1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * Linux INET6 implementation 4 * 5 * Authors: 6 * Pedro Roque <roque@di.fc.ul.pt> 7 */ 8 9 #ifndef _NET_IPV6_H 10 #define _NET_IPV6_H 11 12 #include <linux/ipv6.h> 13 #include <linux/hardirq.h> 14 #include <linux/jhash.h> 15 #include <linux/refcount.h> 16 #include <linux/jump_label_ratelimit.h> 17 #include <net/if_inet6.h> 18 #include <net/flow.h> 19 #include <net/flow_dissector.h> 20 #include <net/inet_dscp.h> 21 #include <net/snmp.h> 22 #include <net/netns/hash.h> 23 24 struct ip_tunnel_info; 25 26 #define SIN6_LEN_RFC2133 24 27 28 #define IPV6_MAXPLEN 65535 29 30 /* 31 * NextHeader field of IPv6 header 32 */ 33 34 #define NEXTHDR_HOP 0 /* Hop-by-hop option header. */ 35 #define NEXTHDR_IPV4 4 /* IPv4 in IPv6 */ 36 #define NEXTHDR_TCP 6 /* TCP segment. */ 37 #define NEXTHDR_UDP 17 /* UDP message. */ 38 #define NEXTHDR_IPV6 41 /* IPv6 in IPv6 */ 39 #define NEXTHDR_ROUTING 43 /* Routing header. */ 40 #define NEXTHDR_FRAGMENT 44 /* Fragmentation/reassembly header. */ 41 #define NEXTHDR_GRE 47 /* GRE header. */ 42 #define NEXTHDR_ESP 50 /* Encapsulating security payload. */ 43 #define NEXTHDR_AUTH 51 /* Authentication header. */ 44 #define NEXTHDR_ICMP 58 /* ICMP for IPv6. */ 45 #define NEXTHDR_NONE 59 /* No next header */ 46 #define NEXTHDR_DEST 60 /* Destination options header. */ 47 #define NEXTHDR_SCTP 132 /* SCTP message. */ 48 #define NEXTHDR_MOBILITY 135 /* Mobility header. */ 49 50 #define NEXTHDR_MAX 255 51 52 #define IPV6_DEFAULT_HOPLIMIT 64 53 #define IPV6_DEFAULT_MCASTHOPS 1 54 55 /* Limits on Hop-by-Hop and Destination options. 56 * 57 * Per RFC8200 there is no limit on the maximum number or lengths of options in 58 * Hop-by-Hop or Destination options other then the packet must fit in an MTU. 59 * We allow configurable limits in order to mitigate potential denial of 60 * service attacks. 61 * 62 * There are three limits that may be set: 63 * - Limit the number of options in a Hop-by-Hop or Destination options 64 * extension header 65 * - Limit the byte length of a Hop-by-Hop or Destination options extension 66 * header 67 * - Disallow unknown options 68 * 69 * The limits are expressed in corresponding sysctls: 70 * 71 * ipv6.sysctl.max_dst_opts_cnt 72 * ipv6.sysctl.max_hbh_opts_cnt 73 * ipv6.sysctl.max_dst_opts_len 74 * ipv6.sysctl.max_hbh_opts_len 75 * 76 * max_*_opts_cnt is the number of TLVs that are allowed for Destination 77 * options or Hop-by-Hop options. If the number is less than zero then unknown 78 * TLVs are disallowed and the number of known options that are allowed is the 79 * absolute value. Setting the value to INT_MAX indicates no limit. 80 * 81 * max_*_opts_len is the length limit in bytes of a Destination or 82 * Hop-by-Hop options extension header. Setting the value to INT_MAX 83 * indicates no length limit. 84 * 85 * If a limit is exceeded when processing an extension header the packet is 86 * silently discarded. 87 */ 88 89 /* Default limits for Hop-by-Hop and Destination options */ 90 #define IP6_DEFAULT_MAX_DST_OPTS_CNT 8 91 #define IP6_DEFAULT_MAX_HBH_OPTS_CNT 8 92 #define IP6_DEFAULT_MAX_DST_OPTS_LEN INT_MAX /* No limit */ 93 #define IP6_DEFAULT_MAX_HBH_OPTS_LEN INT_MAX /* No limit */ 94 95 /* 96 * Addr type 97 * 98 * type - unicast | multicast 99 * scope - local | site | global 100 * v4 - compat 101 * v4mapped 102 * any 103 * loopback 104 */ 105 106 #define IPV6_ADDR_ANY 0x0000U 107 108 #define IPV6_ADDR_UNICAST 0x0001U 109 #define IPV6_ADDR_MULTICAST 0x0002U 110 111 #define IPV6_ADDR_LOOPBACK 0x0010U 112 #define IPV6_ADDR_LINKLOCAL 0x0020U 113 #define IPV6_ADDR_SITELOCAL 0x0040U 114 115 #define IPV6_ADDR_COMPATv4 0x0080U 116 117 #define IPV6_ADDR_SCOPE_MASK 0x00f0U 118 119 #define IPV6_ADDR_MAPPED 0x1000U 120 121 /* 122 * Addr scopes 123 */ 124 #define IPV6_ADDR_MC_SCOPE(a) \ 125 ((a)->s6_addr[1] & 0x0f) /* nonstandard */ 126 #define __IPV6_ADDR_SCOPE_INVALID -1 127 #define IPV6_ADDR_SCOPE_NODELOCAL 0x01 128 #define IPV6_ADDR_SCOPE_LINKLOCAL 0x02 129 #define IPV6_ADDR_SCOPE_SITELOCAL 0x05 130 #define IPV6_ADDR_SCOPE_ORGLOCAL 0x08 131 #define IPV6_ADDR_SCOPE_GLOBAL 0x0e 132 133 /* 134 * Addr flags 135 */ 136 #define IPV6_ADDR_MC_FLAG_TRANSIENT(a) \ 137 ((a)->s6_addr[1] & 0x10) 138 #define IPV6_ADDR_MC_FLAG_PREFIX(a) \ 139 ((a)->s6_addr[1] & 0x20) 140 #define IPV6_ADDR_MC_FLAG_RENDEZVOUS(a) \ 141 ((a)->s6_addr[1] & 0x40) 142 143 /* 144 * fragmentation header 145 */ 146 147 struct frag_hdr { 148 __u8 nexthdr; 149 __u8 reserved; 150 __be16 frag_off; 151 __be32 identification; 152 }; 153 154 /* 155 * Jumbo payload option, as described in RFC 2675 2. 156 */ 157 struct hop_jumbo_hdr { 158 u8 nexthdr; 159 u8 hdrlen; 160 u8 tlv_type; /* IPV6_TLV_JUMBO, 0xC2 */ 161 u8 tlv_len; /* 4 */ 162 __be32 jumbo_payload_len; 163 }; 164 165 #define IP6_MF 0x0001 166 #define IP6_OFFSET 0xFFF8 167 168 struct ip6_fraglist_iter { 169 struct ipv6hdr *tmp_hdr; 170 struct sk_buff *frag; 171 int offset; 172 unsigned int hlen; 173 __be32 frag_id; 174 u8 nexthdr; 175 }; 176 177 int ip6_fraglist_init(struct sk_buff *skb, unsigned int hlen, u8 *prevhdr, 178 u8 nexthdr, __be32 frag_id, 179 struct ip6_fraglist_iter *iter); 180 void ip6_fraglist_prepare(struct sk_buff *skb, struct ip6_fraglist_iter *iter); 181 182 static inline struct sk_buff *ip6_fraglist_next(struct ip6_fraglist_iter *iter) 183 { 184 struct sk_buff *skb = iter->frag; 185 186 iter->frag = skb->next; 187 skb_mark_not_on_list(skb); 188 189 return skb; 190 } 191 192 struct ip6_frag_state { 193 u8 *prevhdr; 194 unsigned int hlen; 195 unsigned int mtu; 196 unsigned int left; 197 int offset; 198 int ptr; 199 int hroom; 200 int troom; 201 __be32 frag_id; 202 u8 nexthdr; 203 }; 204 205 void ip6_frag_init(struct sk_buff *skb, unsigned int hlen, unsigned int mtu, 206 unsigned short needed_tailroom, int hdr_room, u8 *prevhdr, 207 u8 nexthdr, __be32 frag_id, struct ip6_frag_state *state); 208 struct sk_buff *ip6_frag_next(struct sk_buff *skb, 209 struct ip6_frag_state *state); 210 211 #define IP6_REPLY_MARK(net, mark) \ 212 ((net)->ipv6.sysctl.fwmark_reflect ? (mark) : 0) 213 214 #include <net/sock.h> 215 216 /* sysctls */ 217 extern int sysctl_mld_max_msf; 218 extern int sysctl_mld_qrv; 219 220 #define _DEVINC(net, statname, mod, idev, field) \ 221 ({ \ 222 struct inet6_dev *_idev = (idev); \ 223 if (likely(_idev != NULL)) \ 224 mod##SNMP_INC_STATS64((_idev)->stats.statname, (field));\ 225 mod##SNMP_INC_STATS64((net)->mib.statname##_statistics, (field));\ 226 }) 227 228 /* per device counters are atomic_long_t */ 229 #define _DEVINCATOMIC(net, statname, mod, idev, field) \ 230 ({ \ 231 struct inet6_dev *_idev = (idev); \ 232 if (likely(_idev != NULL)) \ 233 SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \ 234 mod##SNMP_INC_STATS((net)->mib.statname##_statistics, (field));\ 235 }) 236 237 /* per device and per net counters are atomic_long_t */ 238 #define _DEVINC_ATOMIC_ATOMIC(net, statname, idev, field) \ 239 ({ \ 240 struct inet6_dev *_idev = (idev); \ 241 if (likely(_idev != NULL)) \ 242 SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \ 243 SNMP_INC_STATS_ATOMIC_LONG((net)->mib.statname##_statistics, (field));\ 244 }) 245 246 #define _DEVADD(net, statname, mod, idev, field, val) \ 247 ({ \ 248 struct inet6_dev *_idev = (idev); \ 249 if (likely(_idev != NULL)) \ 250 mod##SNMP_ADD_STATS((_idev)->stats.statname, (field), (val)); \ 251 mod##SNMP_ADD_STATS((net)->mib.statname##_statistics, (field), (val));\ 252 }) 253 254 #define _DEVUPD(net, statname, mod, idev, field, val) \ 255 ({ \ 256 struct inet6_dev *_idev = (idev); \ 257 if (likely(_idev != NULL)) \ 258 mod##SNMP_UPD_PO_STATS((_idev)->stats.statname, field, (val)); \ 259 mod##SNMP_UPD_PO_STATS((net)->mib.statname##_statistics, field, (val));\ 260 }) 261 262 /* MIBs */ 263 264 #define IP6_INC_STATS(net, idev,field) \ 265 _DEVINC(net, ipv6, , idev, field) 266 #define __IP6_INC_STATS(net, idev,field) \ 267 _DEVINC(net, ipv6, __, idev, field) 268 #define IP6_ADD_STATS(net, idev,field,val) \ 269 _DEVADD(net, ipv6, , idev, field, val) 270 #define __IP6_ADD_STATS(net, idev,field,val) \ 271 _DEVADD(net, ipv6, __, idev, field, val) 272 #define IP6_UPD_PO_STATS(net, idev,field,val) \ 273 _DEVUPD(net, ipv6, , idev, field, val) 274 #define __IP6_UPD_PO_STATS(net, idev,field,val) \ 275 _DEVUPD(net, ipv6, __, idev, field, val) 276 #define ICMP6_INC_STATS(net, idev, field) \ 277 _DEVINCATOMIC(net, icmpv6, , idev, field) 278 #define __ICMP6_INC_STATS(net, idev, field) \ 279 _DEVINCATOMIC(net, icmpv6, __, idev, field) 280 281 #define ICMP6MSGOUT_INC_STATS(net, idev, field) \ 282 _DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field +256) 283 #define ICMP6MSGIN_INC_STATS(net, idev, field) \ 284 _DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field) 285 286 struct ip6_ra_chain { 287 struct ip6_ra_chain *next; 288 struct sock *sk; 289 int sel; 290 void (*destructor)(struct sock *); 291 }; 292 293 extern struct ip6_ra_chain *ip6_ra_chain; 294 extern rwlock_t ip6_ra_lock; 295 296 /* 297 This structure is prepared by protocol, when parsing 298 ancillary data and passed to IPv6. 299 */ 300 301 struct ipv6_txoptions { 302 refcount_t refcnt; 303 /* Length of this structure */ 304 int tot_len; 305 306 /* length of extension headers */ 307 308 __u16 opt_flen; /* after fragment hdr */ 309 __u16 opt_nflen; /* before fragment hdr */ 310 311 struct ipv6_opt_hdr *hopopt; 312 struct ipv6_opt_hdr *dst0opt; 313 struct ipv6_rt_hdr *srcrt; /* Routing Header */ 314 struct ipv6_opt_hdr *dst1opt; 315 struct rcu_head rcu; 316 /* Option buffer, as read by IPV6_PKTOPTIONS, starts here. */ 317 }; 318 319 /* flowlabel_reflect sysctl values */ 320 enum flowlabel_reflect { 321 FLOWLABEL_REFLECT_ESTABLISHED = 1, 322 FLOWLABEL_REFLECT_TCP_RESET = 2, 323 FLOWLABEL_REFLECT_ICMPV6_ECHO_REPLIES = 4, 324 }; 325 326 struct ip6_flowlabel { 327 struct ip6_flowlabel __rcu *next; 328 __be32 label; 329 atomic_t users; 330 struct in6_addr dst; 331 struct ipv6_txoptions *opt; 332 unsigned long linger; 333 struct rcu_head rcu; 334 u8 share; 335 union { 336 struct pid *pid; 337 kuid_t uid; 338 } owner; 339 unsigned long lastuse; 340 unsigned long expires; 341 struct net *fl_net; 342 }; 343 344 #define IPV6_FLOWINFO_MASK cpu_to_be32(0x0FFFFFFF) 345 #define IPV6_FLOWLABEL_MASK cpu_to_be32(0x000FFFFF) 346 #define IPV6_FLOWLABEL_STATELESS_FLAG cpu_to_be32(0x00080000) 347 348 #define IPV6_TCLASS_MASK (IPV6_FLOWINFO_MASK & ~IPV6_FLOWLABEL_MASK) 349 #define IPV6_TCLASS_SHIFT 20 350 351 struct ipv6_fl_socklist { 352 struct ipv6_fl_socklist __rcu *next; 353 struct ip6_flowlabel *fl; 354 struct rcu_head rcu; 355 }; 356 357 struct ipcm6_cookie { 358 struct sockcm_cookie sockc; 359 __s16 hlimit; 360 __s16 tclass; 361 __u16 gso_size; 362 __s8 dontfrag; 363 struct ipv6_txoptions *opt; 364 }; 365 366 static inline void ipcm6_init_sk(struct ipcm6_cookie *ipc6, 367 const struct sock *sk) 368 { 369 *ipc6 = (struct ipcm6_cookie) { 370 .hlimit = -1, 371 .tclass = inet6_sk(sk)->tclass, 372 .dontfrag = inet6_test_bit(DONTFRAG, sk), 373 }; 374 375 sockcm_init(&ipc6->sockc, sk); 376 } 377 378 static inline struct ipv6_txoptions *txopt_get(const struct ipv6_pinfo *np) 379 { 380 struct ipv6_txoptions *opt; 381 382 rcu_read_lock(); 383 opt = rcu_dereference(np->opt); 384 if (opt) { 385 if (!refcount_inc_not_zero(&opt->refcnt)) 386 opt = NULL; 387 else 388 opt = rcu_pointer_handoff(opt); 389 } 390 rcu_read_unlock(); 391 return opt; 392 } 393 394 static inline void txopt_put(struct ipv6_txoptions *opt) 395 { 396 if (opt && refcount_dec_and_test(&opt->refcnt)) 397 kfree_rcu(opt, rcu); 398 } 399 400 #if IS_ENABLED(CONFIG_IPV6) 401 struct ip6_flowlabel *__fl6_sock_lookup(struct sock *sk, __be32 label); 402 403 extern struct static_key_false_deferred ipv6_flowlabel_exclusive; 404 static inline struct ip6_flowlabel *fl6_sock_lookup(struct sock *sk, 405 __be32 label) 406 { 407 if (static_branch_unlikely(&ipv6_flowlabel_exclusive.key) && 408 READ_ONCE(sock_net(sk)->ipv6.flowlabel_has_excl)) 409 return __fl6_sock_lookup(sk, label) ? : ERR_PTR(-ENOENT); 410 411 return NULL; 412 } 413 #endif 414 415 struct ipv6_txoptions *fl6_merge_options(struct ipv6_txoptions *opt_space, 416 struct ip6_flowlabel *fl, 417 struct ipv6_txoptions *fopt); 418 void fl6_free_socklist(struct sock *sk); 419 int ipv6_flowlabel_opt(struct sock *sk, sockptr_t optval, int optlen); 420 int ipv6_flowlabel_opt_get(struct sock *sk, struct in6_flowlabel_req *freq, 421 int flags); 422 int ip6_flowlabel_init(void); 423 void ip6_flowlabel_cleanup(void); 424 bool ip6_autoflowlabel(struct net *net, const struct sock *sk); 425 426 static inline void fl6_sock_release(struct ip6_flowlabel *fl) 427 { 428 if (fl) 429 atomic_dec(&fl->users); 430 } 431 432 enum skb_drop_reason icmpv6_notify(struct sk_buff *skb, u8 type, 433 u8 code, __be32 info); 434 435 void icmpv6_push_pending_frames(struct sock *sk, struct flowi6 *fl6, 436 struct icmp6hdr *thdr, int len); 437 438 int ip6_ra_control(struct sock *sk, int sel); 439 440 int ipv6_parse_hopopts(struct sk_buff *skb); 441 442 struct ipv6_txoptions *ipv6_dup_options(struct sock *sk, 443 struct ipv6_txoptions *opt); 444 struct ipv6_txoptions *ipv6_renew_options(struct sock *sk, 445 struct ipv6_txoptions *opt, 446 int newtype, 447 struct ipv6_opt_hdr *newopt); 448 struct ipv6_txoptions *__ipv6_fixup_options(struct ipv6_txoptions *opt_space, 449 struct ipv6_txoptions *opt); 450 451 static inline struct ipv6_txoptions * 452 ipv6_fixup_options(struct ipv6_txoptions *opt_space, struct ipv6_txoptions *opt) 453 { 454 if (!opt) 455 return NULL; 456 return __ipv6_fixup_options(opt_space, opt); 457 } 458 459 bool ipv6_opt_accepted(const struct sock *sk, const struct sk_buff *skb, 460 const struct inet6_skb_parm *opt); 461 struct ipv6_txoptions *ipv6_update_options(struct sock *sk, 462 struct ipv6_txoptions *opt); 463 464 /* This helper is specialized for BIG TCP needs. 465 * It assumes the hop_jumbo_hdr will immediately follow the IPV6 header. 466 * It assumes headers are already in skb->head. 467 * Returns: 0, or IPPROTO_TCP if a BIG TCP packet is there. 468 */ 469 static inline int ipv6_has_hopopt_jumbo(const struct sk_buff *skb) 470 { 471 const struct hop_jumbo_hdr *jhdr; 472 const struct ipv6hdr *nhdr; 473 474 if (likely(skb->len <= GRO_LEGACY_MAX_SIZE)) 475 return 0; 476 477 if (skb->protocol != htons(ETH_P_IPV6)) 478 return 0; 479 480 if (skb_network_offset(skb) + 481 sizeof(struct ipv6hdr) + 482 sizeof(struct hop_jumbo_hdr) > skb_headlen(skb)) 483 return 0; 484 485 nhdr = ipv6_hdr(skb); 486 487 if (nhdr->nexthdr != NEXTHDR_HOP) 488 return 0; 489 490 jhdr = (const struct hop_jumbo_hdr *) (nhdr + 1); 491 if (jhdr->tlv_type != IPV6_TLV_JUMBO || jhdr->hdrlen != 0 || 492 jhdr->nexthdr != IPPROTO_TCP) 493 return 0; 494 return jhdr->nexthdr; 495 } 496 497 /* Return 0 if HBH header is successfully removed 498 * Or if HBH removal is unnecessary (packet is not big TCP) 499 * Return error to indicate dropping the packet 500 */ 501 static inline int ipv6_hopopt_jumbo_remove(struct sk_buff *skb) 502 { 503 const int hophdr_len = sizeof(struct hop_jumbo_hdr); 504 int nexthdr = ipv6_has_hopopt_jumbo(skb); 505 struct ipv6hdr *h6; 506 507 if (!nexthdr) 508 return 0; 509 510 if (skb_cow_head(skb, 0)) 511 return -1; 512 513 /* Remove the HBH header. 514 * Layout: [Ethernet header][IPv6 header][HBH][L4 Header] 515 */ 516 memmove(skb_mac_header(skb) + hophdr_len, skb_mac_header(skb), 517 skb_network_header(skb) - skb_mac_header(skb) + 518 sizeof(struct ipv6hdr)); 519 520 __skb_pull(skb, hophdr_len); 521 skb->network_header += hophdr_len; 522 skb->mac_header += hophdr_len; 523 524 h6 = ipv6_hdr(skb); 525 h6->nexthdr = nexthdr; 526 527 return 0; 528 } 529 530 static inline bool ipv6_accept_ra(const struct inet6_dev *idev) 531 { 532 s32 accept_ra = READ_ONCE(idev->cnf.accept_ra); 533 534 /* If forwarding is enabled, RA are not accepted unless the special 535 * hybrid mode (accept_ra=2) is enabled. 536 */ 537 return READ_ONCE(idev->cnf.forwarding) ? accept_ra == 2 : 538 accept_ra; 539 } 540 541 #define IPV6_FRAG_HIGH_THRESH (4 * 1024*1024) /* 4194304 */ 542 #define IPV6_FRAG_LOW_THRESH (3 * 1024*1024) /* 3145728 */ 543 #define IPV6_FRAG_TIMEOUT (60 * HZ) /* 60 seconds */ 544 545 int __ipv6_addr_type(const struct in6_addr *addr); 546 static inline int ipv6_addr_type(const struct in6_addr *addr) 547 { 548 return __ipv6_addr_type(addr) & 0xffff; 549 } 550 551 static inline int ipv6_addr_scope(const struct in6_addr *addr) 552 { 553 return __ipv6_addr_type(addr) & IPV6_ADDR_SCOPE_MASK; 554 } 555 556 static inline int __ipv6_addr_src_scope(int type) 557 { 558 return (type == IPV6_ADDR_ANY) ? __IPV6_ADDR_SCOPE_INVALID : (type >> 16); 559 } 560 561 static inline int ipv6_addr_src_scope(const struct in6_addr *addr) 562 { 563 return __ipv6_addr_src_scope(__ipv6_addr_type(addr)); 564 } 565 566 static inline bool __ipv6_addr_needs_scope_id(int type) 567 { 568 return type & IPV6_ADDR_LINKLOCAL || 569 (type & IPV6_ADDR_MULTICAST && 570 (type & (IPV6_ADDR_LOOPBACK|IPV6_ADDR_LINKLOCAL))); 571 } 572 573 static inline __u32 ipv6_iface_scope_id(const struct in6_addr *addr, int iface) 574 { 575 return __ipv6_addr_needs_scope_id(__ipv6_addr_type(addr)) ? iface : 0; 576 } 577 578 static inline int ipv6_addr_cmp(const struct in6_addr *a1, const struct in6_addr *a2) 579 { 580 return memcmp(a1, a2, sizeof(struct in6_addr)); 581 } 582 583 static inline bool 584 ipv6_masked_addr_cmp(const struct in6_addr *a1, const struct in6_addr *m, 585 const struct in6_addr *a2) 586 { 587 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 588 const unsigned long *ul1 = (const unsigned long *)a1; 589 const unsigned long *ulm = (const unsigned long *)m; 590 const unsigned long *ul2 = (const unsigned long *)a2; 591 592 return !!(((ul1[0] ^ ul2[0]) & ulm[0]) | 593 ((ul1[1] ^ ul2[1]) & ulm[1])); 594 #else 595 return !!(((a1->s6_addr32[0] ^ a2->s6_addr32[0]) & m->s6_addr32[0]) | 596 ((a1->s6_addr32[1] ^ a2->s6_addr32[1]) & m->s6_addr32[1]) | 597 ((a1->s6_addr32[2] ^ a2->s6_addr32[2]) & m->s6_addr32[2]) | 598 ((a1->s6_addr32[3] ^ a2->s6_addr32[3]) & m->s6_addr32[3])); 599 #endif 600 } 601 602 static inline void ipv6_addr_prefix(struct in6_addr *pfx, 603 const struct in6_addr *addr, 604 int plen) 605 { 606 /* caller must guarantee 0 <= plen <= 128 */ 607 int o = plen >> 3, 608 b = plen & 0x7; 609 610 memset(pfx->s6_addr, 0, sizeof(pfx->s6_addr)); 611 memcpy(pfx->s6_addr, addr, o); 612 if (b != 0) 613 pfx->s6_addr[o] = addr->s6_addr[o] & (0xff00 >> b); 614 } 615 616 static inline void ipv6_addr_prefix_copy(struct in6_addr *addr, 617 const struct in6_addr *pfx, 618 int plen) 619 { 620 /* caller must guarantee 0 <= plen <= 128 */ 621 int o = plen >> 3, 622 b = plen & 0x7; 623 624 memcpy(addr->s6_addr, pfx, o); 625 if (b != 0) { 626 addr->s6_addr[o] &= ~(0xff00 >> b); 627 addr->s6_addr[o] |= (pfx->s6_addr[o] & (0xff00 >> b)); 628 } 629 } 630 631 static inline void __ipv6_addr_set_half(__be32 *addr, 632 __be32 wh, __be32 wl) 633 { 634 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 635 #if defined(__BIG_ENDIAN) 636 if (__builtin_constant_p(wh) && __builtin_constant_p(wl)) { 637 *(__force u64 *)addr = ((__force u64)(wh) << 32 | (__force u64)(wl)); 638 return; 639 } 640 #elif defined(__LITTLE_ENDIAN) 641 if (__builtin_constant_p(wl) && __builtin_constant_p(wh)) { 642 *(__force u64 *)addr = ((__force u64)(wl) << 32 | (__force u64)(wh)); 643 return; 644 } 645 #endif 646 #endif 647 addr[0] = wh; 648 addr[1] = wl; 649 } 650 651 static inline void ipv6_addr_set(struct in6_addr *addr, 652 __be32 w1, __be32 w2, 653 __be32 w3, __be32 w4) 654 { 655 __ipv6_addr_set_half(&addr->s6_addr32[0], w1, w2); 656 __ipv6_addr_set_half(&addr->s6_addr32[2], w3, w4); 657 } 658 659 static inline bool ipv6_addr_equal(const struct in6_addr *a1, 660 const struct in6_addr *a2) 661 { 662 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 663 const unsigned long *ul1 = (const unsigned long *)a1; 664 const unsigned long *ul2 = (const unsigned long *)a2; 665 666 return ((ul1[0] ^ ul2[0]) | (ul1[1] ^ ul2[1])) == 0UL; 667 #else 668 return ((a1->s6_addr32[0] ^ a2->s6_addr32[0]) | 669 (a1->s6_addr32[1] ^ a2->s6_addr32[1]) | 670 (a1->s6_addr32[2] ^ a2->s6_addr32[2]) | 671 (a1->s6_addr32[3] ^ a2->s6_addr32[3])) == 0; 672 #endif 673 } 674 675 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 676 static inline bool __ipv6_prefix_equal64_half(const __be64 *a1, 677 const __be64 *a2, 678 unsigned int len) 679 { 680 if (len && ((*a1 ^ *a2) & cpu_to_be64((~0UL) << (64 - len)))) 681 return false; 682 return true; 683 } 684 685 static inline bool ipv6_prefix_equal(const struct in6_addr *addr1, 686 const struct in6_addr *addr2, 687 unsigned int prefixlen) 688 { 689 const __be64 *a1 = (const __be64 *)addr1; 690 const __be64 *a2 = (const __be64 *)addr2; 691 692 if (prefixlen >= 64) { 693 if (a1[0] ^ a2[0]) 694 return false; 695 return __ipv6_prefix_equal64_half(a1 + 1, a2 + 1, prefixlen - 64); 696 } 697 return __ipv6_prefix_equal64_half(a1, a2, prefixlen); 698 } 699 #else 700 static inline bool ipv6_prefix_equal(const struct in6_addr *addr1, 701 const struct in6_addr *addr2, 702 unsigned int prefixlen) 703 { 704 const __be32 *a1 = addr1->s6_addr32; 705 const __be32 *a2 = addr2->s6_addr32; 706 unsigned int pdw, pbi; 707 708 /* check complete u32 in prefix */ 709 pdw = prefixlen >> 5; 710 if (pdw && memcmp(a1, a2, pdw << 2)) 711 return false; 712 713 /* check incomplete u32 in prefix */ 714 pbi = prefixlen & 0x1f; 715 if (pbi && ((a1[pdw] ^ a2[pdw]) & htonl((0xffffffff) << (32 - pbi)))) 716 return false; 717 718 return true; 719 } 720 #endif 721 722 static inline bool ipv6_addr_any(const struct in6_addr *a) 723 { 724 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 725 const unsigned long *ul = (const unsigned long *)a; 726 727 return (ul[0] | ul[1]) == 0UL; 728 #else 729 return (a->s6_addr32[0] | a->s6_addr32[1] | 730 a->s6_addr32[2] | a->s6_addr32[3]) == 0; 731 #endif 732 } 733 734 static inline u32 ipv6_addr_hash(const struct in6_addr *a) 735 { 736 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 737 const unsigned long *ul = (const unsigned long *)a; 738 unsigned long x = ul[0] ^ ul[1]; 739 740 return (u32)(x ^ (x >> 32)); 741 #else 742 return (__force u32)(a->s6_addr32[0] ^ a->s6_addr32[1] ^ 743 a->s6_addr32[2] ^ a->s6_addr32[3]); 744 #endif 745 } 746 747 /* more secured version of ipv6_addr_hash() */ 748 static inline u32 __ipv6_addr_jhash(const struct in6_addr *a, const u32 initval) 749 { 750 return jhash2((__force const u32 *)a->s6_addr32, 751 ARRAY_SIZE(a->s6_addr32), initval); 752 } 753 754 static inline bool ipv6_addr_loopback(const struct in6_addr *a) 755 { 756 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 757 const __be64 *be = (const __be64 *)a; 758 759 return (be[0] | (be[1] ^ cpu_to_be64(1))) == 0UL; 760 #else 761 return (a->s6_addr32[0] | a->s6_addr32[1] | 762 a->s6_addr32[2] | (a->s6_addr32[3] ^ cpu_to_be32(1))) == 0; 763 #endif 764 } 765 766 /* 767 * Note that we must __force cast these to unsigned long to make sparse happy, 768 * since all of the endian-annotated types are fixed size regardless of arch. 769 */ 770 static inline bool ipv6_addr_v4mapped(const struct in6_addr *a) 771 { 772 return ( 773 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 774 *(unsigned long *)a | 775 #else 776 (__force unsigned long)(a->s6_addr32[0] | a->s6_addr32[1]) | 777 #endif 778 (__force unsigned long)(a->s6_addr32[2] ^ 779 cpu_to_be32(0x0000ffff))) == 0UL; 780 } 781 782 static inline bool ipv6_addr_v4mapped_loopback(const struct in6_addr *a) 783 { 784 return ipv6_addr_v4mapped(a) && ipv4_is_loopback(a->s6_addr32[3]); 785 } 786 787 static inline u32 ipv6_portaddr_hash(const struct net *net, 788 const struct in6_addr *addr6, 789 unsigned int port) 790 { 791 unsigned int hash, mix = net_hash_mix(net); 792 793 if (ipv6_addr_any(addr6)) 794 hash = jhash_1word(0, mix); 795 else if (ipv6_addr_v4mapped(addr6)) 796 hash = jhash_1word((__force u32)addr6->s6_addr32[3], mix); 797 else 798 hash = jhash2((__force u32 *)addr6->s6_addr32, 4, mix); 799 800 return hash ^ port; 801 } 802 803 /* 804 * Check for a RFC 4843 ORCHID address 805 * (Overlay Routable Cryptographic Hash Identifiers) 806 */ 807 static inline bool ipv6_addr_orchid(const struct in6_addr *a) 808 { 809 return (a->s6_addr32[0] & htonl(0xfffffff0)) == htonl(0x20010010); 810 } 811 812 static inline bool ipv6_addr_is_multicast(const struct in6_addr *addr) 813 { 814 return (addr->s6_addr32[0] & htonl(0xFF000000)) == htonl(0xFF000000); 815 } 816 817 static inline void ipv6_addr_set_v4mapped(const __be32 addr, 818 struct in6_addr *v4mapped) 819 { 820 ipv6_addr_set(v4mapped, 821 0, 0, 822 htonl(0x0000FFFF), 823 addr); 824 } 825 826 /* 827 * find the first different bit between two addresses 828 * length of address must be a multiple of 32bits 829 */ 830 static inline int __ipv6_addr_diff32(const void *token1, const void *token2, int addrlen) 831 { 832 const __be32 *a1 = token1, *a2 = token2; 833 int i; 834 835 addrlen >>= 2; 836 837 for (i = 0; i < addrlen; i++) { 838 __be32 xb = a1[i] ^ a2[i]; 839 if (xb) 840 return i * 32 + 31 - __fls(ntohl(xb)); 841 } 842 843 /* 844 * we should *never* get to this point since that 845 * would mean the addrs are equal 846 * 847 * However, we do get to it 8) And exactly, when 848 * addresses are equal 8) 849 * 850 * ip route add 1111::/128 via ... 851 * ip route add 1111::/64 via ... 852 * and we are here. 853 * 854 * Ideally, this function should stop comparison 855 * at prefix length. It does not, but it is still OK, 856 * if returned value is greater than prefix length. 857 * --ANK (980803) 858 */ 859 return addrlen << 5; 860 } 861 862 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 863 static inline int __ipv6_addr_diff64(const void *token1, const void *token2, int addrlen) 864 { 865 const __be64 *a1 = token1, *a2 = token2; 866 int i; 867 868 addrlen >>= 3; 869 870 for (i = 0; i < addrlen; i++) { 871 __be64 xb = a1[i] ^ a2[i]; 872 if (xb) 873 return i * 64 + 63 - __fls(be64_to_cpu(xb)); 874 } 875 876 return addrlen << 6; 877 } 878 #endif 879 880 static inline int __ipv6_addr_diff(const void *token1, const void *token2, int addrlen) 881 { 882 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 883 if (__builtin_constant_p(addrlen) && !(addrlen & 7)) 884 return __ipv6_addr_diff64(token1, token2, addrlen); 885 #endif 886 return __ipv6_addr_diff32(token1, token2, addrlen); 887 } 888 889 static inline int ipv6_addr_diff(const struct in6_addr *a1, const struct in6_addr *a2) 890 { 891 return __ipv6_addr_diff(a1, a2, sizeof(struct in6_addr)); 892 } 893 894 __be32 ipv6_select_ident(struct net *net, 895 const struct in6_addr *daddr, 896 const struct in6_addr *saddr); 897 __be32 ipv6_proxy_select_ident(struct net *net, struct sk_buff *skb); 898 899 int ip6_dst_hoplimit(struct dst_entry *dst); 900 901 static inline int ip6_sk_dst_hoplimit(struct ipv6_pinfo *np, struct flowi6 *fl6, 902 struct dst_entry *dst) 903 { 904 int hlimit; 905 906 if (ipv6_addr_is_multicast(&fl6->daddr)) 907 hlimit = READ_ONCE(np->mcast_hops); 908 else 909 hlimit = READ_ONCE(np->hop_limit); 910 if (hlimit < 0) 911 hlimit = ip6_dst_hoplimit(dst); 912 return hlimit; 913 } 914 915 /* copy IPv6 saddr & daddr to flow_keys, possibly using 64bit load/store 916 * Equivalent to : flow->v6addrs.src = iph->saddr; 917 * flow->v6addrs.dst = iph->daddr; 918 */ 919 static inline void iph_to_flow_copy_v6addrs(struct flow_keys *flow, 920 const struct ipv6hdr *iph) 921 { 922 BUILD_BUG_ON(offsetof(typeof(flow->addrs), v6addrs.dst) != 923 offsetof(typeof(flow->addrs), v6addrs.src) + 924 sizeof(flow->addrs.v6addrs.src)); 925 memcpy(&flow->addrs.v6addrs, &iph->addrs, sizeof(flow->addrs.v6addrs)); 926 flow->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 927 } 928 929 #if IS_ENABLED(CONFIG_IPV6) 930 931 static inline bool ipv6_can_nonlocal_bind(struct net *net, 932 struct inet_sock *inet) 933 { 934 return net->ipv6.sysctl.ip_nonlocal_bind || 935 test_bit(INET_FLAGS_FREEBIND, &inet->inet_flags) || 936 test_bit(INET_FLAGS_TRANSPARENT, &inet->inet_flags); 937 } 938 939 /* Sysctl settings for net ipv6.auto_flowlabels */ 940 #define IP6_AUTO_FLOW_LABEL_OFF 0 941 #define IP6_AUTO_FLOW_LABEL_OPTOUT 1 942 #define IP6_AUTO_FLOW_LABEL_OPTIN 2 943 #define IP6_AUTO_FLOW_LABEL_FORCED 3 944 945 #define IP6_AUTO_FLOW_LABEL_MAX IP6_AUTO_FLOW_LABEL_FORCED 946 947 #define IP6_DEFAULT_AUTO_FLOW_LABELS IP6_AUTO_FLOW_LABEL_OPTOUT 948 949 static inline __be32 ip6_make_flowlabel(struct net *net, struct sk_buff *skb, 950 __be32 flowlabel, bool autolabel, 951 struct flowi6 *fl6) 952 { 953 u32 hash; 954 955 /* @flowlabel may include more than a flow label, eg, the traffic class. 956 * Here we want only the flow label value. 957 */ 958 flowlabel &= IPV6_FLOWLABEL_MASK; 959 960 if (flowlabel || 961 net->ipv6.sysctl.auto_flowlabels == IP6_AUTO_FLOW_LABEL_OFF || 962 (!autolabel && 963 net->ipv6.sysctl.auto_flowlabels != IP6_AUTO_FLOW_LABEL_FORCED)) 964 return flowlabel; 965 966 hash = skb_get_hash_flowi6(skb, fl6); 967 968 /* Since this is being sent on the wire obfuscate hash a bit 969 * to minimize possibility that any useful information to an 970 * attacker is leaked. Only lower 20 bits are relevant. 971 */ 972 hash = rol32(hash, 16); 973 974 flowlabel = (__force __be32)hash & IPV6_FLOWLABEL_MASK; 975 976 if (net->ipv6.sysctl.flowlabel_state_ranges) 977 flowlabel |= IPV6_FLOWLABEL_STATELESS_FLAG; 978 979 return flowlabel; 980 } 981 982 static inline int ip6_default_np_autolabel(struct net *net) 983 { 984 switch (net->ipv6.sysctl.auto_flowlabels) { 985 case IP6_AUTO_FLOW_LABEL_OFF: 986 case IP6_AUTO_FLOW_LABEL_OPTIN: 987 default: 988 return 0; 989 case IP6_AUTO_FLOW_LABEL_OPTOUT: 990 case IP6_AUTO_FLOW_LABEL_FORCED: 991 return 1; 992 } 993 } 994 #else 995 static inline __be32 ip6_make_flowlabel(struct net *net, struct sk_buff *skb, 996 __be32 flowlabel, bool autolabel, 997 struct flowi6 *fl6) 998 { 999 return flowlabel; 1000 } 1001 static inline int ip6_default_np_autolabel(struct net *net) 1002 { 1003 return 0; 1004 } 1005 #endif 1006 1007 #if IS_ENABLED(CONFIG_IPV6) 1008 static inline int ip6_multipath_hash_policy(const struct net *net) 1009 { 1010 return net->ipv6.sysctl.multipath_hash_policy; 1011 } 1012 static inline u32 ip6_multipath_hash_fields(const struct net *net) 1013 { 1014 return net->ipv6.sysctl.multipath_hash_fields; 1015 } 1016 #else 1017 static inline int ip6_multipath_hash_policy(const struct net *net) 1018 { 1019 return 0; 1020 } 1021 static inline u32 ip6_multipath_hash_fields(const struct net *net) 1022 { 1023 return 0; 1024 } 1025 #endif 1026 1027 /* 1028 * Header manipulation 1029 */ 1030 static inline void ip6_flow_hdr(struct ipv6hdr *hdr, unsigned int tclass, 1031 __be32 flowlabel) 1032 { 1033 *(__be32 *)hdr = htonl(0x60000000 | (tclass << 20)) | flowlabel; 1034 } 1035 1036 static inline __be32 ip6_flowinfo(const struct ipv6hdr *hdr) 1037 { 1038 return *(__be32 *)hdr & IPV6_FLOWINFO_MASK; 1039 } 1040 1041 static inline __be32 ip6_flowlabel(const struct ipv6hdr *hdr) 1042 { 1043 return *(__be32 *)hdr & IPV6_FLOWLABEL_MASK; 1044 } 1045 1046 static inline u8 ip6_tclass(__be32 flowinfo) 1047 { 1048 return ntohl(flowinfo & IPV6_TCLASS_MASK) >> IPV6_TCLASS_SHIFT; 1049 } 1050 1051 static inline dscp_t ip6_dscp(__be32 flowinfo) 1052 { 1053 return inet_dsfield_to_dscp(ip6_tclass(flowinfo)); 1054 } 1055 1056 static inline __be32 ip6_make_flowinfo(unsigned int tclass, __be32 flowlabel) 1057 { 1058 return htonl(tclass << IPV6_TCLASS_SHIFT) | flowlabel; 1059 } 1060 1061 static inline __be32 flowi6_get_flowlabel(const struct flowi6 *fl6) 1062 { 1063 return fl6->flowlabel & IPV6_FLOWLABEL_MASK; 1064 } 1065 1066 /* 1067 * Prototypes exported by ipv6 1068 */ 1069 1070 /* 1071 * rcv function (called from netdevice level) 1072 */ 1073 1074 int ipv6_rcv(struct sk_buff *skb, struct net_device *dev, 1075 struct packet_type *pt, struct net_device *orig_dev); 1076 void ipv6_list_rcv(struct list_head *head, struct packet_type *pt, 1077 struct net_device *orig_dev); 1078 1079 int ip6_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb); 1080 1081 /* 1082 * upper-layer output functions 1083 */ 1084 int ip6_xmit(const struct sock *sk, struct sk_buff *skb, struct flowi6 *fl6, 1085 __u32 mark, struct ipv6_txoptions *opt, int tclass, u32 priority); 1086 1087 int ip6_find_1stfragopt(struct sk_buff *skb, u8 **nexthdr); 1088 1089 int ip6_append_data(struct sock *sk, 1090 int getfrag(void *from, char *to, int offset, int len, 1091 int odd, struct sk_buff *skb), 1092 void *from, size_t length, int transhdrlen, 1093 struct ipcm6_cookie *ipc6, struct flowi6 *fl6, 1094 struct rt6_info *rt, unsigned int flags); 1095 1096 int ip6_push_pending_frames(struct sock *sk); 1097 1098 void ip6_flush_pending_frames(struct sock *sk); 1099 1100 int ip6_send_skb(struct sk_buff *skb); 1101 1102 struct sk_buff *__ip6_make_skb(struct sock *sk, struct sk_buff_head *queue, 1103 struct inet_cork_full *cork, 1104 struct inet6_cork *v6_cork); 1105 struct sk_buff *ip6_make_skb(struct sock *sk, 1106 int getfrag(void *from, char *to, int offset, 1107 int len, int odd, struct sk_buff *skb), 1108 void *from, size_t length, int transhdrlen, 1109 struct ipcm6_cookie *ipc6, 1110 struct rt6_info *rt, unsigned int flags, 1111 struct inet_cork_full *cork); 1112 1113 static inline struct sk_buff *ip6_finish_skb(struct sock *sk) 1114 { 1115 return __ip6_make_skb(sk, &sk->sk_write_queue, &inet_sk(sk)->cork, 1116 &inet6_sk(sk)->cork); 1117 } 1118 1119 int ip6_dst_lookup(struct net *net, struct sock *sk, struct dst_entry **dst, 1120 struct flowi6 *fl6); 1121 struct dst_entry *ip6_dst_lookup_flow(struct net *net, const struct sock *sk, struct flowi6 *fl6, 1122 const struct in6_addr *final_dst); 1123 struct dst_entry *ip6_sk_dst_lookup_flow(struct sock *sk, struct flowi6 *fl6, 1124 const struct in6_addr *final_dst, 1125 bool connected); 1126 struct dst_entry *ip6_blackhole_route(struct net *net, 1127 struct dst_entry *orig_dst); 1128 1129 /* 1130 * skb processing functions 1131 */ 1132 1133 int ip6_output(struct net *net, struct sock *sk, struct sk_buff *skb); 1134 int ip6_forward(struct sk_buff *skb); 1135 int ip6_input(struct sk_buff *skb); 1136 int ip6_mc_input(struct sk_buff *skb); 1137 void ip6_protocol_deliver_rcu(struct net *net, struct sk_buff *skb, int nexthdr, 1138 bool have_final); 1139 1140 int __ip6_local_out(struct net *net, struct sock *sk, struct sk_buff *skb); 1141 int ip6_local_out(struct net *net, struct sock *sk, struct sk_buff *skb); 1142 1143 /* 1144 * Extension header (options) processing 1145 */ 1146 1147 void ipv6_push_nfrag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt, 1148 u8 *proto, struct in6_addr **daddr_p, 1149 struct in6_addr *saddr); 1150 void ipv6_push_frag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt, 1151 u8 *proto); 1152 1153 int ipv6_skip_exthdr(const struct sk_buff *, int start, u8 *nexthdrp, 1154 __be16 *frag_offp); 1155 1156 bool ipv6_ext_hdr(u8 nexthdr); 1157 1158 enum { 1159 IP6_FH_F_FRAG = (1 << 0), 1160 IP6_FH_F_AUTH = (1 << 1), 1161 IP6_FH_F_SKIP_RH = (1 << 2), 1162 }; 1163 1164 /* find specified header and get offset to it */ 1165 int ipv6_find_hdr(const struct sk_buff *skb, unsigned int *offset, int target, 1166 unsigned short *fragoff, int *fragflg); 1167 1168 int ipv6_find_tlv(const struct sk_buff *skb, int offset, int type); 1169 1170 struct in6_addr *fl6_update_dst(struct flowi6 *fl6, 1171 const struct ipv6_txoptions *opt, 1172 struct in6_addr *orig); 1173 1174 /* 1175 * socket options (ipv6_sockglue.c) 1176 */ 1177 DECLARE_STATIC_KEY_FALSE(ip6_min_hopcount); 1178 1179 int do_ipv6_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 1180 unsigned int optlen); 1181 int ipv6_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 1182 unsigned int optlen); 1183 int do_ipv6_getsockopt(struct sock *sk, int level, int optname, 1184 sockptr_t optval, sockptr_t optlen); 1185 int ipv6_getsockopt(struct sock *sk, int level, int optname, 1186 char __user *optval, int __user *optlen); 1187 1188 int __ip6_datagram_connect(struct sock *sk, struct sockaddr *addr, 1189 int addr_len); 1190 int ip6_datagram_connect(struct sock *sk, struct sockaddr *addr, int addr_len); 1191 int ip6_datagram_connect_v6_only(struct sock *sk, struct sockaddr *addr, 1192 int addr_len); 1193 int ip6_datagram_dst_update(struct sock *sk, bool fix_sk_saddr); 1194 void ip6_datagram_release_cb(struct sock *sk); 1195 1196 int ipv6_recv_error(struct sock *sk, struct msghdr *msg, int len, 1197 int *addr_len); 1198 int ipv6_recv_rxpmtu(struct sock *sk, struct msghdr *msg, int len, 1199 int *addr_len); 1200 void ipv6_icmp_error(struct sock *sk, struct sk_buff *skb, int err, __be16 port, 1201 u32 info, u8 *payload); 1202 void ipv6_local_error(struct sock *sk, int err, struct flowi6 *fl6, u32 info); 1203 void ipv6_local_rxpmtu(struct sock *sk, struct flowi6 *fl6, u32 mtu); 1204 1205 void inet6_cleanup_sock(struct sock *sk); 1206 void inet6_sock_destruct(struct sock *sk); 1207 int inet6_release(struct socket *sock); 1208 int inet6_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len); 1209 int inet6_bind_sk(struct sock *sk, struct sockaddr *uaddr, int addr_len); 1210 int inet6_getname(struct socket *sock, struct sockaddr *uaddr, 1211 int peer); 1212 int inet6_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg); 1213 int inet6_compat_ioctl(struct socket *sock, unsigned int cmd, 1214 unsigned long arg); 1215 1216 int inet6_hash_connect(struct inet_timewait_death_row *death_row, 1217 struct sock *sk); 1218 int inet6_sendmsg(struct socket *sock, struct msghdr *msg, size_t size); 1219 int inet6_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 1220 int flags); 1221 1222 /* 1223 * reassembly.c 1224 */ 1225 extern const struct proto_ops inet6_stream_ops; 1226 extern const struct proto_ops inet6_dgram_ops; 1227 extern const struct proto_ops inet6_sockraw_ops; 1228 1229 struct group_source_req; 1230 struct group_filter; 1231 1232 int ip6_mc_source(int add, int omode, struct sock *sk, 1233 struct group_source_req *pgsr); 1234 int ip6_mc_msfilter(struct sock *sk, struct group_filter *gsf, 1235 struct sockaddr_storage *list); 1236 int ip6_mc_msfget(struct sock *sk, struct group_filter *gsf, 1237 sockptr_t optval, size_t ss_offset); 1238 1239 #ifdef CONFIG_PROC_FS 1240 int ac6_proc_init(struct net *net); 1241 void ac6_proc_exit(struct net *net); 1242 int raw6_proc_init(void); 1243 void raw6_proc_exit(void); 1244 int tcp6_proc_init(struct net *net); 1245 void tcp6_proc_exit(struct net *net); 1246 int udp6_proc_init(struct net *net); 1247 void udp6_proc_exit(struct net *net); 1248 int udplite6_proc_init(void); 1249 void udplite6_proc_exit(void); 1250 int ipv6_misc_proc_init(void); 1251 void ipv6_misc_proc_exit(void); 1252 int snmp6_register_dev(struct inet6_dev *idev); 1253 int snmp6_unregister_dev(struct inet6_dev *idev); 1254 1255 #else 1256 static inline int ac6_proc_init(struct net *net) { return 0; } 1257 static inline void ac6_proc_exit(struct net *net) { } 1258 static inline int snmp6_register_dev(struct inet6_dev *idev) { return 0; } 1259 static inline int snmp6_unregister_dev(struct inet6_dev *idev) { return 0; } 1260 #endif 1261 1262 #ifdef CONFIG_SYSCTL 1263 struct ctl_table *ipv6_icmp_sysctl_init(struct net *net); 1264 size_t ipv6_icmp_sysctl_table_size(void); 1265 struct ctl_table *ipv6_route_sysctl_init(struct net *net); 1266 size_t ipv6_route_sysctl_table_size(struct net *net); 1267 int ipv6_sysctl_register(void); 1268 void ipv6_sysctl_unregister(void); 1269 #endif 1270 1271 int ipv6_sock_mc_join(struct sock *sk, int ifindex, 1272 const struct in6_addr *addr); 1273 int ipv6_sock_mc_join_ssm(struct sock *sk, int ifindex, 1274 const struct in6_addr *addr, unsigned int mode); 1275 int ipv6_sock_mc_drop(struct sock *sk, int ifindex, 1276 const struct in6_addr *addr); 1277 1278 static inline int ip6_sock_set_v6only(struct sock *sk) 1279 { 1280 if (inet_sk(sk)->inet_num) 1281 return -EINVAL; 1282 lock_sock(sk); 1283 sk->sk_ipv6only = true; 1284 release_sock(sk); 1285 return 0; 1286 } 1287 1288 static inline void ip6_sock_set_recverr(struct sock *sk) 1289 { 1290 inet6_set_bit(RECVERR6, sk); 1291 } 1292 1293 #define IPV6_PREFER_SRC_MASK (IPV6_PREFER_SRC_TMP | IPV6_PREFER_SRC_PUBLIC | \ 1294 IPV6_PREFER_SRC_COA) 1295 1296 static inline int ip6_sock_set_addr_preferences(struct sock *sk, int val) 1297 { 1298 unsigned int prefmask = ~IPV6_PREFER_SRC_MASK; 1299 unsigned int pref = 0; 1300 1301 /* check PUBLIC/TMP/PUBTMP_DEFAULT conflicts */ 1302 switch (val & (IPV6_PREFER_SRC_PUBLIC | 1303 IPV6_PREFER_SRC_TMP | 1304 IPV6_PREFER_SRC_PUBTMP_DEFAULT)) { 1305 case IPV6_PREFER_SRC_PUBLIC: 1306 pref |= IPV6_PREFER_SRC_PUBLIC; 1307 prefmask &= ~(IPV6_PREFER_SRC_PUBLIC | 1308 IPV6_PREFER_SRC_TMP); 1309 break; 1310 case IPV6_PREFER_SRC_TMP: 1311 pref |= IPV6_PREFER_SRC_TMP; 1312 prefmask &= ~(IPV6_PREFER_SRC_PUBLIC | 1313 IPV6_PREFER_SRC_TMP); 1314 break; 1315 case IPV6_PREFER_SRC_PUBTMP_DEFAULT: 1316 prefmask &= ~(IPV6_PREFER_SRC_PUBLIC | 1317 IPV6_PREFER_SRC_TMP); 1318 break; 1319 case 0: 1320 break; 1321 default: 1322 return -EINVAL; 1323 } 1324 1325 /* check HOME/COA conflicts */ 1326 switch (val & (IPV6_PREFER_SRC_HOME | IPV6_PREFER_SRC_COA)) { 1327 case IPV6_PREFER_SRC_HOME: 1328 prefmask &= ~IPV6_PREFER_SRC_COA; 1329 break; 1330 case IPV6_PREFER_SRC_COA: 1331 pref |= IPV6_PREFER_SRC_COA; 1332 break; 1333 case 0: 1334 break; 1335 default: 1336 return -EINVAL; 1337 } 1338 1339 /* check CGA/NONCGA conflicts */ 1340 switch (val & (IPV6_PREFER_SRC_CGA|IPV6_PREFER_SRC_NONCGA)) { 1341 case IPV6_PREFER_SRC_CGA: 1342 case IPV6_PREFER_SRC_NONCGA: 1343 case 0: 1344 break; 1345 default: 1346 return -EINVAL; 1347 } 1348 1349 WRITE_ONCE(inet6_sk(sk)->srcprefs, 1350 (READ_ONCE(inet6_sk(sk)->srcprefs) & prefmask) | pref); 1351 return 0; 1352 } 1353 1354 static inline void ip6_sock_set_recvpktinfo(struct sock *sk) 1355 { 1356 lock_sock(sk); 1357 inet6_sk(sk)->rxopt.bits.rxinfo = true; 1358 release_sock(sk); 1359 } 1360 1361 #define IPV6_ADDR_WORDS 4 1362 1363 static inline void ipv6_addr_cpu_to_be32(__be32 *dst, const u32 *src) 1364 { 1365 cpu_to_be32_array(dst, src, IPV6_ADDR_WORDS); 1366 } 1367 1368 static inline void ipv6_addr_be32_to_cpu(u32 *dst, const __be32 *src) 1369 { 1370 be32_to_cpu_array(dst, src, IPV6_ADDR_WORDS); 1371 } 1372 1373 #endif /* _NET_IPV6_H */ 1374