	IP6_MF		0x0001
151 #define	IP6_OFFSET	0xFFF8
152 
153 struct ip6_fraglist_iter {
154 	struct ipv6hdr	*tmp_hdr;
155 	struct sk_buff	*frag;
156 	int		offset;
157 	unsigned int	hlen;
158 	__be32		frag_id;
159 	u8		nexthdr;
160 };
161 
162 int ip6_fraglist_init(struct sk_buff *skb, unsigned int hlen, u8 *prevhdr,
163 		      u8 nexthdr, __be32 frag_id,
164 		      struct ip6_fraglist_iter *iter);
165 void ip6_fraglist_prepare(struct sk_buff *skb, struct ip6_fraglist_iter *iter);
166 
167 static inline struct sk_buff *ip6_fraglist_next(struct ip6_fraglist_iter *iter)
168 {
169 	struct sk_buff *skb = iter->frag;
170 
171 	iter->frag = skb->next;
172 	skb_mark_not_on_list(skb);
173 
174 	return skb;
175 }
176 
177 struct ip6_frag_state {
178 	u8		*prevhdr;
179 	unsigned int	hlen;
180 	unsigned int	mtu;
181 	unsigned int	left;
182 	int		offset;
183 	int		ptr;
184 	int		hroom;
185 	int		troom;
186 	__be32		frag_id;
187 	u8		nexthdr;
188 };
189 
190 void ip6_frag_init(struct sk_buff *skb, unsigned int hlen, unsigned int mtu,
191 		   unsigned short needed_tailroom, int hdr_room, u8 *prevhdr,
192 		   u8 nexthdr, __be32 frag_id, struct ip6_frag_state *state);
193 struct sk_buff *ip6_frag_next(struct sk_buff *skb,
194 			      struct ip6_frag_state *state);
195 
196 #define IP6_REPLY_MARK(net, mark) \
197 	((net)->ipv6.sysctl.fwmark_reflect ? (mark) : 0)
198 
199 #include <net/sock.h>
200 
201 /* sysctls */
202 extern int sysctl_mld_max_msf;
203 extern int sysctl_mld_qrv;
204 
205 #define _DEVINC(net, statname, mod, idev, field)			\
206 ({									\
207 	struct inet6_dev *_idev = (idev);				\
208 	if (likely(_idev != NULL))					\
209 		mod##SNMP_INC_STATS64((_idev)->stats.statname, (field));\
210 	mod##SNMP_INC_STATS64((net)->mib.statname##_statistics, (field));\
211 })
212 
213 /* per device counters are atomic_long_t */
214 #define _DEVINCATOMIC(net, statname, mod, idev, field)			\
215 ({									\
216 	struct inet6_dev *_idev = (idev);				\
217 	if (likely(_idev != NULL))					\
218 		SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \
219 	mod##SNMP_INC_STATS((net)->mib.statname##_statistics, (field));\
220 })
221 
222 /* per device and per net counters are atomic_long_t */
223 #define _DEVINC_ATOMIC_ATOMIC(net, statname, idev, field)		\
224 ({									\
225 	struct inet6_dev *_idev = (idev);				\
226 	if (likely(_idev != NULL))					\
227 		SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \
228 	SNMP_INC_STATS_ATOMIC_LONG((net)->mib.statname##_statistics, (field));\
229 })
230 
231 #define _DEVADD(net, statname, mod, idev, field, val)			\
232 ({									\
233 	struct inet6_dev *_idev = (idev);				\
234 	if (likely(_idev != NULL))					\
235 		mod##SNMP_ADD_STATS((_idev)->stats.statname, (field), (val)); \
236 	mod##SNMP_ADD_STATS((net)->mib.statname##_statistics, (field), (val));\
237 })
238 
239 #define _DEVUPD(net, statname, mod, idev, field, val)			\
240 ({									\
241 	struct inet6_dev *_idev = (idev);				\
242 	if (likely(_idev != NULL))					\
243 		mod##SNMP_UPD_PO_STATS((_idev)->stats.statname, field, (val)); \
244 	mod##SNMP_UPD_PO_STATS((net)->mib.statname##_statistics, field, (val));\
245 })
246 
247 /* MIBs */
248 
249 #define IP6_INC_STATS(net, idev,field)		\
250 		_DEVINC(net, ipv6, , idev, field)
251 #define __IP6_INC_STATS(net, idev,field)	\
252 		_DEVINC(net, ipv6, __, idev, field)
253 #define IP6_ADD_STATS(net, idev,field,val)	\
254 		_DEVADD(net, ipv6, , idev, field, val)
255 #define __IP6_ADD_STATS(net, idev,field,val)	\
256 		_DEVADD(net, ipv6, __, idev, field, val)
257 #define IP6_UPD_PO_STATS(net, idev,field,val)   \
258 		_DEVUPD(net, ipv6, , idev, field, val)
259 #define __IP6_UPD_PO_STATS(net, idev,field,val)   \
260 		_DEVUPD(net, ipv6, __, idev, field, val)
261 #define ICMP6_INC_STATS(net, idev, field)	\
262 		_DEVINCATOMIC(net, icmpv6, , idev, field)
263 #define __ICMP6_INC_STATS(net, idev, field)	\
264 		_DEVINCATOMIC(net, icmpv6, __, idev, field)
265 
266 #define ICMP6MSGOUT_INC_STATS(net, idev, field)		\
267 	_DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field +256)
268 #define ICMP6MSGIN_INC_STATS(net, idev, field)	\
269 	_DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field)
270 
271 struct ip6_ra_chain {
272 	struct ip6_ra_chain	*next;
273 	struct sock		*sk;
274 	int			sel;
275 	void			(*destructor)(struct sock *);
276 };
277 
278 extern struct ip6_ra_chain	*ip6_ra_chain;
279 extern rwlock_t ip6_ra_lock;
280 
281 /*
282    This structure is prepared by protocol, when parsing
283    ancillary data and passed to IPv6.
284  */
285 
286 struct ipv6_txoptions {
287 	refcount_t		refcnt;
288 	/* Length of this structure */
289 	int			tot_len;
290 
291 	/* length of extension headers   */
292 
293 	__u16			opt_flen;	/* after fragment hdr */
294 	__u16			opt_nflen;	/* before fragment hdr */
295 
296 	struct ipv6_opt_hdr	*hopopt;
297 	struct ipv6_opt_hdr	*dst0opt;
298 	struct ipv6_rt_hdr	*srcrt;	/* Routing Header */
299 	struct ipv6_opt_hdr	*dst1opt;
300 	struct rcu_head		rcu;
301 	/* Option buffer, as read by IPV6_PKTOPTIONS, starts here. */
302 };
303 
304 /* flowlabel_reflect sysctl values */
305 enum flowlabel_reflect {
306 	FLOWLABEL_REFLECT_ESTABLISHED		= 1,
307 	FLOWLABEL_REFLECT_TCP_RESET		= 2,
308 	FLOWLABEL_REFLECT_ICMPV6_ECHO_REPLIES	= 4,
309 };
310 
311 struct ip6_flowlabel {
312 	struct ip6_flowlabel __rcu *next;
313 	__be32			label;
314 	atomic_t		users;
315 	struct in6_addr		dst;
316 	struct ipv6_txoptions	*opt;
317 	unsigned long		linger;
318 	struct rcu_head		rcu;
319 	u8			share;
320 	union {
321 		struct pid *pid;
322 		kuid_t uid;
323 	} owner;
324 	unsigned long		lastuse;
325 	unsigned long		expires;
326 	struct net		*fl_net;
327 };
328 
329 #define IPV6_FLOWINFO_MASK		cpu_to_be32(0x0FFFFFFF)
330 #define IPV6_FLOWLABEL_MASK		cpu_to_be32(0x000FFFFF)
331 #define IPV6_FLOWLABEL_STATELESS_FLAG	cpu_to_be32(0x00080000)
332 
333 #define IPV6_TCLASS_MASK (IPV6_FLOWINFO_MASK & ~IPV6_FLOWLABEL_MASK)
334 #define IPV6_TCLASS_SHIFT	20
335 
336 struct ipv6_fl_socklist {
337 	struct ipv6_fl_socklist	__rcu	*next;
338 	struct ip6_flowlabel		*fl;
339 	struct rcu_head			rcu;
340 };
341 
342 struct ipcm6_cookie {
343 	struct sockcm_cookie sockc;
344 	__s16 hlimit;
345 	__s16 tclass;
346 	__s8  dontfrag;
347 	struct ipv6_txoptions *opt;
348 	__u16 gso_size;
349 };
350 
351 static inline void ipcm6_init(struct ipcm6_cookie *ipc6)
352 {
353 	*ipc6 = (struct ipcm6_cookie) {
354 		.hlimit = -1,
355 		.tclass = -1,
356 		.dontfrag = -1,
357 	};
358 }
359 
360 static inline void ipcm6_init_sk(struct ipcm6_cookie *ipc6,
361 				 const struct ipv6_pinfo *np)
362 {
363 	*ipc6 = (struct ipcm6_cookie) {
364 		.hlimit = -1,
365 		.tclass = np->tclass,
366 		.dontfrag = np->dontfrag,
367 	};
368 }
369 
370 static inline struct ipv6_txoptions *txopt_get(const struct ipv6_pinfo *np)
371 {
372 	struct ipv6_txoptions *opt;
373 
374 	rcu_read_lock();
375 	opt = rcu_dereference(np->opt);
376 	if (opt) {
377 		if (!refcount_inc_not_zero(&opt->refcnt))
378 			opt = NULL;
379 		else
380 			opt = rcu_pointer_handoff(opt);
381 	}
382 	rcu_read_unlock();
383 	return opt;
384 }
385 
386 static inline void txopt_put(struct ipv6_txoptions *opt)
387 {
388 	if (opt && refcount_dec_and_test(&opt->refcnt))
389 		kfree_rcu(opt, rcu);
390 }
391 
392 struct ip6_flowlabel *fl6_sock_lookup(struct sock *sk, __be32 label);
393 struct ipv6_txoptions *fl6_merge_options(struct ipv6_txoptions *opt_space,
394 					 struct ip6_flowlabel *fl,
395 					 struct ipv6_txoptions *fopt);
396 void fl6_free_socklist(struct sock *sk);
397 int ipv6_flowlabel_opt(struct sock *sk, char __user *optval, int optlen);
398 int ipv6_flowlabel_opt_get(struct sock *sk, struct in6_flowlabel_req *freq,
399 			   int flags);
400 int ip6_flowlabel_init(void);
401 void ip6_flowlabel_cleanup(void);
402 bool ip6_autoflowlabel(struct net *net, const struct ipv6_pinfo *np);
403 
404 static inline void fl6_sock_release(struct ip6_flowlabel *fl)
405 {
406 	if (fl)
407 		atomic_dec(&fl->users);
408 }
409 
410 void icmpv6_notify(struct sk_buff *skb, u8 type, u8 code, __be32 info);
411 
412 void icmpv6_push_pending_frames(struct sock *sk, struct flowi6 *fl6,
413 				struct icmp6hdr *thdr, int len);
414 
415 int ip6_ra_control(struct sock *sk, int sel);
416 
417 int ipv6_parse_hopopts(struct sk_buff *skb);
418 
419 struct ipv6_txoptions *ipv6_dup_options(struct sock *sk,
420 					struct ipv6_txoptions *opt);
421 struct ipv6_txoptions *ipv6_renew_options(struct sock *sk,
422 					  struct ipv6_txoptions *opt,
423 					  int newtype,
424 					  struct ipv6_opt_hdr *newopt);
425 struct ipv6_txoptions *ipv6_fixup_options(struct ipv6_txoptions *opt_space,
426 					  struct ipv6_txoptions *opt);
427 
428 bool ipv6_opt_accepted(const struct sock *sk, const struct sk_buff *skb,
429 		       const struct inet6_skb_parm *opt);
430 struct ipv6_txoptions *ipv6_update_options(struct sock *sk,
431 					   struct ipv6_txoptions *opt);
432 
433 static inline bool ipv6_accept_ra(struct inet6_dev *idev)
434 {
435 	/* If forwarding is enabled, RA are not accepted unless the special
436 	 * hybrid mode (accept_ra=2) is enabled.
437 	 */
438 	return idev->cnf.forwarding ? idev->cnf.accept_ra == 2 :
439 	    idev->cnf.accept_ra;
440 }
441 
442 #define IPV6_FRAG_HIGH_THRESH	(4 * 1024*1024)	/* 4194304 */
443 #define IPV6_FRAG_LOW_THRESH	(3 * 1024*1024)	/* 3145728 */
444 #define IPV6_FRAG_TIMEOUT	(60 * HZ)	/* 60 seconds */
445 
446 int __ipv6_addr_type(const struct in6_addr *addr);
447 static inline int ipv6_addr_type(const struct in6_addr *addr)
448 {
449 	return __ipv6_addr_type(addr) & 0xffff;
450 }
451 
452 static inline int ipv6_addr_scope(const struct in6_addr *addr)
453 {
454 	return __ipv6_addr_type(addr) & IPV6_ADDR_SCOPE_MASK;
455 }
456 
457 static inline int __ipv6_addr_src_scope(int type)
458 {
459 	return (type == IPV6_ADDR_ANY) ? __IPV6_ADDR_SCOPE_INVALID : (type >> 16);
460 }
461 
462 static inline int ipv6_addr_src_scope(const struct in6_addr *addr)
463 {
464 	return __ipv6_addr_src_scope(__ipv6_addr_type(addr));
465 }
466 
467 static inline bool __ipv6_addr_needs_scope_id(int type)
468 {
469 	return type & IPV6_ADDR_LINKLOCAL ||
470 	       (type & IPV6_ADDR_MULTICAST &&
471 		(type & (IPV6_ADDR_LOOPBACK|IPV6_ADDR_LINKLOCAL)));
472 }
473 
474 static inline __u32 ipv6_iface_scope_id(const struct in6_addr *addr, int iface)
475 {
476 	return __ipv6_addr_needs_scope_id(__ipv6_addr_type(addr)) ? iface : 0;
477 }
478 
479 static inline int ipv6_addr_cmp(const struct in6_addr *a1, const struct in6_addr *a2)
480 {
481 	return memcmp(a1, a2, sizeof(struct in6_addr));
482 }
483 
484 static inline bool
485 ipv6_masked_addr_cmp(const struct in6_addr *a1, const struct in6_addr *m,
486 		     const struct in6_addr *a2)
487 {
488 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
489 	const unsigned long *ul1 = (const unsigned long *)a1;
490 	const unsigned long *ulm = (const unsigned long *)m;
491 	const unsigned long *ul2 = (const unsigned long *)a2;
492 
493 	return !!(((ul1[0] ^ ul2[0]) & ulm[0]) |
494 		  ((ul1[1] ^ ul2[1]) & ulm[1]));
495 #else
496 	return !!(((a1->s6_addr32[0] ^ a2->s6_addr32[0]) & m->s6_addr32[0]) |
497 		  ((a1->s6_addr32[1] ^ a2->s6_addr32[1]) & m->s6_addr32[1]) |
498 		  ((a1->s6_addr32[2] ^ a2->s6_addr32[2]) & m->s6_addr32[2]) |
499 		  ((a1->s6_addr32[3] ^ a2->s6_addr32[3]) & m->s6_addr32[3]));
500 #endif
501 }
502 
503 static inline void ipv6_addr_prefix(struct in6_addr *pfx,
504 				    const struct in6_addr *addr,
505 				    int plen)
506 {
507 	/* caller must guarantee 0 <= plen <= 128 */
508 	int o = plen >> 3,
509 	    b = plen & 0x7;
510 
511 	memset(pfx->s6_addr, 0, sizeof(pfx->s6_addr));
512 	memcpy(pfx->s6_addr, addr, o);
513 	if (b != 0)
514 		pfx->s6_addr[o] = addr->s6_addr[o] & (0xff00 >> b);
515 }
516 
517 static inline void ipv6_addr_prefix_copy(struct in6_addr *addr,
518 					 const struct in6_addr *pfx,
519 					 int plen)
520 {
521 	/* caller must guarantee 0 <= plen <= 128 */
522 	int o = plen >> 3,
523 	    b = plen & 0x7;
524 
525 	memcpy(addr->s6_addr, pfx, o);
526 	if (b != 0) {
527 		addr->s6_addr[o] &= ~(0xff00 >> b);
528 		addr->s6_addr[o] |= (pfx->s6_addr[o] & (0xff00 >> b));
529 	}
530 }
531 
532 static inline void __ipv6_addr_set_half(__be32 *addr,
533 					__be32 wh, __be32 wl)
534 {
535 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
536 #if defined(__BIG_ENDIAN)
537 	if (__builtin_constant_p(wh) && __builtin_constant_p(wl)) {
538 		*(__force u64 *)addr = ((__force u64)(wh) << 32 | (__force u64)(wl));
539 		return;
540 	}
541 #elif defined(__LITTLE_ENDIAN)
542 	if (__builtin_constant_p(wl) && __builtin_constant_p(wh)) {
543 		*(__force u64 *)addr = ((__force u64)(wl) << 32 | (__force u64)(wh));
544 		return;
545 	}
546 #endif
547 #endif
548 	addr[0] = wh;
549 	addr[1] = wl;
550 }
551 
552 static inline void ipv6_addr_set(struct in6_addr *addr,
553 				     __be32 w1, __be32 w2,
554 				     __be32 w3, __be32 w4)
555 {
556 	__ipv6_addr_set_half(&addr->s6_addr32[0], w1, w2);
557 	__ipv6_addr_set_half(&addr->s6_addr32[2], w3, w4);
558 }
559 
560 static inline bool ipv6_addr_equal(const struct in6_addr *a1,
561 				   const struct in6_addr *a2)
562 {
563 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
564 	const unsigned long *ul1 = (const unsigned long *)a1;
565 	const unsigned long *ul2 = (const unsigned long *)a2;
566 
567 	return ((ul1[0] ^ ul2[0]) | (ul1[1] ^ ul2[1])) == 0UL;
568 #else
569 	return ((a1->s6_addr32[0] ^ a2->s6_addr32[0]) |
570 		(a1->s6_addr32[1] ^ a2->s6_addr32[1]) |
571 		(a1->s6_addr32[2] ^ a2->s6_addr32[2]) |
572 		(a1->s6_addr32[3] ^ a2->s6_addr32[3])) == 0;
573 #endif
574 }
575 
576 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
577 static inline bool __ipv6_prefix_equal64_half(const __be64 *a1,
578 					      const __be64 *a2,
579 					      unsigned int len)
580 {
581 	if (len && ((*a1 ^ *a2) & cpu_to_be64((~0UL) << (64 - len))))
582 		return false;
583 	return true;
584 }
585 
586 static inline bool ipv6_prefix_equal(const struct in6_addr *addr1,
587 				     const struct in6_addr *addr2,
588 				     unsigned int prefixlen)
589 {
590 	const __be64 *a1 = (const __be64 *)addr1;
591 	const __be64 *a2 = (const __be64 *)addr2;
592 
593 	if (prefixlen >= 64) {
594 		if (a1[0] ^ a2[0])
595 			return false;
596 		return __ipv6_prefix_equal64_half(a1 + 1, a2 + 1, prefixlen - 64);
597 	}
598 	return __ipv6_prefix_equal64_half(a1, a2, prefixlen);
599 }
600 #else
601 static inline bool ipv6_prefix_equal(const struct in6_addr *addr1,
602 				     const struct in6_addr *addr2,
603 				     unsigned int prefixlen)
604 {
605 	const __be32 *a1 = addr1->s6_addr32;
606 	const __be32 *a2 = addr2->s6_addr32;
607 	unsigned int pdw, pbi;
608 
609 	/* check complete u32 in prefix */
610 	pdw = prefixlen >> 5;
611 	if (pdw && memcmp(a1, a2, pdw << 2))
612 		return false;
613 
614 	/* check incomplete u32 in prefix */
615 	pbi = prefixlen & 0x1f;
616 	if (pbi && ((a1[pdw] ^ a2[pdw]) & htonl((0xffffffff) << (32 - pbi))))
617 		return false;
618 
619 	return true;
620 }
621 #endif
622 
623 static inline bool ipv6_addr_any(const struct in6_addr *a)
624 {
625 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
626 	const unsigned long *ul = (const unsigned long *)a;
627 
628 	return (ul[0] | ul[1]) == 0UL;
629 #else
630 	return (a->s6_addr32[0] | a->s6_addr32[1] |
631 		a->s6_addr32[2] | a->s6_addr32[3]) == 0;
632 #endif
633 }
634 
635 static inline u32 ipv6_addr_hash(const struct in6_addr *a)
636 {
637 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
638 	const unsigned long *ul = (const unsigned long *)a;
639 	unsigned long x = ul[0] ^ ul[1];
640 
641 	return (u32)(x ^ (x >> 32));
642 #else
643 	return (__force u32)(a->s6_addr32[0] ^ a->s6_addr32[1] ^
644 			     a->s6_addr32[2] ^ a->s6_addr32[3]);
645 #endif
646 }
647 
648 /* more secured version of ipv6_addr_hash() */
649 static inline u32 __ipv6_addr_jhash(const struct in6_addr *a, const u32 initval)
650 {
651 	u32 v = (__force u32)a->s6_addr32[0] ^ (__force u32)a->s6_addr32[1];
652 
653 	return jhash_3words(v,
654 			    (__force u32)a->s6_addr32[2],
655 			    (__force u32)a->s6_addr32[3],
656 			    initval);
657 }
658 
659 static inline bool ipv6_addr_loopback(const struct in6_addr *a)
660 {
661 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
662 	const __be64 *be = (const __be64 *)a;
663 
664 	return (be[0] | (be[1] ^ cpu_to_be64(1))) == 0UL;
665 #else
666 	return (a->s6_addr32[0] | a->s6_addr32[1] |
667 		a->s6_addr32[2] | (a->s6_addr32[3] ^ cpu_to_be32(1))) == 0;
668 #endif
669 }
670 
671 /*
672  * Note that we must __force cast these to unsigned long to make sparse happy,
673  * since all of the endian-annotated types are fixed size regardless of arch.
674  */
675 static inline bool ipv6_addr_v4mapped(const struct in6_addr *a)
676 {
677 	return (
678 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
679 		*(unsigned long *)a |
680 #else
681 		(__force unsigned long)(a->s6_addr32[0] | a->s6_addr32[1]) |
682 #endif
683 		(__force unsigned long)(a->s6_addr32[2] ^
684 					cpu_to_be32(0x0000ffff))) == 0UL;
685 }
686 
687 static inline u32 ipv6_portaddr_hash(const struct net *net,
688 				     const struct in6_addr *addr6,
689 				     unsigned int port)
690 {
691 	unsigned int hash, mix = net_hash_mix(net);
692 
693 	if (ipv6_addr_any(addr6))
694 		hash = jhash_1word(0, mix);
695 	else if (ipv6_addr_v4mapped(addr6))
696 		hash = jhash_1word((__force u32)addr6->s6_addr32[3], mix);
697 	else
698 		hash = jhash2((__force u32 *)addr6->s6_addr32, 4, mix);
699 
700 	return hash ^ port;
701 }
702 
703 /*
704  * Check for a RFC 4843 ORCHID address
705  * (Overlay Routable Cryptographic Hash Identifiers)
706  */
707 static inline bool ipv6_addr_orchid(const struct in6_addr *a)
708 {
709 	return (a->s6_addr32[0] & htonl(0xfffffff0)) == htonl(0x20010010);
710 }
711 
712 static inline bool ipv6_addr_is_multicast(const struct in6_addr *addr)
713 {
714 	return (addr->s6_addr32[0] & htonl(0xFF000000)) == htonl(0xFF000000);
715 }
716 
717 static inline void ipv6_addr_set_v4mapped(const __be32 addr,
718 					  struct in6_addr *v4mapped)
719 {
720 	ipv6_addr_set(v4mapped,
721 			0, 0,
722 			htonl(0x0000FFFF),
723 			addr);
724 }
725 
726 /*
727  * find the first different bit between two addresses
728  * length of address must be a multiple of 32bits
729  */
730 static inline int __ipv6_addr_diff32(const void *token1, const void *token2, int addrlen)
731 {
732 	const __be32 *a1 = token1, *a2 = token2;
733 	int i;
734 
735 	addrlen >>= 2;
736 
737 	for (i = 0; i < addrlen; i++) {
738 		__be32 xb = a1[i] ^ a2[i];
739 		if (xb)
740 			return i * 32 + 31 - __fls(ntohl(xb));
741 	}
742 
743 	/*
744 	 *	we should *never* get to this point since that
745 	 *	would mean the addrs are equal
746 	 *
747 	 *	However, we do get to it 8) And exacly, when
748 	 *	addresses are equal 8)
749 	 *
750 	 *	ip route add 1111::/128 via ...
751 	 *	ip route add 1111::/64 via ...
752 	 *	and we are here.
753 	 *
754 	 *	Ideally, this function should stop comparison
755 	 *	at prefix length. It does not, but it is still OK,
756 	 *	if returned value is greater than prefix length.
757 	 *					--ANK (980803)
758 	 */
759 	return addrlen << 5;
760 }
761 
762 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
763 static inline int __ipv6_addr_diff64(const void *token1, const void *token2, int addrlen)
764 {
765 	const __be64 *a1 = token1, *a2 = token2;
766 	int i;
767 
768 	addrlen >>= 3;
769 
770 	for (i = 0; i < addrlen; i++) {
771 		__be64 xb = a1[i] ^ a2[i];
772 		if (xb)
773 			return i * 64 + 63 - __fls(be64_to_cpu(xb));
774 	}
775 
776 	return addrlen << 6;
777 }
778 #endif
779 
780 static inline int __ipv6_addr_diff(const void *token1, const void *token2, int addrlen)
781 {
782 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
783 	if (__builtin_constant_p(addrlen) && !(addrlen & 7))
784 		return __ipv6_addr_diff64(token1, token2, addrlen);
785 #endif
786 	return __ipv6_addr_diff32(token1, token2, addrlen);
787 }
788 
789 static inline int ipv6_addr_diff(const struct in6_addr *a1, const struct in6_addr *a2)
790 {
791 	return __ipv6_addr_diff(a1, a2, sizeof(struct in6_addr));
792 }
793 
794 __be32 ipv6_select_ident(struct net *net,
795 			 const struct in6_addr *daddr,
796 			 const struct in6_addr *saddr);
797 __be32 ipv6_proxy_select_ident(struct net *net, struct sk_buff *skb);
798 
799 int ip6_dst_hoplimit(struct dst_entry *dst);
800 
801 static inline int ip6_sk_dst_hoplimit(struct ipv6_pinfo *np, struct flowi6 *fl6,
802 				      struct dst_entry *dst)
803 {
804 	int hlimit;
805 
806 	if (ipv6_addr_is_multicast(&fl6->daddr))
807 		hlimit = np->mcast_hops;
808 	else
809 		hlimit = np->hop_limit;
810 	if (hlimit < 0)
811 		hlimit = ip6_dst_hoplimit(dst);
812 	return hlimit;
813 }
814 
815 /* copy IPv6 saddr & daddr to flow_keys, possibly using 64bit load/store
816  * Equivalent to :	flow->v6addrs.src = iph->saddr;
817  *			flow->v6addrs.dst = iph->daddr;
818  */
819 static inline void iph_to_flow_copy_v6addrs(struct flow_keys *flow,
820 					    const struct ipv6hdr *iph)
821 {
822 	BUILD_BUG_ON(offsetof(typeof(flow->addrs), v6addrs.dst) !=
823 		     offsetof(typeof(flow->addrs), v6addrs.src) +
824 		     sizeof(flow->addrs.v6addrs.src));
825 	memcpy(&flow->addrs.v6addrs, &iph->saddr, sizeof(flow->addrs.v6addrs));
826 	flow->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
827 }
828 
829 #if IS_ENABLED(CONFIG_IPV6)
830 
831 static inline bool ipv6_can_nonlocal_bind(struct net *net,
832 					  struct inet_sock *inet)
833 {
834 	return net->ipv6.sysctl.ip_nonlocal_bind ||
835 		inet->freebind || inet->transparent;
836 }
837 
838 /* Sysctl settings for net ipv6.auto_flowlabels */
839 #define IP6_AUTO_FLOW_LABEL_OFF		0
840 #define IP6_AUTO_FLOW_LABEL_OPTOUT	1
841 #define IP6_AUTO_FLOW_LABEL_OPTIN	2
842 #define IP6_AUTO_FLOW_LABEL_FORCED	3
843 
844 #define IP6_AUTO_FLOW_LABEL_MAX		IP6_AUTO_FLOW_LABEL_FORCED
845 
846 #define IP6_DEFAULT_AUTO_FLOW_LABELS	IP6_AUTO_FLOW_LABEL_OPTOUT
847 
848 static inline __be32 ip6_make_flowlabel(struct net *net, struct sk_buff *skb,
849 					__be32 flowlabel, bool autolabel,
850 					struct flowi6 *fl6)
851 {
852 	u32 hash;
853 
854 	/* @flowlabel may include more than a flow label, eg, the traffic class.
855 	 * Here we want only the flow label value.
856 	 */
857 	flowlabel &= IPV6_FLOWLABEL_MASK;
858 
859 	if (flowlabel ||
860 	    net->ipv6.sysctl.auto_flowlabels == IP6_AUTO_FLOW_LABEL_OFF ||
861 	    (!autolabel &&
862 	     net->ipv6.sysctl.auto_flowlabels != IP6_AUTO_FLOW_LABEL_FORCED))
863 		return flowlabel;
864 
865 	hash = skb_get_hash_flowi6(skb, fl6);
866 
867 	/* Since this is being sent on the wire obfuscate hash a bit
868 	 * to minimize possbility that any useful information to an
869 	 * attacker is leaked. Only lower 20 bits are relevant.
870 	 */
871 	hash = rol32(hash, 16);
872 
873 	flowlabel = (__force __be32)hash & IPV6_FLOWLABEL_MASK;
874 
875 	if (net->ipv6.sysctl.flowlabel_state_ranges)
876 		flowlabel |= IPV6_FLOWLABEL_STATELESS_FLAG;
877 
878 	return flowlabel;
879 }
880 
881 static inline int ip6_default_np_autolabel(struct net *net)
882 {
883 	switch (net->ipv6.sysctl.auto_flowlabels) {
884 	case IP6_AUTO_FLOW_LABEL_OFF:
885 	case IP6_AUTO_FLOW_LABEL_OPTIN:
886 	default:
887 		return 0;
888 	case IP6_AUTO_FLOW_LABEL_OPTOUT:
889 	case IP6_AUTO_FLOW_LABEL_FORCED:
890 		return 1;
891 	}
892 }
893 #else
894 static inline void ip6_set_txhash(struct sock *sk) { }
895 static inline __be32 ip6_make_flowlabel(struct net *net, struct sk_buff *skb,
896 					__be32 flowlabel, bool autolabel,
897 					struct flowi6 *fl6)
898 {
899 	return flowlabel;
900 }
901 static inline int ip6_default_np_autolabel(struct net *net)
902 {
903 	return 0;
904 }
905 #endif
906 
907 #if IS_ENABLED(CONFIG_IPV6)
908 static inline int ip6_multipath_hash_policy(const struct net *net)
909 {
910 	return net->ipv6.sysctl.multipath_hash_policy;
911 }
912 #else
913 static inline int ip6_multipath_hash_policy(const struct net *net)
914 {
915 	return 0;
916 }
917 #endif
918 
919 /*
920  *	Header manipulation
921  */
922 static inline void ip6_flow_hdr(struct ipv6hdr *hdr, unsigned int tclass,
923 				__be32 flowlabel)
924 {
925 	*(__be32 *)hdr = htonl(0x60000000 | (tclass << 20)) | flowlabel;
926 }
927 
928 static inline __be32 ip6_flowinfo(const struct ipv6hdr *hdr)
929 {
930 	return *(__be32 *)hdr & IPV6_FLOWINFO_MASK;
931 }
932 
933 static inline __be32 ip6_flowlabel(const struct ipv6hdr *hdr)
934 {
935 	return *(__be32 *)hdr & IPV6_FLOWLABEL_MASK;
936 }
937 
938 static inline u8 ip6_tclass(__be32 flowinfo)
939 {
940 	return ntohl(flowinfo & IPV6_TCLASS_MASK) >> IPV6_TCLASS_SHIFT;
941 }
942 
943 static inline __be32 ip6_make_flowinfo(unsigned int tclass, __be32 flowlabel)
944 {
945 	return htonl(tclass << IPV6_TCLASS_SHIFT) | flowlabel;
946 }
947 
948 static inline __be32 flowi6_get_flowlabel(const struct flowi6 *fl6)
949 {
950 	return fl6->flowlabel & IPV6_FLOWLABEL_MASK;
951 }
952 
953 /*
954  *	Prototypes exported by ipv6
955  */
956 
957 /*
958  *	rcv function (called from netdevice level)
959  */
960 
961 int ipv6_rcv(struct sk_buff *skb, struct net_device *dev,
962 	     struct packet_type *pt, struct net_device *orig_dev);
963 void ipv6_list_rcv(struct list_head *head, struct packet_type *pt,
964 		   struct net_device *orig_dev);
965 
966 int ip6_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb);
967 
968 /*
969  *	upper-layer output functions
970  */
971 int ip6_xmit(const struct sock *sk, struct sk_buff *skb, struct flowi6 *fl6,
972 	     __u32 mark, struct ipv6_txoptions *opt, int tclass);
973 
974 int ip6_find_1stfragopt(struct sk_buff *skb, u8 **nexthdr);
975 
976 int ip6_append_data(struct sock *sk,
977 		    int getfrag(void *from, char *to, int offset, int len,
978 				int odd, struct sk_buff *skb),
979 		    void *from, int length, int transhdrlen,
980 		    struct ipcm6_cookie *ipc6, struct flowi6 *fl6,
981 		    struct rt6_info *rt, unsigned int flags);
982 
983 int ip6_push_pending_frames(struct sock *sk);
984 
985 void ip6_flush_pending_frames(struct sock *sk);
986 
987 int ip6_send_skb(struct sk_buff *skb);
988 
989 struct sk_buff *__ip6_make_skb(struct sock *sk, struct sk_buff_head *queue,
990 			       struct inet_cork_full *cork,
991 			       struct inet6_cork *v6_cork);
992 struct sk_buff *ip6_make_skb(struct sock *sk,
993 			     int getfrag(void *from, char *to, int offset,
994 					 int len, int odd, struct sk_buff *skb),
995 			     void *from, int length, int transhdrlen,
996 			     struct ipcm6_cookie *ipc6, struct flowi6 *fl6,
997 			     struct rt6_info *rt, unsigned int flags,
998 			     struct inet_cork_full *cork);
999 
1000 static inline struct sk_buff *ip6_finish_skb(struct sock *sk)
1001 {
1002 	return __ip6_make_skb(sk, &sk->sk_write_queue, &inet_sk(sk)->cork,
1003 			      &inet6_sk(sk)->cork);
1004 }
1005 
1006 int ip6_dst_lookup(struct net *net, struct sock *sk, struct dst_entry **dst,
1007 		   struct flowi6 *fl6);
1008 struct dst_entry *ip6_dst_lookup_flow(const struct sock *sk, struct flowi6 *fl6,
1009 				      const struct in6_addr *final_dst);
1010 struct dst_entry *ip6_sk_dst_lookup_flow(struct sock *sk, struct flowi6 *fl6,
1011 					 const struct in6_addr *final_dst,
1012 					 bool connected);
1013 struct dst_entry *ip6_blackhole_route(struct net *net,
1014 				      struct dst_entry *orig_dst);
1015 
1016 /*
1017  *	skb processing functions
1018  */
1019 
1020 int ip6_output(struct net *net, struct sock *sk, struct sk_buff *skb);
1021 int ip6_forward(struct sk_buff *skb);
1022 int ip6_input(struct sk_buff *skb);
1023 int ip6_mc_input(struct sk_buff *skb);
1024 void ip6_protocol_deliver_rcu(struct net *net, struct sk_buff *skb, int nexthdr,
1025 			      bool have_final);
1026 
1027 int __ip6_local_out(struct net *net, struct sock *sk, struct sk_buff *skb);
1028 int ip6_local_out(struct net *net, struct sock *sk, struct sk_buff *skb);
1029 
1030 /*
1031  *	Extension header (options) processing
1032  */
1033 
1034 void ipv6_push_nfrag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt,
1035 			  u8 *proto, struct in6_addr **daddr_p,
1036 			  struct in6_addr *saddr);
1037 void ipv6_push_frag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt,
1038 			 u8 *proto);
1039 
1040 int ipv6_skip_exthdr(const struct sk_buff *, int start, u8 *nexthdrp,
1041 		     __be16 *frag_offp);
1042 
1043 bool ipv6_ext_hdr(u8 nexthdr);
1044 
1045 enum {
1046 	IP6_FH_F_FRAG		= (1 << 0),
1047 	IP6_FH_F_AUTH		= (1 << 1),
1048 	IP6_FH_F_SKIP_RH	= (1 << 2),
1049 };
1050 
1051 /* find specified header and get offset to it */
1052 int ipv6_find_hdr(const struct sk_buff *skb, unsigned int *offset, int target,
1053 		  unsigned short *fragoff, int *fragflg);
1054 
1055 int ipv6_find_tlv(const struct sk_buff *skb, int offset, int type);
1056 
1057 struct in6_addr *fl6_update_dst(struct flowi6 *fl6,
1058 				const struct ipv6_txoptions *opt,
1059 				struct in6_addr *orig);
1060 
1061 /*
1062  *	socket options (ipv6_sockglue.c)
1063  */
1064 
1065 int ipv6_setsockopt(struct sock *sk, int level, int optname,
1066 		    char __user *optval, unsigned int optlen);
1067 int ipv6_getsockopt(struct sock *sk, int level, int optname,
1068 		    char __user *optval, int __user *optlen);
1069 int compat_ipv6_setsockopt(struct sock *sk, int level, int optname,
1070 			   char __user *optval, unsigned int optlen);
1071 int compat_ipv6_getsockopt(struct sock *sk, int level, int optname,
1072 			   char __user *optval, int __user *optlen);
1073 
1074 int __ip6_datagram_connect(struct sock *sk, struct sockaddr *addr,
1075 			   int addr_len);
1076 int ip6_datagram_connect(struct sock *sk, struct sockaddr *addr, int addr_len);
1077 int ip6_datagram_connect_v6_only(struct sock *sk, struct sockaddr *addr,
1078 				 int addr_len);
1079 int ip6_datagram_dst_update(struct sock *sk, bool fix_sk_saddr);
1080 void ip6_datagram_release_cb(struct sock *sk);
1081 
1082 int ipv6_recv_error(struct sock *sk, struct msghdr *msg, int len,
1083 		    int *addr_len);
1084 int ipv6_recv_rxpmtu(struct sock *sk, struct msghdr *msg, int len,
1085 		     int *addr_len);
1086 void ipv6_icmp_error(struct sock *sk, struct sk_buff *skb, int err, __be16 port,
1087 		     u32 info, u8 *payload);
1088 void ipv6_local_error(struct sock *sk, int err, struct flowi6 *fl6, u32 info);
1089 void ipv6_local_rxpmtu(struct sock *sk, struct flowi6 *fl6, u32 mtu);
1090 
1091 int inet6_release(struct socket *sock);
1092 int inet6_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len);
1093 int inet6_getname(struct socket *sock, struct sockaddr *uaddr,
1094 		  int peer);
1095 int inet6_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg);
1096 
1097 int inet6_hash_connect(struct inet_timewait_death_row *death_row,
1098 			      struct sock *sk);
1099 
1100 /*
1101  * reassembly.c
1102  */
1103 extern const struct proto_ops inet6_stream_ops;
1104 extern const struct proto_ops inet6_dgram_ops;
1105 extern const struct proto_ops inet6_sockraw_ops;
1106 
1107 struct group_source_req;
1108 struct group_filter;
1109 
1110 int ip6_mc_source(int add, int omode, struct sock *sk,
1111 		  struct group_source_req *pgsr);
1112 int ip6_mc_msfilter(struct sock *sk, struct group_filter *gsf);
1113 int ip6_mc_msfget(struct sock *sk, struct group_filter *gsf,
1114 		  struct group_filter __user *optval, int __user *optlen);
1115 
1116 #ifdef CONFIG_PROC_FS
1117 int ac6_proc_init(struct net *net);
1118 void ac6_proc_exit(struct net *net);
1119 int raw6_proc_init(void);
1120 void raw6_proc_exit(void);
1121 int tcp6_proc_init(struct net *net);
1122 void tcp6_proc_exit(struct net *net);
1123 int udp6_proc_init(struct net *net);
1124 void udp6_proc_exit(struct net *net);
1125 int udplite6_proc_init(void);
1126 void udplite6_proc_exit(void);
1127 int ipv6_misc_proc_init(void);
1128 void ipv6_misc_proc_exit(void);
1129 int snmp6_register_dev(struct inet6_dev *idev);
1130 int snmp6_unregister_dev(struct inet6_dev *idev);
1131 
1132 #else
1133 static inline int ac6_proc_init(struct net *net) { return 0; }
1134 static inline void ac6_proc_exit(struct net *net) { }
1135 static inline int snmp6_register_dev(struct inet6_dev *idev) { return 0; }
1136 static inline int snmp6_unregister_dev(struct inet6_dev *idev) { return 0; }
1137 #endif
1138 
1139 #ifdef CONFIG_SYSCTL
1140 struct ctl_table *ipv6_icmp_sysctl_init(struct net *net);
1141 struct ctl_table *ipv6_route_sysctl_init(struct net *net);
1142 int ipv6_sysctl_register(void);
1143 void ipv6_sysctl_unregister(void);
1144 #endif
1145 
1146 int ipv6_sock_mc_join(struct sock *sk, int ifindex,
1147 		      const struct in6_addr *addr);
1148 int ipv6_sock_mc_join_ssm(struct sock *sk, int ifindex,
1149 			  const struct in6_addr *addr, unsigned int mode);
1150 int ipv6_sock_mc_drop(struct sock *sk, int ifindex,
1151 		      const struct in6_addr *addr);
1152 #endif /* _NET_IPV6_H */
1153