1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 #ifndef __NET_CFG80211_H 3 #define __NET_CFG80211_H 4 /* 5 * 802.11 device and configuration interface 6 * 7 * Copyright 2006-2010 Johannes Berg <johannes@sipsolutions.net> 8 * Copyright 2013-2014 Intel Mobile Communications GmbH 9 * Copyright 2015-2017 Intel Deutschland GmbH 10 * Copyright (C) 2018-2024 Intel Corporation 11 */ 12 13 #include <linux/ethtool.h> 14 #include <uapi/linux/rfkill.h> 15 #include <linux/netdevice.h> 16 #include <linux/debugfs.h> 17 #include <linux/list.h> 18 #include <linux/bug.h> 19 #include <linux/netlink.h> 20 #include <linux/skbuff.h> 21 #include <linux/nl80211.h> 22 #include <linux/if_ether.h> 23 #include <linux/ieee80211.h> 24 #include <linux/net.h> 25 #include <linux/rfkill.h> 26 #include <net/regulatory.h> 27 28 /** 29 * DOC: Introduction 30 * 31 * cfg80211 is the configuration API for 802.11 devices in Linux. It bridges 32 * userspace and drivers, and offers some utility functionality associated 33 * with 802.11. cfg80211 must, directly or indirectly via mac80211, be used 34 * by all modern wireless drivers in Linux, so that they offer a consistent 35 * API through nl80211. For backward compatibility, cfg80211 also offers 36 * wireless extensions to userspace, but hides them from drivers completely. 37 * 38 * Additionally, cfg80211 contains code to help enforce regulatory spectrum 39 * use restrictions. 40 */ 41 42 43 /** 44 * DOC: Device registration 45 * 46 * In order for a driver to use cfg80211, it must register the hardware device 47 * with cfg80211. This happens through a number of hardware capability structs 48 * described below. 49 * 50 * The fundamental structure for each device is the 'wiphy', of which each 51 * instance describes a physical wireless device connected to the system. Each 52 * such wiphy can have zero, one, or many virtual interfaces associated with 53 * it, which need to be identified as such by pointing the network interface's 54 * @ieee80211_ptr pointer to a &struct wireless_dev which further describes 55 * the wireless part of the interface. Normally this struct is embedded in the 56 * network interface's private data area. Drivers can optionally allow creating 57 * or destroying virtual interfaces on the fly, but without at least one or the 58 * ability to create some the wireless device isn't useful. 59 * 60 * Each wiphy structure contains device capability information, and also has 61 * a pointer to the various operations the driver offers. The definitions and 62 * structures here describe these capabilities in detail. 63 */ 64 65 struct wiphy; 66 67 /* 68 * wireless hardware capability structures 69 */ 70 71 /** 72 * enum ieee80211_channel_flags - channel flags 73 * 74 * Channel flags set by the regulatory control code. 75 * 76 * @IEEE80211_CHAN_DISABLED: This channel is disabled. 77 * @IEEE80211_CHAN_NO_IR: do not initiate radiation, this includes 78 * sending probe requests or beaconing. 79 * @IEEE80211_CHAN_PSD: Power spectral density (in dBm) is set for this 80 * channel. 81 * @IEEE80211_CHAN_RADAR: Radar detection is required on this channel. 82 * @IEEE80211_CHAN_NO_HT40PLUS: extension channel above this channel 83 * is not permitted. 84 * @IEEE80211_CHAN_NO_HT40MINUS: extension channel below this channel 85 * is not permitted. 86 * @IEEE80211_CHAN_NO_OFDM: OFDM is not allowed on this channel. 87 * @IEEE80211_CHAN_NO_80MHZ: If the driver supports 80 MHz on the band, 88 * this flag indicates that an 80 MHz channel cannot use this 89 * channel as the control or any of the secondary channels. 90 * This may be due to the driver or due to regulatory bandwidth 91 * restrictions. 92 * @IEEE80211_CHAN_NO_160MHZ: If the driver supports 160 MHz on the band, 93 * this flag indicates that an 160 MHz channel cannot use this 94 * channel as the control or any of the secondary channels. 95 * This may be due to the driver or due to regulatory bandwidth 96 * restrictions. 97 * @IEEE80211_CHAN_INDOOR_ONLY: see %NL80211_FREQUENCY_ATTR_INDOOR_ONLY 98 * @IEEE80211_CHAN_IR_CONCURRENT: see %NL80211_FREQUENCY_ATTR_IR_CONCURRENT 99 * @IEEE80211_CHAN_NO_20MHZ: 20 MHz bandwidth is not permitted 100 * on this channel. 101 * @IEEE80211_CHAN_NO_10MHZ: 10 MHz bandwidth is not permitted 102 * on this channel. 103 * @IEEE80211_CHAN_NO_HE: HE operation is not permitted on this channel. 104 * @IEEE80211_CHAN_1MHZ: 1 MHz bandwidth is permitted 105 * on this channel. 106 * @IEEE80211_CHAN_2MHZ: 2 MHz bandwidth is permitted 107 * on this channel. 108 * @IEEE80211_CHAN_4MHZ: 4 MHz bandwidth is permitted 109 * on this channel. 110 * @IEEE80211_CHAN_8MHZ: 8 MHz bandwidth is permitted 111 * on this channel. 112 * @IEEE80211_CHAN_16MHZ: 16 MHz bandwidth is permitted 113 * on this channel. 114 * @IEEE80211_CHAN_NO_320MHZ: If the driver supports 320 MHz on the band, 115 * this flag indicates that a 320 MHz channel cannot use this 116 * channel as the control or any of the secondary channels. 117 * This may be due to the driver or due to regulatory bandwidth 118 * restrictions. 119 * @IEEE80211_CHAN_NO_EHT: EHT operation is not permitted on this channel. 120 * @IEEE80211_CHAN_DFS_CONCURRENT: See %NL80211_RRF_DFS_CONCURRENT 121 * @IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT: Client connection with VLP AP 122 * not permitted using this channel 123 * @IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT: Client connection with AFC AP 124 * not permitted using this channel 125 * @IEEE80211_CHAN_CAN_MONITOR: This channel can be used for monitor 126 * mode even in the presence of other (regulatory) restrictions, 127 * even if it is otherwise disabled. 128 * @IEEE80211_CHAN_ALLOW_6GHZ_VLP_AP: Allow using this channel for AP operation 129 * with very low power (VLP), even if otherwise set to NO_IR. 130 */ 131 enum ieee80211_channel_flags { 132 IEEE80211_CHAN_DISABLED = BIT(0), 133 IEEE80211_CHAN_NO_IR = BIT(1), 134 IEEE80211_CHAN_PSD = BIT(2), 135 IEEE80211_CHAN_RADAR = BIT(3), 136 IEEE80211_CHAN_NO_HT40PLUS = BIT(4), 137 IEEE80211_CHAN_NO_HT40MINUS = BIT(5), 138 IEEE80211_CHAN_NO_OFDM = BIT(6), 139 IEEE80211_CHAN_NO_80MHZ = BIT(7), 140 IEEE80211_CHAN_NO_160MHZ = BIT(8), 141 IEEE80211_CHAN_INDOOR_ONLY = BIT(9), 142 IEEE80211_CHAN_IR_CONCURRENT = BIT(10), 143 IEEE80211_CHAN_NO_20MHZ = BIT(11), 144 IEEE80211_CHAN_NO_10MHZ = BIT(12), 145 IEEE80211_CHAN_NO_HE = BIT(13), 146 IEEE80211_CHAN_1MHZ = BIT(14), 147 IEEE80211_CHAN_2MHZ = BIT(15), 148 IEEE80211_CHAN_4MHZ = BIT(16), 149 IEEE80211_CHAN_8MHZ = BIT(17), 150 IEEE80211_CHAN_16MHZ = BIT(18), 151 IEEE80211_CHAN_NO_320MHZ = BIT(19), 152 IEEE80211_CHAN_NO_EHT = BIT(20), 153 IEEE80211_CHAN_DFS_CONCURRENT = BIT(21), 154 IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT = BIT(22), 155 IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT = BIT(23), 156 IEEE80211_CHAN_CAN_MONITOR = BIT(24), 157 IEEE80211_CHAN_ALLOW_6GHZ_VLP_AP = BIT(25), 158 }; 159 160 #define IEEE80211_CHAN_NO_HT40 \ 161 (IEEE80211_CHAN_NO_HT40PLUS | IEEE80211_CHAN_NO_HT40MINUS) 162 163 #define IEEE80211_DFS_MIN_CAC_TIME_MS 60000 164 #define IEEE80211_DFS_MIN_NOP_TIME_MS (30 * 60 * 1000) 165 166 /** 167 * struct ieee80211_channel - channel definition 168 * 169 * This structure describes a single channel for use 170 * with cfg80211. 171 * 172 * @center_freq: center frequency in MHz 173 * @freq_offset: offset from @center_freq, in KHz 174 * @hw_value: hardware-specific value for the channel 175 * @flags: channel flags from &enum ieee80211_channel_flags. 176 * @orig_flags: channel flags at registration time, used by regulatory 177 * code to support devices with additional restrictions 178 * @band: band this channel belongs to. 179 * @max_antenna_gain: maximum antenna gain in dBi 180 * @max_power: maximum transmission power (in dBm) 181 * @max_reg_power: maximum regulatory transmission power (in dBm) 182 * @beacon_found: helper to regulatory code to indicate when a beacon 183 * has been found on this channel. Use regulatory_hint_found_beacon() 184 * to enable this, this is useful only on 5 GHz band. 185 * @orig_mag: internal use 186 * @orig_mpwr: internal use 187 * @dfs_state: current state of this channel. Only relevant if radar is required 188 * on this channel. 189 * @dfs_state_entered: timestamp (jiffies) when the dfs state was entered. 190 * @dfs_cac_ms: DFS CAC time in milliseconds, this is valid for DFS channels. 191 * @psd: power spectral density (in dBm) 192 */ 193 struct ieee80211_channel { 194 enum nl80211_band band; 195 u32 center_freq; 196 u16 freq_offset; 197 u16 hw_value; 198 u32 flags; 199 int max_antenna_gain; 200 int max_power; 201 int max_reg_power; 202 bool beacon_found; 203 u32 orig_flags; 204 int orig_mag, orig_mpwr; 205 enum nl80211_dfs_state dfs_state; 206 unsigned long dfs_state_entered; 207 unsigned int dfs_cac_ms; 208 s8 psd; 209 }; 210 211 /** 212 * enum ieee80211_rate_flags - rate flags 213 * 214 * Hardware/specification flags for rates. These are structured 215 * in a way that allows using the same bitrate structure for 216 * different bands/PHY modes. 217 * 218 * @IEEE80211_RATE_SHORT_PREAMBLE: Hardware can send with short 219 * preamble on this bitrate; only relevant in 2.4GHz band and 220 * with CCK rates. 221 * @IEEE80211_RATE_MANDATORY_A: This bitrate is a mandatory rate 222 * when used with 802.11a (on the 5 GHz band); filled by the 223 * core code when registering the wiphy. 224 * @IEEE80211_RATE_MANDATORY_B: This bitrate is a mandatory rate 225 * when used with 802.11b (on the 2.4 GHz band); filled by the 226 * core code when registering the wiphy. 227 * @IEEE80211_RATE_MANDATORY_G: This bitrate is a mandatory rate 228 * when used with 802.11g (on the 2.4 GHz band); filled by the 229 * core code when registering the wiphy. 230 * @IEEE80211_RATE_ERP_G: This is an ERP rate in 802.11g mode. 231 * @IEEE80211_RATE_SUPPORTS_5MHZ: Rate can be used in 5 MHz mode 232 * @IEEE80211_RATE_SUPPORTS_10MHZ: Rate can be used in 10 MHz mode 233 */ 234 enum ieee80211_rate_flags { 235 IEEE80211_RATE_SHORT_PREAMBLE = BIT(0), 236 IEEE80211_RATE_MANDATORY_A = BIT(1), 237 IEEE80211_RATE_MANDATORY_B = BIT(2), 238 IEEE80211_RATE_MANDATORY_G = BIT(3), 239 IEEE80211_RATE_ERP_G = BIT(4), 240 IEEE80211_RATE_SUPPORTS_5MHZ = BIT(5), 241 IEEE80211_RATE_SUPPORTS_10MHZ = BIT(6), 242 }; 243 244 /** 245 * enum ieee80211_bss_type - BSS type filter 246 * 247 * @IEEE80211_BSS_TYPE_ESS: Infrastructure BSS 248 * @IEEE80211_BSS_TYPE_PBSS: Personal BSS 249 * @IEEE80211_BSS_TYPE_IBSS: Independent BSS 250 * @IEEE80211_BSS_TYPE_MBSS: Mesh BSS 251 * @IEEE80211_BSS_TYPE_ANY: Wildcard value for matching any BSS type 252 */ 253 enum ieee80211_bss_type { 254 IEEE80211_BSS_TYPE_ESS, 255 IEEE80211_BSS_TYPE_PBSS, 256 IEEE80211_BSS_TYPE_IBSS, 257 IEEE80211_BSS_TYPE_MBSS, 258 IEEE80211_BSS_TYPE_ANY 259 }; 260 261 /** 262 * enum ieee80211_privacy - BSS privacy filter 263 * 264 * @IEEE80211_PRIVACY_ON: privacy bit set 265 * @IEEE80211_PRIVACY_OFF: privacy bit clear 266 * @IEEE80211_PRIVACY_ANY: Wildcard value for matching any privacy setting 267 */ 268 enum ieee80211_privacy { 269 IEEE80211_PRIVACY_ON, 270 IEEE80211_PRIVACY_OFF, 271 IEEE80211_PRIVACY_ANY 272 }; 273 274 #define IEEE80211_PRIVACY(x) \ 275 ((x) ? IEEE80211_PRIVACY_ON : IEEE80211_PRIVACY_OFF) 276 277 /** 278 * struct ieee80211_rate - bitrate definition 279 * 280 * This structure describes a bitrate that an 802.11 PHY can 281 * operate with. The two values @hw_value and @hw_value_short 282 * are only for driver use when pointers to this structure are 283 * passed around. 284 * 285 * @flags: rate-specific flags from &enum ieee80211_rate_flags 286 * @bitrate: bitrate in units of 100 Kbps 287 * @hw_value: driver/hardware value for this rate 288 * @hw_value_short: driver/hardware value for this rate when 289 * short preamble is used 290 */ 291 struct ieee80211_rate { 292 u32 flags; 293 u16 bitrate; 294 u16 hw_value, hw_value_short; 295 }; 296 297 /** 298 * struct ieee80211_he_obss_pd - AP settings for spatial reuse 299 * 300 * @enable: is the feature enabled. 301 * @sr_ctrl: The SR Control field of SRP element. 302 * @non_srg_max_offset: non-SRG maximum tx power offset 303 * @min_offset: minimal tx power offset an associated station shall use 304 * @max_offset: maximum tx power offset an associated station shall use 305 * @bss_color_bitmap: bitmap that indicates the BSS color values used by 306 * members of the SRG 307 * @partial_bssid_bitmap: bitmap that indicates the partial BSSID values 308 * used by members of the SRG 309 */ 310 struct ieee80211_he_obss_pd { 311 bool enable; 312 u8 sr_ctrl; 313 u8 non_srg_max_offset; 314 u8 min_offset; 315 u8 max_offset; 316 u8 bss_color_bitmap[8]; 317 u8 partial_bssid_bitmap[8]; 318 }; 319 320 /** 321 * struct cfg80211_he_bss_color - AP settings for BSS coloring 322 * 323 * @color: the current color. 324 * @enabled: HE BSS color is used 325 * @partial: define the AID equation. 326 */ 327 struct cfg80211_he_bss_color { 328 u8 color; 329 bool enabled; 330 bool partial; 331 }; 332 333 /** 334 * struct ieee80211_sta_ht_cap - STA's HT capabilities 335 * 336 * This structure describes most essential parameters needed 337 * to describe 802.11n HT capabilities for an STA. 338 * 339 * @ht_supported: is HT supported by the STA 340 * @cap: HT capabilities map as described in 802.11n spec 341 * @ampdu_factor: Maximum A-MPDU length factor 342 * @ampdu_density: Minimum A-MPDU spacing 343 * @mcs: Supported MCS rates 344 */ 345 struct ieee80211_sta_ht_cap { 346 u16 cap; /* use IEEE80211_HT_CAP_ */ 347 bool ht_supported; 348 u8 ampdu_factor; 349 u8 ampdu_density; 350 struct ieee80211_mcs_info mcs; 351 }; 352 353 /** 354 * struct ieee80211_sta_vht_cap - STA's VHT capabilities 355 * 356 * This structure describes most essential parameters needed 357 * to describe 802.11ac VHT capabilities for an STA. 358 * 359 * @vht_supported: is VHT supported by the STA 360 * @cap: VHT capabilities map as described in 802.11ac spec 361 * @vht_mcs: Supported VHT MCS rates 362 */ 363 struct ieee80211_sta_vht_cap { 364 bool vht_supported; 365 u32 cap; /* use IEEE80211_VHT_CAP_ */ 366 struct ieee80211_vht_mcs_info vht_mcs; 367 }; 368 369 #define IEEE80211_HE_PPE_THRES_MAX_LEN 25 370 371 /** 372 * struct ieee80211_sta_he_cap - STA's HE capabilities 373 * 374 * This structure describes most essential parameters needed 375 * to describe 802.11ax HE capabilities for a STA. 376 * 377 * @has_he: true iff HE data is valid. 378 * @he_cap_elem: Fixed portion of the HE capabilities element. 379 * @he_mcs_nss_supp: The supported NSS/MCS combinations. 380 * @ppe_thres: Holds the PPE Thresholds data. 381 */ 382 struct ieee80211_sta_he_cap { 383 bool has_he; 384 struct ieee80211_he_cap_elem he_cap_elem; 385 struct ieee80211_he_mcs_nss_supp he_mcs_nss_supp; 386 u8 ppe_thres[IEEE80211_HE_PPE_THRES_MAX_LEN]; 387 }; 388 389 /** 390 * struct ieee80211_eht_mcs_nss_supp - EHT max supported NSS per MCS 391 * 392 * See P802.11be_D1.3 Table 9-401k - "Subfields of the Supported EHT-MCS 393 * and NSS Set field" 394 * 395 * @only_20mhz: MCS/NSS support for 20 MHz-only STA. 396 * @bw: MCS/NSS support for 80, 160 and 320 MHz 397 * @bw._80: MCS/NSS support for BW <= 80 MHz 398 * @bw._160: MCS/NSS support for BW = 160 MHz 399 * @bw._320: MCS/NSS support for BW = 320 MHz 400 */ 401 struct ieee80211_eht_mcs_nss_supp { 402 union { 403 struct ieee80211_eht_mcs_nss_supp_20mhz_only only_20mhz; 404 struct { 405 struct ieee80211_eht_mcs_nss_supp_bw _80; 406 struct ieee80211_eht_mcs_nss_supp_bw _160; 407 struct ieee80211_eht_mcs_nss_supp_bw _320; 408 } __packed bw; 409 } __packed; 410 } __packed; 411 412 #define IEEE80211_EHT_PPE_THRES_MAX_LEN 32 413 414 /** 415 * struct ieee80211_sta_eht_cap - STA's EHT capabilities 416 * 417 * This structure describes most essential parameters needed 418 * to describe 802.11be EHT capabilities for a STA. 419 * 420 * @has_eht: true iff EHT data is valid. 421 * @eht_cap_elem: Fixed portion of the eht capabilities element. 422 * @eht_mcs_nss_supp: The supported NSS/MCS combinations. 423 * @eht_ppe_thres: Holds the PPE Thresholds data. 424 */ 425 struct ieee80211_sta_eht_cap { 426 bool has_eht; 427 struct ieee80211_eht_cap_elem_fixed eht_cap_elem; 428 struct ieee80211_eht_mcs_nss_supp eht_mcs_nss_supp; 429 u8 eht_ppe_thres[IEEE80211_EHT_PPE_THRES_MAX_LEN]; 430 }; 431 432 /* sparse defines __CHECKER__; see Documentation/dev-tools/sparse.rst */ 433 #ifdef __CHECKER__ 434 /* 435 * This is used to mark the sband->iftype_data pointer which is supposed 436 * to be an array with special access semantics (per iftype), but a lot 437 * of code got it wrong in the past, so with this marking sparse will be 438 * noisy when the pointer is used directly. 439 */ 440 # define __iftd __attribute__((noderef, address_space(__iftype_data))) 441 #else 442 # define __iftd 443 #endif /* __CHECKER__ */ 444 445 /** 446 * struct ieee80211_sband_iftype_data - sband data per interface type 447 * 448 * This structure encapsulates sband data that is relevant for the 449 * interface types defined in @types_mask. Each type in the 450 * @types_mask must be unique across all instances of iftype_data. 451 * 452 * @types_mask: interface types mask 453 * @he_cap: holds the HE capabilities 454 * @he_6ghz_capa: HE 6 GHz capabilities, must be filled in for a 455 * 6 GHz band channel (and 0 may be valid value). 456 * @eht_cap: STA's EHT capabilities 457 * @vendor_elems: vendor element(s) to advertise 458 * @vendor_elems.data: vendor element(s) data 459 * @vendor_elems.len: vendor element(s) length 460 */ 461 struct ieee80211_sband_iftype_data { 462 u16 types_mask; 463 struct ieee80211_sta_he_cap he_cap; 464 struct ieee80211_he_6ghz_capa he_6ghz_capa; 465 struct ieee80211_sta_eht_cap eht_cap; 466 struct { 467 const u8 *data; 468 unsigned int len; 469 } vendor_elems; 470 }; 471 472 /** 473 * enum ieee80211_edmg_bw_config - allowed channel bandwidth configurations 474 * 475 * @IEEE80211_EDMG_BW_CONFIG_4: 2.16GHz 476 * @IEEE80211_EDMG_BW_CONFIG_5: 2.16GHz and 4.32GHz 477 * @IEEE80211_EDMG_BW_CONFIG_6: 2.16GHz, 4.32GHz and 6.48GHz 478 * @IEEE80211_EDMG_BW_CONFIG_7: 2.16GHz, 4.32GHz, 6.48GHz and 8.64GHz 479 * @IEEE80211_EDMG_BW_CONFIG_8: 2.16GHz and 2.16GHz + 2.16GHz 480 * @IEEE80211_EDMG_BW_CONFIG_9: 2.16GHz, 4.32GHz and 2.16GHz + 2.16GHz 481 * @IEEE80211_EDMG_BW_CONFIG_10: 2.16GHz, 4.32GHz, 6.48GHz and 2.16GHz+2.16GHz 482 * @IEEE80211_EDMG_BW_CONFIG_11: 2.16GHz, 4.32GHz, 6.48GHz, 8.64GHz and 483 * 2.16GHz+2.16GHz 484 * @IEEE80211_EDMG_BW_CONFIG_12: 2.16GHz, 2.16GHz + 2.16GHz and 485 * 4.32GHz + 4.32GHz 486 * @IEEE80211_EDMG_BW_CONFIG_13: 2.16GHz, 4.32GHz, 2.16GHz + 2.16GHz and 487 * 4.32GHz + 4.32GHz 488 * @IEEE80211_EDMG_BW_CONFIG_14: 2.16GHz, 4.32GHz, 6.48GHz, 2.16GHz + 2.16GHz 489 * and 4.32GHz + 4.32GHz 490 * @IEEE80211_EDMG_BW_CONFIG_15: 2.16GHz, 4.32GHz, 6.48GHz, 8.64GHz, 491 * 2.16GHz + 2.16GHz and 4.32GHz + 4.32GHz 492 */ 493 enum ieee80211_edmg_bw_config { 494 IEEE80211_EDMG_BW_CONFIG_4 = 4, 495 IEEE80211_EDMG_BW_CONFIG_5 = 5, 496 IEEE80211_EDMG_BW_CONFIG_6 = 6, 497 IEEE80211_EDMG_BW_CONFIG_7 = 7, 498 IEEE80211_EDMG_BW_CONFIG_8 = 8, 499 IEEE80211_EDMG_BW_CONFIG_9 = 9, 500 IEEE80211_EDMG_BW_CONFIG_10 = 10, 501 IEEE80211_EDMG_BW_CONFIG_11 = 11, 502 IEEE80211_EDMG_BW_CONFIG_12 = 12, 503 IEEE80211_EDMG_BW_CONFIG_13 = 13, 504 IEEE80211_EDMG_BW_CONFIG_14 = 14, 505 IEEE80211_EDMG_BW_CONFIG_15 = 15, 506 }; 507 508 /** 509 * struct ieee80211_edmg - EDMG configuration 510 * 511 * This structure describes most essential parameters needed 512 * to describe 802.11ay EDMG configuration 513 * 514 * @channels: bitmap that indicates the 2.16 GHz channel(s) 515 * that are allowed to be used for transmissions. 516 * Bit 0 indicates channel 1, bit 1 indicates channel 2, etc. 517 * Set to 0 indicate EDMG not supported. 518 * @bw_config: Channel BW Configuration subfield encodes 519 * the allowed channel bandwidth configurations 520 */ 521 struct ieee80211_edmg { 522 u8 channels; 523 enum ieee80211_edmg_bw_config bw_config; 524 }; 525 526 /** 527 * struct ieee80211_sta_s1g_cap - STA's S1G capabilities 528 * 529 * This structure describes most essential parameters needed 530 * to describe 802.11ah S1G capabilities for a STA. 531 * 532 * @s1g: is STA an S1G STA 533 * @cap: S1G capabilities information 534 * @nss_mcs: Supported NSS MCS set 535 */ 536 struct ieee80211_sta_s1g_cap { 537 bool s1g; 538 u8 cap[10]; /* use S1G_CAPAB_ */ 539 u8 nss_mcs[5]; 540 }; 541 542 /** 543 * struct ieee80211_supported_band - frequency band definition 544 * 545 * This structure describes a frequency band a wiphy 546 * is able to operate in. 547 * 548 * @channels: Array of channels the hardware can operate with 549 * in this band. 550 * @band: the band this structure represents 551 * @n_channels: Number of channels in @channels 552 * @bitrates: Array of bitrates the hardware can operate with 553 * in this band. Must be sorted to give a valid "supported 554 * rates" IE, i.e. CCK rates first, then OFDM. 555 * @n_bitrates: Number of bitrates in @bitrates 556 * @ht_cap: HT capabilities in this band 557 * @vht_cap: VHT capabilities in this band 558 * @s1g_cap: S1G capabilities in this band 559 * @edmg_cap: EDMG capabilities in this band 560 * @s1g_cap: S1G capabilities in this band (S1B band only, of course) 561 * @n_iftype_data: number of iftype data entries 562 * @iftype_data: interface type data entries. Note that the bits in 563 * @types_mask inside this structure cannot overlap (i.e. only 564 * one occurrence of each type is allowed across all instances of 565 * iftype_data). 566 */ 567 struct ieee80211_supported_band { 568 struct ieee80211_channel *channels; 569 struct ieee80211_rate *bitrates; 570 enum nl80211_band band; 571 int n_channels; 572 int n_bitrates; 573 struct ieee80211_sta_ht_cap ht_cap; 574 struct ieee80211_sta_vht_cap vht_cap; 575 struct ieee80211_sta_s1g_cap s1g_cap; 576 struct ieee80211_edmg edmg_cap; 577 u16 n_iftype_data; 578 const struct ieee80211_sband_iftype_data __iftd *iftype_data; 579 }; 580 581 /** 582 * _ieee80211_set_sband_iftype_data - set sband iftype data array 583 * @sband: the sband to initialize 584 * @iftd: the iftype data array pointer 585 * @n_iftd: the length of the iftype data array 586 * 587 * Set the sband iftype data array; use this where the length cannot 588 * be derived from the ARRAY_SIZE() of the argument, but prefer 589 * ieee80211_set_sband_iftype_data() where it can be used. 590 */ 591 static inline void 592 _ieee80211_set_sband_iftype_data(struct ieee80211_supported_band *sband, 593 const struct ieee80211_sband_iftype_data *iftd, 594 u16 n_iftd) 595 { 596 sband->iftype_data = (const void __iftd __force *)iftd; 597 sband->n_iftype_data = n_iftd; 598 } 599 600 /** 601 * ieee80211_set_sband_iftype_data - set sband iftype data array 602 * @sband: the sband to initialize 603 * @iftd: the iftype data array 604 */ 605 #define ieee80211_set_sband_iftype_data(sband, iftd) \ 606 _ieee80211_set_sband_iftype_data(sband, iftd, ARRAY_SIZE(iftd)) 607 608 /** 609 * for_each_sband_iftype_data - iterate sband iftype data entries 610 * @sband: the sband whose iftype_data array to iterate 611 * @i: iterator counter 612 * @iftd: iftype data pointer to set 613 */ 614 #define for_each_sband_iftype_data(sband, i, iftd) \ 615 for (i = 0, iftd = (const void __force *)&(sband)->iftype_data[i]; \ 616 i < (sband)->n_iftype_data; \ 617 i++, iftd = (const void __force *)&(sband)->iftype_data[i]) 618 619 /** 620 * ieee80211_get_sband_iftype_data - return sband data for a given iftype 621 * @sband: the sband to search for the STA on 622 * @iftype: enum nl80211_iftype 623 * 624 * Return: pointer to struct ieee80211_sband_iftype_data, or NULL is none found 625 */ 626 static inline const struct ieee80211_sband_iftype_data * 627 ieee80211_get_sband_iftype_data(const struct ieee80211_supported_band *sband, 628 u8 iftype) 629 { 630 const struct ieee80211_sband_iftype_data *data; 631 int i; 632 633 if (WARN_ON(iftype >= NL80211_IFTYPE_MAX)) 634 return NULL; 635 636 if (iftype == NL80211_IFTYPE_AP_VLAN) 637 iftype = NL80211_IFTYPE_AP; 638 639 for_each_sband_iftype_data(sband, i, data) { 640 if (data->types_mask & BIT(iftype)) 641 return data; 642 } 643 644 return NULL; 645 } 646 647 /** 648 * ieee80211_get_he_iftype_cap - return HE capabilities for an sband's iftype 649 * @sband: the sband to search for the iftype on 650 * @iftype: enum nl80211_iftype 651 * 652 * Return: pointer to the struct ieee80211_sta_he_cap, or NULL is none found 653 */ 654 static inline const struct ieee80211_sta_he_cap * 655 ieee80211_get_he_iftype_cap(const struct ieee80211_supported_band *sband, 656 u8 iftype) 657 { 658 const struct ieee80211_sband_iftype_data *data = 659 ieee80211_get_sband_iftype_data(sband, iftype); 660 661 if (data && data->he_cap.has_he) 662 return &data->he_cap; 663 664 return NULL; 665 } 666 667 /** 668 * ieee80211_get_he_6ghz_capa - return HE 6 GHz capabilities 669 * @sband: the sband to search for the STA on 670 * @iftype: the iftype to search for 671 * 672 * Return: the 6GHz capabilities 673 */ 674 static inline __le16 675 ieee80211_get_he_6ghz_capa(const struct ieee80211_supported_band *sband, 676 enum nl80211_iftype iftype) 677 { 678 const struct ieee80211_sband_iftype_data *data = 679 ieee80211_get_sband_iftype_data(sband, iftype); 680 681 if (WARN_ON(!data || !data->he_cap.has_he)) 682 return 0; 683 684 return data->he_6ghz_capa.capa; 685 } 686 687 /** 688 * ieee80211_get_eht_iftype_cap - return ETH capabilities for an sband's iftype 689 * @sband: the sband to search for the iftype on 690 * @iftype: enum nl80211_iftype 691 * 692 * Return: pointer to the struct ieee80211_sta_eht_cap, or NULL is none found 693 */ 694 static inline const struct ieee80211_sta_eht_cap * 695 ieee80211_get_eht_iftype_cap(const struct ieee80211_supported_band *sband, 696 enum nl80211_iftype iftype) 697 { 698 const struct ieee80211_sband_iftype_data *data = 699 ieee80211_get_sband_iftype_data(sband, iftype); 700 701 if (data && data->eht_cap.has_eht) 702 return &data->eht_cap; 703 704 return NULL; 705 } 706 707 /** 708 * wiphy_read_of_freq_limits - read frequency limits from device tree 709 * 710 * @wiphy: the wireless device to get extra limits for 711 * 712 * Some devices may have extra limitations specified in DT. This may be useful 713 * for chipsets that normally support more bands but are limited due to board 714 * design (e.g. by antennas or external power amplifier). 715 * 716 * This function reads info from DT and uses it to *modify* channels (disable 717 * unavailable ones). It's usually a *bad* idea to use it in drivers with 718 * shared channel data as DT limitations are device specific. You should make 719 * sure to call it only if channels in wiphy are copied and can be modified 720 * without affecting other devices. 721 * 722 * As this function access device node it has to be called after set_wiphy_dev. 723 * It also modifies channels so they have to be set first. 724 * If using this helper, call it before wiphy_register(). 725 */ 726 #ifdef CONFIG_OF 727 void wiphy_read_of_freq_limits(struct wiphy *wiphy); 728 #else /* CONFIG_OF */ 729 static inline void wiphy_read_of_freq_limits(struct wiphy *wiphy) 730 { 731 } 732 #endif /* !CONFIG_OF */ 733 734 735 /* 736 * Wireless hardware/device configuration structures and methods 737 */ 738 739 /** 740 * DOC: Actions and configuration 741 * 742 * Each wireless device and each virtual interface offer a set of configuration 743 * operations and other actions that are invoked by userspace. Each of these 744 * actions is described in the operations structure, and the parameters these 745 * operations use are described separately. 746 * 747 * Additionally, some operations are asynchronous and expect to get status 748 * information via some functions that drivers need to call. 749 * 750 * Scanning and BSS list handling with its associated functionality is described 751 * in a separate chapter. 752 */ 753 754 #define VHT_MUMIMO_GROUPS_DATA_LEN (WLAN_MEMBERSHIP_LEN +\ 755 WLAN_USER_POSITION_LEN) 756 757 /** 758 * struct vif_params - describes virtual interface parameters 759 * @flags: monitor interface flags, unchanged if 0, otherwise 760 * %MONITOR_FLAG_CHANGED will be set 761 * @use_4addr: use 4-address frames 762 * @macaddr: address to use for this virtual interface. 763 * If this parameter is set to zero address the driver may 764 * determine the address as needed. 765 * This feature is only fully supported by drivers that enable the 766 * %NL80211_FEATURE_MAC_ON_CREATE flag. Others may support creating 767 ** only p2p devices with specified MAC. 768 * @vht_mumimo_groups: MU-MIMO groupID, used for monitoring MU-MIMO packets 769 * belonging to that MU-MIMO groupID; %NULL if not changed 770 * @vht_mumimo_follow_addr: MU-MIMO follow address, used for monitoring 771 * MU-MIMO packets going to the specified station; %NULL if not changed 772 */ 773 struct vif_params { 774 u32 flags; 775 int use_4addr; 776 u8 macaddr[ETH_ALEN]; 777 const u8 *vht_mumimo_groups; 778 const u8 *vht_mumimo_follow_addr; 779 }; 780 781 /** 782 * struct key_params - key information 783 * 784 * Information about a key 785 * 786 * @key: key material 787 * @key_len: length of key material 788 * @cipher: cipher suite selector 789 * @seq: sequence counter (IV/PN) for TKIP and CCMP keys, only used 790 * with the get_key() callback, must be in little endian, 791 * length given by @seq_len. 792 * @seq_len: length of @seq. 793 * @vlan_id: vlan_id for VLAN group key (if nonzero) 794 * @mode: key install mode (RX_TX, NO_TX or SET_TX) 795 */ 796 struct key_params { 797 const u8 *key; 798 const u8 *seq; 799 int key_len; 800 int seq_len; 801 u16 vlan_id; 802 u32 cipher; 803 enum nl80211_key_mode mode; 804 }; 805 806 /** 807 * struct cfg80211_chan_def - channel definition 808 * @chan: the (control) channel 809 * @width: channel width 810 * @center_freq1: center frequency of first segment 811 * @center_freq2: center frequency of second segment 812 * (only with 80+80 MHz) 813 * @edmg: define the EDMG channels configuration. 814 * If edmg is requested (i.e. the .channels member is non-zero), 815 * chan will define the primary channel and all other 816 * parameters are ignored. 817 * @freq1_offset: offset from @center_freq1, in KHz 818 * @punctured: mask of the punctured 20 MHz subchannels, with 819 * bits turned on being disabled (punctured); numbered 820 * from lower to higher frequency (like in the spec) 821 */ 822 struct cfg80211_chan_def { 823 struct ieee80211_channel *chan; 824 enum nl80211_chan_width width; 825 u32 center_freq1; 826 u32 center_freq2; 827 struct ieee80211_edmg edmg; 828 u16 freq1_offset; 829 u16 punctured; 830 }; 831 832 /* 833 * cfg80211_bitrate_mask - masks for bitrate control 834 */ 835 struct cfg80211_bitrate_mask { 836 struct { 837 u32 legacy; 838 u8 ht_mcs[IEEE80211_HT_MCS_MASK_LEN]; 839 u16 vht_mcs[NL80211_VHT_NSS_MAX]; 840 u16 he_mcs[NL80211_HE_NSS_MAX]; 841 enum nl80211_txrate_gi gi; 842 enum nl80211_he_gi he_gi; 843 enum nl80211_he_ltf he_ltf; 844 } control[NUM_NL80211_BANDS]; 845 }; 846 847 848 /** 849 * struct cfg80211_tid_cfg - TID specific configuration 850 * @config_override: Flag to notify driver to reset TID configuration 851 * of the peer. 852 * @tids: bitmap of TIDs to modify 853 * @mask: bitmap of attributes indicating which parameter changed, 854 * similar to &nl80211_tid_config_supp. 855 * @noack: noack configuration value for the TID 856 * @retry_long: retry count value 857 * @retry_short: retry count value 858 * @ampdu: Enable/Disable MPDU aggregation 859 * @rtscts: Enable/Disable RTS/CTS 860 * @amsdu: Enable/Disable MSDU aggregation 861 * @txrate_type: Tx bitrate mask type 862 * @txrate_mask: Tx bitrate to be applied for the TID 863 */ 864 struct cfg80211_tid_cfg { 865 bool config_override; 866 u8 tids; 867 u64 mask; 868 enum nl80211_tid_config noack; 869 u8 retry_long, retry_short; 870 enum nl80211_tid_config ampdu; 871 enum nl80211_tid_config rtscts; 872 enum nl80211_tid_config amsdu; 873 enum nl80211_tx_rate_setting txrate_type; 874 struct cfg80211_bitrate_mask txrate_mask; 875 }; 876 877 /** 878 * struct cfg80211_tid_config - TID configuration 879 * @peer: Station's MAC address 880 * @n_tid_conf: Number of TID specific configurations to be applied 881 * @tid_conf: Configuration change info 882 */ 883 struct cfg80211_tid_config { 884 const u8 *peer; 885 u32 n_tid_conf; 886 struct cfg80211_tid_cfg tid_conf[] __counted_by(n_tid_conf); 887 }; 888 889 /** 890 * struct cfg80211_fils_aad - FILS AAD data 891 * @macaddr: STA MAC address 892 * @kek: FILS KEK 893 * @kek_len: FILS KEK length 894 * @snonce: STA Nonce 895 * @anonce: AP Nonce 896 */ 897 struct cfg80211_fils_aad { 898 const u8 *macaddr; 899 const u8 *kek; 900 u8 kek_len; 901 const u8 *snonce; 902 const u8 *anonce; 903 }; 904 905 /** 906 * struct cfg80211_set_hw_timestamp - enable/disable HW timestamping 907 * @macaddr: peer MAC address. NULL to enable/disable HW timestamping for all 908 * addresses. 909 * @enable: if set, enable HW timestamping for the specified MAC address. 910 * Otherwise disable HW timestamping for the specified MAC address. 911 */ 912 struct cfg80211_set_hw_timestamp { 913 const u8 *macaddr; 914 bool enable; 915 }; 916 917 /** 918 * cfg80211_get_chandef_type - return old channel type from chandef 919 * @chandef: the channel definition 920 * 921 * Return: The old channel type (NOHT, HT20, HT40+/-) from a given 922 * chandef, which must have a bandwidth allowing this conversion. 923 */ 924 static inline enum nl80211_channel_type 925 cfg80211_get_chandef_type(const struct cfg80211_chan_def *chandef) 926 { 927 switch (chandef->width) { 928 case NL80211_CHAN_WIDTH_20_NOHT: 929 return NL80211_CHAN_NO_HT; 930 case NL80211_CHAN_WIDTH_20: 931 return NL80211_CHAN_HT20; 932 case NL80211_CHAN_WIDTH_40: 933 if (chandef->center_freq1 > chandef->chan->center_freq) 934 return NL80211_CHAN_HT40PLUS; 935 return NL80211_CHAN_HT40MINUS; 936 default: 937 WARN_ON(1); 938 return NL80211_CHAN_NO_HT; 939 } 940 } 941 942 /** 943 * cfg80211_chandef_create - create channel definition using channel type 944 * @chandef: the channel definition struct to fill 945 * @channel: the control channel 946 * @chantype: the channel type 947 * 948 * Given a channel type, create a channel definition. 949 */ 950 void cfg80211_chandef_create(struct cfg80211_chan_def *chandef, 951 struct ieee80211_channel *channel, 952 enum nl80211_channel_type chantype); 953 954 /** 955 * cfg80211_chandef_identical - check if two channel definitions are identical 956 * @chandef1: first channel definition 957 * @chandef2: second channel definition 958 * 959 * Return: %true if the channels defined by the channel definitions are 960 * identical, %false otherwise. 961 */ 962 static inline bool 963 cfg80211_chandef_identical(const struct cfg80211_chan_def *chandef1, 964 const struct cfg80211_chan_def *chandef2) 965 { 966 return (chandef1->chan == chandef2->chan && 967 chandef1->width == chandef2->width && 968 chandef1->center_freq1 == chandef2->center_freq1 && 969 chandef1->freq1_offset == chandef2->freq1_offset && 970 chandef1->center_freq2 == chandef2->center_freq2 && 971 chandef1->punctured == chandef2->punctured); 972 } 973 974 /** 975 * cfg80211_chandef_is_edmg - check if chandef represents an EDMG channel 976 * 977 * @chandef: the channel definition 978 * 979 * Return: %true if EDMG defined, %false otherwise. 980 */ 981 static inline bool 982 cfg80211_chandef_is_edmg(const struct cfg80211_chan_def *chandef) 983 { 984 return chandef->edmg.channels || chandef->edmg.bw_config; 985 } 986 987 /** 988 * cfg80211_chandef_compatible - check if two channel definitions are compatible 989 * @chandef1: first channel definition 990 * @chandef2: second channel definition 991 * 992 * Return: %NULL if the given channel definitions are incompatible, 993 * chandef1 or chandef2 otherwise. 994 */ 995 const struct cfg80211_chan_def * 996 cfg80211_chandef_compatible(const struct cfg80211_chan_def *chandef1, 997 const struct cfg80211_chan_def *chandef2); 998 999 /** 1000 * nl80211_chan_width_to_mhz - get the channel width in MHz 1001 * @chan_width: the channel width from &enum nl80211_chan_width 1002 * 1003 * Return: channel width in MHz if the chan_width from &enum nl80211_chan_width 1004 * is valid. -1 otherwise. 1005 */ 1006 int nl80211_chan_width_to_mhz(enum nl80211_chan_width chan_width); 1007 1008 /** 1009 * cfg80211_chandef_valid - check if a channel definition is valid 1010 * @chandef: the channel definition to check 1011 * Return: %true if the channel definition is valid. %false otherwise. 1012 */ 1013 bool cfg80211_chandef_valid(const struct cfg80211_chan_def *chandef); 1014 1015 /** 1016 * cfg80211_chandef_usable - check if secondary channels can be used 1017 * @wiphy: the wiphy to validate against 1018 * @chandef: the channel definition to check 1019 * @prohibited_flags: the regulatory channel flags that must not be set 1020 * Return: %true if secondary channels are usable. %false otherwise. 1021 */ 1022 bool cfg80211_chandef_usable(struct wiphy *wiphy, 1023 const struct cfg80211_chan_def *chandef, 1024 u32 prohibited_flags); 1025 1026 /** 1027 * cfg80211_chandef_dfs_required - checks if radar detection is required 1028 * @wiphy: the wiphy to validate against 1029 * @chandef: the channel definition to check 1030 * @iftype: the interface type as specified in &enum nl80211_iftype 1031 * Returns: 1032 * 1 if radar detection is required, 0 if it is not, < 0 on error 1033 */ 1034 int cfg80211_chandef_dfs_required(struct wiphy *wiphy, 1035 const struct cfg80211_chan_def *chandef, 1036 enum nl80211_iftype iftype); 1037 1038 /** 1039 * cfg80211_chandef_dfs_usable - checks if chandef is DFS usable and we 1040 * can/need start CAC on such channel 1041 * @wiphy: the wiphy to validate against 1042 * @chandef: the channel definition to check 1043 * 1044 * Return: true if all channels available and at least 1045 * one channel requires CAC (NL80211_DFS_USABLE) 1046 */ 1047 bool cfg80211_chandef_dfs_usable(struct wiphy *wiphy, 1048 const struct cfg80211_chan_def *chandef); 1049 1050 /** 1051 * cfg80211_chandef_dfs_cac_time - get the DFS CAC time (in ms) for given 1052 * channel definition 1053 * @wiphy: the wiphy to validate against 1054 * @chandef: the channel definition to check 1055 * 1056 * Returns: DFS CAC time (in ms) which applies for this channel definition 1057 */ 1058 unsigned int 1059 cfg80211_chandef_dfs_cac_time(struct wiphy *wiphy, 1060 const struct cfg80211_chan_def *chandef); 1061 1062 /** 1063 * cfg80211_chandef_primary - calculate primary 40/80/160 MHz freq 1064 * @chandef: chandef to calculate for 1065 * @primary_chan_width: primary channel width to calculate center for 1066 * @punctured: punctured sub-channel bitmap, will be recalculated 1067 * according to the new bandwidth, can be %NULL 1068 * 1069 * Returns: the primary 40/80/160 MHz channel center frequency, or -1 1070 * for errors, updating the punctured bitmap 1071 */ 1072 int cfg80211_chandef_primary(const struct cfg80211_chan_def *chandef, 1073 enum nl80211_chan_width primary_chan_width, 1074 u16 *punctured); 1075 1076 /** 1077 * nl80211_send_chandef - sends the channel definition. 1078 * @msg: the msg to send channel definition 1079 * @chandef: the channel definition to check 1080 * 1081 * Returns: 0 if sent the channel definition to msg, < 0 on error 1082 **/ 1083 int nl80211_send_chandef(struct sk_buff *msg, const struct cfg80211_chan_def *chandef); 1084 1085 /** 1086 * ieee80211_chanwidth_rate_flags - return rate flags for channel width 1087 * @width: the channel width of the channel 1088 * 1089 * In some channel types, not all rates may be used - for example CCK 1090 * rates may not be used in 5/10 MHz channels. 1091 * 1092 * Returns: rate flags which apply for this channel width 1093 */ 1094 static inline enum ieee80211_rate_flags 1095 ieee80211_chanwidth_rate_flags(enum nl80211_chan_width width) 1096 { 1097 switch (width) { 1098 case NL80211_CHAN_WIDTH_5: 1099 return IEEE80211_RATE_SUPPORTS_5MHZ; 1100 case NL80211_CHAN_WIDTH_10: 1101 return IEEE80211_RATE_SUPPORTS_10MHZ; 1102 default: 1103 break; 1104 } 1105 return 0; 1106 } 1107 1108 /** 1109 * ieee80211_chandef_rate_flags - returns rate flags for a channel 1110 * @chandef: channel definition for the channel 1111 * 1112 * See ieee80211_chanwidth_rate_flags(). 1113 * 1114 * Returns: rate flags which apply for this channel 1115 */ 1116 static inline enum ieee80211_rate_flags 1117 ieee80211_chandef_rate_flags(struct cfg80211_chan_def *chandef) 1118 { 1119 return ieee80211_chanwidth_rate_flags(chandef->width); 1120 } 1121 1122 /** 1123 * ieee80211_chandef_max_power - maximum transmission power for the chandef 1124 * 1125 * In some regulations, the transmit power may depend on the configured channel 1126 * bandwidth which may be defined as dBm/MHz. This function returns the actual 1127 * max_power for non-standard (20 MHz) channels. 1128 * 1129 * @chandef: channel definition for the channel 1130 * 1131 * Returns: maximum allowed transmission power in dBm for the chandef 1132 */ 1133 static inline int 1134 ieee80211_chandef_max_power(struct cfg80211_chan_def *chandef) 1135 { 1136 switch (chandef->width) { 1137 case NL80211_CHAN_WIDTH_5: 1138 return min(chandef->chan->max_reg_power - 6, 1139 chandef->chan->max_power); 1140 case NL80211_CHAN_WIDTH_10: 1141 return min(chandef->chan->max_reg_power - 3, 1142 chandef->chan->max_power); 1143 default: 1144 break; 1145 } 1146 return chandef->chan->max_power; 1147 } 1148 1149 /** 1150 * cfg80211_any_usable_channels - check for usable channels 1151 * @wiphy: the wiphy to check for 1152 * @band_mask: which bands to check on 1153 * @prohibited_flags: which channels to not consider usable, 1154 * %IEEE80211_CHAN_DISABLED is always taken into account 1155 * 1156 * Return: %true if usable channels found, %false otherwise 1157 */ 1158 bool cfg80211_any_usable_channels(struct wiphy *wiphy, 1159 unsigned long band_mask, 1160 u32 prohibited_flags); 1161 1162 /** 1163 * enum survey_info_flags - survey information flags 1164 * 1165 * @SURVEY_INFO_NOISE_DBM: noise (in dBm) was filled in 1166 * @SURVEY_INFO_IN_USE: channel is currently being used 1167 * @SURVEY_INFO_TIME: active time (in ms) was filled in 1168 * @SURVEY_INFO_TIME_BUSY: busy time was filled in 1169 * @SURVEY_INFO_TIME_EXT_BUSY: extension channel busy time was filled in 1170 * @SURVEY_INFO_TIME_RX: receive time was filled in 1171 * @SURVEY_INFO_TIME_TX: transmit time was filled in 1172 * @SURVEY_INFO_TIME_SCAN: scan time was filled in 1173 * @SURVEY_INFO_TIME_BSS_RX: local BSS receive time was filled in 1174 * 1175 * Used by the driver to indicate which info in &struct survey_info 1176 * it has filled in during the get_survey(). 1177 */ 1178 enum survey_info_flags { 1179 SURVEY_INFO_NOISE_DBM = BIT(0), 1180 SURVEY_INFO_IN_USE = BIT(1), 1181 SURVEY_INFO_TIME = BIT(2), 1182 SURVEY_INFO_TIME_BUSY = BIT(3), 1183 SURVEY_INFO_TIME_EXT_BUSY = BIT(4), 1184 SURVEY_INFO_TIME_RX = BIT(5), 1185 SURVEY_INFO_TIME_TX = BIT(6), 1186 SURVEY_INFO_TIME_SCAN = BIT(7), 1187 SURVEY_INFO_TIME_BSS_RX = BIT(8), 1188 }; 1189 1190 /** 1191 * struct survey_info - channel survey response 1192 * 1193 * @channel: the channel this survey record reports, may be %NULL for a single 1194 * record to report global statistics 1195 * @filled: bitflag of flags from &enum survey_info_flags 1196 * @noise: channel noise in dBm. This and all following fields are 1197 * optional 1198 * @time: amount of time in ms the radio was turn on (on the channel) 1199 * @time_busy: amount of time the primary channel was sensed busy 1200 * @time_ext_busy: amount of time the extension channel was sensed busy 1201 * @time_rx: amount of time the radio spent receiving data 1202 * @time_tx: amount of time the radio spent transmitting data 1203 * @time_scan: amount of time the radio spent for scanning 1204 * @time_bss_rx: amount of time the radio spent receiving data on a local BSS 1205 * 1206 * Used by dump_survey() to report back per-channel survey information. 1207 * 1208 * This structure can later be expanded with things like 1209 * channel duty cycle etc. 1210 */ 1211 struct survey_info { 1212 struct ieee80211_channel *channel; 1213 u64 time; 1214 u64 time_busy; 1215 u64 time_ext_busy; 1216 u64 time_rx; 1217 u64 time_tx; 1218 u64 time_scan; 1219 u64 time_bss_rx; 1220 u32 filled; 1221 s8 noise; 1222 }; 1223 1224 #define CFG80211_MAX_NUM_AKM_SUITES 10 1225 1226 /** 1227 * struct cfg80211_crypto_settings - Crypto settings 1228 * @wpa_versions: indicates which, if any, WPA versions are enabled 1229 * (from enum nl80211_wpa_versions) 1230 * @cipher_group: group key cipher suite (or 0 if unset) 1231 * @n_ciphers_pairwise: number of AP supported unicast ciphers 1232 * @ciphers_pairwise: unicast key cipher suites 1233 * @n_akm_suites: number of AKM suites 1234 * @akm_suites: AKM suites 1235 * @control_port: Whether user space controls IEEE 802.1X port, i.e., 1236 * sets/clears %NL80211_STA_FLAG_AUTHORIZED. If true, the driver is 1237 * required to assume that the port is unauthorized until authorized by 1238 * user space. Otherwise, port is marked authorized by default. 1239 * @control_port_ethertype: the control port protocol that should be 1240 * allowed through even on unauthorized ports 1241 * @control_port_no_encrypt: TRUE to prevent encryption of control port 1242 * protocol frames. 1243 * @control_port_over_nl80211: TRUE if userspace expects to exchange control 1244 * port frames over NL80211 instead of the network interface. 1245 * @control_port_no_preauth: disables pre-auth rx over the nl80211 control 1246 * port for mac80211 1247 * @psk: PSK (for devices supporting 4-way-handshake offload) 1248 * @sae_pwd: password for SAE authentication (for devices supporting SAE 1249 * offload) 1250 * @sae_pwd_len: length of SAE password (for devices supporting SAE offload) 1251 * @sae_pwe: The mechanisms allowed for SAE PWE derivation: 1252 * 1253 * NL80211_SAE_PWE_UNSPECIFIED 1254 * Not-specified, used to indicate userspace did not specify any 1255 * preference. The driver should follow its internal policy in 1256 * such a scenario. 1257 * 1258 * NL80211_SAE_PWE_HUNT_AND_PECK 1259 * Allow hunting-and-pecking loop only 1260 * 1261 * NL80211_SAE_PWE_HASH_TO_ELEMENT 1262 * Allow hash-to-element only 1263 * 1264 * NL80211_SAE_PWE_BOTH 1265 * Allow either hunting-and-pecking loop or hash-to-element 1266 */ 1267 struct cfg80211_crypto_settings { 1268 u32 wpa_versions; 1269 u32 cipher_group; 1270 int n_ciphers_pairwise; 1271 u32 ciphers_pairwise[NL80211_MAX_NR_CIPHER_SUITES]; 1272 int n_akm_suites; 1273 u32 akm_suites[CFG80211_MAX_NUM_AKM_SUITES]; 1274 bool control_port; 1275 __be16 control_port_ethertype; 1276 bool control_port_no_encrypt; 1277 bool control_port_over_nl80211; 1278 bool control_port_no_preauth; 1279 const u8 *psk; 1280 const u8 *sae_pwd; 1281 u8 sae_pwd_len; 1282 enum nl80211_sae_pwe_mechanism sae_pwe; 1283 }; 1284 1285 /** 1286 * struct cfg80211_mbssid_config - AP settings for multi bssid 1287 * 1288 * @tx_wdev: pointer to the transmitted interface in the MBSSID set 1289 * @index: index of this AP in the multi bssid group. 1290 * @ema: set to true if the beacons should be sent out in EMA mode. 1291 */ 1292 struct cfg80211_mbssid_config { 1293 struct wireless_dev *tx_wdev; 1294 u8 index; 1295 bool ema; 1296 }; 1297 1298 /** 1299 * struct cfg80211_mbssid_elems - Multiple BSSID elements 1300 * 1301 * @cnt: Number of elements in array %elems. 1302 * 1303 * @elem: Array of multiple BSSID element(s) to be added into Beacon frames. 1304 * @elem.data: Data for multiple BSSID elements. 1305 * @elem.len: Length of data. 1306 */ 1307 struct cfg80211_mbssid_elems { 1308 u8 cnt; 1309 struct { 1310 const u8 *data; 1311 size_t len; 1312 } elem[] __counted_by(cnt); 1313 }; 1314 1315 /** 1316 * struct cfg80211_rnr_elems - Reduced neighbor report (RNR) elements 1317 * 1318 * @cnt: Number of elements in array %elems. 1319 * 1320 * @elem: Array of RNR element(s) to be added into Beacon frames. 1321 * @elem.data: Data for RNR elements. 1322 * @elem.len: Length of data. 1323 */ 1324 struct cfg80211_rnr_elems { 1325 u8 cnt; 1326 struct { 1327 const u8 *data; 1328 size_t len; 1329 } elem[] __counted_by(cnt); 1330 }; 1331 1332 /** 1333 * struct cfg80211_beacon_data - beacon data 1334 * @link_id: the link ID for the AP MLD link sending this beacon 1335 * @head: head portion of beacon (before TIM IE) 1336 * or %NULL if not changed 1337 * @tail: tail portion of beacon (after TIM IE) 1338 * or %NULL if not changed 1339 * @head_len: length of @head 1340 * @tail_len: length of @tail 1341 * @beacon_ies: extra information element(s) to add into Beacon frames or %NULL 1342 * @beacon_ies_len: length of beacon_ies in octets 1343 * @proberesp_ies: extra information element(s) to add into Probe Response 1344 * frames or %NULL 1345 * @proberesp_ies_len: length of proberesp_ies in octets 1346 * @assocresp_ies: extra information element(s) to add into (Re)Association 1347 * Response frames or %NULL 1348 * @assocresp_ies_len: length of assocresp_ies in octets 1349 * @probe_resp_len: length of probe response template (@probe_resp) 1350 * @probe_resp: probe response template (AP mode only) 1351 * @mbssid_ies: multiple BSSID elements 1352 * @rnr_ies: reduced neighbor report elements 1353 * @ftm_responder: enable FTM responder functionality; -1 for no change 1354 * (which also implies no change in LCI/civic location data) 1355 * @lci: Measurement Report element content, starting with Measurement Token 1356 * (measurement type 8) 1357 * @civicloc: Measurement Report element content, starting with Measurement 1358 * Token (measurement type 11) 1359 * @lci_len: LCI data length 1360 * @civicloc_len: Civic location data length 1361 * @he_bss_color: BSS Color settings 1362 * @he_bss_color_valid: indicates whether bss color 1363 * attribute is present in beacon data or not. 1364 */ 1365 struct cfg80211_beacon_data { 1366 unsigned int link_id; 1367 1368 const u8 *head, *tail; 1369 const u8 *beacon_ies; 1370 const u8 *proberesp_ies; 1371 const u8 *assocresp_ies; 1372 const u8 *probe_resp; 1373 const u8 *lci; 1374 const u8 *civicloc; 1375 struct cfg80211_mbssid_elems *mbssid_ies; 1376 struct cfg80211_rnr_elems *rnr_ies; 1377 s8 ftm_responder; 1378 1379 size_t head_len, tail_len; 1380 size_t beacon_ies_len; 1381 size_t proberesp_ies_len; 1382 size_t assocresp_ies_len; 1383 size_t probe_resp_len; 1384 size_t lci_len; 1385 size_t civicloc_len; 1386 struct cfg80211_he_bss_color he_bss_color; 1387 bool he_bss_color_valid; 1388 }; 1389 1390 struct mac_address { 1391 u8 addr[ETH_ALEN]; 1392 }; 1393 1394 /** 1395 * struct cfg80211_acl_data - Access control list data 1396 * 1397 * @acl_policy: ACL policy to be applied on the station's 1398 * entry specified by mac_addr 1399 * @n_acl_entries: Number of MAC address entries passed 1400 * @mac_addrs: List of MAC addresses of stations to be used for ACL 1401 */ 1402 struct cfg80211_acl_data { 1403 enum nl80211_acl_policy acl_policy; 1404 int n_acl_entries; 1405 1406 /* Keep it last */ 1407 struct mac_address mac_addrs[] __counted_by(n_acl_entries); 1408 }; 1409 1410 /** 1411 * struct cfg80211_fils_discovery - FILS discovery parameters from 1412 * IEEE Std 802.11ai-2016, Annex C.3 MIB detail. 1413 * 1414 * @update: Set to true if the feature configuration should be updated. 1415 * @min_interval: Minimum packet interval in TUs (0 - 10000) 1416 * @max_interval: Maximum packet interval in TUs (0 - 10000) 1417 * @tmpl_len: Template length 1418 * @tmpl: Template data for FILS discovery frame including the action 1419 * frame headers. 1420 */ 1421 struct cfg80211_fils_discovery { 1422 bool update; 1423 u32 min_interval; 1424 u32 max_interval; 1425 size_t tmpl_len; 1426 const u8 *tmpl; 1427 }; 1428 1429 /** 1430 * struct cfg80211_unsol_bcast_probe_resp - Unsolicited broadcast probe 1431 * response parameters in 6GHz. 1432 * 1433 * @update: Set to true if the feature configuration should be updated. 1434 * @interval: Packet interval in TUs. Maximum allowed is 20 TU, as mentioned 1435 * in IEEE P802.11ax/D6.0 26.17.2.3.2 - AP behavior for fast passive 1436 * scanning 1437 * @tmpl_len: Template length 1438 * @tmpl: Template data for probe response 1439 */ 1440 struct cfg80211_unsol_bcast_probe_resp { 1441 bool update; 1442 u32 interval; 1443 size_t tmpl_len; 1444 const u8 *tmpl; 1445 }; 1446 1447 /** 1448 * struct cfg80211_ap_settings - AP configuration 1449 * 1450 * Used to configure an AP interface. 1451 * 1452 * @chandef: defines the channel to use 1453 * @beacon: beacon data 1454 * @beacon_interval: beacon interval 1455 * @dtim_period: DTIM period 1456 * @ssid: SSID to be used in the BSS (note: may be %NULL if not provided from 1457 * user space) 1458 * @ssid_len: length of @ssid 1459 * @hidden_ssid: whether to hide the SSID in Beacon/Probe Response frames 1460 * @crypto: crypto settings 1461 * @privacy: the BSS uses privacy 1462 * @auth_type: Authentication type (algorithm) 1463 * @inactivity_timeout: time in seconds to determine station's inactivity. 1464 * @p2p_ctwindow: P2P CT Window 1465 * @p2p_opp_ps: P2P opportunistic PS 1466 * @acl: ACL configuration used by the drivers which has support for 1467 * MAC address based access control 1468 * @pbss: If set, start as a PCP instead of AP. Relevant for DMG 1469 * networks. 1470 * @beacon_rate: bitrate to be used for beacons 1471 * @ht_cap: HT capabilities (or %NULL if HT isn't enabled) 1472 * @vht_cap: VHT capabilities (or %NULL if VHT isn't enabled) 1473 * @he_cap: HE capabilities (or %NULL if HE isn't enabled) 1474 * @eht_cap: EHT capabilities (or %NULL if EHT isn't enabled) 1475 * @eht_oper: EHT operation IE (or %NULL if EHT isn't enabled) 1476 * @ht_required: stations must support HT 1477 * @vht_required: stations must support VHT 1478 * @twt_responder: Enable Target Wait Time 1479 * @he_required: stations must support HE 1480 * @sae_h2e_required: stations must support direct H2E technique in SAE 1481 * @flags: flags, as defined in &enum nl80211_ap_settings_flags 1482 * @he_obss_pd: OBSS Packet Detection settings 1483 * @he_oper: HE operation IE (or %NULL if HE isn't enabled) 1484 * @fils_discovery: FILS discovery transmission parameters 1485 * @unsol_bcast_probe_resp: Unsolicited broadcast probe response parameters 1486 * @mbssid_config: AP settings for multiple bssid 1487 */ 1488 struct cfg80211_ap_settings { 1489 struct cfg80211_chan_def chandef; 1490 1491 struct cfg80211_beacon_data beacon; 1492 1493 int beacon_interval, dtim_period; 1494 const u8 *ssid; 1495 size_t ssid_len; 1496 enum nl80211_hidden_ssid hidden_ssid; 1497 struct cfg80211_crypto_settings crypto; 1498 bool privacy; 1499 enum nl80211_auth_type auth_type; 1500 int inactivity_timeout; 1501 u8 p2p_ctwindow; 1502 bool p2p_opp_ps; 1503 const struct cfg80211_acl_data *acl; 1504 bool pbss; 1505 struct cfg80211_bitrate_mask beacon_rate; 1506 1507 const struct ieee80211_ht_cap *ht_cap; 1508 const struct ieee80211_vht_cap *vht_cap; 1509 const struct ieee80211_he_cap_elem *he_cap; 1510 const struct ieee80211_he_operation *he_oper; 1511 const struct ieee80211_eht_cap_elem *eht_cap; 1512 const struct ieee80211_eht_operation *eht_oper; 1513 bool ht_required, vht_required, he_required, sae_h2e_required; 1514 bool twt_responder; 1515 u32 flags; 1516 struct ieee80211_he_obss_pd he_obss_pd; 1517 struct cfg80211_fils_discovery fils_discovery; 1518 struct cfg80211_unsol_bcast_probe_resp unsol_bcast_probe_resp; 1519 struct cfg80211_mbssid_config mbssid_config; 1520 }; 1521 1522 1523 /** 1524 * struct cfg80211_ap_update - AP configuration update 1525 * 1526 * Subset of &struct cfg80211_ap_settings, for updating a running AP. 1527 * 1528 * @beacon: beacon data 1529 * @fils_discovery: FILS discovery transmission parameters 1530 * @unsol_bcast_probe_resp: Unsolicited broadcast probe response parameters 1531 */ 1532 struct cfg80211_ap_update { 1533 struct cfg80211_beacon_data beacon; 1534 struct cfg80211_fils_discovery fils_discovery; 1535 struct cfg80211_unsol_bcast_probe_resp unsol_bcast_probe_resp; 1536 }; 1537 1538 /** 1539 * struct cfg80211_csa_settings - channel switch settings 1540 * 1541 * Used for channel switch 1542 * 1543 * @chandef: defines the channel to use after the switch 1544 * @beacon_csa: beacon data while performing the switch 1545 * @counter_offsets_beacon: offsets of the counters within the beacon (tail) 1546 * @counter_offsets_presp: offsets of the counters within the probe response 1547 * @n_counter_offsets_beacon: number of csa counters the beacon (tail) 1548 * @n_counter_offsets_presp: number of csa counters in the probe response 1549 * @beacon_after: beacon data to be used on the new channel 1550 * @radar_required: whether radar detection is required on the new channel 1551 * @block_tx: whether transmissions should be blocked while changing 1552 * @count: number of beacons until switch 1553 * @link_id: defines the link on which channel switch is expected during 1554 * MLO. 0 in case of non-MLO. 1555 */ 1556 struct cfg80211_csa_settings { 1557 struct cfg80211_chan_def chandef; 1558 struct cfg80211_beacon_data beacon_csa; 1559 const u16 *counter_offsets_beacon; 1560 const u16 *counter_offsets_presp; 1561 unsigned int n_counter_offsets_beacon; 1562 unsigned int n_counter_offsets_presp; 1563 struct cfg80211_beacon_data beacon_after; 1564 bool radar_required; 1565 bool block_tx; 1566 u8 count; 1567 u8 link_id; 1568 }; 1569 1570 /** 1571 * struct cfg80211_color_change_settings - color change settings 1572 * 1573 * Used for bss color change 1574 * 1575 * @beacon_color_change: beacon data while performing the color countdown 1576 * @counter_offset_beacon: offsets of the counters within the beacon (tail) 1577 * @counter_offset_presp: offsets of the counters within the probe response 1578 * @beacon_next: beacon data to be used after the color change 1579 * @count: number of beacons until the color change 1580 * @color: the color used after the change 1581 * @link_id: defines the link on which color change is expected during MLO. 1582 * 0 in case of non-MLO. 1583 */ 1584 struct cfg80211_color_change_settings { 1585 struct cfg80211_beacon_data beacon_color_change; 1586 u16 counter_offset_beacon; 1587 u16 counter_offset_presp; 1588 struct cfg80211_beacon_data beacon_next; 1589 u8 count; 1590 u8 color; 1591 u8 link_id; 1592 }; 1593 1594 /** 1595 * struct iface_combination_params - input parameters for interface combinations 1596 * 1597 * Used to pass interface combination parameters 1598 * 1599 * @radio_idx: wiphy radio index or -1 for global 1600 * @num_different_channels: the number of different channels we want 1601 * to use for verification 1602 * @radar_detect: a bitmap where each bit corresponds to a channel 1603 * width where radar detection is needed, as in the definition of 1604 * &struct ieee80211_iface_combination.@radar_detect_widths 1605 * @iftype_num: array with the number of interfaces of each interface 1606 * type. The index is the interface type as specified in &enum 1607 * nl80211_iftype. 1608 * @new_beacon_int: set this to the beacon interval of a new interface 1609 * that's not operating yet, if such is to be checked as part of 1610 * the verification 1611 */ 1612 struct iface_combination_params { 1613 int radio_idx; 1614 int num_different_channels; 1615 u8 radar_detect; 1616 int iftype_num[NUM_NL80211_IFTYPES]; 1617 u32 new_beacon_int; 1618 }; 1619 1620 /** 1621 * enum station_parameters_apply_mask - station parameter values to apply 1622 * @STATION_PARAM_APPLY_UAPSD: apply new uAPSD parameters (uapsd_queues, max_sp) 1623 * @STATION_PARAM_APPLY_CAPABILITY: apply new capability 1624 * @STATION_PARAM_APPLY_PLINK_STATE: apply new plink state 1625 * 1626 * Not all station parameters have in-band "no change" signalling, 1627 * for those that don't these flags will are used. 1628 */ 1629 enum station_parameters_apply_mask { 1630 STATION_PARAM_APPLY_UAPSD = BIT(0), 1631 STATION_PARAM_APPLY_CAPABILITY = BIT(1), 1632 STATION_PARAM_APPLY_PLINK_STATE = BIT(2), 1633 }; 1634 1635 /** 1636 * struct sta_txpwr - station txpower configuration 1637 * 1638 * Used to configure txpower for station. 1639 * 1640 * @power: tx power (in dBm) to be used for sending data traffic. If tx power 1641 * is not provided, the default per-interface tx power setting will be 1642 * overriding. Driver should be picking up the lowest tx power, either tx 1643 * power per-interface or per-station. 1644 * @type: In particular if TPC %type is NL80211_TX_POWER_LIMITED then tx power 1645 * will be less than or equal to specified from userspace, whereas if TPC 1646 * %type is NL80211_TX_POWER_AUTOMATIC then it indicates default tx power. 1647 * NL80211_TX_POWER_FIXED is not a valid configuration option for 1648 * per peer TPC. 1649 */ 1650 struct sta_txpwr { 1651 s16 power; 1652 enum nl80211_tx_power_setting type; 1653 }; 1654 1655 /** 1656 * struct link_station_parameters - link station parameters 1657 * 1658 * Used to change and create a new link station. 1659 * 1660 * @mld_mac: MAC address of the station 1661 * @link_id: the link id (-1 for non-MLD station) 1662 * @link_mac: MAC address of the link 1663 * @supported_rates: supported rates in IEEE 802.11 format 1664 * (or NULL for no change) 1665 * @supported_rates_len: number of supported rates 1666 * @ht_capa: HT capabilities of station 1667 * @vht_capa: VHT capabilities of station 1668 * @opmode_notif: operating mode field from Operating Mode Notification 1669 * @opmode_notif_used: information if operating mode field is used 1670 * @he_capa: HE capabilities of station 1671 * @he_capa_len: the length of the HE capabilities 1672 * @txpwr: transmit power for an associated station 1673 * @txpwr_set: txpwr field is set 1674 * @he_6ghz_capa: HE 6 GHz Band capabilities of station 1675 * @eht_capa: EHT capabilities of station 1676 * @eht_capa_len: the length of the EHT capabilities 1677 */ 1678 struct link_station_parameters { 1679 const u8 *mld_mac; 1680 int link_id; 1681 const u8 *link_mac; 1682 const u8 *supported_rates; 1683 u8 supported_rates_len; 1684 const struct ieee80211_ht_cap *ht_capa; 1685 const struct ieee80211_vht_cap *vht_capa; 1686 u8 opmode_notif; 1687 bool opmode_notif_used; 1688 const struct ieee80211_he_cap_elem *he_capa; 1689 u8 he_capa_len; 1690 struct sta_txpwr txpwr; 1691 bool txpwr_set; 1692 const struct ieee80211_he_6ghz_capa *he_6ghz_capa; 1693 const struct ieee80211_eht_cap_elem *eht_capa; 1694 u8 eht_capa_len; 1695 }; 1696 1697 /** 1698 * struct link_station_del_parameters - link station deletion parameters 1699 * 1700 * Used to delete a link station entry (or all stations). 1701 * 1702 * @mld_mac: MAC address of the station 1703 * @link_id: the link id 1704 */ 1705 struct link_station_del_parameters { 1706 const u8 *mld_mac; 1707 u32 link_id; 1708 }; 1709 1710 /** 1711 * struct cfg80211_ttlm_params: TID to link mapping parameters 1712 * 1713 * Used for setting a TID to link mapping. 1714 * 1715 * @dlink: Downlink TID to link mapping, as defined in section 9.4.2.314 1716 * (TID-To-Link Mapping element) in Draft P802.11be_D4.0. 1717 * @ulink: Uplink TID to link mapping, as defined in section 9.4.2.314 1718 * (TID-To-Link Mapping element) in Draft P802.11be_D4.0. 1719 */ 1720 struct cfg80211_ttlm_params { 1721 u16 dlink[8]; 1722 u16 ulink[8]; 1723 }; 1724 1725 /** 1726 * struct station_parameters - station parameters 1727 * 1728 * Used to change and create a new station. 1729 * 1730 * @vlan: vlan interface station should belong to 1731 * @sta_flags_mask: station flags that changed 1732 * (bitmask of BIT(%NL80211_STA_FLAG_...)) 1733 * @sta_flags_set: station flags values 1734 * (bitmask of BIT(%NL80211_STA_FLAG_...)) 1735 * @listen_interval: listen interval or -1 for no change 1736 * @aid: AID or zero for no change 1737 * @vlan_id: VLAN ID for station (if nonzero) 1738 * @peer_aid: mesh peer AID or zero for no change 1739 * @plink_action: plink action to take 1740 * @plink_state: set the peer link state for a station 1741 * @uapsd_queues: bitmap of queues configured for uapsd. same format 1742 * as the AC bitmap in the QoS info field 1743 * @max_sp: max Service Period. same format as the MAX_SP in the 1744 * QoS info field (but already shifted down) 1745 * @sta_modify_mask: bitmap indicating which parameters changed 1746 * (for those that don't have a natural "no change" value), 1747 * see &enum station_parameters_apply_mask 1748 * @local_pm: local link-specific mesh power save mode (no change when set 1749 * to unknown) 1750 * @capability: station capability 1751 * @ext_capab: extended capabilities of the station 1752 * @ext_capab_len: number of extended capabilities 1753 * @supported_channels: supported channels in IEEE 802.11 format 1754 * @supported_channels_len: number of supported channels 1755 * @supported_oper_classes: supported oper classes in IEEE 802.11 format 1756 * @supported_oper_classes_len: number of supported operating classes 1757 * @support_p2p_ps: information if station supports P2P PS mechanism 1758 * @airtime_weight: airtime scheduler weight for this station 1759 * @link_sta_params: link related params. 1760 */ 1761 struct station_parameters { 1762 struct net_device *vlan; 1763 u32 sta_flags_mask, sta_flags_set; 1764 u32 sta_modify_mask; 1765 int listen_interval; 1766 u16 aid; 1767 u16 vlan_id; 1768 u16 peer_aid; 1769 u8 plink_action; 1770 u8 plink_state; 1771 u8 uapsd_queues; 1772 u8 max_sp; 1773 enum nl80211_mesh_power_mode local_pm; 1774 u16 capability; 1775 const u8 *ext_capab; 1776 u8 ext_capab_len; 1777 const u8 *supported_channels; 1778 u8 supported_channels_len; 1779 const u8 *supported_oper_classes; 1780 u8 supported_oper_classes_len; 1781 int support_p2p_ps; 1782 u16 airtime_weight; 1783 struct link_station_parameters link_sta_params; 1784 }; 1785 1786 /** 1787 * struct station_del_parameters - station deletion parameters 1788 * 1789 * Used to delete a station entry (or all stations). 1790 * 1791 * @mac: MAC address of the station to remove or NULL to remove all stations 1792 * @subtype: Management frame subtype to use for indicating removal 1793 * (10 = Disassociation, 12 = Deauthentication) 1794 * @reason_code: Reason code for the Disassociation/Deauthentication frame 1795 * @link_id: Link ID indicating a link that stations to be flushed must be 1796 * using; valid only for MLO, but can also be -1 for MLO to really 1797 * remove all stations. 1798 */ 1799 struct station_del_parameters { 1800 const u8 *mac; 1801 u8 subtype; 1802 u16 reason_code; 1803 int link_id; 1804 }; 1805 1806 /** 1807 * enum cfg80211_station_type - the type of station being modified 1808 * @CFG80211_STA_AP_CLIENT: client of an AP interface 1809 * @CFG80211_STA_AP_CLIENT_UNASSOC: client of an AP interface that is still 1810 * unassociated (update properties for this type of client is permitted) 1811 * @CFG80211_STA_AP_MLME_CLIENT: client of an AP interface that has 1812 * the AP MLME in the device 1813 * @CFG80211_STA_AP_STA: AP station on managed interface 1814 * @CFG80211_STA_IBSS: IBSS station 1815 * @CFG80211_STA_TDLS_PEER_SETUP: TDLS peer on managed interface (dummy entry 1816 * while TDLS setup is in progress, it moves out of this state when 1817 * being marked authorized; use this only if TDLS with external setup is 1818 * supported/used) 1819 * @CFG80211_STA_TDLS_PEER_ACTIVE: TDLS peer on managed interface (active 1820 * entry that is operating, has been marked authorized by userspace) 1821 * @CFG80211_STA_MESH_PEER_KERNEL: peer on mesh interface (kernel managed) 1822 * @CFG80211_STA_MESH_PEER_USER: peer on mesh interface (user managed) 1823 */ 1824 enum cfg80211_station_type { 1825 CFG80211_STA_AP_CLIENT, 1826 CFG80211_STA_AP_CLIENT_UNASSOC, 1827 CFG80211_STA_AP_MLME_CLIENT, 1828 CFG80211_STA_AP_STA, 1829 CFG80211_STA_IBSS, 1830 CFG80211_STA_TDLS_PEER_SETUP, 1831 CFG80211_STA_TDLS_PEER_ACTIVE, 1832 CFG80211_STA_MESH_PEER_KERNEL, 1833 CFG80211_STA_MESH_PEER_USER, 1834 }; 1835 1836 /** 1837 * cfg80211_check_station_change - validate parameter changes 1838 * @wiphy: the wiphy this operates on 1839 * @params: the new parameters for a station 1840 * @statype: the type of station being modified 1841 * 1842 * Utility function for the @change_station driver method. Call this function 1843 * with the appropriate station type looking up the station (and checking that 1844 * it exists). It will verify whether the station change is acceptable. 1845 * 1846 * Return: 0 if the change is acceptable, otherwise an error code. Note that 1847 * it may modify the parameters for backward compatibility reasons, so don't 1848 * use them before calling this. 1849 */ 1850 int cfg80211_check_station_change(struct wiphy *wiphy, 1851 struct station_parameters *params, 1852 enum cfg80211_station_type statype); 1853 1854 /** 1855 * enum rate_info_flags - bitrate info flags 1856 * 1857 * Used by the driver to indicate the specific rate transmission 1858 * type for 802.11n transmissions. 1859 * 1860 * @RATE_INFO_FLAGS_MCS: mcs field filled with HT MCS 1861 * @RATE_INFO_FLAGS_VHT_MCS: mcs field filled with VHT MCS 1862 * @RATE_INFO_FLAGS_SHORT_GI: 400ns guard interval 1863 * @RATE_INFO_FLAGS_DMG: 60GHz MCS 1864 * @RATE_INFO_FLAGS_HE_MCS: HE MCS information 1865 * @RATE_INFO_FLAGS_EDMG: 60GHz MCS in EDMG mode 1866 * @RATE_INFO_FLAGS_EXTENDED_SC_DMG: 60GHz extended SC MCS 1867 * @RATE_INFO_FLAGS_EHT_MCS: EHT MCS information 1868 * @RATE_INFO_FLAGS_S1G_MCS: MCS field filled with S1G MCS 1869 */ 1870 enum rate_info_flags { 1871 RATE_INFO_FLAGS_MCS = BIT(0), 1872 RATE_INFO_FLAGS_VHT_MCS = BIT(1), 1873 RATE_INFO_FLAGS_SHORT_GI = BIT(2), 1874 RATE_INFO_FLAGS_DMG = BIT(3), 1875 RATE_INFO_FLAGS_HE_MCS = BIT(4), 1876 RATE_INFO_FLAGS_EDMG = BIT(5), 1877 RATE_INFO_FLAGS_EXTENDED_SC_DMG = BIT(6), 1878 RATE_INFO_FLAGS_EHT_MCS = BIT(7), 1879 RATE_INFO_FLAGS_S1G_MCS = BIT(8), 1880 }; 1881 1882 /** 1883 * enum rate_info_bw - rate bandwidth information 1884 * 1885 * Used by the driver to indicate the rate bandwidth. 1886 * 1887 * @RATE_INFO_BW_5: 5 MHz bandwidth 1888 * @RATE_INFO_BW_10: 10 MHz bandwidth 1889 * @RATE_INFO_BW_20: 20 MHz bandwidth 1890 * @RATE_INFO_BW_40: 40 MHz bandwidth 1891 * @RATE_INFO_BW_80: 80 MHz bandwidth 1892 * @RATE_INFO_BW_160: 160 MHz bandwidth 1893 * @RATE_INFO_BW_HE_RU: bandwidth determined by HE RU allocation 1894 * @RATE_INFO_BW_320: 320 MHz bandwidth 1895 * @RATE_INFO_BW_EHT_RU: bandwidth determined by EHT RU allocation 1896 * @RATE_INFO_BW_1: 1 MHz bandwidth 1897 * @RATE_INFO_BW_2: 2 MHz bandwidth 1898 * @RATE_INFO_BW_4: 4 MHz bandwidth 1899 * @RATE_INFO_BW_8: 8 MHz bandwidth 1900 * @RATE_INFO_BW_16: 16 MHz bandwidth 1901 */ 1902 enum rate_info_bw { 1903 RATE_INFO_BW_20 = 0, 1904 RATE_INFO_BW_5, 1905 RATE_INFO_BW_10, 1906 RATE_INFO_BW_40, 1907 RATE_INFO_BW_80, 1908 RATE_INFO_BW_160, 1909 RATE_INFO_BW_HE_RU, 1910 RATE_INFO_BW_320, 1911 RATE_INFO_BW_EHT_RU, 1912 RATE_INFO_BW_1, 1913 RATE_INFO_BW_2, 1914 RATE_INFO_BW_4, 1915 RATE_INFO_BW_8, 1916 RATE_INFO_BW_16, 1917 }; 1918 1919 /** 1920 * struct rate_info - bitrate information 1921 * 1922 * Information about a receiving or transmitting bitrate 1923 * 1924 * @flags: bitflag of flags from &enum rate_info_flags 1925 * @legacy: bitrate in 100kbit/s for 802.11abg 1926 * @mcs: mcs index if struct describes an HT/VHT/HE/EHT/S1G rate 1927 * @nss: number of streams (VHT & HE only) 1928 * @bw: bandwidth (from &enum rate_info_bw) 1929 * @he_gi: HE guard interval (from &enum nl80211_he_gi) 1930 * @he_dcm: HE DCM value 1931 * @he_ru_alloc: HE RU allocation (from &enum nl80211_he_ru_alloc, 1932 * only valid if bw is %RATE_INFO_BW_HE_RU) 1933 * @n_bonded_ch: In case of EDMG the number of bonded channels (1-4) 1934 * @eht_gi: EHT guard interval (from &enum nl80211_eht_gi) 1935 * @eht_ru_alloc: EHT RU allocation (from &enum nl80211_eht_ru_alloc, 1936 * only valid if bw is %RATE_INFO_BW_EHT_RU) 1937 */ 1938 struct rate_info { 1939 u16 flags; 1940 u16 legacy; 1941 u8 mcs; 1942 u8 nss; 1943 u8 bw; 1944 u8 he_gi; 1945 u8 he_dcm; 1946 u8 he_ru_alloc; 1947 u8 n_bonded_ch; 1948 u8 eht_gi; 1949 u8 eht_ru_alloc; 1950 }; 1951 1952 /** 1953 * enum bss_param_flags - bitrate info flags 1954 * 1955 * Used by the driver to indicate the specific rate transmission 1956 * type for 802.11n transmissions. 1957 * 1958 * @BSS_PARAM_FLAGS_CTS_PROT: whether CTS protection is enabled 1959 * @BSS_PARAM_FLAGS_SHORT_PREAMBLE: whether short preamble is enabled 1960 * @BSS_PARAM_FLAGS_SHORT_SLOT_TIME: whether short slot time is enabled 1961 */ 1962 enum bss_param_flags { 1963 BSS_PARAM_FLAGS_CTS_PROT = BIT(0), 1964 BSS_PARAM_FLAGS_SHORT_PREAMBLE = BIT(1), 1965 BSS_PARAM_FLAGS_SHORT_SLOT_TIME = BIT(2), 1966 }; 1967 1968 /** 1969 * struct sta_bss_parameters - BSS parameters for the attached station 1970 * 1971 * Information about the currently associated BSS 1972 * 1973 * @flags: bitflag of flags from &enum bss_param_flags 1974 * @dtim_period: DTIM period for the BSS 1975 * @beacon_interval: beacon interval 1976 */ 1977 struct sta_bss_parameters { 1978 u8 flags; 1979 u8 dtim_period; 1980 u16 beacon_interval; 1981 }; 1982 1983 /** 1984 * struct cfg80211_txq_stats - TXQ statistics for this TID 1985 * @filled: bitmap of flags using the bits of &enum nl80211_txq_stats to 1986 * indicate the relevant values in this struct are filled 1987 * @backlog_bytes: total number of bytes currently backlogged 1988 * @backlog_packets: total number of packets currently backlogged 1989 * @flows: number of new flows seen 1990 * @drops: total number of packets dropped 1991 * @ecn_marks: total number of packets marked with ECN CE 1992 * @overlimit: number of drops due to queue space overflow 1993 * @overmemory: number of drops due to memory limit overflow 1994 * @collisions: number of hash collisions 1995 * @tx_bytes: total number of bytes dequeued 1996 * @tx_packets: total number of packets dequeued 1997 * @max_flows: maximum number of flows supported 1998 */ 1999 struct cfg80211_txq_stats { 2000 u32 filled; 2001 u32 backlog_bytes; 2002 u32 backlog_packets; 2003 u32 flows; 2004 u32 drops; 2005 u32 ecn_marks; 2006 u32 overlimit; 2007 u32 overmemory; 2008 u32 collisions; 2009 u32 tx_bytes; 2010 u32 tx_packets; 2011 u32 max_flows; 2012 }; 2013 2014 /** 2015 * struct cfg80211_tid_stats - per-TID statistics 2016 * @filled: bitmap of flags using the bits of &enum nl80211_tid_stats to 2017 * indicate the relevant values in this struct are filled 2018 * @rx_msdu: number of received MSDUs 2019 * @tx_msdu: number of (attempted) transmitted MSDUs 2020 * @tx_msdu_retries: number of retries (not counting the first) for 2021 * transmitted MSDUs 2022 * @tx_msdu_failed: number of failed transmitted MSDUs 2023 * @txq_stats: TXQ statistics 2024 */ 2025 struct cfg80211_tid_stats { 2026 u32 filled; 2027 u64 rx_msdu; 2028 u64 tx_msdu; 2029 u64 tx_msdu_retries; 2030 u64 tx_msdu_failed; 2031 struct cfg80211_txq_stats txq_stats; 2032 }; 2033 2034 #define IEEE80211_MAX_CHAINS 4 2035 2036 /** 2037 * struct station_info - station information 2038 * 2039 * Station information filled by driver for get_station() and dump_station. 2040 * 2041 * @filled: bitflag of flags using the bits of &enum nl80211_sta_info to 2042 * indicate the relevant values in this struct for them 2043 * @connected_time: time(in secs) since a station is last connected 2044 * @inactive_time: time since last station activity (tx/rx) in milliseconds 2045 * @assoc_at: bootime (ns) of the last association 2046 * @rx_bytes: bytes (size of MPDUs) received from this station 2047 * @tx_bytes: bytes (size of MPDUs) transmitted to this station 2048 * @llid: mesh local link id 2049 * @plid: mesh peer link id 2050 * @plink_state: mesh peer link state 2051 * @signal: The signal strength, type depends on the wiphy's signal_type. 2052 * For CFG80211_SIGNAL_TYPE_MBM, value is expressed in _dBm_. 2053 * @signal_avg: Average signal strength, type depends on the wiphy's signal_type. 2054 * For CFG80211_SIGNAL_TYPE_MBM, value is expressed in _dBm_. 2055 * @chains: bitmask for filled values in @chain_signal, @chain_signal_avg 2056 * @chain_signal: per-chain signal strength of last received packet in dBm 2057 * @chain_signal_avg: per-chain signal strength average in dBm 2058 * @txrate: current unicast bitrate from this station 2059 * @rxrate: current unicast bitrate to this station 2060 * @rx_packets: packets (MSDUs & MMPDUs) received from this station 2061 * @tx_packets: packets (MSDUs & MMPDUs) transmitted to this station 2062 * @tx_retries: cumulative retry counts (MPDUs) 2063 * @tx_failed: number of failed transmissions (MPDUs) (retries exceeded, no ACK) 2064 * @rx_dropped_misc: Dropped for un-specified reason. 2065 * @bss_param: current BSS parameters 2066 * @generation: generation number for nl80211 dumps. 2067 * This number should increase every time the list of stations 2068 * changes, i.e. when a station is added or removed, so that 2069 * userspace can tell whether it got a consistent snapshot. 2070 * @assoc_req_ies: IEs from (Re)Association Request. 2071 * This is used only when in AP mode with drivers that do not use 2072 * user space MLME/SME implementation. The information is provided for 2073 * the cfg80211_new_sta() calls to notify user space of the IEs. 2074 * @assoc_req_ies_len: Length of assoc_req_ies buffer in octets. 2075 * @sta_flags: station flags mask & values 2076 * @beacon_loss_count: Number of times beacon loss event has triggered. 2077 * @t_offset: Time offset of the station relative to this host. 2078 * @local_pm: local mesh STA power save mode 2079 * @peer_pm: peer mesh STA power save mode 2080 * @nonpeer_pm: non-peer mesh STA power save mode 2081 * @expected_throughput: expected throughput in kbps (including 802.11 headers) 2082 * towards this station. 2083 * @rx_beacon: number of beacons received from this peer 2084 * @rx_beacon_signal_avg: signal strength average (in dBm) for beacons received 2085 * from this peer 2086 * @connected_to_gate: true if mesh STA has a path to mesh gate 2087 * @rx_duration: aggregate PPDU duration(usecs) for all the frames from a peer 2088 * @tx_duration: aggregate PPDU duration(usecs) for all the frames to a peer 2089 * @airtime_weight: current airtime scheduling weight 2090 * @pertid: per-TID statistics, see &struct cfg80211_tid_stats, using the last 2091 * (IEEE80211_NUM_TIDS) index for MSDUs not encapsulated in QoS-MPDUs. 2092 * Note that this doesn't use the @filled bit, but is used if non-NULL. 2093 * @ack_signal: signal strength (in dBm) of the last ACK frame. 2094 * @avg_ack_signal: average rssi value of ack packet for the no of msdu's has 2095 * been sent. 2096 * @rx_mpdu_count: number of MPDUs received from this station 2097 * @fcs_err_count: number of packets (MPDUs) received from this station with 2098 * an FCS error. This counter should be incremented only when TA of the 2099 * received packet with an FCS error matches the peer MAC address. 2100 * @airtime_link_metric: mesh airtime link metric. 2101 * @connected_to_as: true if mesh STA has a path to authentication server 2102 * @mlo_params_valid: Indicates @assoc_link_id and @mld_addr fields are filled 2103 * by driver. Drivers use this only in cfg80211_new_sta() calls when AP 2104 * MLD's MLME/SME is offload to driver. Drivers won't fill this 2105 * information in cfg80211_del_sta_sinfo(), get_station() and 2106 * dump_station() callbacks. 2107 * @assoc_link_id: Indicates MLO link ID of the AP, with which the station 2108 * completed (re)association. This information filled for both MLO 2109 * and non-MLO STA connections when the AP affiliated with an MLD. 2110 * @mld_addr: For MLO STA connection, filled with MLD address of the station. 2111 * For non-MLO STA connection, filled with all zeros. 2112 * @assoc_resp_ies: IEs from (Re)Association Response. 2113 * This is used only when in AP mode with drivers that do not use user 2114 * space MLME/SME implementation. The information is provided only for the 2115 * cfg80211_new_sta() calls to notify user space of the IEs. Drivers won't 2116 * fill this information in cfg80211_del_sta_sinfo(), get_station() and 2117 * dump_station() callbacks. User space needs this information to determine 2118 * the accepted and rejected affiliated links of the connected station. 2119 * @assoc_resp_ies_len: Length of @assoc_resp_ies buffer in octets. 2120 */ 2121 struct station_info { 2122 u64 filled; 2123 u32 connected_time; 2124 u32 inactive_time; 2125 u64 assoc_at; 2126 u64 rx_bytes; 2127 u64 tx_bytes; 2128 u16 llid; 2129 u16 plid; 2130 u8 plink_state; 2131 s8 signal; 2132 s8 signal_avg; 2133 2134 u8 chains; 2135 s8 chain_signal[IEEE80211_MAX_CHAINS]; 2136 s8 chain_signal_avg[IEEE80211_MAX_CHAINS]; 2137 2138 struct rate_info txrate; 2139 struct rate_info rxrate; 2140 u32 rx_packets; 2141 u32 tx_packets; 2142 u32 tx_retries; 2143 u32 tx_failed; 2144 u32 rx_dropped_misc; 2145 struct sta_bss_parameters bss_param; 2146 struct nl80211_sta_flag_update sta_flags; 2147 2148 int generation; 2149 2150 const u8 *assoc_req_ies; 2151 size_t assoc_req_ies_len; 2152 2153 u32 beacon_loss_count; 2154 s64 t_offset; 2155 enum nl80211_mesh_power_mode local_pm; 2156 enum nl80211_mesh_power_mode peer_pm; 2157 enum nl80211_mesh_power_mode nonpeer_pm; 2158 2159 u32 expected_throughput; 2160 2161 u64 tx_duration; 2162 u64 rx_duration; 2163 u64 rx_beacon; 2164 u8 rx_beacon_signal_avg; 2165 u8 connected_to_gate; 2166 2167 struct cfg80211_tid_stats *pertid; 2168 s8 ack_signal; 2169 s8 avg_ack_signal; 2170 2171 u16 airtime_weight; 2172 2173 u32 rx_mpdu_count; 2174 u32 fcs_err_count; 2175 2176 u32 airtime_link_metric; 2177 2178 u8 connected_to_as; 2179 2180 bool mlo_params_valid; 2181 u8 assoc_link_id; 2182 u8 mld_addr[ETH_ALEN] __aligned(2); 2183 const u8 *assoc_resp_ies; 2184 size_t assoc_resp_ies_len; 2185 }; 2186 2187 /** 2188 * struct cfg80211_sar_sub_specs - sub specs limit 2189 * @power: power limitation in 0.25dbm 2190 * @freq_range_index: index the power limitation applies to 2191 */ 2192 struct cfg80211_sar_sub_specs { 2193 s32 power; 2194 u32 freq_range_index; 2195 }; 2196 2197 /** 2198 * struct cfg80211_sar_specs - sar limit specs 2199 * @type: it's set with power in 0.25dbm or other types 2200 * @num_sub_specs: number of sar sub specs 2201 * @sub_specs: memory to hold the sar sub specs 2202 */ 2203 struct cfg80211_sar_specs { 2204 enum nl80211_sar_type type; 2205 u32 num_sub_specs; 2206 struct cfg80211_sar_sub_specs sub_specs[] __counted_by(num_sub_specs); 2207 }; 2208 2209 2210 /** 2211 * struct cfg80211_sar_freq_ranges - sar frequency ranges 2212 * @start_freq: start range edge frequency 2213 * @end_freq: end range edge frequency 2214 */ 2215 struct cfg80211_sar_freq_ranges { 2216 u32 start_freq; 2217 u32 end_freq; 2218 }; 2219 2220 /** 2221 * struct cfg80211_sar_capa - sar limit capability 2222 * @type: it's set via power in 0.25dbm or other types 2223 * @num_freq_ranges: number of frequency ranges 2224 * @freq_ranges: memory to hold the freq ranges. 2225 * 2226 * Note: WLAN driver may append new ranges or split an existing 2227 * range to small ones and then append them. 2228 */ 2229 struct cfg80211_sar_capa { 2230 enum nl80211_sar_type type; 2231 u32 num_freq_ranges; 2232 const struct cfg80211_sar_freq_ranges *freq_ranges; 2233 }; 2234 2235 #if IS_ENABLED(CONFIG_CFG80211) 2236 /** 2237 * cfg80211_get_station - retrieve information about a given station 2238 * @dev: the device where the station is supposed to be connected to 2239 * @mac_addr: the mac address of the station of interest 2240 * @sinfo: pointer to the structure to fill with the information 2241 * 2242 * Return: 0 on success and sinfo is filled with the available information 2243 * otherwise returns a negative error code and the content of sinfo has to be 2244 * considered undefined. 2245 */ 2246 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr, 2247 struct station_info *sinfo); 2248 #else 2249 static inline int cfg80211_get_station(struct net_device *dev, 2250 const u8 *mac_addr, 2251 struct station_info *sinfo) 2252 { 2253 return -ENOENT; 2254 } 2255 #endif 2256 2257 /** 2258 * enum monitor_flags - monitor flags 2259 * 2260 * Monitor interface configuration flags. Note that these must be the bits 2261 * according to the nl80211 flags. 2262 * 2263 * @MONITOR_FLAG_CHANGED: set if the flags were changed 2264 * @MONITOR_FLAG_FCSFAIL: pass frames with bad FCS 2265 * @MONITOR_FLAG_PLCPFAIL: pass frames with bad PLCP 2266 * @MONITOR_FLAG_CONTROL: pass control frames 2267 * @MONITOR_FLAG_OTHER_BSS: disable BSSID filtering 2268 * @MONITOR_FLAG_COOK_FRAMES: report frames after processing 2269 * @MONITOR_FLAG_ACTIVE: active monitor, ACKs frames on its MAC address 2270 * @MONITOR_FLAG_SKIP_TX: do not pass locally transmitted frames 2271 */ 2272 enum monitor_flags { 2273 MONITOR_FLAG_CHANGED = BIT(__NL80211_MNTR_FLAG_INVALID), 2274 MONITOR_FLAG_FCSFAIL = BIT(NL80211_MNTR_FLAG_FCSFAIL), 2275 MONITOR_FLAG_PLCPFAIL = BIT(NL80211_MNTR_FLAG_PLCPFAIL), 2276 MONITOR_FLAG_CONTROL = BIT(NL80211_MNTR_FLAG_CONTROL), 2277 MONITOR_FLAG_OTHER_BSS = BIT(NL80211_MNTR_FLAG_OTHER_BSS), 2278 MONITOR_FLAG_COOK_FRAMES = BIT(NL80211_MNTR_FLAG_COOK_FRAMES), 2279 MONITOR_FLAG_ACTIVE = BIT(NL80211_MNTR_FLAG_ACTIVE), 2280 MONITOR_FLAG_SKIP_TX = BIT(NL80211_MNTR_FLAG_SKIP_TX), 2281 }; 2282 2283 /** 2284 * enum mpath_info_flags - mesh path information flags 2285 * 2286 * Used by the driver to indicate which info in &struct mpath_info it has filled 2287 * in during get_station() or dump_station(). 2288 * 2289 * @MPATH_INFO_FRAME_QLEN: @frame_qlen filled 2290 * @MPATH_INFO_SN: @sn filled 2291 * @MPATH_INFO_METRIC: @metric filled 2292 * @MPATH_INFO_EXPTIME: @exptime filled 2293 * @MPATH_INFO_DISCOVERY_TIMEOUT: @discovery_timeout filled 2294 * @MPATH_INFO_DISCOVERY_RETRIES: @discovery_retries filled 2295 * @MPATH_INFO_FLAGS: @flags filled 2296 * @MPATH_INFO_HOP_COUNT: @hop_count filled 2297 * @MPATH_INFO_PATH_CHANGE: @path_change_count filled 2298 */ 2299 enum mpath_info_flags { 2300 MPATH_INFO_FRAME_QLEN = BIT(0), 2301 MPATH_INFO_SN = BIT(1), 2302 MPATH_INFO_METRIC = BIT(2), 2303 MPATH_INFO_EXPTIME = BIT(3), 2304 MPATH_INFO_DISCOVERY_TIMEOUT = BIT(4), 2305 MPATH_INFO_DISCOVERY_RETRIES = BIT(5), 2306 MPATH_INFO_FLAGS = BIT(6), 2307 MPATH_INFO_HOP_COUNT = BIT(7), 2308 MPATH_INFO_PATH_CHANGE = BIT(8), 2309 }; 2310 2311 /** 2312 * struct mpath_info - mesh path information 2313 * 2314 * Mesh path information filled by driver for get_mpath() and dump_mpath(). 2315 * 2316 * @filled: bitfield of flags from &enum mpath_info_flags 2317 * @frame_qlen: number of queued frames for this destination 2318 * @sn: target sequence number 2319 * @metric: metric (cost) of this mesh path 2320 * @exptime: expiration time for the mesh path from now, in msecs 2321 * @flags: mesh path flags from &enum mesh_path_flags 2322 * @discovery_timeout: total mesh path discovery timeout, in msecs 2323 * @discovery_retries: mesh path discovery retries 2324 * @generation: generation number for nl80211 dumps. 2325 * This number should increase every time the list of mesh paths 2326 * changes, i.e. when a station is added or removed, so that 2327 * userspace can tell whether it got a consistent snapshot. 2328 * @hop_count: hops to destination 2329 * @path_change_count: total number of path changes to destination 2330 */ 2331 struct mpath_info { 2332 u32 filled; 2333 u32 frame_qlen; 2334 u32 sn; 2335 u32 metric; 2336 u32 exptime; 2337 u32 discovery_timeout; 2338 u8 discovery_retries; 2339 u8 flags; 2340 u8 hop_count; 2341 u32 path_change_count; 2342 2343 int generation; 2344 }; 2345 2346 /** 2347 * struct bss_parameters - BSS parameters 2348 * 2349 * Used to change BSS parameters (mainly for AP mode). 2350 * 2351 * @link_id: link_id or -1 for non-MLD 2352 * @use_cts_prot: Whether to use CTS protection 2353 * (0 = no, 1 = yes, -1 = do not change) 2354 * @use_short_preamble: Whether the use of short preambles is allowed 2355 * (0 = no, 1 = yes, -1 = do not change) 2356 * @use_short_slot_time: Whether the use of short slot time is allowed 2357 * (0 = no, 1 = yes, -1 = do not change) 2358 * @basic_rates: basic rates in IEEE 802.11 format 2359 * (or NULL for no change) 2360 * @basic_rates_len: number of basic rates 2361 * @ap_isolate: do not forward packets between connected stations 2362 * (0 = no, 1 = yes, -1 = do not change) 2363 * @ht_opmode: HT Operation mode 2364 * (u16 = opmode, -1 = do not change) 2365 * @p2p_ctwindow: P2P CT Window (-1 = no change) 2366 * @p2p_opp_ps: P2P opportunistic PS (-1 = no change) 2367 */ 2368 struct bss_parameters { 2369 int link_id; 2370 int use_cts_prot; 2371 int use_short_preamble; 2372 int use_short_slot_time; 2373 const u8 *basic_rates; 2374 u8 basic_rates_len; 2375 int ap_isolate; 2376 int ht_opmode; 2377 s8 p2p_ctwindow, p2p_opp_ps; 2378 }; 2379 2380 /** 2381 * struct mesh_config - 802.11s mesh configuration 2382 * 2383 * These parameters can be changed while the mesh is active. 2384 * 2385 * @dot11MeshRetryTimeout: the initial retry timeout in millisecond units used 2386 * by the Mesh Peering Open message 2387 * @dot11MeshConfirmTimeout: the initial retry timeout in millisecond units 2388 * used by the Mesh Peering Open message 2389 * @dot11MeshHoldingTimeout: the confirm timeout in millisecond units used by 2390 * the mesh peering management to close a mesh peering 2391 * @dot11MeshMaxPeerLinks: the maximum number of peer links allowed on this 2392 * mesh interface 2393 * @dot11MeshMaxRetries: the maximum number of peer link open retries that can 2394 * be sent to establish a new peer link instance in a mesh 2395 * @dot11MeshTTL: the value of TTL field set at a source mesh STA 2396 * @element_ttl: the value of TTL field set at a mesh STA for path selection 2397 * elements 2398 * @auto_open_plinks: whether we should automatically open peer links when we 2399 * detect compatible mesh peers 2400 * @dot11MeshNbrOffsetMaxNeighbor: the maximum number of neighbors to 2401 * synchronize to for 11s default synchronization method 2402 * @dot11MeshHWMPmaxPREQretries: the number of action frames containing a PREQ 2403 * that an originator mesh STA can send to a particular path target 2404 * @path_refresh_time: how frequently to refresh mesh paths in milliseconds 2405 * @min_discovery_timeout: the minimum length of time to wait until giving up on 2406 * a path discovery in milliseconds 2407 * @dot11MeshHWMPactivePathTimeout: the time (in TUs) for which mesh STAs 2408 * receiving a PREQ shall consider the forwarding information from the 2409 * root to be valid. (TU = time unit) 2410 * @dot11MeshHWMPpreqMinInterval: the minimum interval of time (in TUs) during 2411 * which a mesh STA can send only one action frame containing a PREQ 2412 * element 2413 * @dot11MeshHWMPperrMinInterval: the minimum interval of time (in TUs) during 2414 * which a mesh STA can send only one Action frame containing a PERR 2415 * element 2416 * @dot11MeshHWMPnetDiameterTraversalTime: the interval of time (in TUs) that 2417 * it takes for an HWMP information element to propagate across the mesh 2418 * @dot11MeshHWMPRootMode: the configuration of a mesh STA as root mesh STA 2419 * @dot11MeshHWMPRannInterval: the interval of time (in TUs) between root 2420 * announcements are transmitted 2421 * @dot11MeshGateAnnouncementProtocol: whether to advertise that this mesh 2422 * station has access to a broader network beyond the MBSS. (This is 2423 * missnamed in draft 12.0: dot11MeshGateAnnouncementProtocol set to true 2424 * only means that the station will announce others it's a mesh gate, but 2425 * not necessarily using the gate announcement protocol. Still keeping the 2426 * same nomenclature to be in sync with the spec) 2427 * @dot11MeshForwarding: whether the Mesh STA is forwarding or non-forwarding 2428 * entity (default is TRUE - forwarding entity) 2429 * @rssi_threshold: the threshold for average signal strength of candidate 2430 * station to establish a peer link 2431 * @ht_opmode: mesh HT protection mode 2432 * 2433 * @dot11MeshHWMPactivePathToRootTimeout: The time (in TUs) for which mesh STAs 2434 * receiving a proactive PREQ shall consider the forwarding information to 2435 * the root mesh STA to be valid. 2436 * 2437 * @dot11MeshHWMProotInterval: The interval of time (in TUs) between proactive 2438 * PREQs are transmitted. 2439 * @dot11MeshHWMPconfirmationInterval: The minimum interval of time (in TUs) 2440 * during which a mesh STA can send only one Action frame containing 2441 * a PREQ element for root path confirmation. 2442 * @power_mode: The default mesh power save mode which will be the initial 2443 * setting for new peer links. 2444 * @dot11MeshAwakeWindowDuration: The duration in TUs the STA will remain awake 2445 * after transmitting its beacon. 2446 * @plink_timeout: If no tx activity is seen from a STA we've established 2447 * peering with for longer than this time (in seconds), then remove it 2448 * from the STA's list of peers. Default is 30 minutes. 2449 * @dot11MeshConnectedToAuthServer: if set to true then this mesh STA 2450 * will advertise that it is connected to a authentication server 2451 * in the mesh formation field. 2452 * @dot11MeshConnectedToMeshGate: if set to true, advertise that this STA is 2453 * connected to a mesh gate in mesh formation info. If false, the 2454 * value in mesh formation is determined by the presence of root paths 2455 * in the mesh path table 2456 * @dot11MeshNolearn: Try to avoid multi-hop path discovery (e.g. PREQ/PREP 2457 * for HWMP) if the destination is a direct neighbor. Note that this might 2458 * not be the optimal decision as a multi-hop route might be better. So 2459 * if using this setting you will likely also want to disable 2460 * dot11MeshForwarding and use another mesh routing protocol on top. 2461 */ 2462 struct mesh_config { 2463 u16 dot11MeshRetryTimeout; 2464 u16 dot11MeshConfirmTimeout; 2465 u16 dot11MeshHoldingTimeout; 2466 u16 dot11MeshMaxPeerLinks; 2467 u8 dot11MeshMaxRetries; 2468 u8 dot11MeshTTL; 2469 u8 element_ttl; 2470 bool auto_open_plinks; 2471 u32 dot11MeshNbrOffsetMaxNeighbor; 2472 u8 dot11MeshHWMPmaxPREQretries; 2473 u32 path_refresh_time; 2474 u16 min_discovery_timeout; 2475 u32 dot11MeshHWMPactivePathTimeout; 2476 u16 dot11MeshHWMPpreqMinInterval; 2477 u16 dot11MeshHWMPperrMinInterval; 2478 u16 dot11MeshHWMPnetDiameterTraversalTime; 2479 u8 dot11MeshHWMPRootMode; 2480 bool dot11MeshConnectedToMeshGate; 2481 bool dot11MeshConnectedToAuthServer; 2482 u16 dot11MeshHWMPRannInterval; 2483 bool dot11MeshGateAnnouncementProtocol; 2484 bool dot11MeshForwarding; 2485 s32 rssi_threshold; 2486 u16 ht_opmode; 2487 u32 dot11MeshHWMPactivePathToRootTimeout; 2488 u16 dot11MeshHWMProotInterval; 2489 u16 dot11MeshHWMPconfirmationInterval; 2490 enum nl80211_mesh_power_mode power_mode; 2491 u16 dot11MeshAwakeWindowDuration; 2492 u32 plink_timeout; 2493 bool dot11MeshNolearn; 2494 }; 2495 2496 /** 2497 * struct mesh_setup - 802.11s mesh setup configuration 2498 * @chandef: defines the channel to use 2499 * @mesh_id: the mesh ID 2500 * @mesh_id_len: length of the mesh ID, at least 1 and at most 32 bytes 2501 * @sync_method: which synchronization method to use 2502 * @path_sel_proto: which path selection protocol to use 2503 * @path_metric: which metric to use 2504 * @auth_id: which authentication method this mesh is using 2505 * @ie: vendor information elements (optional) 2506 * @ie_len: length of vendor information elements 2507 * @is_authenticated: this mesh requires authentication 2508 * @is_secure: this mesh uses security 2509 * @user_mpm: userspace handles all MPM functions 2510 * @dtim_period: DTIM period to use 2511 * @beacon_interval: beacon interval to use 2512 * @mcast_rate: multicast rate for Mesh Node [6Mbps is the default for 802.11a] 2513 * @basic_rates: basic rates to use when creating the mesh 2514 * @beacon_rate: bitrate to be used for beacons 2515 * @userspace_handles_dfs: whether user space controls DFS operation, i.e. 2516 * changes the channel when a radar is detected. This is required 2517 * to operate on DFS channels. 2518 * @control_port_over_nl80211: TRUE if userspace expects to exchange control 2519 * port frames over NL80211 instead of the network interface. 2520 * 2521 * These parameters are fixed when the mesh is created. 2522 */ 2523 struct mesh_setup { 2524 struct cfg80211_chan_def chandef; 2525 const u8 *mesh_id; 2526 u8 mesh_id_len; 2527 u8 sync_method; 2528 u8 path_sel_proto; 2529 u8 path_metric; 2530 u8 auth_id; 2531 const u8 *ie; 2532 u8 ie_len; 2533 bool is_authenticated; 2534 bool is_secure; 2535 bool user_mpm; 2536 u8 dtim_period; 2537 u16 beacon_interval; 2538 int mcast_rate[NUM_NL80211_BANDS]; 2539 u32 basic_rates; 2540 struct cfg80211_bitrate_mask beacon_rate; 2541 bool userspace_handles_dfs; 2542 bool control_port_over_nl80211; 2543 }; 2544 2545 /** 2546 * struct ocb_setup - 802.11p OCB mode setup configuration 2547 * @chandef: defines the channel to use 2548 * 2549 * These parameters are fixed when connecting to the network 2550 */ 2551 struct ocb_setup { 2552 struct cfg80211_chan_def chandef; 2553 }; 2554 2555 /** 2556 * struct ieee80211_txq_params - TX queue parameters 2557 * @ac: AC identifier 2558 * @txop: Maximum burst time in units of 32 usecs, 0 meaning disabled 2559 * @cwmin: Minimum contention window [a value of the form 2^n-1 in the range 2560 * 1..32767] 2561 * @cwmax: Maximum contention window [a value of the form 2^n-1 in the range 2562 * 1..32767] 2563 * @aifs: Arbitration interframe space [0..255] 2564 * @link_id: link_id or -1 for non-MLD 2565 */ 2566 struct ieee80211_txq_params { 2567 enum nl80211_ac ac; 2568 u16 txop; 2569 u16 cwmin; 2570 u16 cwmax; 2571 u8 aifs; 2572 int link_id; 2573 }; 2574 2575 /** 2576 * DOC: Scanning and BSS list handling 2577 * 2578 * The scanning process itself is fairly simple, but cfg80211 offers quite 2579 * a bit of helper functionality. To start a scan, the scan operation will 2580 * be invoked with a scan definition. This scan definition contains the 2581 * channels to scan, and the SSIDs to send probe requests for (including the 2582 * wildcard, if desired). A passive scan is indicated by having no SSIDs to 2583 * probe. Additionally, a scan request may contain extra information elements 2584 * that should be added to the probe request. The IEs are guaranteed to be 2585 * well-formed, and will not exceed the maximum length the driver advertised 2586 * in the wiphy structure. 2587 * 2588 * When scanning finds a BSS, cfg80211 needs to be notified of that, because 2589 * it is responsible for maintaining the BSS list; the driver should not 2590 * maintain a list itself. For this notification, various functions exist. 2591 * 2592 * Since drivers do not maintain a BSS list, there are also a number of 2593 * functions to search for a BSS and obtain information about it from the 2594 * BSS structure cfg80211 maintains. The BSS list is also made available 2595 * to userspace. 2596 */ 2597 2598 /** 2599 * struct cfg80211_ssid - SSID description 2600 * @ssid: the SSID 2601 * @ssid_len: length of the ssid 2602 */ 2603 struct cfg80211_ssid { 2604 u8 ssid[IEEE80211_MAX_SSID_LEN]; 2605 u8 ssid_len; 2606 }; 2607 2608 /** 2609 * struct cfg80211_scan_info - information about completed scan 2610 * @scan_start_tsf: scan start time in terms of the TSF of the BSS that the 2611 * wireless device that requested the scan is connected to. If this 2612 * information is not available, this field is left zero. 2613 * @tsf_bssid: the BSSID according to which %scan_start_tsf is set. 2614 * @aborted: set to true if the scan was aborted for any reason, 2615 * userspace will be notified of that 2616 */ 2617 struct cfg80211_scan_info { 2618 u64 scan_start_tsf; 2619 u8 tsf_bssid[ETH_ALEN] __aligned(2); 2620 bool aborted; 2621 }; 2622 2623 /** 2624 * struct cfg80211_scan_6ghz_params - relevant for 6 GHz only 2625 * 2626 * @short_ssid: short ssid to scan for 2627 * @bssid: bssid to scan for 2628 * @channel_idx: idx of the channel in the channel array in the scan request 2629 * which the above info is relevant to 2630 * @unsolicited_probe: the AP transmits unsolicited probe response every 20 TU 2631 * @short_ssid_valid: @short_ssid is valid and can be used 2632 * @psc_no_listen: when set, and the channel is a PSC channel, no need to wait 2633 * 20 TUs before starting to send probe requests. 2634 * @psd_20: The AP's 20 MHz PSD value. 2635 */ 2636 struct cfg80211_scan_6ghz_params { 2637 u32 short_ssid; 2638 u32 channel_idx; 2639 u8 bssid[ETH_ALEN]; 2640 bool unsolicited_probe; 2641 bool short_ssid_valid; 2642 bool psc_no_listen; 2643 s8 psd_20; 2644 }; 2645 2646 /** 2647 * struct cfg80211_scan_request - scan request description 2648 * 2649 * @ssids: SSIDs to scan for (active scan only) 2650 * @n_ssids: number of SSIDs 2651 * @channels: channels to scan on. 2652 * @n_channels: total number of channels to scan 2653 * @ie: optional information element(s) to add into Probe Request or %NULL 2654 * @ie_len: length of ie in octets 2655 * @duration: how long to listen on each channel, in TUs. If 2656 * %duration_mandatory is not set, this is the maximum dwell time and 2657 * the actual dwell time may be shorter. 2658 * @duration_mandatory: if set, the scan duration must be as specified by the 2659 * %duration field. 2660 * @flags: control flags from &enum nl80211_scan_flags 2661 * @rates: bitmap of rates to advertise for each band 2662 * @wiphy: the wiphy this was for 2663 * @scan_start: time (in jiffies) when the scan started 2664 * @wdev: the wireless device to scan for 2665 * @info: (internal) information about completed scan 2666 * @notified: (internal) scan request was notified as done or aborted 2667 * @no_cck: used to send probe requests at non CCK rate in 2GHz band 2668 * @mac_addr: MAC address used with randomisation 2669 * @mac_addr_mask: MAC address mask used with randomisation, bits that 2670 * are 0 in the mask should be randomised, bits that are 1 should 2671 * be taken from the @mac_addr 2672 * @scan_6ghz: relevant for split scan request only, 2673 * true if this is the second scan request 2674 * @n_6ghz_params: number of 6 GHz params 2675 * @scan_6ghz_params: 6 GHz params 2676 * @bssid: BSSID to scan for (most commonly, the wildcard BSSID) 2677 * @tsf_report_link_id: for MLO, indicates the link ID of the BSS that should be 2678 * used for TSF reporting. Can be set to -1 to indicate no preference. 2679 */ 2680 struct cfg80211_scan_request { 2681 struct cfg80211_ssid *ssids; 2682 int n_ssids; 2683 u32 n_channels; 2684 const u8 *ie; 2685 size_t ie_len; 2686 u16 duration; 2687 bool duration_mandatory; 2688 u32 flags; 2689 2690 u32 rates[NUM_NL80211_BANDS]; 2691 2692 struct wireless_dev *wdev; 2693 2694 u8 mac_addr[ETH_ALEN] __aligned(2); 2695 u8 mac_addr_mask[ETH_ALEN] __aligned(2); 2696 u8 bssid[ETH_ALEN] __aligned(2); 2697 2698 /* internal */ 2699 struct wiphy *wiphy; 2700 unsigned long scan_start; 2701 struct cfg80211_scan_info info; 2702 bool notified; 2703 bool no_cck; 2704 bool scan_6ghz; 2705 u32 n_6ghz_params; 2706 struct cfg80211_scan_6ghz_params *scan_6ghz_params; 2707 s8 tsf_report_link_id; 2708 2709 /* keep last */ 2710 struct ieee80211_channel *channels[] __counted_by(n_channels); 2711 }; 2712 2713 static inline void get_random_mask_addr(u8 *buf, const u8 *addr, const u8 *mask) 2714 { 2715 int i; 2716 2717 get_random_bytes(buf, ETH_ALEN); 2718 for (i = 0; i < ETH_ALEN; i++) { 2719 buf[i] &= ~mask[i]; 2720 buf[i] |= addr[i] & mask[i]; 2721 } 2722 } 2723 2724 /** 2725 * struct cfg80211_match_set - sets of attributes to match 2726 * 2727 * @ssid: SSID to be matched; may be zero-length in case of BSSID match 2728 * or no match (RSSI only) 2729 * @bssid: BSSID to be matched; may be all-zero BSSID in case of SSID match 2730 * or no match (RSSI only) 2731 * @rssi_thold: don't report scan results below this threshold (in s32 dBm) 2732 */ 2733 struct cfg80211_match_set { 2734 struct cfg80211_ssid ssid; 2735 u8 bssid[ETH_ALEN]; 2736 s32 rssi_thold; 2737 }; 2738 2739 /** 2740 * struct cfg80211_sched_scan_plan - scan plan for scheduled scan 2741 * 2742 * @interval: interval between scheduled scan iterations. In seconds. 2743 * @iterations: number of scan iterations in this scan plan. Zero means 2744 * infinite loop. 2745 * The last scan plan will always have this parameter set to zero, 2746 * all other scan plans will have a finite number of iterations. 2747 */ 2748 struct cfg80211_sched_scan_plan { 2749 u32 interval; 2750 u32 iterations; 2751 }; 2752 2753 /** 2754 * struct cfg80211_bss_select_adjust - BSS selection with RSSI adjustment. 2755 * 2756 * @band: band of BSS which should match for RSSI level adjustment. 2757 * @delta: value of RSSI level adjustment. 2758 */ 2759 struct cfg80211_bss_select_adjust { 2760 enum nl80211_band band; 2761 s8 delta; 2762 }; 2763 2764 /** 2765 * struct cfg80211_sched_scan_request - scheduled scan request description 2766 * 2767 * @reqid: identifies this request. 2768 * @ssids: SSIDs to scan for (passed in the probe_reqs in active scans) 2769 * @n_ssids: number of SSIDs 2770 * @n_channels: total number of channels to scan 2771 * @ie: optional information element(s) to add into Probe Request or %NULL 2772 * @ie_len: length of ie in octets 2773 * @flags: control flags from &enum nl80211_scan_flags 2774 * @match_sets: sets of parameters to be matched for a scan result 2775 * entry to be considered valid and to be passed to the host 2776 * (others are filtered out). 2777 * If omitted, all results are passed. 2778 * @n_match_sets: number of match sets 2779 * @report_results: indicates that results were reported for this request 2780 * @wiphy: the wiphy this was for 2781 * @dev: the interface 2782 * @scan_start: start time of the scheduled scan 2783 * @channels: channels to scan 2784 * @min_rssi_thold: for drivers only supporting a single threshold, this 2785 * contains the minimum over all matchsets 2786 * @mac_addr: MAC address used with randomisation 2787 * @mac_addr_mask: MAC address mask used with randomisation, bits that 2788 * are 0 in the mask should be randomised, bits that are 1 should 2789 * be taken from the @mac_addr 2790 * @scan_plans: scan plans to be executed in this scheduled scan. Lowest 2791 * index must be executed first. 2792 * @n_scan_plans: number of scan plans, at least 1. 2793 * @rcu_head: RCU callback used to free the struct 2794 * @owner_nlportid: netlink portid of owner (if this should is a request 2795 * owned by a particular socket) 2796 * @nl_owner_dead: netlink owner socket was closed - this request be freed 2797 * @list: for keeping list of requests. 2798 * @delay: delay in seconds to use before starting the first scan 2799 * cycle. The driver may ignore this parameter and start 2800 * immediately (or at any other time), if this feature is not 2801 * supported. 2802 * @relative_rssi_set: Indicates whether @relative_rssi is set or not. 2803 * @relative_rssi: Relative RSSI threshold in dB to restrict scan result 2804 * reporting in connected state to cases where a matching BSS is determined 2805 * to have better or slightly worse RSSI than the current connected BSS. 2806 * The relative RSSI threshold values are ignored in disconnected state. 2807 * @rssi_adjust: delta dB of RSSI preference to be given to the BSSs that belong 2808 * to the specified band while deciding whether a better BSS is reported 2809 * using @relative_rssi. If delta is a negative number, the BSSs that 2810 * belong to the specified band will be penalized by delta dB in relative 2811 * comparisons. 2812 */ 2813 struct cfg80211_sched_scan_request { 2814 u64 reqid; 2815 struct cfg80211_ssid *ssids; 2816 int n_ssids; 2817 u32 n_channels; 2818 const u8 *ie; 2819 size_t ie_len; 2820 u32 flags; 2821 struct cfg80211_match_set *match_sets; 2822 int n_match_sets; 2823 s32 min_rssi_thold; 2824 u32 delay; 2825 struct cfg80211_sched_scan_plan *scan_plans; 2826 int n_scan_plans; 2827 2828 u8 mac_addr[ETH_ALEN] __aligned(2); 2829 u8 mac_addr_mask[ETH_ALEN] __aligned(2); 2830 2831 bool relative_rssi_set; 2832 s8 relative_rssi; 2833 struct cfg80211_bss_select_adjust rssi_adjust; 2834 2835 /* internal */ 2836 struct wiphy *wiphy; 2837 struct net_device *dev; 2838 unsigned long scan_start; 2839 bool report_results; 2840 struct rcu_head rcu_head; 2841 u32 owner_nlportid; 2842 bool nl_owner_dead; 2843 struct list_head list; 2844 2845 /* keep last */ 2846 struct ieee80211_channel *channels[] __counted_by(n_channels); 2847 }; 2848 2849 /** 2850 * enum cfg80211_signal_type - signal type 2851 * 2852 * @CFG80211_SIGNAL_TYPE_NONE: no signal strength information available 2853 * @CFG80211_SIGNAL_TYPE_MBM: signal strength in mBm (100*dBm) 2854 * @CFG80211_SIGNAL_TYPE_UNSPEC: signal strength, increasing from 0 through 100 2855 */ 2856 enum cfg80211_signal_type { 2857 CFG80211_SIGNAL_TYPE_NONE, 2858 CFG80211_SIGNAL_TYPE_MBM, 2859 CFG80211_SIGNAL_TYPE_UNSPEC, 2860 }; 2861 2862 /** 2863 * struct cfg80211_inform_bss - BSS inform data 2864 * @chan: channel the frame was received on 2865 * @signal: signal strength value, according to the wiphy's 2866 * signal type 2867 * @boottime_ns: timestamp (CLOCK_BOOTTIME) when the information was 2868 * received; should match the time when the frame was actually 2869 * received by the device (not just by the host, in case it was 2870 * buffered on the device) and be accurate to about 10ms. 2871 * If the frame isn't buffered, just passing the return value of 2872 * ktime_get_boottime_ns() is likely appropriate. 2873 * @parent_tsf: the time at the start of reception of the first octet of the 2874 * timestamp field of the frame. The time is the TSF of the BSS specified 2875 * by %parent_bssid. 2876 * @parent_bssid: the BSS according to which %parent_tsf is set. This is set to 2877 * the BSS that requested the scan in which the beacon/probe was received. 2878 * @chains: bitmask for filled values in @chain_signal. 2879 * @chain_signal: per-chain signal strength of last received BSS in dBm. 2880 * @restrict_use: restrict usage, if not set, assume @use_for is 2881 * %NL80211_BSS_USE_FOR_NORMAL. 2882 * @use_for: bitmap of possible usage for this BSS, see 2883 * &enum nl80211_bss_use_for 2884 * @cannot_use_reasons: the reasons (bitmap) for not being able to connect, 2885 * if @restrict_use is set and @use_for is zero (empty); may be 0 for 2886 * unspecified reasons; see &enum nl80211_bss_cannot_use_reasons 2887 * @drv_data: Data to be passed through to @inform_bss 2888 */ 2889 struct cfg80211_inform_bss { 2890 struct ieee80211_channel *chan; 2891 s32 signal; 2892 u64 boottime_ns; 2893 u64 parent_tsf; 2894 u8 parent_bssid[ETH_ALEN] __aligned(2); 2895 u8 chains; 2896 s8 chain_signal[IEEE80211_MAX_CHAINS]; 2897 2898 u8 restrict_use:1, use_for:7; 2899 u8 cannot_use_reasons; 2900 2901 void *drv_data; 2902 }; 2903 2904 /** 2905 * struct cfg80211_bss_ies - BSS entry IE data 2906 * @tsf: TSF contained in the frame that carried these IEs 2907 * @rcu_head: internal use, for freeing 2908 * @len: length of the IEs 2909 * @from_beacon: these IEs are known to come from a beacon 2910 * @data: IE data 2911 */ 2912 struct cfg80211_bss_ies { 2913 u64 tsf; 2914 struct rcu_head rcu_head; 2915 int len; 2916 bool from_beacon; 2917 u8 data[]; 2918 }; 2919 2920 /** 2921 * struct cfg80211_bss - BSS description 2922 * 2923 * This structure describes a BSS (which may also be a mesh network) 2924 * for use in scan results and similar. 2925 * 2926 * @channel: channel this BSS is on 2927 * @bssid: BSSID of the BSS 2928 * @beacon_interval: the beacon interval as from the frame 2929 * @capability: the capability field in host byte order 2930 * @ies: the information elements (Note that there is no guarantee that these 2931 * are well-formed!); this is a pointer to either the beacon_ies or 2932 * proberesp_ies depending on whether Probe Response frame has been 2933 * received. It is always non-%NULL. 2934 * @beacon_ies: the information elements from the last Beacon frame 2935 * (implementation note: if @hidden_beacon_bss is set this struct doesn't 2936 * own the beacon_ies, but they're just pointers to the ones from the 2937 * @hidden_beacon_bss struct) 2938 * @proberesp_ies: the information elements from the last Probe Response frame 2939 * @proberesp_ecsa_stuck: ECSA element is stuck in the Probe Response frame, 2940 * cannot rely on it having valid data 2941 * @hidden_beacon_bss: in case this BSS struct represents a probe response from 2942 * a BSS that hides the SSID in its beacon, this points to the BSS struct 2943 * that holds the beacon data. @beacon_ies is still valid, of course, and 2944 * points to the same data as hidden_beacon_bss->beacon_ies in that case. 2945 * @transmitted_bss: pointer to the transmitted BSS, if this is a 2946 * non-transmitted one (multi-BSSID support) 2947 * @nontrans_list: list of non-transmitted BSS, if this is a transmitted one 2948 * (multi-BSSID support) 2949 * @signal: signal strength value (type depends on the wiphy's signal_type) 2950 * @chains: bitmask for filled values in @chain_signal. 2951 * @chain_signal: per-chain signal strength of last received BSS in dBm. 2952 * @bssid_index: index in the multiple BSS set 2953 * @max_bssid_indicator: max number of members in the BSS set 2954 * @use_for: bitmap of possible usage for this BSS, see 2955 * &enum nl80211_bss_use_for 2956 * @cannot_use_reasons: the reasons (bitmap) for not being able to connect, 2957 * if @restrict_use is set and @use_for is zero (empty); may be 0 for 2958 * unspecified reasons; see &enum nl80211_bss_cannot_use_reasons 2959 * @priv: private area for driver use, has at least wiphy->bss_priv_size bytes 2960 */ 2961 struct cfg80211_bss { 2962 struct ieee80211_channel *channel; 2963 2964 const struct cfg80211_bss_ies __rcu *ies; 2965 const struct cfg80211_bss_ies __rcu *beacon_ies; 2966 const struct cfg80211_bss_ies __rcu *proberesp_ies; 2967 2968 struct cfg80211_bss *hidden_beacon_bss; 2969 struct cfg80211_bss *transmitted_bss; 2970 struct list_head nontrans_list; 2971 2972 s32 signal; 2973 2974 u16 beacon_interval; 2975 u16 capability; 2976 2977 u8 bssid[ETH_ALEN]; 2978 u8 chains; 2979 s8 chain_signal[IEEE80211_MAX_CHAINS]; 2980 2981 u8 proberesp_ecsa_stuck:1; 2982 2983 u8 bssid_index; 2984 u8 max_bssid_indicator; 2985 2986 u8 use_for; 2987 u8 cannot_use_reasons; 2988 2989 u8 priv[] __aligned(sizeof(void *)); 2990 }; 2991 2992 /** 2993 * ieee80211_bss_get_elem - find element with given ID 2994 * @bss: the bss to search 2995 * @id: the element ID 2996 * 2997 * Note that the return value is an RCU-protected pointer, so 2998 * rcu_read_lock() must be held when calling this function. 2999 * Return: %NULL if not found. 3000 */ 3001 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id); 3002 3003 /** 3004 * ieee80211_bss_get_ie - find IE with given ID 3005 * @bss: the bss to search 3006 * @id: the element ID 3007 * 3008 * Note that the return value is an RCU-protected pointer, so 3009 * rcu_read_lock() must be held when calling this function. 3010 * Return: %NULL if not found. 3011 */ 3012 static inline const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 id) 3013 { 3014 return (const void *)ieee80211_bss_get_elem(bss, id); 3015 } 3016 3017 3018 /** 3019 * struct cfg80211_auth_request - Authentication request data 3020 * 3021 * This structure provides information needed to complete IEEE 802.11 3022 * authentication. 3023 * 3024 * @bss: The BSS to authenticate with, the callee must obtain a reference 3025 * to it if it needs to keep it. 3026 * @auth_type: Authentication type (algorithm) 3027 * @ie: Extra IEs to add to Authentication frame or %NULL 3028 * @ie_len: Length of ie buffer in octets 3029 * @key_len: length of WEP key for shared key authentication 3030 * @key_idx: index of WEP key for shared key authentication 3031 * @key: WEP key for shared key authentication 3032 * @auth_data: Fields and elements in Authentication frames. This contains 3033 * the authentication frame body (non-IE and IE data), excluding the 3034 * Authentication algorithm number, i.e., starting at the Authentication 3035 * transaction sequence number field. 3036 * @auth_data_len: Length of auth_data buffer in octets 3037 * @link_id: if >= 0, indicates authentication should be done as an MLD, 3038 * the interface address is included as the MLD address and the 3039 * necessary link (with the given link_id) will be created (and 3040 * given an MLD address) by the driver 3041 * @ap_mld_addr: AP MLD address in case of authentication request with 3042 * an AP MLD, valid iff @link_id >= 0 3043 */ 3044 struct cfg80211_auth_request { 3045 struct cfg80211_bss *bss; 3046 const u8 *ie; 3047 size_t ie_len; 3048 enum nl80211_auth_type auth_type; 3049 const u8 *key; 3050 u8 key_len; 3051 s8 key_idx; 3052 const u8 *auth_data; 3053 size_t auth_data_len; 3054 s8 link_id; 3055 const u8 *ap_mld_addr; 3056 }; 3057 3058 /** 3059 * struct cfg80211_assoc_link - per-link information for MLO association 3060 * @bss: the BSS pointer, see also &struct cfg80211_assoc_request::bss; 3061 * if this is %NULL for a link, that link is not requested 3062 * @elems: extra elements for the per-STA profile for this link 3063 * @elems_len: length of the elements 3064 * @disabled: If set this link should be included during association etc. but it 3065 * should not be used until enabled by the AP MLD. 3066 * @error: per-link error code, must be <= 0. If there is an error, then the 3067 * operation as a whole must fail. 3068 */ 3069 struct cfg80211_assoc_link { 3070 struct cfg80211_bss *bss; 3071 const u8 *elems; 3072 size_t elems_len; 3073 bool disabled; 3074 int error; 3075 }; 3076 3077 /** 3078 * enum cfg80211_assoc_req_flags - Over-ride default behaviour in association. 3079 * 3080 * @ASSOC_REQ_DISABLE_HT: Disable HT (802.11n) 3081 * @ASSOC_REQ_DISABLE_VHT: Disable VHT 3082 * @ASSOC_REQ_USE_RRM: Declare RRM capability in this association 3083 * @CONNECT_REQ_EXTERNAL_AUTH_SUPPORT: User space indicates external 3084 * authentication capability. Drivers can offload authentication to 3085 * userspace if this flag is set. Only applicable for cfg80211_connect() 3086 * request (connect callback). 3087 * @ASSOC_REQ_DISABLE_HE: Disable HE 3088 * @ASSOC_REQ_DISABLE_EHT: Disable EHT 3089 * @CONNECT_REQ_MLO_SUPPORT: Userspace indicates support for handling MLD links. 3090 * Drivers shall disable MLO features for the current association if this 3091 * flag is not set. 3092 * @ASSOC_REQ_SPP_AMSDU: SPP A-MSDUs will be used on this connection (if any) 3093 */ 3094 enum cfg80211_assoc_req_flags { 3095 ASSOC_REQ_DISABLE_HT = BIT(0), 3096 ASSOC_REQ_DISABLE_VHT = BIT(1), 3097 ASSOC_REQ_USE_RRM = BIT(2), 3098 CONNECT_REQ_EXTERNAL_AUTH_SUPPORT = BIT(3), 3099 ASSOC_REQ_DISABLE_HE = BIT(4), 3100 ASSOC_REQ_DISABLE_EHT = BIT(5), 3101 CONNECT_REQ_MLO_SUPPORT = BIT(6), 3102 ASSOC_REQ_SPP_AMSDU = BIT(7), 3103 }; 3104 3105 /** 3106 * struct cfg80211_assoc_request - (Re)Association request data 3107 * 3108 * This structure provides information needed to complete IEEE 802.11 3109 * (re)association. 3110 * @bss: The BSS to associate with. If the call is successful the driver is 3111 * given a reference that it must give back to cfg80211_send_rx_assoc() 3112 * or to cfg80211_assoc_timeout(). To ensure proper refcounting, new 3113 * association requests while already associating must be rejected. 3114 * This also applies to the @links.bss parameter, which is used instead 3115 * of this one (it is %NULL) for MLO associations. 3116 * @ie: Extra IEs to add to (Re)Association Request frame or %NULL 3117 * @ie_len: Length of ie buffer in octets 3118 * @use_mfp: Use management frame protection (IEEE 802.11w) in this association 3119 * @crypto: crypto settings 3120 * @prev_bssid: previous BSSID, if not %NULL use reassociate frame. This is used 3121 * to indicate a request to reassociate within the ESS instead of a request 3122 * do the initial association with the ESS. When included, this is set to 3123 * the BSSID of the current association, i.e., to the value that is 3124 * included in the Current AP address field of the Reassociation Request 3125 * frame. 3126 * @flags: See &enum cfg80211_assoc_req_flags 3127 * @ht_capa: HT Capabilities over-rides. Values set in ht_capa_mask 3128 * will be used in ht_capa. Un-supported values will be ignored. 3129 * @ht_capa_mask: The bits of ht_capa which are to be used. 3130 * @vht_capa: VHT capability override 3131 * @vht_capa_mask: VHT capability mask indicating which fields to use 3132 * @fils_kek: FILS KEK for protecting (Re)Association Request/Response frame or 3133 * %NULL if FILS is not used. 3134 * @fils_kek_len: Length of fils_kek in octets 3135 * @fils_nonces: FILS nonces (part of AAD) for protecting (Re)Association 3136 * Request/Response frame or %NULL if FILS is not used. This field starts 3137 * with 16 octets of STA Nonce followed by 16 octets of AP Nonce. 3138 * @s1g_capa: S1G capability override 3139 * @s1g_capa_mask: S1G capability override mask 3140 * @links: per-link information for MLO connections 3141 * @link_id: >= 0 for MLO connections, where links are given, and indicates 3142 * the link on which the association request should be sent 3143 * @ap_mld_addr: AP MLD address in case of MLO association request, 3144 * valid iff @link_id >= 0 3145 */ 3146 struct cfg80211_assoc_request { 3147 struct cfg80211_bss *bss; 3148 const u8 *ie, *prev_bssid; 3149 size_t ie_len; 3150 struct cfg80211_crypto_settings crypto; 3151 bool use_mfp; 3152 u32 flags; 3153 struct ieee80211_ht_cap ht_capa; 3154 struct ieee80211_ht_cap ht_capa_mask; 3155 struct ieee80211_vht_cap vht_capa, vht_capa_mask; 3156 const u8 *fils_kek; 3157 size_t fils_kek_len; 3158 const u8 *fils_nonces; 3159 struct ieee80211_s1g_cap s1g_capa, s1g_capa_mask; 3160 struct cfg80211_assoc_link links[IEEE80211_MLD_MAX_NUM_LINKS]; 3161 const u8 *ap_mld_addr; 3162 s8 link_id; 3163 }; 3164 3165 /** 3166 * struct cfg80211_deauth_request - Deauthentication request data 3167 * 3168 * This structure provides information needed to complete IEEE 802.11 3169 * deauthentication. 3170 * 3171 * @bssid: the BSSID or AP MLD address to deauthenticate from 3172 * @ie: Extra IEs to add to Deauthentication frame or %NULL 3173 * @ie_len: Length of ie buffer in octets 3174 * @reason_code: The reason code for the deauthentication 3175 * @local_state_change: if set, change local state only and 3176 * do not set a deauth frame 3177 */ 3178 struct cfg80211_deauth_request { 3179 const u8 *bssid; 3180 const u8 *ie; 3181 size_t ie_len; 3182 u16 reason_code; 3183 bool local_state_change; 3184 }; 3185 3186 /** 3187 * struct cfg80211_disassoc_request - Disassociation request data 3188 * 3189 * This structure provides information needed to complete IEEE 802.11 3190 * disassociation. 3191 * 3192 * @ap_addr: the BSSID or AP MLD address to disassociate from 3193 * @ie: Extra IEs to add to Disassociation frame or %NULL 3194 * @ie_len: Length of ie buffer in octets 3195 * @reason_code: The reason code for the disassociation 3196 * @local_state_change: This is a request for a local state only, i.e., no 3197 * Disassociation frame is to be transmitted. 3198 */ 3199 struct cfg80211_disassoc_request { 3200 const u8 *ap_addr; 3201 const u8 *ie; 3202 size_t ie_len; 3203 u16 reason_code; 3204 bool local_state_change; 3205 }; 3206 3207 /** 3208 * struct cfg80211_ibss_params - IBSS parameters 3209 * 3210 * This structure defines the IBSS parameters for the join_ibss() 3211 * method. 3212 * 3213 * @ssid: The SSID, will always be non-null. 3214 * @ssid_len: The length of the SSID, will always be non-zero. 3215 * @bssid: Fixed BSSID requested, maybe be %NULL, if set do not 3216 * search for IBSSs with a different BSSID. 3217 * @chandef: defines the channel to use if no other IBSS to join can be found 3218 * @channel_fixed: The channel should be fixed -- do not search for 3219 * IBSSs to join on other channels. 3220 * @ie: information element(s) to include in the beacon 3221 * @ie_len: length of that 3222 * @beacon_interval: beacon interval to use 3223 * @privacy: this is a protected network, keys will be configured 3224 * after joining 3225 * @control_port: whether user space controls IEEE 802.1X port, i.e., 3226 * sets/clears %NL80211_STA_FLAG_AUTHORIZED. If true, the driver is 3227 * required to assume that the port is unauthorized until authorized by 3228 * user space. Otherwise, port is marked authorized by default. 3229 * @control_port_over_nl80211: TRUE if userspace expects to exchange control 3230 * port frames over NL80211 instead of the network interface. 3231 * @userspace_handles_dfs: whether user space controls DFS operation, i.e. 3232 * changes the channel when a radar is detected. This is required 3233 * to operate on DFS channels. 3234 * @basic_rates: bitmap of basic rates to use when creating the IBSS 3235 * @mcast_rate: per-band multicast rate index + 1 (0: disabled) 3236 * @ht_capa: HT Capabilities over-rides. Values set in ht_capa_mask 3237 * will be used in ht_capa. Un-supported values will be ignored. 3238 * @ht_capa_mask: The bits of ht_capa which are to be used. 3239 * @wep_keys: static WEP keys, if not NULL points to an array of 3240 * CFG80211_MAX_WEP_KEYS WEP keys 3241 * @wep_tx_key: key index (0..3) of the default TX static WEP key 3242 */ 3243 struct cfg80211_ibss_params { 3244 const u8 *ssid; 3245 const u8 *bssid; 3246 struct cfg80211_chan_def chandef; 3247 const u8 *ie; 3248 u8 ssid_len, ie_len; 3249 u16 beacon_interval; 3250 u32 basic_rates; 3251 bool channel_fixed; 3252 bool privacy; 3253 bool control_port; 3254 bool control_port_over_nl80211; 3255 bool userspace_handles_dfs; 3256 int mcast_rate[NUM_NL80211_BANDS]; 3257 struct ieee80211_ht_cap ht_capa; 3258 struct ieee80211_ht_cap ht_capa_mask; 3259 struct key_params *wep_keys; 3260 int wep_tx_key; 3261 }; 3262 3263 /** 3264 * struct cfg80211_bss_selection - connection parameters for BSS selection. 3265 * 3266 * @behaviour: requested BSS selection behaviour. 3267 * @param: parameters for requestion behaviour. 3268 * @param.band_pref: preferred band for %NL80211_BSS_SELECT_ATTR_BAND_PREF. 3269 * @param.adjust: parameters for %NL80211_BSS_SELECT_ATTR_RSSI_ADJUST. 3270 */ 3271 struct cfg80211_bss_selection { 3272 enum nl80211_bss_select_attr behaviour; 3273 union { 3274 enum nl80211_band band_pref; 3275 struct cfg80211_bss_select_adjust adjust; 3276 } param; 3277 }; 3278 3279 /** 3280 * struct cfg80211_connect_params - Connection parameters 3281 * 3282 * This structure provides information needed to complete IEEE 802.11 3283 * authentication and association. 3284 * 3285 * @channel: The channel to use or %NULL if not specified (auto-select based 3286 * on scan results) 3287 * @channel_hint: The channel of the recommended BSS for initial connection or 3288 * %NULL if not specified 3289 * @bssid: The AP BSSID or %NULL if not specified (auto-select based on scan 3290 * results) 3291 * @bssid_hint: The recommended AP BSSID for initial connection to the BSS or 3292 * %NULL if not specified. Unlike the @bssid parameter, the driver is 3293 * allowed to ignore this @bssid_hint if it has knowledge of a better BSS 3294 * to use. 3295 * @ssid: SSID 3296 * @ssid_len: Length of ssid in octets 3297 * @auth_type: Authentication type (algorithm) 3298 * @ie: IEs for association request 3299 * @ie_len: Length of assoc_ie in octets 3300 * @privacy: indicates whether privacy-enabled APs should be used 3301 * @mfp: indicate whether management frame protection is used 3302 * @crypto: crypto settings 3303 * @key_len: length of WEP key for shared key authentication 3304 * @key_idx: index of WEP key for shared key authentication 3305 * @key: WEP key for shared key authentication 3306 * @flags: See &enum cfg80211_assoc_req_flags 3307 * @bg_scan_period: Background scan period in seconds 3308 * or -1 to indicate that default value is to be used. 3309 * @ht_capa: HT Capabilities over-rides. Values set in ht_capa_mask 3310 * will be used in ht_capa. Un-supported values will be ignored. 3311 * @ht_capa_mask: The bits of ht_capa which are to be used. 3312 * @vht_capa: VHT Capability overrides 3313 * @vht_capa_mask: The bits of vht_capa which are to be used. 3314 * @pbss: if set, connect to a PCP instead of AP. Valid for DMG 3315 * networks. 3316 * @bss_select: criteria to be used for BSS selection. 3317 * @prev_bssid: previous BSSID, if not %NULL use reassociate frame. This is used 3318 * to indicate a request to reassociate within the ESS instead of a request 3319 * do the initial association with the ESS. When included, this is set to 3320 * the BSSID of the current association, i.e., to the value that is 3321 * included in the Current AP address field of the Reassociation Request 3322 * frame. 3323 * @fils_erp_username: EAP re-authentication protocol (ERP) username part of the 3324 * NAI or %NULL if not specified. This is used to construct FILS wrapped 3325 * data IE. 3326 * @fils_erp_username_len: Length of @fils_erp_username in octets. 3327 * @fils_erp_realm: EAP re-authentication protocol (ERP) realm part of NAI or 3328 * %NULL if not specified. This specifies the domain name of ER server and 3329 * is used to construct FILS wrapped data IE. 3330 * @fils_erp_realm_len: Length of @fils_erp_realm in octets. 3331 * @fils_erp_next_seq_num: The next sequence number to use in the FILS ERP 3332 * messages. This is also used to construct FILS wrapped data IE. 3333 * @fils_erp_rrk: ERP re-authentication Root Key (rRK) used to derive additional 3334 * keys in FILS or %NULL if not specified. 3335 * @fils_erp_rrk_len: Length of @fils_erp_rrk in octets. 3336 * @want_1x: indicates user-space supports and wants to use 802.1X driver 3337 * offload of 4-way handshake. 3338 * @edmg: define the EDMG channels. 3339 * This may specify multiple channels and bonding options for the driver 3340 * to choose from, based on BSS configuration. 3341 */ 3342 struct cfg80211_connect_params { 3343 struct ieee80211_channel *channel; 3344 struct ieee80211_channel *channel_hint; 3345 const u8 *bssid; 3346 const u8 *bssid_hint; 3347 const u8 *ssid; 3348 size_t ssid_len; 3349 enum nl80211_auth_type auth_type; 3350 const u8 *ie; 3351 size_t ie_len; 3352 bool privacy; 3353 enum nl80211_mfp mfp; 3354 struct cfg80211_crypto_settings crypto; 3355 const u8 *key; 3356 u8 key_len, key_idx; 3357 u32 flags; 3358 int bg_scan_period; 3359 struct ieee80211_ht_cap ht_capa; 3360 struct ieee80211_ht_cap ht_capa_mask; 3361 struct ieee80211_vht_cap vht_capa; 3362 struct ieee80211_vht_cap vht_capa_mask; 3363 bool pbss; 3364 struct cfg80211_bss_selection bss_select; 3365 const u8 *prev_bssid; 3366 const u8 *fils_erp_username; 3367 size_t fils_erp_username_len; 3368 const u8 *fils_erp_realm; 3369 size_t fils_erp_realm_len; 3370 u16 fils_erp_next_seq_num; 3371 const u8 *fils_erp_rrk; 3372 size_t fils_erp_rrk_len; 3373 bool want_1x; 3374 struct ieee80211_edmg edmg; 3375 }; 3376 3377 /** 3378 * enum cfg80211_connect_params_changed - Connection parameters being updated 3379 * 3380 * This enum provides information of all connect parameters that 3381 * have to be updated as part of update_connect_params() call. 3382 * 3383 * @UPDATE_ASSOC_IES: Indicates whether association request IEs are updated 3384 * @UPDATE_FILS_ERP_INFO: Indicates that FILS connection parameters (realm, 3385 * username, erp sequence number and rrk) are updated 3386 * @UPDATE_AUTH_TYPE: Indicates that authentication type is updated 3387 */ 3388 enum cfg80211_connect_params_changed { 3389 UPDATE_ASSOC_IES = BIT(0), 3390 UPDATE_FILS_ERP_INFO = BIT(1), 3391 UPDATE_AUTH_TYPE = BIT(2), 3392 }; 3393 3394 /** 3395 * enum wiphy_params_flags - set_wiphy_params bitfield values 3396 * @WIPHY_PARAM_RETRY_SHORT: wiphy->retry_short has changed 3397 * @WIPHY_PARAM_RETRY_LONG: wiphy->retry_long has changed 3398 * @WIPHY_PARAM_FRAG_THRESHOLD: wiphy->frag_threshold has changed 3399 * @WIPHY_PARAM_RTS_THRESHOLD: wiphy->rts_threshold has changed 3400 * @WIPHY_PARAM_COVERAGE_CLASS: coverage class changed 3401 * @WIPHY_PARAM_DYN_ACK: dynack has been enabled 3402 * @WIPHY_PARAM_TXQ_LIMIT: TXQ packet limit has been changed 3403 * @WIPHY_PARAM_TXQ_MEMORY_LIMIT: TXQ memory limit has been changed 3404 * @WIPHY_PARAM_TXQ_QUANTUM: TXQ scheduler quantum 3405 */ 3406 enum wiphy_params_flags { 3407 WIPHY_PARAM_RETRY_SHORT = BIT(0), 3408 WIPHY_PARAM_RETRY_LONG = BIT(1), 3409 WIPHY_PARAM_FRAG_THRESHOLD = BIT(2), 3410 WIPHY_PARAM_RTS_THRESHOLD = BIT(3), 3411 WIPHY_PARAM_COVERAGE_CLASS = BIT(4), 3412 WIPHY_PARAM_DYN_ACK = BIT(5), 3413 WIPHY_PARAM_TXQ_LIMIT = BIT(6), 3414 WIPHY_PARAM_TXQ_MEMORY_LIMIT = BIT(7), 3415 WIPHY_PARAM_TXQ_QUANTUM = BIT(8), 3416 }; 3417 3418 #define IEEE80211_DEFAULT_AIRTIME_WEIGHT 256 3419 3420 /* The per TXQ device queue limit in airtime */ 3421 #define IEEE80211_DEFAULT_AQL_TXQ_LIMIT_L 5000 3422 #define IEEE80211_DEFAULT_AQL_TXQ_LIMIT_H 12000 3423 3424 /* The per interface airtime threshold to switch to lower queue limit */ 3425 #define IEEE80211_AQL_THRESHOLD 24000 3426 3427 /** 3428 * struct cfg80211_pmksa - PMK Security Association 3429 * 3430 * This structure is passed to the set/del_pmksa() method for PMKSA 3431 * caching. 3432 * 3433 * @bssid: The AP's BSSID (may be %NULL). 3434 * @pmkid: The identifier to refer a PMKSA. 3435 * @pmk: The PMK for the PMKSA identified by @pmkid. This is used for key 3436 * derivation by a FILS STA. Otherwise, %NULL. 3437 * @pmk_len: Length of the @pmk. The length of @pmk can differ depending on 3438 * the hash algorithm used to generate this. 3439 * @ssid: SSID to specify the ESS within which a PMKSA is valid when using FILS 3440 * cache identifier (may be %NULL). 3441 * @ssid_len: Length of the @ssid in octets. 3442 * @cache_id: 2-octet cache identifier advertized by a FILS AP identifying the 3443 * scope of PMKSA. This is valid only if @ssid_len is non-zero (may be 3444 * %NULL). 3445 * @pmk_lifetime: Maximum lifetime for PMKSA in seconds 3446 * (dot11RSNAConfigPMKLifetime) or 0 if not specified. 3447 * The configured PMKSA must not be used for PMKSA caching after 3448 * expiration and any keys derived from this PMK become invalid on 3449 * expiration, i.e., the current association must be dropped if the PMK 3450 * used for it expires. 3451 * @pmk_reauth_threshold: Threshold time for reauthentication (percentage of 3452 * PMK lifetime, dot11RSNAConfigPMKReauthThreshold) or 0 if not specified. 3453 * Drivers are expected to trigger a full authentication instead of using 3454 * this PMKSA for caching when reassociating to a new BSS after this 3455 * threshold to generate a new PMK before the current one expires. 3456 */ 3457 struct cfg80211_pmksa { 3458 const u8 *bssid; 3459 const u8 *pmkid; 3460 const u8 *pmk; 3461 size_t pmk_len; 3462 const u8 *ssid; 3463 size_t ssid_len; 3464 const u8 *cache_id; 3465 u32 pmk_lifetime; 3466 u8 pmk_reauth_threshold; 3467 }; 3468 3469 /** 3470 * struct cfg80211_pkt_pattern - packet pattern 3471 * @mask: bitmask where to match pattern and where to ignore bytes, 3472 * one bit per byte, in same format as nl80211 3473 * @pattern: bytes to match where bitmask is 1 3474 * @pattern_len: length of pattern (in bytes) 3475 * @pkt_offset: packet offset (in bytes) 3476 * 3477 * Internal note: @mask and @pattern are allocated in one chunk of 3478 * memory, free @mask only! 3479 */ 3480 struct cfg80211_pkt_pattern { 3481 const u8 *mask, *pattern; 3482 int pattern_len; 3483 int pkt_offset; 3484 }; 3485 3486 /** 3487 * struct cfg80211_wowlan_tcp - TCP connection parameters 3488 * 3489 * @sock: (internal) socket for source port allocation 3490 * @src: source IP address 3491 * @dst: destination IP address 3492 * @dst_mac: destination MAC address 3493 * @src_port: source port 3494 * @dst_port: destination port 3495 * @payload_len: data payload length 3496 * @payload: data payload buffer 3497 * @payload_seq: payload sequence stamping configuration 3498 * @data_interval: interval at which to send data packets 3499 * @wake_len: wakeup payload match length 3500 * @wake_data: wakeup payload match data 3501 * @wake_mask: wakeup payload match mask 3502 * @tokens_size: length of the tokens buffer 3503 * @payload_tok: payload token usage configuration 3504 */ 3505 struct cfg80211_wowlan_tcp { 3506 struct socket *sock; 3507 __be32 src, dst; 3508 u16 src_port, dst_port; 3509 u8 dst_mac[ETH_ALEN]; 3510 int payload_len; 3511 const u8 *payload; 3512 struct nl80211_wowlan_tcp_data_seq payload_seq; 3513 u32 data_interval; 3514 u32 wake_len; 3515 const u8 *wake_data, *wake_mask; 3516 u32 tokens_size; 3517 /* must be last, variable member */ 3518 struct nl80211_wowlan_tcp_data_token payload_tok; 3519 }; 3520 3521 /** 3522 * struct cfg80211_wowlan - Wake on Wireless-LAN support info 3523 * 3524 * This structure defines the enabled WoWLAN triggers for the device. 3525 * @any: wake up on any activity -- special trigger if device continues 3526 * operating as normal during suspend 3527 * @disconnect: wake up if getting disconnected 3528 * @magic_pkt: wake up on receiving magic packet 3529 * @patterns: wake up on receiving packet matching a pattern 3530 * @n_patterns: number of patterns 3531 * @gtk_rekey_failure: wake up on GTK rekey failure 3532 * @eap_identity_req: wake up on EAP identity request packet 3533 * @four_way_handshake: wake up on 4-way handshake 3534 * @rfkill_release: wake up when rfkill is released 3535 * @tcp: TCP connection establishment/wakeup parameters, see nl80211.h. 3536 * NULL if not configured. 3537 * @nd_config: configuration for the scan to be used for net detect wake. 3538 */ 3539 struct cfg80211_wowlan { 3540 bool any, disconnect, magic_pkt, gtk_rekey_failure, 3541 eap_identity_req, four_way_handshake, 3542 rfkill_release; 3543 struct cfg80211_pkt_pattern *patterns; 3544 struct cfg80211_wowlan_tcp *tcp; 3545 int n_patterns; 3546 struct cfg80211_sched_scan_request *nd_config; 3547 }; 3548 3549 /** 3550 * struct cfg80211_coalesce_rules - Coalesce rule parameters 3551 * 3552 * This structure defines coalesce rule for the device. 3553 * @delay: maximum coalescing delay in msecs. 3554 * @condition: condition for packet coalescence. 3555 * see &enum nl80211_coalesce_condition. 3556 * @patterns: array of packet patterns 3557 * @n_patterns: number of patterns 3558 */ 3559 struct cfg80211_coalesce_rules { 3560 int delay; 3561 enum nl80211_coalesce_condition condition; 3562 struct cfg80211_pkt_pattern *patterns; 3563 int n_patterns; 3564 }; 3565 3566 /** 3567 * struct cfg80211_coalesce - Packet coalescing settings 3568 * 3569 * This structure defines coalescing settings. 3570 * @rules: array of coalesce rules 3571 * @n_rules: number of rules 3572 */ 3573 struct cfg80211_coalesce { 3574 int n_rules; 3575 struct cfg80211_coalesce_rules rules[] __counted_by(n_rules); 3576 }; 3577 3578 /** 3579 * struct cfg80211_wowlan_nd_match - information about the match 3580 * 3581 * @ssid: SSID of the match that triggered the wake up 3582 * @n_channels: Number of channels where the match occurred. This 3583 * value may be zero if the driver can't report the channels. 3584 * @channels: center frequencies of the channels where a match 3585 * occurred (in MHz) 3586 */ 3587 struct cfg80211_wowlan_nd_match { 3588 struct cfg80211_ssid ssid; 3589 int n_channels; 3590 u32 channels[] __counted_by(n_channels); 3591 }; 3592 3593 /** 3594 * struct cfg80211_wowlan_nd_info - net detect wake up information 3595 * 3596 * @n_matches: Number of match information instances provided in 3597 * @matches. This value may be zero if the driver can't provide 3598 * match information. 3599 * @matches: Array of pointers to matches containing information about 3600 * the matches that triggered the wake up. 3601 */ 3602 struct cfg80211_wowlan_nd_info { 3603 int n_matches; 3604 struct cfg80211_wowlan_nd_match *matches[] __counted_by(n_matches); 3605 }; 3606 3607 /** 3608 * struct cfg80211_wowlan_wakeup - wakeup report 3609 * @disconnect: woke up by getting disconnected 3610 * @magic_pkt: woke up by receiving magic packet 3611 * @gtk_rekey_failure: woke up by GTK rekey failure 3612 * @eap_identity_req: woke up by EAP identity request packet 3613 * @four_way_handshake: woke up by 4-way handshake 3614 * @rfkill_release: woke up by rfkill being released 3615 * @pattern_idx: pattern that caused wakeup, -1 if not due to pattern 3616 * @packet_present_len: copied wakeup packet data 3617 * @packet_len: original wakeup packet length 3618 * @packet: The packet causing the wakeup, if any. 3619 * @packet_80211: For pattern match, magic packet and other data 3620 * frame triggers an 802.3 frame should be reported, for 3621 * disconnect due to deauth 802.11 frame. This indicates which 3622 * it is. 3623 * @tcp_match: TCP wakeup packet received 3624 * @tcp_connlost: TCP connection lost or failed to establish 3625 * @tcp_nomoretokens: TCP data ran out of tokens 3626 * @net_detect: if not %NULL, woke up because of net detect 3627 * @unprot_deauth_disassoc: woke up due to unprotected deauth or 3628 * disassoc frame (in MFP). 3629 */ 3630 struct cfg80211_wowlan_wakeup { 3631 bool disconnect, magic_pkt, gtk_rekey_failure, 3632 eap_identity_req, four_way_handshake, 3633 rfkill_release, packet_80211, 3634 tcp_match, tcp_connlost, tcp_nomoretokens, 3635 unprot_deauth_disassoc; 3636 s32 pattern_idx; 3637 u32 packet_present_len, packet_len; 3638 const void *packet; 3639 struct cfg80211_wowlan_nd_info *net_detect; 3640 }; 3641 3642 /** 3643 * struct cfg80211_gtk_rekey_data - rekey data 3644 * @kek: key encryption key (@kek_len bytes) 3645 * @kck: key confirmation key (@kck_len bytes) 3646 * @replay_ctr: replay counter (NL80211_REPLAY_CTR_LEN bytes) 3647 * @kek_len: length of kek 3648 * @kck_len: length of kck 3649 * @akm: akm (oui, id) 3650 */ 3651 struct cfg80211_gtk_rekey_data { 3652 const u8 *kek, *kck, *replay_ctr; 3653 u32 akm; 3654 u8 kek_len, kck_len; 3655 }; 3656 3657 /** 3658 * struct cfg80211_update_ft_ies_params - FT IE Information 3659 * 3660 * This structure provides information needed to update the fast transition IE 3661 * 3662 * @md: The Mobility Domain ID, 2 Octet value 3663 * @ie: Fast Transition IEs 3664 * @ie_len: Length of ft_ie in octets 3665 */ 3666 struct cfg80211_update_ft_ies_params { 3667 u16 md; 3668 const u8 *ie; 3669 size_t ie_len; 3670 }; 3671 3672 /** 3673 * struct cfg80211_mgmt_tx_params - mgmt tx parameters 3674 * 3675 * This structure provides information needed to transmit a mgmt frame 3676 * 3677 * @chan: channel to use 3678 * @offchan: indicates whether off channel operation is required 3679 * @wait: duration for ROC 3680 * @buf: buffer to transmit 3681 * @len: buffer length 3682 * @no_cck: don't use cck rates for this frame 3683 * @dont_wait_for_ack: tells the low level not to wait for an ack 3684 * @n_csa_offsets: length of csa_offsets array 3685 * @csa_offsets: array of all the csa offsets in the frame 3686 * @link_id: for MLO, the link ID to transmit on, -1 if not given; note 3687 * that the link ID isn't validated (much), it's in range but the 3688 * link might not exist (or be used by the receiver STA) 3689 */ 3690 struct cfg80211_mgmt_tx_params { 3691 struct ieee80211_channel *chan; 3692 bool offchan; 3693 unsigned int wait; 3694 const u8 *buf; 3695 size_t len; 3696 bool no_cck; 3697 bool dont_wait_for_ack; 3698 int n_csa_offsets; 3699 const u16 *csa_offsets; 3700 int link_id; 3701 }; 3702 3703 /** 3704 * struct cfg80211_dscp_exception - DSCP exception 3705 * 3706 * @dscp: DSCP value that does not adhere to the user priority range definition 3707 * @up: user priority value to which the corresponding DSCP value belongs 3708 */ 3709 struct cfg80211_dscp_exception { 3710 u8 dscp; 3711 u8 up; 3712 }; 3713 3714 /** 3715 * struct cfg80211_dscp_range - DSCP range definition for user priority 3716 * 3717 * @low: lowest DSCP value of this user priority range, inclusive 3718 * @high: highest DSCP value of this user priority range, inclusive 3719 */ 3720 struct cfg80211_dscp_range { 3721 u8 low; 3722 u8 high; 3723 }; 3724 3725 /* QoS Map Set element length defined in IEEE Std 802.11-2012, 8.4.2.97 */ 3726 #define IEEE80211_QOS_MAP_MAX_EX 21 3727 #define IEEE80211_QOS_MAP_LEN_MIN 16 3728 #define IEEE80211_QOS_MAP_LEN_MAX \ 3729 (IEEE80211_QOS_MAP_LEN_MIN + 2 * IEEE80211_QOS_MAP_MAX_EX) 3730 3731 /** 3732 * struct cfg80211_qos_map - QoS Map Information 3733 * 3734 * This struct defines the Interworking QoS map setting for DSCP values 3735 * 3736 * @num_des: number of DSCP exceptions (0..21) 3737 * @dscp_exception: optionally up to maximum of 21 DSCP exceptions from 3738 * the user priority DSCP range definition 3739 * @up: DSCP range definition for a particular user priority 3740 */ 3741 struct cfg80211_qos_map { 3742 u8 num_des; 3743 struct cfg80211_dscp_exception dscp_exception[IEEE80211_QOS_MAP_MAX_EX]; 3744 struct cfg80211_dscp_range up[8]; 3745 }; 3746 3747 /** 3748 * struct cfg80211_nan_conf - NAN configuration 3749 * 3750 * This struct defines NAN configuration parameters 3751 * 3752 * @master_pref: master preference (1 - 255) 3753 * @bands: operating bands, a bitmap of &enum nl80211_band values. 3754 * For instance, for NL80211_BAND_2GHZ, bit 0 would be set 3755 * (i.e. BIT(NL80211_BAND_2GHZ)). 3756 */ 3757 struct cfg80211_nan_conf { 3758 u8 master_pref; 3759 u8 bands; 3760 }; 3761 3762 /** 3763 * enum cfg80211_nan_conf_changes - indicates changed fields in NAN 3764 * configuration 3765 * 3766 * @CFG80211_NAN_CONF_CHANGED_PREF: master preference 3767 * @CFG80211_NAN_CONF_CHANGED_BANDS: operating bands 3768 */ 3769 enum cfg80211_nan_conf_changes { 3770 CFG80211_NAN_CONF_CHANGED_PREF = BIT(0), 3771 CFG80211_NAN_CONF_CHANGED_BANDS = BIT(1), 3772 }; 3773 3774 /** 3775 * struct cfg80211_nan_func_filter - a NAN function Rx / Tx filter 3776 * 3777 * @filter: the content of the filter 3778 * @len: the length of the filter 3779 */ 3780 struct cfg80211_nan_func_filter { 3781 const u8 *filter; 3782 u8 len; 3783 }; 3784 3785 /** 3786 * struct cfg80211_nan_func - a NAN function 3787 * 3788 * @type: &enum nl80211_nan_function_type 3789 * @service_id: the service ID of the function 3790 * @publish_type: &nl80211_nan_publish_type 3791 * @close_range: if true, the range should be limited. Threshold is 3792 * implementation specific. 3793 * @publish_bcast: if true, the solicited publish should be broadcasted 3794 * @subscribe_active: if true, the subscribe is active 3795 * @followup_id: the instance ID for follow up 3796 * @followup_reqid: the requester instance ID for follow up 3797 * @followup_dest: MAC address of the recipient of the follow up 3798 * @ttl: time to live counter in DW. 3799 * @serv_spec_info: Service Specific Info 3800 * @serv_spec_info_len: Service Specific Info length 3801 * @srf_include: if true, SRF is inclusive 3802 * @srf_bf: Bloom Filter 3803 * @srf_bf_len: Bloom Filter length 3804 * @srf_bf_idx: Bloom Filter index 3805 * @srf_macs: SRF MAC addresses 3806 * @srf_num_macs: number of MAC addresses in SRF 3807 * @rx_filters: rx filters that are matched with corresponding peer's tx_filter 3808 * @tx_filters: filters that should be transmitted in the SDF. 3809 * @num_rx_filters: length of &rx_filters. 3810 * @num_tx_filters: length of &tx_filters. 3811 * @instance_id: driver allocated id of the function. 3812 * @cookie: unique NAN function identifier. 3813 */ 3814 struct cfg80211_nan_func { 3815 enum nl80211_nan_function_type type; 3816 u8 service_id[NL80211_NAN_FUNC_SERVICE_ID_LEN]; 3817 u8 publish_type; 3818 bool close_range; 3819 bool publish_bcast; 3820 bool subscribe_active; 3821 u8 followup_id; 3822 u8 followup_reqid; 3823 struct mac_address followup_dest; 3824 u32 ttl; 3825 const u8 *serv_spec_info; 3826 u8 serv_spec_info_len; 3827 bool srf_include; 3828 const u8 *srf_bf; 3829 u8 srf_bf_len; 3830 u8 srf_bf_idx; 3831 struct mac_address *srf_macs; 3832 int srf_num_macs; 3833 struct cfg80211_nan_func_filter *rx_filters; 3834 struct cfg80211_nan_func_filter *tx_filters; 3835 u8 num_tx_filters; 3836 u8 num_rx_filters; 3837 u8 instance_id; 3838 u64 cookie; 3839 }; 3840 3841 /** 3842 * struct cfg80211_pmk_conf - PMK configuration 3843 * 3844 * @aa: authenticator address 3845 * @pmk_len: PMK length in bytes. 3846 * @pmk: the PMK material 3847 * @pmk_r0_name: PMK-R0 Name. NULL if not applicable (i.e., the PMK 3848 * is not PMK-R0). When pmk_r0_name is not NULL, the pmk field 3849 * holds PMK-R0. 3850 */ 3851 struct cfg80211_pmk_conf { 3852 const u8 *aa; 3853 u8 pmk_len; 3854 const u8 *pmk; 3855 const u8 *pmk_r0_name; 3856 }; 3857 3858 /** 3859 * struct cfg80211_external_auth_params - Trigger External authentication. 3860 * 3861 * Commonly used across the external auth request and event interfaces. 3862 * 3863 * @action: action type / trigger for external authentication. Only significant 3864 * for the authentication request event interface (driver to user space). 3865 * @bssid: BSSID of the peer with which the authentication has 3866 * to happen. Used by both the authentication request event and 3867 * authentication response command interface. 3868 * @ssid: SSID of the AP. Used by both the authentication request event and 3869 * authentication response command interface. 3870 * @key_mgmt_suite: AKM suite of the respective authentication. Used by the 3871 * authentication request event interface. 3872 * @status: status code, %WLAN_STATUS_SUCCESS for successful authentication, 3873 * use %WLAN_STATUS_UNSPECIFIED_FAILURE if user space cannot give you 3874 * the real status code for failures. Used only for the authentication 3875 * response command interface (user space to driver). 3876 * @pmkid: The identifier to refer a PMKSA. 3877 * @mld_addr: MLD address of the peer. Used by the authentication request event 3878 * interface. Driver indicates this to enable MLO during the authentication 3879 * offload to user space. Driver shall look at %NL80211_ATTR_MLO_SUPPORT 3880 * flag capability in NL80211_CMD_CONNECT to know whether the user space 3881 * supports enabling MLO during the authentication offload. 3882 * User space should use the address of the interface (on which the 3883 * authentication request event reported) as self MLD address. User space 3884 * and driver should use MLD addresses in RA, TA and BSSID fields of 3885 * authentication frames sent or received via cfg80211. The driver 3886 * translates the MLD addresses to/from link addresses based on the link 3887 * chosen for the authentication. 3888 */ 3889 struct cfg80211_external_auth_params { 3890 enum nl80211_external_auth_action action; 3891 u8 bssid[ETH_ALEN] __aligned(2); 3892 struct cfg80211_ssid ssid; 3893 unsigned int key_mgmt_suite; 3894 u16 status; 3895 const u8 *pmkid; 3896 u8 mld_addr[ETH_ALEN] __aligned(2); 3897 }; 3898 3899 /** 3900 * struct cfg80211_ftm_responder_stats - FTM responder statistics 3901 * 3902 * @filled: bitflag of flags using the bits of &enum nl80211_ftm_stats to 3903 * indicate the relevant values in this struct for them 3904 * @success_num: number of FTM sessions in which all frames were successfully 3905 * answered 3906 * @partial_num: number of FTM sessions in which part of frames were 3907 * successfully answered 3908 * @failed_num: number of failed FTM sessions 3909 * @asap_num: number of ASAP FTM sessions 3910 * @non_asap_num: number of non-ASAP FTM sessions 3911 * @total_duration_ms: total sessions durations - gives an indication 3912 * of how much time the responder was busy 3913 * @unknown_triggers_num: number of unknown FTM triggers - triggers from 3914 * initiators that didn't finish successfully the negotiation phase with 3915 * the responder 3916 * @reschedule_requests_num: number of FTM reschedule requests - initiator asks 3917 * for a new scheduling although it already has scheduled FTM slot 3918 * @out_of_window_triggers_num: total FTM triggers out of scheduled window 3919 */ 3920 struct cfg80211_ftm_responder_stats { 3921 u32 filled; 3922 u32 success_num; 3923 u32 partial_num; 3924 u32 failed_num; 3925 u32 asap_num; 3926 u32 non_asap_num; 3927 u64 total_duration_ms; 3928 u32 unknown_triggers_num; 3929 u32 reschedule_requests_num; 3930 u32 out_of_window_triggers_num; 3931 }; 3932 3933 /** 3934 * struct cfg80211_pmsr_ftm_result - FTM result 3935 * @failure_reason: if this measurement failed (PMSR status is 3936 * %NL80211_PMSR_STATUS_FAILURE), this gives a more precise 3937 * reason than just "failure" 3938 * @burst_index: if reporting partial results, this is the index 3939 * in [0 .. num_bursts-1] of the burst that's being reported 3940 * @num_ftmr_attempts: number of FTM request frames transmitted 3941 * @num_ftmr_successes: number of FTM request frames acked 3942 * @busy_retry_time: if failure_reason is %NL80211_PMSR_FTM_FAILURE_PEER_BUSY, 3943 * fill this to indicate in how many seconds a retry is deemed possible 3944 * by the responder 3945 * @num_bursts_exp: actual number of bursts exponent negotiated 3946 * @burst_duration: actual burst duration negotiated 3947 * @ftms_per_burst: actual FTMs per burst negotiated 3948 * @lci_len: length of LCI information (if present) 3949 * @civicloc_len: length of civic location information (if present) 3950 * @lci: LCI data (may be %NULL) 3951 * @civicloc: civic location data (may be %NULL) 3952 * @rssi_avg: average RSSI over FTM action frames reported 3953 * @rssi_spread: spread of the RSSI over FTM action frames reported 3954 * @tx_rate: bitrate for transmitted FTM action frame response 3955 * @rx_rate: bitrate of received FTM action frame 3956 * @rtt_avg: average of RTTs measured (must have either this or @dist_avg) 3957 * @rtt_variance: variance of RTTs measured (note that standard deviation is 3958 * the square root of the variance) 3959 * @rtt_spread: spread of the RTTs measured 3960 * @dist_avg: average of distances (mm) measured 3961 * (must have either this or @rtt_avg) 3962 * @dist_variance: variance of distances measured (see also @rtt_variance) 3963 * @dist_spread: spread of distances measured (see also @rtt_spread) 3964 * @num_ftmr_attempts_valid: @num_ftmr_attempts is valid 3965 * @num_ftmr_successes_valid: @num_ftmr_successes is valid 3966 * @rssi_avg_valid: @rssi_avg is valid 3967 * @rssi_spread_valid: @rssi_spread is valid 3968 * @tx_rate_valid: @tx_rate is valid 3969 * @rx_rate_valid: @rx_rate is valid 3970 * @rtt_avg_valid: @rtt_avg is valid 3971 * @rtt_variance_valid: @rtt_variance is valid 3972 * @rtt_spread_valid: @rtt_spread is valid 3973 * @dist_avg_valid: @dist_avg is valid 3974 * @dist_variance_valid: @dist_variance is valid 3975 * @dist_spread_valid: @dist_spread is valid 3976 */ 3977 struct cfg80211_pmsr_ftm_result { 3978 const u8 *lci; 3979 const u8 *civicloc; 3980 unsigned int lci_len; 3981 unsigned int civicloc_len; 3982 enum nl80211_peer_measurement_ftm_failure_reasons failure_reason; 3983 u32 num_ftmr_attempts, num_ftmr_successes; 3984 s16 burst_index; 3985 u8 busy_retry_time; 3986 u8 num_bursts_exp; 3987 u8 burst_duration; 3988 u8 ftms_per_burst; 3989 s32 rssi_avg; 3990 s32 rssi_spread; 3991 struct rate_info tx_rate, rx_rate; 3992 s64 rtt_avg; 3993 s64 rtt_variance; 3994 s64 rtt_spread; 3995 s64 dist_avg; 3996 s64 dist_variance; 3997 s64 dist_spread; 3998 3999 u16 num_ftmr_attempts_valid:1, 4000 num_ftmr_successes_valid:1, 4001 rssi_avg_valid:1, 4002 rssi_spread_valid:1, 4003 tx_rate_valid:1, 4004 rx_rate_valid:1, 4005 rtt_avg_valid:1, 4006 rtt_variance_valid:1, 4007 rtt_spread_valid:1, 4008 dist_avg_valid:1, 4009 dist_variance_valid:1, 4010 dist_spread_valid:1; 4011 }; 4012 4013 /** 4014 * struct cfg80211_pmsr_result - peer measurement result 4015 * @addr: address of the peer 4016 * @host_time: host time (use ktime_get_boottime() adjust to the time when the 4017 * measurement was made) 4018 * @ap_tsf: AP's TSF at measurement time 4019 * @status: status of the measurement 4020 * @final: if reporting partial results, mark this as the last one; if not 4021 * reporting partial results always set this flag 4022 * @ap_tsf_valid: indicates the @ap_tsf value is valid 4023 * @type: type of the measurement reported, note that we only support reporting 4024 * one type at a time, but you can report multiple results separately and 4025 * they're all aggregated for userspace. 4026 * @ftm: FTM result 4027 */ 4028 struct cfg80211_pmsr_result { 4029 u64 host_time, ap_tsf; 4030 enum nl80211_peer_measurement_status status; 4031 4032 u8 addr[ETH_ALEN]; 4033 4034 u8 final:1, 4035 ap_tsf_valid:1; 4036 4037 enum nl80211_peer_measurement_type type; 4038 4039 union { 4040 struct cfg80211_pmsr_ftm_result ftm; 4041 }; 4042 }; 4043 4044 /** 4045 * struct cfg80211_pmsr_ftm_request_peer - FTM request data 4046 * @requested: indicates FTM is requested 4047 * @preamble: frame preamble to use 4048 * @burst_period: burst period to use 4049 * @asap: indicates to use ASAP mode 4050 * @num_bursts_exp: number of bursts exponent 4051 * @burst_duration: burst duration 4052 * @ftms_per_burst: number of FTMs per burst 4053 * @ftmr_retries: number of retries for FTM request 4054 * @request_lci: request LCI information 4055 * @request_civicloc: request civic location information 4056 * @trigger_based: use trigger based ranging for the measurement 4057 * If neither @trigger_based nor @non_trigger_based is set, 4058 * EDCA based ranging will be used. 4059 * @non_trigger_based: use non trigger based ranging for the measurement 4060 * If neither @trigger_based nor @non_trigger_based is set, 4061 * EDCA based ranging will be used. 4062 * @lmr_feedback: negotiate for I2R LMR feedback. Only valid if either 4063 * @trigger_based or @non_trigger_based is set. 4064 * @bss_color: the bss color of the responder. Optional. Set to zero to 4065 * indicate the driver should set the BSS color. Only valid if 4066 * @non_trigger_based or @trigger_based is set. 4067 * 4068 * See also nl80211 for the respective attribute documentation. 4069 */ 4070 struct cfg80211_pmsr_ftm_request_peer { 4071 enum nl80211_preamble preamble; 4072 u16 burst_period; 4073 u8 requested:1, 4074 asap:1, 4075 request_lci:1, 4076 request_civicloc:1, 4077 trigger_based:1, 4078 non_trigger_based:1, 4079 lmr_feedback:1; 4080 u8 num_bursts_exp; 4081 u8 burst_duration; 4082 u8 ftms_per_burst; 4083 u8 ftmr_retries; 4084 u8 bss_color; 4085 }; 4086 4087 /** 4088 * struct cfg80211_pmsr_request_peer - peer data for a peer measurement request 4089 * @addr: MAC address 4090 * @chandef: channel to use 4091 * @report_ap_tsf: report the associated AP's TSF 4092 * @ftm: FTM data, see &struct cfg80211_pmsr_ftm_request_peer 4093 */ 4094 struct cfg80211_pmsr_request_peer { 4095 u8 addr[ETH_ALEN]; 4096 struct cfg80211_chan_def chandef; 4097 u8 report_ap_tsf:1; 4098 struct cfg80211_pmsr_ftm_request_peer ftm; 4099 }; 4100 4101 /** 4102 * struct cfg80211_pmsr_request - peer measurement request 4103 * @cookie: cookie, set by cfg80211 4104 * @nl_portid: netlink portid - used by cfg80211 4105 * @drv_data: driver data for this request, if required for aborting, 4106 * not otherwise freed or anything by cfg80211 4107 * @mac_addr: MAC address used for (randomised) request 4108 * @mac_addr_mask: MAC address mask used for randomisation, bits that 4109 * are 0 in the mask should be randomised, bits that are 1 should 4110 * be taken from the @mac_addr 4111 * @list: used by cfg80211 to hold on to the request 4112 * @timeout: timeout (in milliseconds) for the whole operation, if 4113 * zero it means there's no timeout 4114 * @n_peers: number of peers to do measurements with 4115 * @peers: per-peer measurement request data 4116 */ 4117 struct cfg80211_pmsr_request { 4118 u64 cookie; 4119 void *drv_data; 4120 u32 n_peers; 4121 u32 nl_portid; 4122 4123 u32 timeout; 4124 4125 u8 mac_addr[ETH_ALEN] __aligned(2); 4126 u8 mac_addr_mask[ETH_ALEN] __aligned(2); 4127 4128 struct list_head list; 4129 4130 struct cfg80211_pmsr_request_peer peers[] __counted_by(n_peers); 4131 }; 4132 4133 /** 4134 * struct cfg80211_update_owe_info - OWE Information 4135 * 4136 * This structure provides information needed for the drivers to offload OWE 4137 * (Opportunistic Wireless Encryption) processing to the user space. 4138 * 4139 * Commonly used across update_owe_info request and event interfaces. 4140 * 4141 * @peer: MAC address of the peer device for which the OWE processing 4142 * has to be done. 4143 * @status: status code, %WLAN_STATUS_SUCCESS for successful OWE info 4144 * processing, use %WLAN_STATUS_UNSPECIFIED_FAILURE if user space 4145 * cannot give you the real status code for failures. Used only for 4146 * OWE update request command interface (user space to driver). 4147 * @ie: IEs obtained from the peer or constructed by the user space. These are 4148 * the IEs of the remote peer in the event from the host driver and 4149 * the constructed IEs by the user space in the request interface. 4150 * @ie_len: Length of IEs in octets. 4151 * @assoc_link_id: MLO link ID of the AP, with which (re)association requested 4152 * by peer. This will be filled by driver for both MLO and non-MLO station 4153 * connections when the AP affiliated with an MLD. For non-MLD AP mode, it 4154 * will be -1. Used only with OWE update event (driver to user space). 4155 * @peer_mld_addr: For MLO connection, MLD address of the peer. For non-MLO 4156 * connection, it will be all zeros. This is applicable only when 4157 * @assoc_link_id is not -1, i.e., the AP affiliated with an MLD. Used only 4158 * with OWE update event (driver to user space). 4159 */ 4160 struct cfg80211_update_owe_info { 4161 u8 peer[ETH_ALEN] __aligned(2); 4162 u16 status; 4163 const u8 *ie; 4164 size_t ie_len; 4165 int assoc_link_id; 4166 u8 peer_mld_addr[ETH_ALEN] __aligned(2); 4167 }; 4168 4169 /** 4170 * struct mgmt_frame_regs - management frame registrations data 4171 * @global_stypes: bitmap of management frame subtypes registered 4172 * for the entire device 4173 * @interface_stypes: bitmap of management frame subtypes registered 4174 * for the given interface 4175 * @global_mcast_stypes: mcast RX is needed globally for these subtypes 4176 * @interface_mcast_stypes: mcast RX is needed on this interface 4177 * for these subtypes 4178 */ 4179 struct mgmt_frame_regs { 4180 u32 global_stypes, interface_stypes; 4181 u32 global_mcast_stypes, interface_mcast_stypes; 4182 }; 4183 4184 /** 4185 * struct cfg80211_ops - backend description for wireless configuration 4186 * 4187 * This struct is registered by fullmac card drivers and/or wireless stacks 4188 * in order to handle configuration requests on their interfaces. 4189 * 4190 * All callbacks except where otherwise noted should return 0 4191 * on success or a negative error code. 4192 * 4193 * All operations are invoked with the wiphy mutex held. The RTNL may be 4194 * held in addition (due to wireless extensions) but this cannot be relied 4195 * upon except in cases where documented below. Note that due to ordering, 4196 * the RTNL also cannot be acquired in any handlers. 4197 * 4198 * @suspend: wiphy device needs to be suspended. The variable @wow will 4199 * be %NULL or contain the enabled Wake-on-Wireless triggers that are 4200 * configured for the device. 4201 * @resume: wiphy device needs to be resumed 4202 * @set_wakeup: Called when WoWLAN is enabled/disabled, use this callback 4203 * to call device_set_wakeup_enable() to enable/disable wakeup from 4204 * the device. 4205 * 4206 * @add_virtual_intf: create a new virtual interface with the given name, 4207 * must set the struct wireless_dev's iftype. Beware: You must create 4208 * the new netdev in the wiphy's network namespace! Returns the struct 4209 * wireless_dev, or an ERR_PTR. For P2P device wdevs, the driver must 4210 * also set the address member in the wdev. 4211 * This additionally holds the RTNL to be able to do netdev changes. 4212 * 4213 * @del_virtual_intf: remove the virtual interface 4214 * This additionally holds the RTNL to be able to do netdev changes. 4215 * 4216 * @change_virtual_intf: change type/configuration of virtual interface, 4217 * keep the struct wireless_dev's iftype updated. 4218 * This additionally holds the RTNL to be able to do netdev changes. 4219 * 4220 * @add_intf_link: Add a new MLO link to the given interface. Note that 4221 * the wdev->link[] data structure has been updated, so the new link 4222 * address is available. 4223 * @del_intf_link: Remove an MLO link from the given interface. 4224 * 4225 * @add_key: add a key with the given parameters. @mac_addr will be %NULL 4226 * when adding a group key. @link_id will be -1 for non-MLO connection. 4227 * For MLO connection, @link_id will be >= 0 for group key and -1 for 4228 * pairwise key, @mac_addr will be peer's MLD address for MLO pairwise key. 4229 * 4230 * @get_key: get information about the key with the given parameters. 4231 * @mac_addr will be %NULL when requesting information for a group 4232 * key. All pointers given to the @callback function need not be valid 4233 * after it returns. This function should return an error if it is 4234 * not possible to retrieve the key, -ENOENT if it doesn't exist. 4235 * @link_id will be -1 for non-MLO connection. For MLO connection, 4236 * @link_id will be >= 0 for group key and -1 for pairwise key, @mac_addr 4237 * will be peer's MLD address for MLO pairwise key. 4238 * 4239 * @del_key: remove a key given the @mac_addr (%NULL for a group key) 4240 * and @key_index, return -ENOENT if the key doesn't exist. @link_id will 4241 * be -1 for non-MLO connection. For MLO connection, @link_id will be >= 0 4242 * for group key and -1 for pairwise key, @mac_addr will be peer's MLD 4243 * address for MLO pairwise key. 4244 * 4245 * @set_default_key: set the default key on an interface. @link_id will be >= 0 4246 * for MLO connection and -1 for non-MLO connection. 4247 * 4248 * @set_default_mgmt_key: set the default management frame key on an interface. 4249 * @link_id will be >= 0 for MLO connection and -1 for non-MLO connection. 4250 * 4251 * @set_default_beacon_key: set the default Beacon frame key on an interface. 4252 * @link_id will be >= 0 for MLO connection and -1 for non-MLO connection. 4253 * 4254 * @set_rekey_data: give the data necessary for GTK rekeying to the driver 4255 * 4256 * @start_ap: Start acting in AP mode defined by the parameters. 4257 * @change_beacon: Change the beacon parameters for an access point mode 4258 * interface. This should reject the call when AP mode wasn't started. 4259 * @stop_ap: Stop being an AP, including stopping beaconing. 4260 * 4261 * @add_station: Add a new station. 4262 * @del_station: Remove a station 4263 * @change_station: Modify a given station. Note that flags changes are not much 4264 * validated in cfg80211, in particular the auth/assoc/authorized flags 4265 * might come to the driver in invalid combinations -- make sure to check 4266 * them, also against the existing state! Drivers must call 4267 * cfg80211_check_station_change() to validate the information. 4268 * @get_station: get station information for the station identified by @mac 4269 * @dump_station: dump station callback -- resume dump at index @idx 4270 * 4271 * @add_mpath: add a fixed mesh path 4272 * @del_mpath: delete a given mesh path 4273 * @change_mpath: change a given mesh path 4274 * @get_mpath: get a mesh path for the given parameters 4275 * @dump_mpath: dump mesh path callback -- resume dump at index @idx 4276 * @get_mpp: get a mesh proxy path for the given parameters 4277 * @dump_mpp: dump mesh proxy path callback -- resume dump at index @idx 4278 * @join_mesh: join the mesh network with the specified parameters 4279 * (invoked with the wireless_dev mutex held) 4280 * @leave_mesh: leave the current mesh network 4281 * (invoked with the wireless_dev mutex held) 4282 * 4283 * @get_mesh_config: Get the current mesh configuration 4284 * 4285 * @update_mesh_config: Update mesh parameters on a running mesh. 4286 * The mask is a bitfield which tells us which parameters to 4287 * set, and which to leave alone. 4288 * 4289 * @change_bss: Modify parameters for a given BSS. 4290 * 4291 * @inform_bss: Called by cfg80211 while being informed about new BSS data 4292 * for every BSS found within the reported data or frame. This is called 4293 * from within the cfg8011 inform_bss handlers while holding the bss_lock. 4294 * The data parameter is passed through from drv_data inside 4295 * struct cfg80211_inform_bss. 4296 * The new IE data for the BSS is explicitly passed. 4297 * 4298 * @set_txq_params: Set TX queue parameters 4299 * 4300 * @libertas_set_mesh_channel: Only for backward compatibility for libertas, 4301 * as it doesn't implement join_mesh and needs to set the channel to 4302 * join the mesh instead. 4303 * 4304 * @set_monitor_channel: Set the monitor mode channel for the device. If other 4305 * interfaces are active this callback should reject the configuration. 4306 * If no interfaces are active or the device is down, the channel should 4307 * be stored for when a monitor interface becomes active. 4308 * 4309 * @scan: Request to do a scan. If returning zero, the scan request is given 4310 * the driver, and will be valid until passed to cfg80211_scan_done(). 4311 * For scan results, call cfg80211_inform_bss(); you can call this outside 4312 * the scan/scan_done bracket too. 4313 * @abort_scan: Tell the driver to abort an ongoing scan. The driver shall 4314 * indicate the status of the scan through cfg80211_scan_done(). 4315 * 4316 * @auth: Request to authenticate with the specified peer 4317 * (invoked with the wireless_dev mutex held) 4318 * @assoc: Request to (re)associate with the specified peer 4319 * (invoked with the wireless_dev mutex held) 4320 * @deauth: Request to deauthenticate from the specified peer 4321 * (invoked with the wireless_dev mutex held) 4322 * @disassoc: Request to disassociate from the specified peer 4323 * (invoked with the wireless_dev mutex held) 4324 * 4325 * @connect: Connect to the ESS with the specified parameters. When connected, 4326 * call cfg80211_connect_result()/cfg80211_connect_bss() with status code 4327 * %WLAN_STATUS_SUCCESS. If the connection fails for some reason, call 4328 * cfg80211_connect_result()/cfg80211_connect_bss() with the status code 4329 * from the AP or cfg80211_connect_timeout() if no frame with status code 4330 * was received. 4331 * The driver is allowed to roam to other BSSes within the ESS when the 4332 * other BSS matches the connect parameters. When such roaming is initiated 4333 * by the driver, the driver is expected to verify that the target matches 4334 * the configured security parameters and to use Reassociation Request 4335 * frame instead of Association Request frame. 4336 * The connect function can also be used to request the driver to perform a 4337 * specific roam when connected to an ESS. In that case, the prev_bssid 4338 * parameter is set to the BSSID of the currently associated BSS as an 4339 * indication of requesting reassociation. 4340 * In both the driver-initiated and new connect() call initiated roaming 4341 * cases, the result of roaming is indicated with a call to 4342 * cfg80211_roamed(). (invoked with the wireless_dev mutex held) 4343 * @update_connect_params: Update the connect parameters while connected to a 4344 * BSS. The updated parameters can be used by driver/firmware for 4345 * subsequent BSS selection (roaming) decisions and to form the 4346 * Authentication/(Re)Association Request frames. This call does not 4347 * request an immediate disassociation or reassociation with the current 4348 * BSS, i.e., this impacts only subsequent (re)associations. The bits in 4349 * changed are defined in &enum cfg80211_connect_params_changed. 4350 * (invoked with the wireless_dev mutex held) 4351 * @disconnect: Disconnect from the BSS/ESS or stop connection attempts if 4352 * connection is in progress. Once done, call cfg80211_disconnected() in 4353 * case connection was already established (invoked with the 4354 * wireless_dev mutex held), otherwise call cfg80211_connect_timeout(). 4355 * 4356 * @join_ibss: Join the specified IBSS (or create if necessary). Once done, call 4357 * cfg80211_ibss_joined(), also call that function when changing BSSID due 4358 * to a merge. 4359 * (invoked with the wireless_dev mutex held) 4360 * @leave_ibss: Leave the IBSS. 4361 * (invoked with the wireless_dev mutex held) 4362 * 4363 * @set_mcast_rate: Set the specified multicast rate (only if vif is in ADHOC or 4364 * MESH mode) 4365 * 4366 * @set_wiphy_params: Notify that wiphy parameters have changed; 4367 * @changed bitfield (see &enum wiphy_params_flags) describes which values 4368 * have changed. The actual parameter values are available in 4369 * struct wiphy. If returning an error, no value should be changed. 4370 * 4371 * @set_tx_power: set the transmit power according to the parameters, 4372 * the power passed is in mBm, to get dBm use MBM_TO_DBM(). The 4373 * wdev may be %NULL if power was set for the wiphy, and will 4374 * always be %NULL unless the driver supports per-vif TX power 4375 * (as advertised by the nl80211 feature flag.) 4376 * @get_tx_power: store the current TX power into the dbm variable; 4377 * return 0 if successful 4378 * 4379 * @rfkill_poll: polls the hw rfkill line, use cfg80211 reporting 4380 * functions to adjust rfkill hw state 4381 * 4382 * @dump_survey: get site survey information. 4383 * 4384 * @remain_on_channel: Request the driver to remain awake on the specified 4385 * channel for the specified duration to complete an off-channel 4386 * operation (e.g., public action frame exchange). When the driver is 4387 * ready on the requested channel, it must indicate this with an event 4388 * notification by calling cfg80211_ready_on_channel(). 4389 * @cancel_remain_on_channel: Cancel an on-going remain-on-channel operation. 4390 * This allows the operation to be terminated prior to timeout based on 4391 * the duration value. 4392 * @mgmt_tx: Transmit a management frame. 4393 * @mgmt_tx_cancel_wait: Cancel the wait time from transmitting a management 4394 * frame on another channel 4395 * 4396 * @testmode_cmd: run a test mode command; @wdev may be %NULL 4397 * @testmode_dump: Implement a test mode dump. The cb->args[2] and up may be 4398 * used by the function, but 0 and 1 must not be touched. Additionally, 4399 * return error codes other than -ENOBUFS and -ENOENT will terminate the 4400 * dump and return to userspace with an error, so be careful. If any data 4401 * was passed in from userspace then the data/len arguments will be present 4402 * and point to the data contained in %NL80211_ATTR_TESTDATA. 4403 * 4404 * @set_bitrate_mask: set the bitrate mask configuration 4405 * 4406 * @set_pmksa: Cache a PMKID for a BSSID. This is mostly useful for fullmac 4407 * devices running firmwares capable of generating the (re) association 4408 * RSN IE. It allows for faster roaming between WPA2 BSSIDs. 4409 * @del_pmksa: Delete a cached PMKID. 4410 * @flush_pmksa: Flush all cached PMKIDs. 4411 * @set_power_mgmt: Configure WLAN power management. A timeout value of -1 4412 * allows the driver to adjust the dynamic ps timeout value. 4413 * @set_cqm_rssi_config: Configure connection quality monitor RSSI threshold. 4414 * After configuration, the driver should (soon) send an event indicating 4415 * the current level is above/below the configured threshold; this may 4416 * need some care when the configuration is changed (without first being 4417 * disabled.) 4418 * @set_cqm_rssi_range_config: Configure two RSSI thresholds in the 4419 * connection quality monitor. An event is to be sent only when the 4420 * signal level is found to be outside the two values. The driver should 4421 * set %NL80211_EXT_FEATURE_CQM_RSSI_LIST if this method is implemented. 4422 * If it is provided then there's no point providing @set_cqm_rssi_config. 4423 * @set_cqm_txe_config: Configure connection quality monitor TX error 4424 * thresholds. 4425 * @sched_scan_start: Tell the driver to start a scheduled scan. 4426 * @sched_scan_stop: Tell the driver to stop an ongoing scheduled scan with 4427 * given request id. This call must stop the scheduled scan and be ready 4428 * for starting a new one before it returns, i.e. @sched_scan_start may be 4429 * called immediately after that again and should not fail in that case. 4430 * The driver should not call cfg80211_sched_scan_stopped() for a requested 4431 * stop (when this method returns 0). 4432 * 4433 * @update_mgmt_frame_registrations: Notify the driver that management frame 4434 * registrations were updated. The callback is allowed to sleep. 4435 * 4436 * @set_antenna: Set antenna configuration (tx_ant, rx_ant) on the device. 4437 * Parameters are bitmaps of allowed antennas to use for TX/RX. Drivers may 4438 * reject TX/RX mask combinations they cannot support by returning -EINVAL 4439 * (also see nl80211.h @NL80211_ATTR_WIPHY_ANTENNA_TX). 4440 * 4441 * @get_antenna: Get current antenna configuration from device (tx_ant, rx_ant). 4442 * 4443 * @tdls_mgmt: Transmit a TDLS management frame. 4444 * @tdls_oper: Perform a high-level TDLS operation (e.g. TDLS link setup). 4445 * 4446 * @probe_client: probe an associated client, must return a cookie that it 4447 * later passes to cfg80211_probe_status(). 4448 * 4449 * @set_noack_map: Set the NoAck Map for the TIDs. 4450 * 4451 * @get_channel: Get the current operating channel for the virtual interface. 4452 * For monitor interfaces, it should return %NULL unless there's a single 4453 * current monitoring channel. 4454 * 4455 * @start_p2p_device: Start the given P2P device. 4456 * @stop_p2p_device: Stop the given P2P device. 4457 * 4458 * @set_mac_acl: Sets MAC address control list in AP and P2P GO mode. 4459 * Parameters include ACL policy, an array of MAC address of stations 4460 * and the number of MAC addresses. If there is already a list in driver 4461 * this new list replaces the existing one. Driver has to clear its ACL 4462 * when number of MAC addresses entries is passed as 0. Drivers which 4463 * advertise the support for MAC based ACL have to implement this callback. 4464 * 4465 * @start_radar_detection: Start radar detection in the driver. 4466 * 4467 * @end_cac: End running CAC, probably because a related CAC 4468 * was finished on another phy. 4469 * 4470 * @update_ft_ies: Provide updated Fast BSS Transition information to the 4471 * driver. If the SME is in the driver/firmware, this information can be 4472 * used in building Authentication and Reassociation Request frames. 4473 * 4474 * @crit_proto_start: Indicates a critical protocol needs more link reliability 4475 * for a given duration (milliseconds). The protocol is provided so the 4476 * driver can take the most appropriate actions. 4477 * @crit_proto_stop: Indicates critical protocol no longer needs increased link 4478 * reliability. This operation can not fail. 4479 * @set_coalesce: Set coalesce parameters. 4480 * 4481 * @channel_switch: initiate channel-switch procedure (with CSA). Driver is 4482 * responsible for veryfing if the switch is possible. Since this is 4483 * inherently tricky driver may decide to disconnect an interface later 4484 * with cfg80211_stop_iface(). This doesn't mean driver can accept 4485 * everything. It should do it's best to verify requests and reject them 4486 * as soon as possible. 4487 * 4488 * @set_qos_map: Set QoS mapping information to the driver 4489 * 4490 * @set_ap_chanwidth: Set the AP (including P2P GO) mode channel width for the 4491 * given interface This is used e.g. for dynamic HT 20/40 MHz channel width 4492 * changes during the lifetime of the BSS. 4493 * 4494 * @add_tx_ts: validate (if admitted_time is 0) or add a TX TS to the device 4495 * with the given parameters; action frame exchange has been handled by 4496 * userspace so this just has to modify the TX path to take the TS into 4497 * account. 4498 * If the admitted time is 0 just validate the parameters to make sure 4499 * the session can be created at all; it is valid to just always return 4500 * success for that but that may result in inefficient behaviour (handshake 4501 * with the peer followed by immediate teardown when the addition is later 4502 * rejected) 4503 * @del_tx_ts: remove an existing TX TS 4504 * 4505 * @join_ocb: join the OCB network with the specified parameters 4506 * (invoked with the wireless_dev mutex held) 4507 * @leave_ocb: leave the current OCB network 4508 * (invoked with the wireless_dev mutex held) 4509 * 4510 * @tdls_channel_switch: Start channel-switching with a TDLS peer. The driver 4511 * is responsible for continually initiating channel-switching operations 4512 * and returning to the base channel for communication with the AP. 4513 * @tdls_cancel_channel_switch: Stop channel-switching with a TDLS peer. Both 4514 * peers must be on the base channel when the call completes. 4515 * @start_nan: Start the NAN interface. 4516 * @stop_nan: Stop the NAN interface. 4517 * @add_nan_func: Add a NAN function. Returns negative value on failure. 4518 * On success @nan_func ownership is transferred to the driver and 4519 * it may access it outside of the scope of this function. The driver 4520 * should free the @nan_func when no longer needed by calling 4521 * cfg80211_free_nan_func(). 4522 * On success the driver should assign an instance_id in the 4523 * provided @nan_func. 4524 * @del_nan_func: Delete a NAN function. 4525 * @nan_change_conf: changes NAN configuration. The changed parameters must 4526 * be specified in @changes (using &enum cfg80211_nan_conf_changes); 4527 * All other parameters must be ignored. 4528 * 4529 * @set_multicast_to_unicast: configure multicast to unicast conversion for BSS 4530 * 4531 * @get_txq_stats: Get TXQ stats for interface or phy. If wdev is %NULL, this 4532 * function should return phy stats, and interface stats otherwise. 4533 * 4534 * @set_pmk: configure the PMK to be used for offloaded 802.1X 4-Way handshake. 4535 * If not deleted through @del_pmk the PMK remains valid until disconnect 4536 * upon which the driver should clear it. 4537 * (invoked with the wireless_dev mutex held) 4538 * @del_pmk: delete the previously configured PMK for the given authenticator. 4539 * (invoked with the wireless_dev mutex held) 4540 * 4541 * @external_auth: indicates result of offloaded authentication processing from 4542 * user space 4543 * 4544 * @tx_control_port: TX a control port frame (EAPoL). The noencrypt parameter 4545 * tells the driver that the frame should not be encrypted. 4546 * 4547 * @get_ftm_responder_stats: Retrieve FTM responder statistics, if available. 4548 * Statistics should be cumulative, currently no way to reset is provided. 4549 * @start_pmsr: start peer measurement (e.g. FTM) 4550 * @abort_pmsr: abort peer measurement 4551 * 4552 * @update_owe_info: Provide updated OWE info to driver. Driver implementing SME 4553 * but offloading OWE processing to the user space will get the updated 4554 * DH IE through this interface. 4555 * 4556 * @probe_mesh_link: Probe direct Mesh peer's link quality by sending data frame 4557 * and overrule HWMP path selection algorithm. 4558 * @set_tid_config: TID specific configuration, this can be peer or BSS specific 4559 * This callback may sleep. 4560 * @reset_tid_config: Reset TID specific configuration for the peer, for the 4561 * given TIDs. This callback may sleep. 4562 * 4563 * @set_sar_specs: Update the SAR (TX power) settings. 4564 * 4565 * @color_change: Initiate a color change. 4566 * 4567 * @set_fils_aad: Set FILS AAD data to the AP driver so that the driver can use 4568 * those to decrypt (Re)Association Request and encrypt (Re)Association 4569 * Response frame. 4570 * 4571 * @set_radar_background: Configure dedicated offchannel chain available for 4572 * radar/CAC detection on some hw. This chain can't be used to transmit 4573 * or receive frames and it is bounded to a running wdev. 4574 * Background radar/CAC detection allows to avoid the CAC downtime 4575 * switching to a different channel during CAC detection on the selected 4576 * radar channel. 4577 * The caller is expected to set chandef pointer to NULL in order to 4578 * disable background CAC/radar detection. 4579 * @add_link_station: Add a link to a station. 4580 * @mod_link_station: Modify a link of a station. 4581 * @del_link_station: Remove a link of a station. 4582 * 4583 * @set_hw_timestamp: Enable/disable HW timestamping of TM/FTM frames. 4584 * @set_ttlm: set the TID to link mapping. 4585 * @get_radio_mask: get bitmask of radios in use. 4586 * (invoked with the wiphy mutex held) 4587 */ 4588 struct cfg80211_ops { 4589 int (*suspend)(struct wiphy *wiphy, struct cfg80211_wowlan *wow); 4590 int (*resume)(struct wiphy *wiphy); 4591 void (*set_wakeup)(struct wiphy *wiphy, bool enabled); 4592 4593 struct wireless_dev * (*add_virtual_intf)(struct wiphy *wiphy, 4594 const char *name, 4595 unsigned char name_assign_type, 4596 enum nl80211_iftype type, 4597 struct vif_params *params); 4598 int (*del_virtual_intf)(struct wiphy *wiphy, 4599 struct wireless_dev *wdev); 4600 int (*change_virtual_intf)(struct wiphy *wiphy, 4601 struct net_device *dev, 4602 enum nl80211_iftype type, 4603 struct vif_params *params); 4604 4605 int (*add_intf_link)(struct wiphy *wiphy, 4606 struct wireless_dev *wdev, 4607 unsigned int link_id); 4608 void (*del_intf_link)(struct wiphy *wiphy, 4609 struct wireless_dev *wdev, 4610 unsigned int link_id); 4611 4612 int (*add_key)(struct wiphy *wiphy, struct net_device *netdev, 4613 int link_id, u8 key_index, bool pairwise, 4614 const u8 *mac_addr, struct key_params *params); 4615 int (*get_key)(struct wiphy *wiphy, struct net_device *netdev, 4616 int link_id, u8 key_index, bool pairwise, 4617 const u8 *mac_addr, void *cookie, 4618 void (*callback)(void *cookie, struct key_params*)); 4619 int (*del_key)(struct wiphy *wiphy, struct net_device *netdev, 4620 int link_id, u8 key_index, bool pairwise, 4621 const u8 *mac_addr); 4622 int (*set_default_key)(struct wiphy *wiphy, 4623 struct net_device *netdev, int link_id, 4624 u8 key_index, bool unicast, bool multicast); 4625 int (*set_default_mgmt_key)(struct wiphy *wiphy, 4626 struct net_device *netdev, int link_id, 4627 u8 key_index); 4628 int (*set_default_beacon_key)(struct wiphy *wiphy, 4629 struct net_device *netdev, 4630 int link_id, 4631 u8 key_index); 4632 4633 int (*start_ap)(struct wiphy *wiphy, struct net_device *dev, 4634 struct cfg80211_ap_settings *settings); 4635 int (*change_beacon)(struct wiphy *wiphy, struct net_device *dev, 4636 struct cfg80211_ap_update *info); 4637 int (*stop_ap)(struct wiphy *wiphy, struct net_device *dev, 4638 unsigned int link_id); 4639 4640 4641 int (*add_station)(struct wiphy *wiphy, struct net_device *dev, 4642 const u8 *mac, 4643 struct station_parameters *params); 4644 int (*del_station)(struct wiphy *wiphy, struct net_device *dev, 4645 struct station_del_parameters *params); 4646 int (*change_station)(struct wiphy *wiphy, struct net_device *dev, 4647 const u8 *mac, 4648 struct station_parameters *params); 4649 int (*get_station)(struct wiphy *wiphy, struct net_device *dev, 4650 const u8 *mac, struct station_info *sinfo); 4651 int (*dump_station)(struct wiphy *wiphy, struct net_device *dev, 4652 int idx, u8 *mac, struct station_info *sinfo); 4653 4654 int (*add_mpath)(struct wiphy *wiphy, struct net_device *dev, 4655 const u8 *dst, const u8 *next_hop); 4656 int (*del_mpath)(struct wiphy *wiphy, struct net_device *dev, 4657 const u8 *dst); 4658 int (*change_mpath)(struct wiphy *wiphy, struct net_device *dev, 4659 const u8 *dst, const u8 *next_hop); 4660 int (*get_mpath)(struct wiphy *wiphy, struct net_device *dev, 4661 u8 *dst, u8 *next_hop, struct mpath_info *pinfo); 4662 int (*dump_mpath)(struct wiphy *wiphy, struct net_device *dev, 4663 int idx, u8 *dst, u8 *next_hop, 4664 struct mpath_info *pinfo); 4665 int (*get_mpp)(struct wiphy *wiphy, struct net_device *dev, 4666 u8 *dst, u8 *mpp, struct mpath_info *pinfo); 4667 int (*dump_mpp)(struct wiphy *wiphy, struct net_device *dev, 4668 int idx, u8 *dst, u8 *mpp, 4669 struct mpath_info *pinfo); 4670 int (*get_mesh_config)(struct wiphy *wiphy, 4671 struct net_device *dev, 4672 struct mesh_config *conf); 4673 int (*update_mesh_config)(struct wiphy *wiphy, 4674 struct net_device *dev, u32 mask, 4675 const struct mesh_config *nconf); 4676 int (*join_mesh)(struct wiphy *wiphy, struct net_device *dev, 4677 const struct mesh_config *conf, 4678 const struct mesh_setup *setup); 4679 int (*leave_mesh)(struct wiphy *wiphy, struct net_device *dev); 4680 4681 int (*join_ocb)(struct wiphy *wiphy, struct net_device *dev, 4682 struct ocb_setup *setup); 4683 int (*leave_ocb)(struct wiphy *wiphy, struct net_device *dev); 4684 4685 int (*change_bss)(struct wiphy *wiphy, struct net_device *dev, 4686 struct bss_parameters *params); 4687 4688 void (*inform_bss)(struct wiphy *wiphy, struct cfg80211_bss *bss, 4689 const struct cfg80211_bss_ies *ies, void *data); 4690 4691 int (*set_txq_params)(struct wiphy *wiphy, struct net_device *dev, 4692 struct ieee80211_txq_params *params); 4693 4694 int (*libertas_set_mesh_channel)(struct wiphy *wiphy, 4695 struct net_device *dev, 4696 struct ieee80211_channel *chan); 4697 4698 int (*set_monitor_channel)(struct wiphy *wiphy, 4699 struct net_device *dev, 4700 struct cfg80211_chan_def *chandef); 4701 4702 int (*scan)(struct wiphy *wiphy, 4703 struct cfg80211_scan_request *request); 4704 void (*abort_scan)(struct wiphy *wiphy, struct wireless_dev *wdev); 4705 4706 int (*auth)(struct wiphy *wiphy, struct net_device *dev, 4707 struct cfg80211_auth_request *req); 4708 int (*assoc)(struct wiphy *wiphy, struct net_device *dev, 4709 struct cfg80211_assoc_request *req); 4710 int (*deauth)(struct wiphy *wiphy, struct net_device *dev, 4711 struct cfg80211_deauth_request *req); 4712 int (*disassoc)(struct wiphy *wiphy, struct net_device *dev, 4713 struct cfg80211_disassoc_request *req); 4714 4715 int (*connect)(struct wiphy *wiphy, struct net_device *dev, 4716 struct cfg80211_connect_params *sme); 4717 int (*update_connect_params)(struct wiphy *wiphy, 4718 struct net_device *dev, 4719 struct cfg80211_connect_params *sme, 4720 u32 changed); 4721 int (*disconnect)(struct wiphy *wiphy, struct net_device *dev, 4722 u16 reason_code); 4723 4724 int (*join_ibss)(struct wiphy *wiphy, struct net_device *dev, 4725 struct cfg80211_ibss_params *params); 4726 int (*leave_ibss)(struct wiphy *wiphy, struct net_device *dev); 4727 4728 int (*set_mcast_rate)(struct wiphy *wiphy, struct net_device *dev, 4729 int rate[NUM_NL80211_BANDS]); 4730 4731 int (*set_wiphy_params)(struct wiphy *wiphy, u32 changed); 4732 4733 int (*set_tx_power)(struct wiphy *wiphy, struct wireless_dev *wdev, 4734 enum nl80211_tx_power_setting type, int mbm); 4735 int (*get_tx_power)(struct wiphy *wiphy, struct wireless_dev *wdev, 4736 int *dbm); 4737 4738 void (*rfkill_poll)(struct wiphy *wiphy); 4739 4740 #ifdef CONFIG_NL80211_TESTMODE 4741 int (*testmode_cmd)(struct wiphy *wiphy, struct wireless_dev *wdev, 4742 void *data, int len); 4743 int (*testmode_dump)(struct wiphy *wiphy, struct sk_buff *skb, 4744 struct netlink_callback *cb, 4745 void *data, int len); 4746 #endif 4747 4748 int (*set_bitrate_mask)(struct wiphy *wiphy, 4749 struct net_device *dev, 4750 unsigned int link_id, 4751 const u8 *peer, 4752 const struct cfg80211_bitrate_mask *mask); 4753 4754 int (*dump_survey)(struct wiphy *wiphy, struct net_device *netdev, 4755 int idx, struct survey_info *info); 4756 4757 int (*set_pmksa)(struct wiphy *wiphy, struct net_device *netdev, 4758 struct cfg80211_pmksa *pmksa); 4759 int (*del_pmksa)(struct wiphy *wiphy, struct net_device *netdev, 4760 struct cfg80211_pmksa *pmksa); 4761 int (*flush_pmksa)(struct wiphy *wiphy, struct net_device *netdev); 4762 4763 int (*remain_on_channel)(struct wiphy *wiphy, 4764 struct wireless_dev *wdev, 4765 struct ieee80211_channel *chan, 4766 unsigned int duration, 4767 u64 *cookie); 4768 int (*cancel_remain_on_channel)(struct wiphy *wiphy, 4769 struct wireless_dev *wdev, 4770 u64 cookie); 4771 4772 int (*mgmt_tx)(struct wiphy *wiphy, struct wireless_dev *wdev, 4773 struct cfg80211_mgmt_tx_params *params, 4774 u64 *cookie); 4775 int (*mgmt_tx_cancel_wait)(struct wiphy *wiphy, 4776 struct wireless_dev *wdev, 4777 u64 cookie); 4778 4779 int (*set_power_mgmt)(struct wiphy *wiphy, struct net_device *dev, 4780 bool enabled, int timeout); 4781 4782 int (*set_cqm_rssi_config)(struct wiphy *wiphy, 4783 struct net_device *dev, 4784 s32 rssi_thold, u32 rssi_hyst); 4785 4786 int (*set_cqm_rssi_range_config)(struct wiphy *wiphy, 4787 struct net_device *dev, 4788 s32 rssi_low, s32 rssi_high); 4789 4790 int (*set_cqm_txe_config)(struct wiphy *wiphy, 4791 struct net_device *dev, 4792 u32 rate, u32 pkts, u32 intvl); 4793 4794 void (*update_mgmt_frame_registrations)(struct wiphy *wiphy, 4795 struct wireless_dev *wdev, 4796 struct mgmt_frame_regs *upd); 4797 4798 int (*set_antenna)(struct wiphy *wiphy, u32 tx_ant, u32 rx_ant); 4799 int (*get_antenna)(struct wiphy *wiphy, u32 *tx_ant, u32 *rx_ant); 4800 4801 int (*sched_scan_start)(struct wiphy *wiphy, 4802 struct net_device *dev, 4803 struct cfg80211_sched_scan_request *request); 4804 int (*sched_scan_stop)(struct wiphy *wiphy, struct net_device *dev, 4805 u64 reqid); 4806 4807 int (*set_rekey_data)(struct wiphy *wiphy, struct net_device *dev, 4808 struct cfg80211_gtk_rekey_data *data); 4809 4810 int (*tdls_mgmt)(struct wiphy *wiphy, struct net_device *dev, 4811 const u8 *peer, int link_id, 4812 u8 action_code, u8 dialog_token, u16 status_code, 4813 u32 peer_capability, bool initiator, 4814 const u8 *buf, size_t len); 4815 int (*tdls_oper)(struct wiphy *wiphy, struct net_device *dev, 4816 const u8 *peer, enum nl80211_tdls_operation oper); 4817 4818 int (*probe_client)(struct wiphy *wiphy, struct net_device *dev, 4819 const u8 *peer, u64 *cookie); 4820 4821 int (*set_noack_map)(struct wiphy *wiphy, 4822 struct net_device *dev, 4823 u16 noack_map); 4824 4825 int (*get_channel)(struct wiphy *wiphy, 4826 struct wireless_dev *wdev, 4827 unsigned int link_id, 4828 struct cfg80211_chan_def *chandef); 4829 4830 int (*start_p2p_device)(struct wiphy *wiphy, 4831 struct wireless_dev *wdev); 4832 void (*stop_p2p_device)(struct wiphy *wiphy, 4833 struct wireless_dev *wdev); 4834 4835 int (*set_mac_acl)(struct wiphy *wiphy, struct net_device *dev, 4836 const struct cfg80211_acl_data *params); 4837 4838 int (*start_radar_detection)(struct wiphy *wiphy, 4839 struct net_device *dev, 4840 struct cfg80211_chan_def *chandef, 4841 u32 cac_time_ms, int link_id); 4842 void (*end_cac)(struct wiphy *wiphy, 4843 struct net_device *dev, unsigned int link_id); 4844 int (*update_ft_ies)(struct wiphy *wiphy, struct net_device *dev, 4845 struct cfg80211_update_ft_ies_params *ftie); 4846 int (*crit_proto_start)(struct wiphy *wiphy, 4847 struct wireless_dev *wdev, 4848 enum nl80211_crit_proto_id protocol, 4849 u16 duration); 4850 void (*crit_proto_stop)(struct wiphy *wiphy, 4851 struct wireless_dev *wdev); 4852 int (*set_coalesce)(struct wiphy *wiphy, 4853 struct cfg80211_coalesce *coalesce); 4854 4855 int (*channel_switch)(struct wiphy *wiphy, 4856 struct net_device *dev, 4857 struct cfg80211_csa_settings *params); 4858 4859 int (*set_qos_map)(struct wiphy *wiphy, 4860 struct net_device *dev, 4861 struct cfg80211_qos_map *qos_map); 4862 4863 int (*set_ap_chanwidth)(struct wiphy *wiphy, struct net_device *dev, 4864 unsigned int link_id, 4865 struct cfg80211_chan_def *chandef); 4866 4867 int (*add_tx_ts)(struct wiphy *wiphy, struct net_device *dev, 4868 u8 tsid, const u8 *peer, u8 user_prio, 4869 u16 admitted_time); 4870 int (*del_tx_ts)(struct wiphy *wiphy, struct net_device *dev, 4871 u8 tsid, const u8 *peer); 4872 4873 int (*tdls_channel_switch)(struct wiphy *wiphy, 4874 struct net_device *dev, 4875 const u8 *addr, u8 oper_class, 4876 struct cfg80211_chan_def *chandef); 4877 void (*tdls_cancel_channel_switch)(struct wiphy *wiphy, 4878 struct net_device *dev, 4879 const u8 *addr); 4880 int (*start_nan)(struct wiphy *wiphy, struct wireless_dev *wdev, 4881 struct cfg80211_nan_conf *conf); 4882 void (*stop_nan)(struct wiphy *wiphy, struct wireless_dev *wdev); 4883 int (*add_nan_func)(struct wiphy *wiphy, struct wireless_dev *wdev, 4884 struct cfg80211_nan_func *nan_func); 4885 void (*del_nan_func)(struct wiphy *wiphy, struct wireless_dev *wdev, 4886 u64 cookie); 4887 int (*nan_change_conf)(struct wiphy *wiphy, 4888 struct wireless_dev *wdev, 4889 struct cfg80211_nan_conf *conf, 4890 u32 changes); 4891 4892 int (*set_multicast_to_unicast)(struct wiphy *wiphy, 4893 struct net_device *dev, 4894 const bool enabled); 4895 4896 int (*get_txq_stats)(struct wiphy *wiphy, 4897 struct wireless_dev *wdev, 4898 struct cfg80211_txq_stats *txqstats); 4899 4900 int (*set_pmk)(struct wiphy *wiphy, struct net_device *dev, 4901 const struct cfg80211_pmk_conf *conf); 4902 int (*del_pmk)(struct wiphy *wiphy, struct net_device *dev, 4903 const u8 *aa); 4904 int (*external_auth)(struct wiphy *wiphy, struct net_device *dev, 4905 struct cfg80211_external_auth_params *params); 4906 4907 int (*tx_control_port)(struct wiphy *wiphy, 4908 struct net_device *dev, 4909 const u8 *buf, size_t len, 4910 const u8 *dest, const __be16 proto, 4911 const bool noencrypt, int link_id, 4912 u64 *cookie); 4913 4914 int (*get_ftm_responder_stats)(struct wiphy *wiphy, 4915 struct net_device *dev, 4916 struct cfg80211_ftm_responder_stats *ftm_stats); 4917 4918 int (*start_pmsr)(struct wiphy *wiphy, struct wireless_dev *wdev, 4919 struct cfg80211_pmsr_request *request); 4920 void (*abort_pmsr)(struct wiphy *wiphy, struct wireless_dev *wdev, 4921 struct cfg80211_pmsr_request *request); 4922 int (*update_owe_info)(struct wiphy *wiphy, struct net_device *dev, 4923 struct cfg80211_update_owe_info *owe_info); 4924 int (*probe_mesh_link)(struct wiphy *wiphy, struct net_device *dev, 4925 const u8 *buf, size_t len); 4926 int (*set_tid_config)(struct wiphy *wiphy, struct net_device *dev, 4927 struct cfg80211_tid_config *tid_conf); 4928 int (*reset_tid_config)(struct wiphy *wiphy, struct net_device *dev, 4929 const u8 *peer, u8 tids); 4930 int (*set_sar_specs)(struct wiphy *wiphy, 4931 struct cfg80211_sar_specs *sar); 4932 int (*color_change)(struct wiphy *wiphy, 4933 struct net_device *dev, 4934 struct cfg80211_color_change_settings *params); 4935 int (*set_fils_aad)(struct wiphy *wiphy, struct net_device *dev, 4936 struct cfg80211_fils_aad *fils_aad); 4937 int (*set_radar_background)(struct wiphy *wiphy, 4938 struct cfg80211_chan_def *chandef); 4939 int (*add_link_station)(struct wiphy *wiphy, struct net_device *dev, 4940 struct link_station_parameters *params); 4941 int (*mod_link_station)(struct wiphy *wiphy, struct net_device *dev, 4942 struct link_station_parameters *params); 4943 int (*del_link_station)(struct wiphy *wiphy, struct net_device *dev, 4944 struct link_station_del_parameters *params); 4945 int (*set_hw_timestamp)(struct wiphy *wiphy, struct net_device *dev, 4946 struct cfg80211_set_hw_timestamp *hwts); 4947 int (*set_ttlm)(struct wiphy *wiphy, struct net_device *dev, 4948 struct cfg80211_ttlm_params *params); 4949 u32 (*get_radio_mask)(struct wiphy *wiphy, struct net_device *dev); 4950 }; 4951 4952 /* 4953 * wireless hardware and networking interfaces structures 4954 * and registration/helper functions 4955 */ 4956 4957 /** 4958 * enum wiphy_flags - wiphy capability flags 4959 * 4960 * @WIPHY_FLAG_SPLIT_SCAN_6GHZ: if set to true, the scan request will be split 4961 * into two, first for legacy bands and second for 6 GHz. 4962 * @WIPHY_FLAG_NETNS_OK: if not set, do not allow changing the netns of this 4963 * wiphy at all 4964 * @WIPHY_FLAG_PS_ON_BY_DEFAULT: if set to true, powersave will be enabled 4965 * by default -- this flag will be set depending on the kernel's default 4966 * on wiphy_new(), but can be changed by the driver if it has a good 4967 * reason to override the default 4968 * @WIPHY_FLAG_4ADDR_AP: supports 4addr mode even on AP (with a single station 4969 * on a VLAN interface). This flag also serves an extra purpose of 4970 * supporting 4ADDR AP mode on devices which do not support AP/VLAN iftype. 4971 * @WIPHY_FLAG_4ADDR_STATION: supports 4addr mode even as a station 4972 * @WIPHY_FLAG_CONTROL_PORT_PROTOCOL: This device supports setting the 4973 * control port protocol ethertype. The device also honours the 4974 * control_port_no_encrypt flag. 4975 * @WIPHY_FLAG_IBSS_RSN: The device supports IBSS RSN. 4976 * @WIPHY_FLAG_MESH_AUTH: The device supports mesh authentication by routing 4977 * auth frames to userspace. See @NL80211_MESH_SETUP_USERSPACE_AUTH. 4978 * @WIPHY_FLAG_SUPPORTS_FW_ROAM: The device supports roaming feature in the 4979 * firmware. 4980 * @WIPHY_FLAG_AP_UAPSD: The device supports uapsd on AP. 4981 * @WIPHY_FLAG_SUPPORTS_TDLS: The device supports TDLS (802.11z) operation. 4982 * @WIPHY_FLAG_TDLS_EXTERNAL_SETUP: The device does not handle TDLS (802.11z) 4983 * link setup/discovery operations internally. Setup, discovery and 4984 * teardown packets should be sent through the @NL80211_CMD_TDLS_MGMT 4985 * command. When this flag is not set, @NL80211_CMD_TDLS_OPER should be 4986 * used for asking the driver/firmware to perform a TDLS operation. 4987 * @WIPHY_FLAG_HAVE_AP_SME: device integrates AP SME 4988 * @WIPHY_FLAG_REPORTS_OBSS: the device will report beacons from other BSSes 4989 * when there are virtual interfaces in AP mode by calling 4990 * cfg80211_report_obss_beacon(). 4991 * @WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD: When operating as an AP, the device 4992 * responds to probe-requests in hardware. 4993 * @WIPHY_FLAG_OFFCHAN_TX: Device supports direct off-channel TX. 4994 * @WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL: Device supports remain-on-channel call. 4995 * @WIPHY_FLAG_SUPPORTS_5_10_MHZ: Device supports 5 MHz and 10 MHz channels. 4996 * @WIPHY_FLAG_HAS_CHANNEL_SWITCH: Device supports channel switch in 4997 * beaconing mode (AP, IBSS, Mesh, ...). 4998 * @WIPHY_FLAG_SUPPORTS_EXT_KEK_KCK: The device supports bigger kek and kck keys 4999 * @WIPHY_FLAG_SUPPORTS_MLO: This is a temporary flag gating the MLO APIs, 5000 * in order to not have them reachable in normal drivers, until we have 5001 * complete feature/interface combinations/etc. advertisement. No driver 5002 * should set this flag for now. 5003 * @WIPHY_FLAG_SUPPORTS_EXT_KCK_32: The device supports 32-byte KCK keys. 5004 * @WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER: The device could handle reg notify for 5005 * NL80211_REGDOM_SET_BY_DRIVER. 5006 * @WIPHY_FLAG_CHANNEL_CHANGE_ON_BEACON: reg_call_notifier() is called if driver 5007 * set this flag to update channels on beacon hints. 5008 * @WIPHY_FLAG_SUPPORTS_NSTR_NONPRIMARY: support connection to non-primary link 5009 * of an NSTR mobile AP MLD. 5010 * @WIPHY_FLAG_DISABLE_WEXT: disable wireless extensions for this device 5011 */ 5012 enum wiphy_flags { 5013 WIPHY_FLAG_SUPPORTS_EXT_KEK_KCK = BIT(0), 5014 WIPHY_FLAG_SUPPORTS_MLO = BIT(1), 5015 WIPHY_FLAG_SPLIT_SCAN_6GHZ = BIT(2), 5016 WIPHY_FLAG_NETNS_OK = BIT(3), 5017 WIPHY_FLAG_PS_ON_BY_DEFAULT = BIT(4), 5018 WIPHY_FLAG_4ADDR_AP = BIT(5), 5019 WIPHY_FLAG_4ADDR_STATION = BIT(6), 5020 WIPHY_FLAG_CONTROL_PORT_PROTOCOL = BIT(7), 5021 WIPHY_FLAG_IBSS_RSN = BIT(8), 5022 WIPHY_FLAG_DISABLE_WEXT = BIT(9), 5023 WIPHY_FLAG_MESH_AUTH = BIT(10), 5024 WIPHY_FLAG_SUPPORTS_EXT_KCK_32 = BIT(11), 5025 WIPHY_FLAG_SUPPORTS_NSTR_NONPRIMARY = BIT(12), 5026 WIPHY_FLAG_SUPPORTS_FW_ROAM = BIT(13), 5027 WIPHY_FLAG_AP_UAPSD = BIT(14), 5028 WIPHY_FLAG_SUPPORTS_TDLS = BIT(15), 5029 WIPHY_FLAG_TDLS_EXTERNAL_SETUP = BIT(16), 5030 WIPHY_FLAG_HAVE_AP_SME = BIT(17), 5031 WIPHY_FLAG_REPORTS_OBSS = BIT(18), 5032 WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD = BIT(19), 5033 WIPHY_FLAG_OFFCHAN_TX = BIT(20), 5034 WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL = BIT(21), 5035 WIPHY_FLAG_SUPPORTS_5_10_MHZ = BIT(22), 5036 WIPHY_FLAG_HAS_CHANNEL_SWITCH = BIT(23), 5037 WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER = BIT(24), 5038 WIPHY_FLAG_CHANNEL_CHANGE_ON_BEACON = BIT(25), 5039 }; 5040 5041 /** 5042 * struct ieee80211_iface_limit - limit on certain interface types 5043 * @max: maximum number of interfaces of these types 5044 * @types: interface types (bits) 5045 */ 5046 struct ieee80211_iface_limit { 5047 u16 max; 5048 u16 types; 5049 }; 5050 5051 /** 5052 * struct ieee80211_iface_combination - possible interface combination 5053 * 5054 * With this structure the driver can describe which interface 5055 * combinations it supports concurrently. When set in a struct wiphy_radio, 5056 * the combinations refer to combinations of interfaces currently active on 5057 * that radio. 5058 * 5059 * Examples: 5060 * 5061 * 1. Allow #STA <= 1, #AP <= 1, matching BI, channels = 1, 2 total: 5062 * 5063 * .. code-block:: c 5064 * 5065 * struct ieee80211_iface_limit limits1[] = { 5066 * { .max = 1, .types = BIT(NL80211_IFTYPE_STATION), }, 5067 * { .max = 1, .types = BIT(NL80211_IFTYPE_AP), }, 5068 * }; 5069 * struct ieee80211_iface_combination combination1 = { 5070 * .limits = limits1, 5071 * .n_limits = ARRAY_SIZE(limits1), 5072 * .max_interfaces = 2, 5073 * .beacon_int_infra_match = true, 5074 * }; 5075 * 5076 * 5077 * 2. Allow #{AP, P2P-GO} <= 8, channels = 1, 8 total: 5078 * 5079 * .. code-block:: c 5080 * 5081 * struct ieee80211_iface_limit limits2[] = { 5082 * { .max = 8, .types = BIT(NL80211_IFTYPE_AP) | 5083 * BIT(NL80211_IFTYPE_P2P_GO), }, 5084 * }; 5085 * struct ieee80211_iface_combination combination2 = { 5086 * .limits = limits2, 5087 * .n_limits = ARRAY_SIZE(limits2), 5088 * .max_interfaces = 8, 5089 * .num_different_channels = 1, 5090 * }; 5091 * 5092 * 5093 * 3. Allow #STA <= 1, #{P2P-client,P2P-GO} <= 3 on two channels, 4 total. 5094 * 5095 * This allows for an infrastructure connection and three P2P connections. 5096 * 5097 * .. code-block:: c 5098 * 5099 * struct ieee80211_iface_limit limits3[] = { 5100 * { .max = 1, .types = BIT(NL80211_IFTYPE_STATION), }, 5101 * { .max = 3, .types = BIT(NL80211_IFTYPE_P2P_GO) | 5102 * BIT(NL80211_IFTYPE_P2P_CLIENT), }, 5103 * }; 5104 * struct ieee80211_iface_combination combination3 = { 5105 * .limits = limits3, 5106 * .n_limits = ARRAY_SIZE(limits3), 5107 * .max_interfaces = 4, 5108 * .num_different_channels = 2, 5109 * }; 5110 * 5111 */ 5112 struct ieee80211_iface_combination { 5113 /** 5114 * @limits: 5115 * limits for the given interface types 5116 */ 5117 const struct ieee80211_iface_limit *limits; 5118 5119 /** 5120 * @num_different_channels: 5121 * can use up to this many different channels 5122 */ 5123 u32 num_different_channels; 5124 5125 /** 5126 * @max_interfaces: 5127 * maximum number of interfaces in total allowed in this group 5128 */ 5129 u16 max_interfaces; 5130 5131 /** 5132 * @n_limits: 5133 * number of limitations 5134 */ 5135 u8 n_limits; 5136 5137 /** 5138 * @beacon_int_infra_match: 5139 * In this combination, the beacon intervals between infrastructure 5140 * and AP types must match. This is required only in special cases. 5141 */ 5142 bool beacon_int_infra_match; 5143 5144 /** 5145 * @radar_detect_widths: 5146 * bitmap of channel widths supported for radar detection 5147 */ 5148 u8 radar_detect_widths; 5149 5150 /** 5151 * @radar_detect_regions: 5152 * bitmap of regions supported for radar detection 5153 */ 5154 u8 radar_detect_regions; 5155 5156 /** 5157 * @beacon_int_min_gcd: 5158 * This interface combination supports different beacon intervals. 5159 * 5160 * = 0 5161 * all beacon intervals for different interface must be same. 5162 * > 0 5163 * any beacon interval for the interface part of this combination AND 5164 * GCD of all beacon intervals from beaconing interfaces of this 5165 * combination must be greater or equal to this value. 5166 */ 5167 u32 beacon_int_min_gcd; 5168 }; 5169 5170 struct ieee80211_txrx_stypes { 5171 u16 tx, rx; 5172 }; 5173 5174 /** 5175 * enum wiphy_wowlan_support_flags - WoWLAN support flags 5176 * @WIPHY_WOWLAN_ANY: supports wakeup for the special "any" 5177 * trigger that keeps the device operating as-is and 5178 * wakes up the host on any activity, for example a 5179 * received packet that passed filtering; note that the 5180 * packet should be preserved in that case 5181 * @WIPHY_WOWLAN_MAGIC_PKT: supports wakeup on magic packet 5182 * (see nl80211.h) 5183 * @WIPHY_WOWLAN_DISCONNECT: supports wakeup on disconnect 5184 * @WIPHY_WOWLAN_SUPPORTS_GTK_REKEY: supports GTK rekeying while asleep 5185 * @WIPHY_WOWLAN_GTK_REKEY_FAILURE: supports wakeup on GTK rekey failure 5186 * @WIPHY_WOWLAN_EAP_IDENTITY_REQ: supports wakeup on EAP identity request 5187 * @WIPHY_WOWLAN_4WAY_HANDSHAKE: supports wakeup on 4-way handshake failure 5188 * @WIPHY_WOWLAN_RFKILL_RELEASE: supports wakeup on RF-kill release 5189 * @WIPHY_WOWLAN_NET_DETECT: supports wakeup on network detection 5190 */ 5191 enum wiphy_wowlan_support_flags { 5192 WIPHY_WOWLAN_ANY = BIT(0), 5193 WIPHY_WOWLAN_MAGIC_PKT = BIT(1), 5194 WIPHY_WOWLAN_DISCONNECT = BIT(2), 5195 WIPHY_WOWLAN_SUPPORTS_GTK_REKEY = BIT(3), 5196 WIPHY_WOWLAN_GTK_REKEY_FAILURE = BIT(4), 5197 WIPHY_WOWLAN_EAP_IDENTITY_REQ = BIT(5), 5198 WIPHY_WOWLAN_4WAY_HANDSHAKE = BIT(6), 5199 WIPHY_WOWLAN_RFKILL_RELEASE = BIT(7), 5200 WIPHY_WOWLAN_NET_DETECT = BIT(8), 5201 }; 5202 5203 struct wiphy_wowlan_tcp_support { 5204 const struct nl80211_wowlan_tcp_data_token_feature *tok; 5205 u32 data_payload_max; 5206 u32 data_interval_max; 5207 u32 wake_payload_max; 5208 bool seq; 5209 }; 5210 5211 /** 5212 * struct wiphy_wowlan_support - WoWLAN support data 5213 * @flags: see &enum wiphy_wowlan_support_flags 5214 * @n_patterns: number of supported wakeup patterns 5215 * (see nl80211.h for the pattern definition) 5216 * @pattern_max_len: maximum length of each pattern 5217 * @pattern_min_len: minimum length of each pattern 5218 * @max_pkt_offset: maximum Rx packet offset 5219 * @max_nd_match_sets: maximum number of matchsets for net-detect, 5220 * similar, but not necessarily identical, to max_match_sets for 5221 * scheduled scans. 5222 * See &struct cfg80211_sched_scan_request.@match_sets for more 5223 * details. 5224 * @tcp: TCP wakeup support information 5225 */ 5226 struct wiphy_wowlan_support { 5227 u32 flags; 5228 int n_patterns; 5229 int pattern_max_len; 5230 int pattern_min_len; 5231 int max_pkt_offset; 5232 int max_nd_match_sets; 5233 const struct wiphy_wowlan_tcp_support *tcp; 5234 }; 5235 5236 /** 5237 * struct wiphy_coalesce_support - coalesce support data 5238 * @n_rules: maximum number of coalesce rules 5239 * @max_delay: maximum supported coalescing delay in msecs 5240 * @n_patterns: number of supported patterns in a rule 5241 * (see nl80211.h for the pattern definition) 5242 * @pattern_max_len: maximum length of each pattern 5243 * @pattern_min_len: minimum length of each pattern 5244 * @max_pkt_offset: maximum Rx packet offset 5245 */ 5246 struct wiphy_coalesce_support { 5247 int n_rules; 5248 int max_delay; 5249 int n_patterns; 5250 int pattern_max_len; 5251 int pattern_min_len; 5252 int max_pkt_offset; 5253 }; 5254 5255 /** 5256 * enum wiphy_vendor_command_flags - validation flags for vendor commands 5257 * @WIPHY_VENDOR_CMD_NEED_WDEV: vendor command requires wdev 5258 * @WIPHY_VENDOR_CMD_NEED_NETDEV: vendor command requires netdev 5259 * @WIPHY_VENDOR_CMD_NEED_RUNNING: interface/wdev must be up & running 5260 * (must be combined with %_WDEV or %_NETDEV) 5261 */ 5262 enum wiphy_vendor_command_flags { 5263 WIPHY_VENDOR_CMD_NEED_WDEV = BIT(0), 5264 WIPHY_VENDOR_CMD_NEED_NETDEV = BIT(1), 5265 WIPHY_VENDOR_CMD_NEED_RUNNING = BIT(2), 5266 }; 5267 5268 /** 5269 * enum wiphy_opmode_flag - Station's ht/vht operation mode information flags 5270 * 5271 * @STA_OPMODE_MAX_BW_CHANGED: Max Bandwidth changed 5272 * @STA_OPMODE_SMPS_MODE_CHANGED: SMPS mode changed 5273 * @STA_OPMODE_N_SS_CHANGED: max N_SS (number of spatial streams) changed 5274 * 5275 */ 5276 enum wiphy_opmode_flag { 5277 STA_OPMODE_MAX_BW_CHANGED = BIT(0), 5278 STA_OPMODE_SMPS_MODE_CHANGED = BIT(1), 5279 STA_OPMODE_N_SS_CHANGED = BIT(2), 5280 }; 5281 5282 /** 5283 * struct sta_opmode_info - Station's ht/vht operation mode information 5284 * @changed: contains value from &enum wiphy_opmode_flag 5285 * @smps_mode: New SMPS mode value from &enum nl80211_smps_mode of a station 5286 * @bw: new max bandwidth value from &enum nl80211_chan_width of a station 5287 * @rx_nss: new rx_nss value of a station 5288 */ 5289 5290 struct sta_opmode_info { 5291 u32 changed; 5292 enum nl80211_smps_mode smps_mode; 5293 enum nl80211_chan_width bw; 5294 u8 rx_nss; 5295 }; 5296 5297 #define VENDOR_CMD_RAW_DATA ((const struct nla_policy *)(long)(-ENODATA)) 5298 5299 /** 5300 * struct wiphy_vendor_command - vendor command definition 5301 * @info: vendor command identifying information, as used in nl80211 5302 * @flags: flags, see &enum wiphy_vendor_command_flags 5303 * @doit: callback for the operation, note that wdev is %NULL if the 5304 * flags didn't ask for a wdev and non-%NULL otherwise; the data 5305 * pointer may be %NULL if userspace provided no data at all 5306 * @dumpit: dump callback, for transferring bigger/multiple items. The 5307 * @storage points to cb->args[5], ie. is preserved over the multiple 5308 * dumpit calls. 5309 * @policy: policy pointer for attributes within %NL80211_ATTR_VENDOR_DATA. 5310 * Set this to %VENDOR_CMD_RAW_DATA if no policy can be given and the 5311 * attribute is just raw data (e.g. a firmware command). 5312 * @maxattr: highest attribute number in policy 5313 * It's recommended to not have the same sub command with both @doit and 5314 * @dumpit, so that userspace can assume certain ones are get and others 5315 * are used with dump requests. 5316 */ 5317 struct wiphy_vendor_command { 5318 struct nl80211_vendor_cmd_info info; 5319 u32 flags; 5320 int (*doit)(struct wiphy *wiphy, struct wireless_dev *wdev, 5321 const void *data, int data_len); 5322 int (*dumpit)(struct wiphy *wiphy, struct wireless_dev *wdev, 5323 struct sk_buff *skb, const void *data, int data_len, 5324 unsigned long *storage); 5325 const struct nla_policy *policy; 5326 unsigned int maxattr; 5327 }; 5328 5329 /** 5330 * struct wiphy_iftype_ext_capab - extended capabilities per interface type 5331 * @iftype: interface type 5332 * @extended_capabilities: extended capabilities supported by the driver, 5333 * additional capabilities might be supported by userspace; these are the 5334 * 802.11 extended capabilities ("Extended Capabilities element") and are 5335 * in the same format as in the information element. See IEEE Std 5336 * 802.11-2012 8.4.2.29 for the defined fields. 5337 * @extended_capabilities_mask: mask of the valid values 5338 * @extended_capabilities_len: length of the extended capabilities 5339 * @eml_capabilities: EML capabilities (for MLO) 5340 * @mld_capa_and_ops: MLD capabilities and operations (for MLO) 5341 */ 5342 struct wiphy_iftype_ext_capab { 5343 enum nl80211_iftype iftype; 5344 const u8 *extended_capabilities; 5345 const u8 *extended_capabilities_mask; 5346 u8 extended_capabilities_len; 5347 u16 eml_capabilities; 5348 u16 mld_capa_and_ops; 5349 }; 5350 5351 /** 5352 * cfg80211_get_iftype_ext_capa - lookup interface type extended capability 5353 * @wiphy: the wiphy to look up from 5354 * @type: the interface type to look up 5355 * 5356 * Return: The extended capability for the given interface @type, may be %NULL 5357 */ 5358 const struct wiphy_iftype_ext_capab * 5359 cfg80211_get_iftype_ext_capa(struct wiphy *wiphy, enum nl80211_iftype type); 5360 5361 /** 5362 * struct cfg80211_pmsr_capabilities - cfg80211 peer measurement capabilities 5363 * @max_peers: maximum number of peers in a single measurement 5364 * @report_ap_tsf: can report assoc AP's TSF for radio resource measurement 5365 * @randomize_mac_addr: can randomize MAC address for measurement 5366 * @ftm: FTM measurement data 5367 * @ftm.supported: FTM measurement is supported 5368 * @ftm.asap: ASAP-mode is supported 5369 * @ftm.non_asap: non-ASAP-mode is supported 5370 * @ftm.request_lci: can request LCI data 5371 * @ftm.request_civicloc: can request civic location data 5372 * @ftm.preambles: bitmap of preambles supported (&enum nl80211_preamble) 5373 * @ftm.bandwidths: bitmap of bandwidths supported (&enum nl80211_chan_width) 5374 * @ftm.max_bursts_exponent: maximum burst exponent supported 5375 * (set to -1 if not limited; note that setting this will necessarily 5376 * forbid using the value 15 to let the responder pick) 5377 * @ftm.max_ftms_per_burst: maximum FTMs per burst supported (set to 0 if 5378 * not limited) 5379 * @ftm.trigger_based: trigger based ranging measurement is supported 5380 * @ftm.non_trigger_based: non trigger based ranging measurement is supported 5381 */ 5382 struct cfg80211_pmsr_capabilities { 5383 unsigned int max_peers; 5384 u8 report_ap_tsf:1, 5385 randomize_mac_addr:1; 5386 5387 struct { 5388 u32 preambles; 5389 u32 bandwidths; 5390 s8 max_bursts_exponent; 5391 u8 max_ftms_per_burst; 5392 u8 supported:1, 5393 asap:1, 5394 non_asap:1, 5395 request_lci:1, 5396 request_civicloc:1, 5397 trigger_based:1, 5398 non_trigger_based:1; 5399 } ftm; 5400 }; 5401 5402 /** 5403 * struct wiphy_iftype_akm_suites - This structure encapsulates supported akm 5404 * suites for interface types defined in @iftypes_mask. Each type in the 5405 * @iftypes_mask must be unique across all instances of iftype_akm_suites. 5406 * 5407 * @iftypes_mask: bitmask of interfaces types 5408 * @akm_suites: points to an array of supported akm suites 5409 * @n_akm_suites: number of supported AKM suites 5410 */ 5411 struct wiphy_iftype_akm_suites { 5412 u16 iftypes_mask; 5413 const u32 *akm_suites; 5414 int n_akm_suites; 5415 }; 5416 5417 /** 5418 * struct wiphy_radio_freq_range - wiphy frequency range 5419 * @start_freq: start range edge frequency (kHz) 5420 * @end_freq: end range edge frequency (kHz) 5421 */ 5422 struct wiphy_radio_freq_range { 5423 u32 start_freq; 5424 u32 end_freq; 5425 }; 5426 5427 5428 /** 5429 * struct wiphy_radio - physical radio of a wiphy 5430 * This structure describes a physical radio belonging to a wiphy. 5431 * It is used to describe concurrent-channel capabilities. Only one channel 5432 * can be active on the radio described by struct wiphy_radio. 5433 * 5434 * @freq_range: frequency range that the radio can operate on. 5435 * @n_freq_range: number of elements in @freq_range 5436 * 5437 * @iface_combinations: Valid interface combinations array, should not 5438 * list single interface types. 5439 * @n_iface_combinations: number of entries in @iface_combinations array. 5440 * 5441 * @antenna_mask: bitmask of antennas connected to this radio. 5442 */ 5443 struct wiphy_radio { 5444 const struct wiphy_radio_freq_range *freq_range; 5445 int n_freq_range; 5446 5447 const struct ieee80211_iface_combination *iface_combinations; 5448 int n_iface_combinations; 5449 5450 u32 antenna_mask; 5451 }; 5452 5453 #define CFG80211_HW_TIMESTAMP_ALL_PEERS 0xffff 5454 5455 /** 5456 * struct wiphy - wireless hardware description 5457 * @mtx: mutex for the data (structures) of this device 5458 * @reg_notifier: the driver's regulatory notification callback, 5459 * note that if your driver uses wiphy_apply_custom_regulatory() 5460 * the reg_notifier's request can be passed as NULL 5461 * @regd: the driver's regulatory domain, if one was requested via 5462 * the regulatory_hint() API. This can be used by the driver 5463 * on the reg_notifier() if it chooses to ignore future 5464 * regulatory domain changes caused by other drivers. 5465 * @signal_type: signal type reported in &struct cfg80211_bss. 5466 * @cipher_suites: supported cipher suites 5467 * @n_cipher_suites: number of supported cipher suites 5468 * @akm_suites: supported AKM suites. These are the default AKMs supported if 5469 * the supported AKMs not advertized for a specific interface type in 5470 * iftype_akm_suites. 5471 * @n_akm_suites: number of supported AKM suites 5472 * @iftype_akm_suites: array of supported akm suites info per interface type. 5473 * Note that the bits in @iftypes_mask inside this structure cannot 5474 * overlap (i.e. only one occurrence of each type is allowed across all 5475 * instances of iftype_akm_suites). 5476 * @num_iftype_akm_suites: number of interface types for which supported akm 5477 * suites are specified separately. 5478 * @retry_short: Retry limit for short frames (dot11ShortRetryLimit) 5479 * @retry_long: Retry limit for long frames (dot11LongRetryLimit) 5480 * @frag_threshold: Fragmentation threshold (dot11FragmentationThreshold); 5481 * -1 = fragmentation disabled, only odd values >= 256 used 5482 * @rts_threshold: RTS threshold (dot11RTSThreshold); -1 = RTS/CTS disabled 5483 * @_net: the network namespace this wiphy currently lives in 5484 * @perm_addr: permanent MAC address of this device 5485 * @addr_mask: If the device supports multiple MAC addresses by masking, 5486 * set this to a mask with variable bits set to 1, e.g. if the last 5487 * four bits are variable then set it to 00-00-00-00-00-0f. The actual 5488 * variable bits shall be determined by the interfaces added, with 5489 * interfaces not matching the mask being rejected to be brought up. 5490 * @n_addresses: number of addresses in @addresses. 5491 * @addresses: If the device has more than one address, set this pointer 5492 * to a list of addresses (6 bytes each). The first one will be used 5493 * by default for perm_addr. In this case, the mask should be set to 5494 * all-zeroes. In this case it is assumed that the device can handle 5495 * the same number of arbitrary MAC addresses. 5496 * @registered: protects ->resume and ->suspend sysfs callbacks against 5497 * unregister hardware 5498 * @debugfsdir: debugfs directory used for this wiphy (ieee80211/<wiphyname>). 5499 * It will be renamed automatically on wiphy renames 5500 * @dev: (virtual) struct device for this wiphy. The item in 5501 * /sys/class/ieee80211/ points to this. You need use set_wiphy_dev() 5502 * (see below). 5503 * @wext: wireless extension handlers 5504 * @priv: driver private data (sized according to wiphy_new() parameter) 5505 * @interface_modes: bitmask of interfaces types valid for this wiphy, 5506 * must be set by driver 5507 * @iface_combinations: Valid interface combinations array, should not 5508 * list single interface types. 5509 * @n_iface_combinations: number of entries in @iface_combinations array. 5510 * @software_iftypes: bitmask of software interface types, these are not 5511 * subject to any restrictions since they are purely managed in SW. 5512 * @flags: wiphy flags, see &enum wiphy_flags 5513 * @regulatory_flags: wiphy regulatory flags, see 5514 * &enum ieee80211_regulatory_flags 5515 * @features: features advertised to nl80211, see &enum nl80211_feature_flags. 5516 * @ext_features: extended features advertised to nl80211, see 5517 * &enum nl80211_ext_feature_index. 5518 * @bss_priv_size: each BSS struct has private data allocated with it, 5519 * this variable determines its size 5520 * @max_scan_ssids: maximum number of SSIDs the device can scan for in 5521 * any given scan 5522 * @max_sched_scan_reqs: maximum number of scheduled scan requests that 5523 * the device can run concurrently. 5524 * @max_sched_scan_ssids: maximum number of SSIDs the device can scan 5525 * for in any given scheduled scan 5526 * @max_match_sets: maximum number of match sets the device can handle 5527 * when performing a scheduled scan, 0 if filtering is not 5528 * supported. 5529 * @max_scan_ie_len: maximum length of user-controlled IEs device can 5530 * add to probe request frames transmitted during a scan, must not 5531 * include fixed IEs like supported rates 5532 * @max_sched_scan_ie_len: same as max_scan_ie_len, but for scheduled 5533 * scans 5534 * @max_sched_scan_plans: maximum number of scan plans (scan interval and number 5535 * of iterations) for scheduled scan supported by the device. 5536 * @max_sched_scan_plan_interval: maximum interval (in seconds) for a 5537 * single scan plan supported by the device. 5538 * @max_sched_scan_plan_iterations: maximum number of iterations for a single 5539 * scan plan supported by the device. 5540 * @coverage_class: current coverage class 5541 * @fw_version: firmware version for ethtool reporting 5542 * @hw_version: hardware version for ethtool reporting 5543 * @max_num_pmkids: maximum number of PMKIDs supported by device 5544 * @privid: a pointer that drivers can use to identify if an arbitrary 5545 * wiphy is theirs, e.g. in global notifiers 5546 * @bands: information about bands/channels supported by this device 5547 * 5548 * @mgmt_stypes: bitmasks of frame subtypes that can be subscribed to or 5549 * transmitted through nl80211, points to an array indexed by interface 5550 * type 5551 * 5552 * @available_antennas_tx: bitmap of antennas which are available to be 5553 * configured as TX antennas. Antenna configuration commands will be 5554 * rejected unless this or @available_antennas_rx is set. 5555 * 5556 * @available_antennas_rx: bitmap of antennas which are available to be 5557 * configured as RX antennas. Antenna configuration commands will be 5558 * rejected unless this or @available_antennas_tx is set. 5559 * 5560 * @probe_resp_offload: 5561 * Bitmap of supported protocols for probe response offloading. 5562 * See &enum nl80211_probe_resp_offload_support_attr. Only valid 5563 * when the wiphy flag @WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD is set. 5564 * 5565 * @max_remain_on_channel_duration: Maximum time a remain-on-channel operation 5566 * may request, if implemented. 5567 * 5568 * @wowlan: WoWLAN support information 5569 * @wowlan_config: current WoWLAN configuration; this should usually not be 5570 * used since access to it is necessarily racy, use the parameter passed 5571 * to the suspend() operation instead. 5572 * 5573 * @ap_sme_capa: AP SME capabilities, flags from &enum nl80211_ap_sme_features. 5574 * @ht_capa_mod_mask: Specify what ht_cap values can be over-ridden. 5575 * If null, then none can be over-ridden. 5576 * @vht_capa_mod_mask: Specify what VHT capabilities can be over-ridden. 5577 * If null, then none can be over-ridden. 5578 * 5579 * @wdev_list: the list of associated (virtual) interfaces; this list must 5580 * not be modified by the driver, but can be read with RTNL/RCU protection. 5581 * 5582 * @max_acl_mac_addrs: Maximum number of MAC addresses that the device 5583 * supports for ACL. 5584 * 5585 * @extended_capabilities: extended capabilities supported by the driver, 5586 * additional capabilities might be supported by userspace; these are 5587 * the 802.11 extended capabilities ("Extended Capabilities element") 5588 * and are in the same format as in the information element. See 5589 * 802.11-2012 8.4.2.29 for the defined fields. These are the default 5590 * extended capabilities to be used if the capabilities are not specified 5591 * for a specific interface type in iftype_ext_capab. 5592 * @extended_capabilities_mask: mask of the valid values 5593 * @extended_capabilities_len: length of the extended capabilities 5594 * @iftype_ext_capab: array of extended capabilities per interface type 5595 * @num_iftype_ext_capab: number of interface types for which extended 5596 * capabilities are specified separately. 5597 * @coalesce: packet coalescing support information 5598 * 5599 * @vendor_commands: array of vendor commands supported by the hardware 5600 * @n_vendor_commands: number of vendor commands 5601 * @vendor_events: array of vendor events supported by the hardware 5602 * @n_vendor_events: number of vendor events 5603 * 5604 * @max_ap_assoc_sta: maximum number of associated stations supported in AP mode 5605 * (including P2P GO) or 0 to indicate no such limit is advertised. The 5606 * driver is allowed to advertise a theoretical limit that it can reach in 5607 * some cases, but may not always reach. 5608 * 5609 * @max_num_csa_counters: Number of supported csa_counters in beacons 5610 * and probe responses. This value should be set if the driver 5611 * wishes to limit the number of csa counters. Default (0) means 5612 * infinite. 5613 * @bss_select_support: bitmask indicating the BSS selection criteria supported 5614 * by the driver in the .connect() callback. The bit position maps to the 5615 * attribute indices defined in &enum nl80211_bss_select_attr. 5616 * 5617 * @nan_supported_bands: bands supported by the device in NAN mode, a 5618 * bitmap of &enum nl80211_band values. For instance, for 5619 * NL80211_BAND_2GHZ, bit 0 would be set 5620 * (i.e. BIT(NL80211_BAND_2GHZ)). 5621 * 5622 * @txq_limit: configuration of internal TX queue frame limit 5623 * @txq_memory_limit: configuration internal TX queue memory limit 5624 * @txq_quantum: configuration of internal TX queue scheduler quantum 5625 * 5626 * @tx_queue_len: allow setting transmit queue len for drivers not using 5627 * wake_tx_queue 5628 * 5629 * @support_mbssid: can HW support association with nontransmitted AP 5630 * @support_only_he_mbssid: don't parse MBSSID elements if it is not 5631 * HE AP, in order to avoid compatibility issues. 5632 * @support_mbssid must be set for this to have any effect. 5633 * 5634 * @pmsr_capa: peer measurement capabilities 5635 * 5636 * @tid_config_support: describes the per-TID config support that the 5637 * device has 5638 * @tid_config_support.vif: bitmap of attributes (configurations) 5639 * supported by the driver for each vif 5640 * @tid_config_support.peer: bitmap of attributes (configurations) 5641 * supported by the driver for each peer 5642 * @tid_config_support.max_retry: maximum supported retry count for 5643 * long/short retry configuration 5644 * 5645 * @max_data_retry_count: maximum supported per TID retry count for 5646 * configuration through the %NL80211_TID_CONFIG_ATTR_RETRY_SHORT and 5647 * %NL80211_TID_CONFIG_ATTR_RETRY_LONG attributes 5648 * @sar_capa: SAR control capabilities 5649 * @rfkill: a pointer to the rfkill structure 5650 * 5651 * @mbssid_max_interfaces: maximum number of interfaces supported by the driver 5652 * in a multiple BSSID set. This field must be set to a non-zero value 5653 * by the driver to advertise MBSSID support. 5654 * @ema_max_profile_periodicity: maximum profile periodicity supported by 5655 * the driver. Setting this field to a non-zero value indicates that the 5656 * driver supports enhanced multi-BSSID advertisements (EMA AP). 5657 * @max_num_akm_suites: maximum number of AKM suites allowed for 5658 * configuration through %NL80211_CMD_CONNECT, %NL80211_CMD_ASSOCIATE and 5659 * %NL80211_CMD_START_AP. Set to NL80211_MAX_NR_AKM_SUITES if not set by 5660 * driver. If set by driver minimum allowed value is 5661 * NL80211_MAX_NR_AKM_SUITES in order to avoid compatibility issues with 5662 * legacy userspace and maximum allowed value is 5663 * CFG80211_MAX_NUM_AKM_SUITES. 5664 * 5665 * @hw_timestamp_max_peers: maximum number of peers that the driver supports 5666 * enabling HW timestamping for concurrently. Setting this field to a 5667 * non-zero value indicates that the driver supports HW timestamping. 5668 * A value of %CFG80211_HW_TIMESTAMP_ALL_PEERS indicates the driver 5669 * supports enabling HW timestamping for all peers (i.e. no need to 5670 * specify a mac address). 5671 * 5672 * @radio: radios belonging to this wiphy 5673 * @n_radio: number of radios 5674 */ 5675 struct wiphy { 5676 struct mutex mtx; 5677 5678 /* assign these fields before you register the wiphy */ 5679 5680 u8 perm_addr[ETH_ALEN]; 5681 u8 addr_mask[ETH_ALEN]; 5682 5683 struct mac_address *addresses; 5684 5685 const struct ieee80211_txrx_stypes *mgmt_stypes; 5686 5687 const struct ieee80211_iface_combination *iface_combinations; 5688 int n_iface_combinations; 5689 u16 software_iftypes; 5690 5691 u16 n_addresses; 5692 5693 /* Supported interface modes, OR together BIT(NL80211_IFTYPE_...) */ 5694 u16 interface_modes; 5695 5696 u16 max_acl_mac_addrs; 5697 5698 u32 flags, regulatory_flags, features; 5699 u8 ext_features[DIV_ROUND_UP(NUM_NL80211_EXT_FEATURES, 8)]; 5700 5701 u32 ap_sme_capa; 5702 5703 enum cfg80211_signal_type signal_type; 5704 5705 int bss_priv_size; 5706 u8 max_scan_ssids; 5707 u8 max_sched_scan_reqs; 5708 u8 max_sched_scan_ssids; 5709 u8 max_match_sets; 5710 u16 max_scan_ie_len; 5711 u16 max_sched_scan_ie_len; 5712 u32 max_sched_scan_plans; 5713 u32 max_sched_scan_plan_interval; 5714 u32 max_sched_scan_plan_iterations; 5715 5716 int n_cipher_suites; 5717 const u32 *cipher_suites; 5718 5719 int n_akm_suites; 5720 const u32 *akm_suites; 5721 5722 const struct wiphy_iftype_akm_suites *iftype_akm_suites; 5723 unsigned int num_iftype_akm_suites; 5724 5725 u8 retry_short; 5726 u8 retry_long; 5727 u32 frag_threshold; 5728 u32 rts_threshold; 5729 u8 coverage_class; 5730 5731 char fw_version[ETHTOOL_FWVERS_LEN]; 5732 u32 hw_version; 5733 5734 #ifdef CONFIG_PM 5735 const struct wiphy_wowlan_support *wowlan; 5736 struct cfg80211_wowlan *wowlan_config; 5737 #endif 5738 5739 u16 max_remain_on_channel_duration; 5740 5741 u8 max_num_pmkids; 5742 5743 u32 available_antennas_tx; 5744 u32 available_antennas_rx; 5745 5746 u32 probe_resp_offload; 5747 5748 const u8 *extended_capabilities, *extended_capabilities_mask; 5749 u8 extended_capabilities_len; 5750 5751 const struct wiphy_iftype_ext_capab *iftype_ext_capab; 5752 unsigned int num_iftype_ext_capab; 5753 5754 const void *privid; 5755 5756 struct ieee80211_supported_band *bands[NUM_NL80211_BANDS]; 5757 5758 void (*reg_notifier)(struct wiphy *wiphy, 5759 struct regulatory_request *request); 5760 5761 /* fields below are read-only, assigned by cfg80211 */ 5762 5763 const struct ieee80211_regdomain __rcu *regd; 5764 5765 struct device dev; 5766 5767 bool registered; 5768 5769 struct dentry *debugfsdir; 5770 5771 const struct ieee80211_ht_cap *ht_capa_mod_mask; 5772 const struct ieee80211_vht_cap *vht_capa_mod_mask; 5773 5774 struct list_head wdev_list; 5775 5776 possible_net_t _net; 5777 5778 #ifdef CONFIG_CFG80211_WEXT 5779 const struct iw_handler_def *wext; 5780 #endif 5781 5782 const struct wiphy_coalesce_support *coalesce; 5783 5784 const struct wiphy_vendor_command *vendor_commands; 5785 const struct nl80211_vendor_cmd_info *vendor_events; 5786 int n_vendor_commands, n_vendor_events; 5787 5788 u16 max_ap_assoc_sta; 5789 5790 u8 max_num_csa_counters; 5791 5792 u32 bss_select_support; 5793 5794 u8 nan_supported_bands; 5795 5796 u32 txq_limit; 5797 u32 txq_memory_limit; 5798 u32 txq_quantum; 5799 5800 unsigned long tx_queue_len; 5801 5802 u8 support_mbssid:1, 5803 support_only_he_mbssid:1; 5804 5805 const struct cfg80211_pmsr_capabilities *pmsr_capa; 5806 5807 struct { 5808 u64 peer, vif; 5809 u8 max_retry; 5810 } tid_config_support; 5811 5812 u8 max_data_retry_count; 5813 5814 const struct cfg80211_sar_capa *sar_capa; 5815 5816 struct rfkill *rfkill; 5817 5818 u8 mbssid_max_interfaces; 5819 u8 ema_max_profile_periodicity; 5820 u16 max_num_akm_suites; 5821 5822 u16 hw_timestamp_max_peers; 5823 5824 int n_radio; 5825 const struct wiphy_radio *radio; 5826 5827 char priv[] __aligned(NETDEV_ALIGN); 5828 }; 5829 5830 static inline struct net *wiphy_net(struct wiphy *wiphy) 5831 { 5832 return read_pnet(&wiphy->_net); 5833 } 5834 5835 static inline void wiphy_net_set(struct wiphy *wiphy, struct net *net) 5836 { 5837 write_pnet(&wiphy->_net, net); 5838 } 5839 5840 /** 5841 * wiphy_priv - return priv from wiphy 5842 * 5843 * @wiphy: the wiphy whose priv pointer to return 5844 * Return: The priv of @wiphy. 5845 */ 5846 static inline void *wiphy_priv(struct wiphy *wiphy) 5847 { 5848 BUG_ON(!wiphy); 5849 return &wiphy->priv; 5850 } 5851 5852 /** 5853 * priv_to_wiphy - return the wiphy containing the priv 5854 * 5855 * @priv: a pointer previously returned by wiphy_priv 5856 * Return: The wiphy of @priv. 5857 */ 5858 static inline struct wiphy *priv_to_wiphy(void *priv) 5859 { 5860 BUG_ON(!priv); 5861 return container_of(priv, struct wiphy, priv); 5862 } 5863 5864 /** 5865 * set_wiphy_dev - set device pointer for wiphy 5866 * 5867 * @wiphy: The wiphy whose device to bind 5868 * @dev: The device to parent it to 5869 */ 5870 static inline void set_wiphy_dev(struct wiphy *wiphy, struct device *dev) 5871 { 5872 wiphy->dev.parent = dev; 5873 } 5874 5875 /** 5876 * wiphy_dev - get wiphy dev pointer 5877 * 5878 * @wiphy: The wiphy whose device struct to look up 5879 * Return: The dev of @wiphy. 5880 */ 5881 static inline struct device *wiphy_dev(struct wiphy *wiphy) 5882 { 5883 return wiphy->dev.parent; 5884 } 5885 5886 /** 5887 * wiphy_name - get wiphy name 5888 * 5889 * @wiphy: The wiphy whose name to return 5890 * Return: The name of @wiphy. 5891 */ 5892 static inline const char *wiphy_name(const struct wiphy *wiphy) 5893 { 5894 return dev_name(&wiphy->dev); 5895 } 5896 5897 /** 5898 * wiphy_new_nm - create a new wiphy for use with cfg80211 5899 * 5900 * @ops: The configuration operations for this device 5901 * @sizeof_priv: The size of the private area to allocate 5902 * @requested_name: Request a particular name. 5903 * NULL is valid value, and means use the default phy%d naming. 5904 * 5905 * Create a new wiphy and associate the given operations with it. 5906 * @sizeof_priv bytes are allocated for private use. 5907 * 5908 * Return: A pointer to the new wiphy. This pointer must be 5909 * assigned to each netdev's ieee80211_ptr for proper operation. 5910 */ 5911 struct wiphy *wiphy_new_nm(const struct cfg80211_ops *ops, int sizeof_priv, 5912 const char *requested_name); 5913 5914 /** 5915 * wiphy_new - create a new wiphy for use with cfg80211 5916 * 5917 * @ops: The configuration operations for this device 5918 * @sizeof_priv: The size of the private area to allocate 5919 * 5920 * Create a new wiphy and associate the given operations with it. 5921 * @sizeof_priv bytes are allocated for private use. 5922 * 5923 * Return: A pointer to the new wiphy. This pointer must be 5924 * assigned to each netdev's ieee80211_ptr for proper operation. 5925 */ 5926 static inline struct wiphy *wiphy_new(const struct cfg80211_ops *ops, 5927 int sizeof_priv) 5928 { 5929 return wiphy_new_nm(ops, sizeof_priv, NULL); 5930 } 5931 5932 /** 5933 * wiphy_register - register a wiphy with cfg80211 5934 * 5935 * @wiphy: The wiphy to register. 5936 * 5937 * Return: A non-negative wiphy index or a negative error code. 5938 */ 5939 int wiphy_register(struct wiphy *wiphy); 5940 5941 /* this is a define for better error reporting (file/line) */ 5942 #define lockdep_assert_wiphy(wiphy) lockdep_assert_held(&(wiphy)->mtx) 5943 5944 /** 5945 * rcu_dereference_wiphy - rcu_dereference with debug checking 5946 * @wiphy: the wiphy to check the locking on 5947 * @p: The pointer to read, prior to dereferencing 5948 * 5949 * Do an rcu_dereference(p), but check caller either holds rcu_read_lock() 5950 * or RTNL. Note: Please prefer wiphy_dereference() or rcu_dereference(). 5951 */ 5952 #define rcu_dereference_wiphy(wiphy, p) \ 5953 rcu_dereference_check(p, lockdep_is_held(&wiphy->mtx)) 5954 5955 /** 5956 * wiphy_dereference - fetch RCU pointer when updates are prevented by wiphy mtx 5957 * @wiphy: the wiphy to check the locking on 5958 * @p: The pointer to read, prior to dereferencing 5959 * 5960 * Return the value of the specified RCU-protected pointer, but omit the 5961 * READ_ONCE(), because caller holds the wiphy mutex used for updates. 5962 */ 5963 #define wiphy_dereference(wiphy, p) \ 5964 rcu_dereference_protected(p, lockdep_is_held(&wiphy->mtx)) 5965 5966 /** 5967 * get_wiphy_regdom - get custom regdomain for the given wiphy 5968 * @wiphy: the wiphy to get the regdomain from 5969 * 5970 * Context: Requires any of RTNL, wiphy mutex or RCU protection. 5971 * 5972 * Return: pointer to the regulatory domain associated with the wiphy 5973 */ 5974 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy); 5975 5976 /** 5977 * wiphy_unregister - deregister a wiphy from cfg80211 5978 * 5979 * @wiphy: The wiphy to unregister. 5980 * 5981 * After this call, no more requests can be made with this priv 5982 * pointer, but the call may sleep to wait for an outstanding 5983 * request that is being handled. 5984 */ 5985 void wiphy_unregister(struct wiphy *wiphy); 5986 5987 /** 5988 * wiphy_free - free wiphy 5989 * 5990 * @wiphy: The wiphy to free 5991 */ 5992 void wiphy_free(struct wiphy *wiphy); 5993 5994 /* internal structs */ 5995 struct cfg80211_conn; 5996 struct cfg80211_internal_bss; 5997 struct cfg80211_cached_keys; 5998 struct cfg80211_cqm_config; 5999 6000 /** 6001 * wiphy_lock - lock the wiphy 6002 * @wiphy: the wiphy to lock 6003 * 6004 * This is needed around registering and unregistering netdevs that 6005 * aren't created through cfg80211 calls, since that requires locking 6006 * in cfg80211 when the notifiers is called, but that cannot 6007 * differentiate which way it's called. 6008 * 6009 * It can also be used by drivers for their own purposes. 6010 * 6011 * When cfg80211 ops are called, the wiphy is already locked. 6012 * 6013 * Note that this makes sure that no workers that have been queued 6014 * with wiphy_queue_work() are running. 6015 */ 6016 static inline void wiphy_lock(struct wiphy *wiphy) 6017 __acquires(&wiphy->mtx) 6018 { 6019 mutex_lock(&wiphy->mtx); 6020 __acquire(&wiphy->mtx); 6021 } 6022 6023 /** 6024 * wiphy_unlock - unlock the wiphy again 6025 * @wiphy: the wiphy to unlock 6026 */ 6027 static inline void wiphy_unlock(struct wiphy *wiphy) 6028 __releases(&wiphy->mtx) 6029 { 6030 __release(&wiphy->mtx); 6031 mutex_unlock(&wiphy->mtx); 6032 } 6033 6034 struct wiphy_work; 6035 typedef void (*wiphy_work_func_t)(struct wiphy *, struct wiphy_work *); 6036 6037 struct wiphy_work { 6038 struct list_head entry; 6039 wiphy_work_func_t func; 6040 }; 6041 6042 static inline void wiphy_work_init(struct wiphy_work *work, 6043 wiphy_work_func_t func) 6044 { 6045 INIT_LIST_HEAD(&work->entry); 6046 work->func = func; 6047 } 6048 6049 /** 6050 * wiphy_work_queue - queue work for the wiphy 6051 * @wiphy: the wiphy to queue for 6052 * @work: the work item 6053 * 6054 * This is useful for work that must be done asynchronously, and work 6055 * queued here has the special property that the wiphy mutex will be 6056 * held as if wiphy_lock() was called, and that it cannot be running 6057 * after wiphy_lock() was called. Therefore, wiphy_cancel_work() can 6058 * use just cancel_work() instead of cancel_work_sync(), it requires 6059 * being in a section protected by wiphy_lock(). 6060 */ 6061 void wiphy_work_queue(struct wiphy *wiphy, struct wiphy_work *work); 6062 6063 /** 6064 * wiphy_work_cancel - cancel previously queued work 6065 * @wiphy: the wiphy, for debug purposes 6066 * @work: the work to cancel 6067 * 6068 * Cancel the work *without* waiting for it, this assumes being 6069 * called under the wiphy mutex acquired by wiphy_lock(). 6070 */ 6071 void wiphy_work_cancel(struct wiphy *wiphy, struct wiphy_work *work); 6072 6073 /** 6074 * wiphy_work_flush - flush previously queued work 6075 * @wiphy: the wiphy, for debug purposes 6076 * @work: the work to flush, this can be %NULL to flush all work 6077 * 6078 * Flush the work (i.e. run it if pending). This must be called 6079 * under the wiphy mutex acquired by wiphy_lock(). 6080 */ 6081 void wiphy_work_flush(struct wiphy *wiphy, struct wiphy_work *work); 6082 6083 struct wiphy_delayed_work { 6084 struct wiphy_work work; 6085 struct wiphy *wiphy; 6086 struct timer_list timer; 6087 }; 6088 6089 void wiphy_delayed_work_timer(struct timer_list *t); 6090 6091 static inline void wiphy_delayed_work_init(struct wiphy_delayed_work *dwork, 6092 wiphy_work_func_t func) 6093 { 6094 timer_setup(&dwork->timer, wiphy_delayed_work_timer, 0); 6095 wiphy_work_init(&dwork->work, func); 6096 } 6097 6098 /** 6099 * wiphy_delayed_work_queue - queue delayed work for the wiphy 6100 * @wiphy: the wiphy to queue for 6101 * @dwork: the delayable worker 6102 * @delay: number of jiffies to wait before queueing 6103 * 6104 * This is useful for work that must be done asynchronously, and work 6105 * queued here has the special property that the wiphy mutex will be 6106 * held as if wiphy_lock() was called, and that it cannot be running 6107 * after wiphy_lock() was called. Therefore, wiphy_cancel_work() can 6108 * use just cancel_work() instead of cancel_work_sync(), it requires 6109 * being in a section protected by wiphy_lock(). 6110 */ 6111 void wiphy_delayed_work_queue(struct wiphy *wiphy, 6112 struct wiphy_delayed_work *dwork, 6113 unsigned long delay); 6114 6115 /** 6116 * wiphy_delayed_work_cancel - cancel previously queued delayed work 6117 * @wiphy: the wiphy, for debug purposes 6118 * @dwork: the delayed work to cancel 6119 * 6120 * Cancel the work *without* waiting for it, this assumes being 6121 * called under the wiphy mutex acquired by wiphy_lock(). 6122 */ 6123 void wiphy_delayed_work_cancel(struct wiphy *wiphy, 6124 struct wiphy_delayed_work *dwork); 6125 6126 /** 6127 * wiphy_delayed_work_flush - flush previously queued delayed work 6128 * @wiphy: the wiphy, for debug purposes 6129 * @dwork: the delayed work to flush 6130 * 6131 * Flush the work (i.e. run it if pending). This must be called 6132 * under the wiphy mutex acquired by wiphy_lock(). 6133 */ 6134 void wiphy_delayed_work_flush(struct wiphy *wiphy, 6135 struct wiphy_delayed_work *dwork); 6136 6137 /** 6138 * wiphy_delayed_work_pending - Find out whether a wiphy delayable 6139 * work item is currently pending. 6140 * 6141 * @wiphy: the wiphy, for debug purposes 6142 * @dwork: the delayed work in question 6143 * 6144 * Return: true if timer is pending, false otherwise 6145 * 6146 * How wiphy_delayed_work_queue() works is by setting a timer which 6147 * when it expires calls wiphy_work_queue() to queue the wiphy work. 6148 * Because wiphy_delayed_work_queue() uses mod_timer(), if it is 6149 * called twice and the second call happens before the first call 6150 * deadline, the work will rescheduled for the second deadline and 6151 * won't run before that. 6152 * 6153 * wiphy_delayed_work_pending() can be used to detect if calling 6154 * wiphy_work_delayed_work_queue() would start a new work schedule 6155 * or delayed a previous one. As seen below it cannot be used to 6156 * detect precisely if the work has finished to execute nor if it 6157 * is currently executing. 6158 * 6159 * CPU0 CPU1 6160 * wiphy_delayed_work_queue(wk) 6161 * mod_timer(wk->timer) 6162 * wiphy_delayed_work_pending(wk) -> true 6163 * 6164 * [...] 6165 * expire_timers(wk->timer) 6166 * detach_timer(wk->timer) 6167 * wiphy_delayed_work_pending(wk) -> false 6168 * wk->timer->function() | 6169 * wiphy_work_queue(wk) | delayed work pending 6170 * list_add_tail() | returns false but 6171 * queue_work(cfg80211_wiphy_work) | wk->func() has not 6172 * | been run yet 6173 * [...] | 6174 * cfg80211_wiphy_work() | 6175 * wk->func() V 6176 * 6177 */ 6178 bool wiphy_delayed_work_pending(struct wiphy *wiphy, 6179 struct wiphy_delayed_work *dwork); 6180 6181 /** 6182 * enum ieee80211_ap_reg_power - regulatory power for an Access Point 6183 * 6184 * @IEEE80211_REG_UNSET_AP: Access Point has no regulatory power mode 6185 * @IEEE80211_REG_LPI_AP: Indoor Access Point 6186 * @IEEE80211_REG_SP_AP: Standard power Access Point 6187 * @IEEE80211_REG_VLP_AP: Very low power Access Point 6188 */ 6189 enum ieee80211_ap_reg_power { 6190 IEEE80211_REG_UNSET_AP, 6191 IEEE80211_REG_LPI_AP, 6192 IEEE80211_REG_SP_AP, 6193 IEEE80211_REG_VLP_AP, 6194 }; 6195 6196 /** 6197 * struct wireless_dev - wireless device state 6198 * 6199 * For netdevs, this structure must be allocated by the driver 6200 * that uses the ieee80211_ptr field in struct net_device (this 6201 * is intentional so it can be allocated along with the netdev.) 6202 * It need not be registered then as netdev registration will 6203 * be intercepted by cfg80211 to see the new wireless device, 6204 * however, drivers must lock the wiphy before registering or 6205 * unregistering netdevs if they pre-create any netdevs (in ops 6206 * called from cfg80211, the wiphy is already locked.) 6207 * 6208 * For non-netdev uses, it must also be allocated by the driver 6209 * in response to the cfg80211 callbacks that require it, as 6210 * there's no netdev registration in that case it may not be 6211 * allocated outside of callback operations that return it. 6212 * 6213 * @wiphy: pointer to hardware description 6214 * @iftype: interface type 6215 * @registered: is this wdev already registered with cfg80211 6216 * @registering: indicates we're doing registration under wiphy lock 6217 * for the notifier 6218 * @list: (private) Used to collect the interfaces 6219 * @netdev: (private) Used to reference back to the netdev, may be %NULL 6220 * @identifier: (private) Identifier used in nl80211 to identify this 6221 * wireless device if it has no netdev 6222 * @u: union containing data specific to @iftype 6223 * @connected: indicates if connected or not (STA mode) 6224 * @wext: (private) Used by the internal wireless extensions compat code 6225 * @wext.ibss: (private) IBSS data part of wext handling 6226 * @wext.connect: (private) connection handling data 6227 * @wext.keys: (private) (WEP) key data 6228 * @wext.ie: (private) extra elements for association 6229 * @wext.ie_len: (private) length of extra elements 6230 * @wext.bssid: (private) selected network BSSID 6231 * @wext.ssid: (private) selected network SSID 6232 * @wext.default_key: (private) selected default key index 6233 * @wext.default_mgmt_key: (private) selected default management key index 6234 * @wext.prev_bssid: (private) previous BSSID for reassociation 6235 * @wext.prev_bssid_valid: (private) previous BSSID validity 6236 * @use_4addr: indicates 4addr mode is used on this interface, must be 6237 * set by driver (if supported) on add_interface BEFORE registering the 6238 * netdev and may otherwise be used by driver read-only, will be update 6239 * by cfg80211 on change_interface 6240 * @mgmt_registrations: list of registrations for management frames 6241 * @mgmt_registrations_need_update: mgmt registrations were updated, 6242 * need to propagate the update to the driver 6243 * @address: The address for this device, valid only if @netdev is %NULL 6244 * @is_running: true if this is a non-netdev device that has been started, e.g. 6245 * the P2P Device. 6246 * @ps: powersave mode is enabled 6247 * @ps_timeout: dynamic powersave timeout 6248 * @ap_unexpected_nlportid: (private) netlink port ID of application 6249 * registered for unexpected class 3 frames (AP mode) 6250 * @conn: (private) cfg80211 software SME connection state machine data 6251 * @connect_keys: (private) keys to set after connection is established 6252 * @conn_bss_type: connecting/connected BSS type 6253 * @conn_owner_nlportid: (private) connection owner socket port ID 6254 * @disconnect_wk: (private) auto-disconnect work 6255 * @disconnect_bssid: (private) the BSSID to use for auto-disconnect 6256 * @event_list: (private) list for internal event processing 6257 * @event_lock: (private) lock for event list 6258 * @owner_nlportid: (private) owner socket port ID 6259 * @nl_owner_dead: (private) owner socket went away 6260 * @cqm_rssi_work: (private) CQM RSSI reporting work 6261 * @cqm_config: (private) nl80211 RSSI monitor state 6262 * @pmsr_list: (private) peer measurement requests 6263 * @pmsr_lock: (private) peer measurements requests/results lock 6264 * @pmsr_free_wk: (private) peer measurements cleanup work 6265 * @unprot_beacon_reported: (private) timestamp of last 6266 * unprotected beacon report 6267 * @links: array of %IEEE80211_MLD_MAX_NUM_LINKS elements containing @addr 6268 * @ap and @client for each link 6269 * @links.cac_started: true if DFS channel availability check has been 6270 * started 6271 * @links.cac_start_time: timestamp (jiffies) when the dfs state was 6272 * entered. 6273 * @links.cac_time_ms: CAC time in ms 6274 * @valid_links: bitmap describing what elements of @links are valid 6275 * @radio_mask: Bitmask of radios that this interface is allowed to operate on. 6276 */ 6277 struct wireless_dev { 6278 struct wiphy *wiphy; 6279 enum nl80211_iftype iftype; 6280 6281 /* the remainder of this struct should be private to cfg80211 */ 6282 struct list_head list; 6283 struct net_device *netdev; 6284 6285 u32 identifier; 6286 6287 struct list_head mgmt_registrations; 6288 u8 mgmt_registrations_need_update:1; 6289 6290 bool use_4addr, is_running, registered, registering; 6291 6292 u8 address[ETH_ALEN] __aligned(sizeof(u16)); 6293 6294 /* currently used for IBSS and SME - might be rearranged later */ 6295 struct cfg80211_conn *conn; 6296 struct cfg80211_cached_keys *connect_keys; 6297 enum ieee80211_bss_type conn_bss_type; 6298 u32 conn_owner_nlportid; 6299 6300 struct work_struct disconnect_wk; 6301 u8 disconnect_bssid[ETH_ALEN]; 6302 6303 struct list_head event_list; 6304 spinlock_t event_lock; 6305 6306 u8 connected:1; 6307 6308 bool ps; 6309 int ps_timeout; 6310 6311 u32 ap_unexpected_nlportid; 6312 6313 u32 owner_nlportid; 6314 bool nl_owner_dead; 6315 6316 #ifdef CONFIG_CFG80211_WEXT 6317 /* wext data */ 6318 struct { 6319 struct cfg80211_ibss_params ibss; 6320 struct cfg80211_connect_params connect; 6321 struct cfg80211_cached_keys *keys; 6322 const u8 *ie; 6323 size_t ie_len; 6324 u8 bssid[ETH_ALEN]; 6325 u8 prev_bssid[ETH_ALEN]; 6326 u8 ssid[IEEE80211_MAX_SSID_LEN]; 6327 s8 default_key, default_mgmt_key; 6328 bool prev_bssid_valid; 6329 } wext; 6330 #endif 6331 6332 struct wiphy_work cqm_rssi_work; 6333 struct cfg80211_cqm_config __rcu *cqm_config; 6334 6335 struct list_head pmsr_list; 6336 spinlock_t pmsr_lock; 6337 struct work_struct pmsr_free_wk; 6338 6339 unsigned long unprot_beacon_reported; 6340 6341 union { 6342 struct { 6343 u8 connected_addr[ETH_ALEN] __aligned(2); 6344 u8 ssid[IEEE80211_MAX_SSID_LEN]; 6345 u8 ssid_len; 6346 } client; 6347 struct { 6348 int beacon_interval; 6349 struct cfg80211_chan_def preset_chandef; 6350 struct cfg80211_chan_def chandef; 6351 u8 id[IEEE80211_MAX_MESH_ID_LEN]; 6352 u8 id_len, id_up_len; 6353 } mesh; 6354 struct { 6355 struct cfg80211_chan_def preset_chandef; 6356 u8 ssid[IEEE80211_MAX_SSID_LEN]; 6357 u8 ssid_len; 6358 } ap; 6359 struct { 6360 struct cfg80211_internal_bss *current_bss; 6361 struct cfg80211_chan_def chandef; 6362 int beacon_interval; 6363 u8 ssid[IEEE80211_MAX_SSID_LEN]; 6364 u8 ssid_len; 6365 } ibss; 6366 struct { 6367 struct cfg80211_chan_def chandef; 6368 } ocb; 6369 } u; 6370 6371 struct { 6372 u8 addr[ETH_ALEN] __aligned(2); 6373 union { 6374 struct { 6375 unsigned int beacon_interval; 6376 struct cfg80211_chan_def chandef; 6377 } ap; 6378 struct { 6379 struct cfg80211_internal_bss *current_bss; 6380 } client; 6381 }; 6382 6383 bool cac_started; 6384 unsigned long cac_start_time; 6385 unsigned int cac_time_ms; 6386 } links[IEEE80211_MLD_MAX_NUM_LINKS]; 6387 u16 valid_links; 6388 6389 u32 radio_mask; 6390 }; 6391 6392 static inline const u8 *wdev_address(struct wireless_dev *wdev) 6393 { 6394 if (wdev->netdev) 6395 return wdev->netdev->dev_addr; 6396 return wdev->address; 6397 } 6398 6399 static inline bool wdev_running(struct wireless_dev *wdev) 6400 { 6401 if (wdev->netdev) 6402 return netif_running(wdev->netdev); 6403 return wdev->is_running; 6404 } 6405 6406 /** 6407 * wdev_priv - return wiphy priv from wireless_dev 6408 * 6409 * @wdev: The wireless device whose wiphy's priv pointer to return 6410 * Return: The wiphy priv of @wdev. 6411 */ 6412 static inline void *wdev_priv(struct wireless_dev *wdev) 6413 { 6414 BUG_ON(!wdev); 6415 return wiphy_priv(wdev->wiphy); 6416 } 6417 6418 /** 6419 * wdev_chandef - return chandef pointer from wireless_dev 6420 * @wdev: the wdev 6421 * @link_id: the link ID for MLO 6422 * 6423 * Return: The chandef depending on the mode, or %NULL. 6424 */ 6425 struct cfg80211_chan_def *wdev_chandef(struct wireless_dev *wdev, 6426 unsigned int link_id); 6427 6428 static inline void WARN_INVALID_LINK_ID(struct wireless_dev *wdev, 6429 unsigned int link_id) 6430 { 6431 WARN_ON(link_id && !wdev->valid_links); 6432 WARN_ON(wdev->valid_links && 6433 !(wdev->valid_links & BIT(link_id))); 6434 } 6435 6436 #define for_each_valid_link(link_info, link_id) \ 6437 for (link_id = 0; \ 6438 link_id < ((link_info)->valid_links ? \ 6439 ARRAY_SIZE((link_info)->links) : 1); \ 6440 link_id++) \ 6441 if (!(link_info)->valid_links || \ 6442 ((link_info)->valid_links & BIT(link_id))) 6443 6444 /** 6445 * DOC: Utility functions 6446 * 6447 * cfg80211 offers a number of utility functions that can be useful. 6448 */ 6449 6450 /** 6451 * ieee80211_channel_equal - compare two struct ieee80211_channel 6452 * 6453 * @a: 1st struct ieee80211_channel 6454 * @b: 2nd struct ieee80211_channel 6455 * Return: true if center frequency of @a == @b 6456 */ 6457 static inline bool 6458 ieee80211_channel_equal(struct ieee80211_channel *a, 6459 struct ieee80211_channel *b) 6460 { 6461 return (a->center_freq == b->center_freq && 6462 a->freq_offset == b->freq_offset); 6463 } 6464 6465 /** 6466 * ieee80211_channel_to_khz - convert ieee80211_channel to frequency in KHz 6467 * @chan: struct ieee80211_channel to convert 6468 * Return: The corresponding frequency (in KHz) 6469 */ 6470 static inline u32 6471 ieee80211_channel_to_khz(const struct ieee80211_channel *chan) 6472 { 6473 return MHZ_TO_KHZ(chan->center_freq) + chan->freq_offset; 6474 } 6475 6476 /** 6477 * ieee80211_s1g_channel_width - get allowed channel width from @chan 6478 * 6479 * Only allowed for band NL80211_BAND_S1GHZ 6480 * @chan: channel 6481 * Return: The allowed channel width for this center_freq 6482 */ 6483 enum nl80211_chan_width 6484 ieee80211_s1g_channel_width(const struct ieee80211_channel *chan); 6485 6486 /** 6487 * ieee80211_channel_to_freq_khz - convert channel number to frequency 6488 * @chan: channel number 6489 * @band: band, necessary due to channel number overlap 6490 * Return: The corresponding frequency (in KHz), or 0 if the conversion failed. 6491 */ 6492 u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band); 6493 6494 /** 6495 * ieee80211_channel_to_frequency - convert channel number to frequency 6496 * @chan: channel number 6497 * @band: band, necessary due to channel number overlap 6498 * Return: The corresponding frequency (in MHz), or 0 if the conversion failed. 6499 */ 6500 static inline int 6501 ieee80211_channel_to_frequency(int chan, enum nl80211_band band) 6502 { 6503 return KHZ_TO_MHZ(ieee80211_channel_to_freq_khz(chan, band)); 6504 } 6505 6506 /** 6507 * ieee80211_freq_khz_to_channel - convert frequency to channel number 6508 * @freq: center frequency in KHz 6509 * Return: The corresponding channel, or 0 if the conversion failed. 6510 */ 6511 int ieee80211_freq_khz_to_channel(u32 freq); 6512 6513 /** 6514 * ieee80211_frequency_to_channel - convert frequency to channel number 6515 * @freq: center frequency in MHz 6516 * Return: The corresponding channel, or 0 if the conversion failed. 6517 */ 6518 static inline int 6519 ieee80211_frequency_to_channel(int freq) 6520 { 6521 return ieee80211_freq_khz_to_channel(MHZ_TO_KHZ(freq)); 6522 } 6523 6524 /** 6525 * ieee80211_get_channel_khz - get channel struct from wiphy for specified 6526 * frequency 6527 * @wiphy: the struct wiphy to get the channel for 6528 * @freq: the center frequency (in KHz) of the channel 6529 * Return: The channel struct from @wiphy at @freq. 6530 */ 6531 struct ieee80211_channel * 6532 ieee80211_get_channel_khz(struct wiphy *wiphy, u32 freq); 6533 6534 /** 6535 * ieee80211_get_channel - get channel struct from wiphy for specified frequency 6536 * 6537 * @wiphy: the struct wiphy to get the channel for 6538 * @freq: the center frequency (in MHz) of the channel 6539 * Return: The channel struct from @wiphy at @freq. 6540 */ 6541 static inline struct ieee80211_channel * 6542 ieee80211_get_channel(struct wiphy *wiphy, int freq) 6543 { 6544 return ieee80211_get_channel_khz(wiphy, MHZ_TO_KHZ(freq)); 6545 } 6546 6547 /** 6548 * cfg80211_channel_is_psc - Check if the channel is a 6 GHz PSC 6549 * @chan: control channel to check 6550 * 6551 * The Preferred Scanning Channels (PSC) are defined in 6552 * Draft IEEE P802.11ax/D5.0, 26.17.2.3.3 6553 * 6554 * Return: %true if channel is a PSC, %false otherwise 6555 */ 6556 static inline bool cfg80211_channel_is_psc(struct ieee80211_channel *chan) 6557 { 6558 if (chan->band != NL80211_BAND_6GHZ) 6559 return false; 6560 6561 return ieee80211_frequency_to_channel(chan->center_freq) % 16 == 5; 6562 } 6563 6564 /** 6565 * cfg80211_radio_chandef_valid - Check if the radio supports the chandef 6566 * 6567 * @radio: wiphy radio 6568 * @chandef: chandef for current channel 6569 * 6570 * Return: whether or not the given chandef is valid for the given radio 6571 */ 6572 bool cfg80211_radio_chandef_valid(const struct wiphy_radio *radio, 6573 const struct cfg80211_chan_def *chandef); 6574 6575 /** 6576 * cfg80211_wdev_channel_allowed - Check if the wdev may use the channel 6577 * 6578 * @wdev: the wireless device 6579 * @chan: channel to check 6580 * 6581 * Return: whether or not the wdev may use the channel 6582 */ 6583 bool cfg80211_wdev_channel_allowed(struct wireless_dev *wdev, 6584 struct ieee80211_channel *chan); 6585 6586 /** 6587 * ieee80211_get_response_rate - get basic rate for a given rate 6588 * 6589 * @sband: the band to look for rates in 6590 * @basic_rates: bitmap of basic rates 6591 * @bitrate: the bitrate for which to find the basic rate 6592 * 6593 * Return: The basic rate corresponding to a given bitrate, that 6594 * is the next lower bitrate contained in the basic rate map, 6595 * which is, for this function, given as a bitmap of indices of 6596 * rates in the band's bitrate table. 6597 */ 6598 const struct ieee80211_rate * 6599 ieee80211_get_response_rate(struct ieee80211_supported_band *sband, 6600 u32 basic_rates, int bitrate); 6601 6602 /** 6603 * ieee80211_mandatory_rates - get mandatory rates for a given band 6604 * @sband: the band to look for rates in 6605 * 6606 * Return: a bitmap of the mandatory rates for the given band, bits 6607 * are set according to the rate position in the bitrates array. 6608 */ 6609 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband); 6610 6611 /* 6612 * Radiotap parsing functions -- for controlled injection support 6613 * 6614 * Implemented in net/wireless/radiotap.c 6615 * Documentation in Documentation/networking/radiotap-headers.rst 6616 */ 6617 6618 struct radiotap_align_size { 6619 uint8_t align:4, size:4; 6620 }; 6621 6622 struct ieee80211_radiotap_namespace { 6623 const struct radiotap_align_size *align_size; 6624 int n_bits; 6625 uint32_t oui; 6626 uint8_t subns; 6627 }; 6628 6629 struct ieee80211_radiotap_vendor_namespaces { 6630 const struct ieee80211_radiotap_namespace *ns; 6631 int n_ns; 6632 }; 6633 6634 /** 6635 * struct ieee80211_radiotap_iterator - tracks walk thru present radiotap args 6636 * @this_arg_index: index of current arg, valid after each successful call 6637 * to ieee80211_radiotap_iterator_next() 6638 * @this_arg: pointer to current radiotap arg; it is valid after each 6639 * call to ieee80211_radiotap_iterator_next() but also after 6640 * ieee80211_radiotap_iterator_init() where it will point to 6641 * the beginning of the actual data portion 6642 * @this_arg_size: length of the current arg, for convenience 6643 * @current_namespace: pointer to the current namespace definition 6644 * (or internally %NULL if the current namespace is unknown) 6645 * @is_radiotap_ns: indicates whether the current namespace is the default 6646 * radiotap namespace or not 6647 * 6648 * @_rtheader: pointer to the radiotap header we are walking through 6649 * @_max_length: length of radiotap header in cpu byte ordering 6650 * @_arg_index: next argument index 6651 * @_arg: next argument pointer 6652 * @_next_bitmap: internal pointer to next present u32 6653 * @_bitmap_shifter: internal shifter for curr u32 bitmap, b0 set == arg present 6654 * @_vns: vendor namespace definitions 6655 * @_next_ns_data: beginning of the next namespace's data 6656 * @_reset_on_ext: internal; reset the arg index to 0 when going to the 6657 * next bitmap word 6658 * 6659 * Describes the radiotap parser state. Fields prefixed with an underscore 6660 * must not be used by users of the parser, only by the parser internally. 6661 */ 6662 6663 struct ieee80211_radiotap_iterator { 6664 struct ieee80211_radiotap_header *_rtheader; 6665 const struct ieee80211_radiotap_vendor_namespaces *_vns; 6666 const struct ieee80211_radiotap_namespace *current_namespace; 6667 6668 unsigned char *_arg, *_next_ns_data; 6669 __le32 *_next_bitmap; 6670 6671 unsigned char *this_arg; 6672 int this_arg_index; 6673 int this_arg_size; 6674 6675 int is_radiotap_ns; 6676 6677 int _max_length; 6678 int _arg_index; 6679 uint32_t _bitmap_shifter; 6680 int _reset_on_ext; 6681 }; 6682 6683 int 6684 ieee80211_radiotap_iterator_init(struct ieee80211_radiotap_iterator *iterator, 6685 struct ieee80211_radiotap_header *radiotap_header, 6686 int max_length, 6687 const struct ieee80211_radiotap_vendor_namespaces *vns); 6688 6689 int 6690 ieee80211_radiotap_iterator_next(struct ieee80211_radiotap_iterator *iterator); 6691 6692 6693 extern const unsigned char rfc1042_header[6]; 6694 extern const unsigned char bridge_tunnel_header[6]; 6695 6696 /** 6697 * ieee80211_get_hdrlen_from_skb - get header length from data 6698 * 6699 * @skb: the frame 6700 * 6701 * Given an skb with a raw 802.11 header at the data pointer this function 6702 * returns the 802.11 header length. 6703 * 6704 * Return: The 802.11 header length in bytes (not including encryption 6705 * headers). Or 0 if the data in the sk_buff is too short to contain a valid 6706 * 802.11 header. 6707 */ 6708 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb); 6709 6710 /** 6711 * ieee80211_hdrlen - get header length in bytes from frame control 6712 * @fc: frame control field in little-endian format 6713 * Return: The header length in bytes. 6714 */ 6715 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc); 6716 6717 /** 6718 * ieee80211_get_mesh_hdrlen - get mesh extension header length 6719 * @meshhdr: the mesh extension header, only the flags field 6720 * (first byte) will be accessed 6721 * Return: The length of the extension header, which is always at 6722 * least 6 bytes and at most 18 if address 5 and 6 are present. 6723 */ 6724 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr); 6725 6726 /** 6727 * DOC: Data path helpers 6728 * 6729 * In addition to generic utilities, cfg80211 also offers 6730 * functions that help implement the data path for devices 6731 * that do not do the 802.11/802.3 conversion on the device. 6732 */ 6733 6734 /** 6735 * ieee80211_data_to_8023_exthdr - convert an 802.11 data frame to 802.3 6736 * @skb: the 802.11 data frame 6737 * @ehdr: pointer to a &struct ethhdr that will get the header, instead 6738 * of it being pushed into the SKB 6739 * @addr: the device MAC address 6740 * @iftype: the virtual interface type 6741 * @data_offset: offset of payload after the 802.11 header 6742 * @is_amsdu: true if the 802.11 header is A-MSDU 6743 * Return: 0 on success. Non-zero on error. 6744 */ 6745 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr, 6746 const u8 *addr, enum nl80211_iftype iftype, 6747 u8 data_offset, bool is_amsdu); 6748 6749 /** 6750 * ieee80211_data_to_8023 - convert an 802.11 data frame to 802.3 6751 * @skb: the 802.11 data frame 6752 * @addr: the device MAC address 6753 * @iftype: the virtual interface type 6754 * Return: 0 on success. Non-zero on error. 6755 */ 6756 static inline int ieee80211_data_to_8023(struct sk_buff *skb, const u8 *addr, 6757 enum nl80211_iftype iftype) 6758 { 6759 return ieee80211_data_to_8023_exthdr(skb, NULL, addr, iftype, 0, false); 6760 } 6761 6762 /** 6763 * ieee80211_is_valid_amsdu - check if subframe lengths of an A-MSDU are valid 6764 * 6765 * This is used to detect non-standard A-MSDU frames, e.g. the ones generated 6766 * by ath10k and ath11k, where the subframe length includes the length of the 6767 * mesh control field. 6768 * 6769 * @skb: The input A-MSDU frame without any headers. 6770 * @mesh_hdr: the type of mesh header to test 6771 * 0: non-mesh A-MSDU length field 6772 * 1: big-endian mesh A-MSDU length field 6773 * 2: little-endian mesh A-MSDU length field 6774 * Returns: true if subframe header lengths are valid for the @mesh_hdr mode 6775 */ 6776 bool ieee80211_is_valid_amsdu(struct sk_buff *skb, u8 mesh_hdr); 6777 6778 /** 6779 * ieee80211_amsdu_to_8023s - decode an IEEE 802.11n A-MSDU frame 6780 * 6781 * Decode an IEEE 802.11 A-MSDU and convert it to a list of 802.3 frames. 6782 * The @list will be empty if the decode fails. The @skb must be fully 6783 * header-less before being passed in here; it is freed in this function. 6784 * 6785 * @skb: The input A-MSDU frame without any headers. 6786 * @list: The output list of 802.3 frames. It must be allocated and 6787 * initialized by the caller. 6788 * @addr: The device MAC address. 6789 * @iftype: The device interface type. 6790 * @extra_headroom: The hardware extra headroom for SKBs in the @list. 6791 * @check_da: DA to check in the inner ethernet header, or NULL 6792 * @check_sa: SA to check in the inner ethernet header, or NULL 6793 * @mesh_control: see mesh_hdr in ieee80211_is_valid_amsdu 6794 */ 6795 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list, 6796 const u8 *addr, enum nl80211_iftype iftype, 6797 const unsigned int extra_headroom, 6798 const u8 *check_da, const u8 *check_sa, 6799 u8 mesh_control); 6800 6801 /** 6802 * ieee80211_get_8023_tunnel_proto - get RFC1042 or bridge tunnel encap protocol 6803 * 6804 * Check for RFC1042 or bridge tunnel header and fetch the encapsulated 6805 * protocol. 6806 * 6807 * @hdr: pointer to the MSDU payload 6808 * @proto: destination pointer to store the protocol 6809 * Return: true if encapsulation was found 6810 */ 6811 bool ieee80211_get_8023_tunnel_proto(const void *hdr, __be16 *proto); 6812 6813 /** 6814 * ieee80211_strip_8023_mesh_hdr - strip mesh header from converted 802.3 frames 6815 * 6816 * Strip the mesh header, which was left in by ieee80211_data_to_8023 as part 6817 * of the MSDU data. Also move any source/destination addresses from the mesh 6818 * header to the ethernet header (if present). 6819 * 6820 * @skb: The 802.3 frame with embedded mesh header 6821 * 6822 * Return: 0 on success. Non-zero on error. 6823 */ 6824 int ieee80211_strip_8023_mesh_hdr(struct sk_buff *skb); 6825 6826 /** 6827 * cfg80211_classify8021d - determine the 802.1p/1d tag for a data frame 6828 * @skb: the data frame 6829 * @qos_map: Interworking QoS mapping or %NULL if not in use 6830 * Return: The 802.1p/1d tag. 6831 */ 6832 unsigned int cfg80211_classify8021d(struct sk_buff *skb, 6833 struct cfg80211_qos_map *qos_map); 6834 6835 /** 6836 * cfg80211_find_elem_match - match information element and byte array in data 6837 * 6838 * @eid: element ID 6839 * @ies: data consisting of IEs 6840 * @len: length of data 6841 * @match: byte array to match 6842 * @match_len: number of bytes in the match array 6843 * @match_offset: offset in the IE data where the byte array should match. 6844 * Note the difference to cfg80211_find_ie_match() which considers 6845 * the offset to start from the element ID byte, but here we take 6846 * the data portion instead. 6847 * 6848 * Return: %NULL if the element ID could not be found or if 6849 * the element is invalid (claims to be longer than the given 6850 * data) or if the byte array doesn't match; otherwise return the 6851 * requested element struct. 6852 * 6853 * Note: There are no checks on the element length other than 6854 * having to fit into the given data and being large enough for the 6855 * byte array to match. 6856 */ 6857 const struct element * 6858 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len, 6859 const u8 *match, unsigned int match_len, 6860 unsigned int match_offset); 6861 6862 /** 6863 * cfg80211_find_ie_match - match information element and byte array in data 6864 * 6865 * @eid: element ID 6866 * @ies: data consisting of IEs 6867 * @len: length of data 6868 * @match: byte array to match 6869 * @match_len: number of bytes in the match array 6870 * @match_offset: offset in the IE where the byte array should match. 6871 * If match_len is zero, this must also be set to zero. 6872 * Otherwise this must be set to 2 or more, because the first 6873 * byte is the element id, which is already compared to eid, and 6874 * the second byte is the IE length. 6875 * 6876 * Return: %NULL if the element ID could not be found or if 6877 * the element is invalid (claims to be longer than the given 6878 * data) or if the byte array doesn't match, or a pointer to the first 6879 * byte of the requested element, that is the byte containing the 6880 * element ID. 6881 * 6882 * Note: There are no checks on the element length other than 6883 * having to fit into the given data and being large enough for the 6884 * byte array to match. 6885 */ 6886 static inline const u8 * 6887 cfg80211_find_ie_match(u8 eid, const u8 *ies, unsigned int len, 6888 const u8 *match, unsigned int match_len, 6889 unsigned int match_offset) 6890 { 6891 /* match_offset can't be smaller than 2, unless match_len is 6892 * zero, in which case match_offset must be zero as well. 6893 */ 6894 if (WARN_ON((match_len && match_offset < 2) || 6895 (!match_len && match_offset))) 6896 return NULL; 6897 6898 return (const void *)cfg80211_find_elem_match(eid, ies, len, 6899 match, match_len, 6900 match_offset ? 6901 match_offset - 2 : 0); 6902 } 6903 6904 /** 6905 * cfg80211_find_elem - find information element in data 6906 * 6907 * @eid: element ID 6908 * @ies: data consisting of IEs 6909 * @len: length of data 6910 * 6911 * Return: %NULL if the element ID could not be found or if 6912 * the element is invalid (claims to be longer than the given 6913 * data) or if the byte array doesn't match; otherwise return the 6914 * requested element struct. 6915 * 6916 * Note: There are no checks on the element length other than 6917 * having to fit into the given data. 6918 */ 6919 static inline const struct element * 6920 cfg80211_find_elem(u8 eid, const u8 *ies, int len) 6921 { 6922 return cfg80211_find_elem_match(eid, ies, len, NULL, 0, 0); 6923 } 6924 6925 /** 6926 * cfg80211_find_ie - find information element in data 6927 * 6928 * @eid: element ID 6929 * @ies: data consisting of IEs 6930 * @len: length of data 6931 * 6932 * Return: %NULL if the element ID could not be found or if 6933 * the element is invalid (claims to be longer than the given 6934 * data), or a pointer to the first byte of the requested 6935 * element, that is the byte containing the element ID. 6936 * 6937 * Note: There are no checks on the element length other than 6938 * having to fit into the given data. 6939 */ 6940 static inline const u8 *cfg80211_find_ie(u8 eid, const u8 *ies, int len) 6941 { 6942 return cfg80211_find_ie_match(eid, ies, len, NULL, 0, 0); 6943 } 6944 6945 /** 6946 * cfg80211_find_ext_elem - find information element with EID Extension in data 6947 * 6948 * @ext_eid: element ID Extension 6949 * @ies: data consisting of IEs 6950 * @len: length of data 6951 * 6952 * Return: %NULL if the extended element could not be found or if 6953 * the element is invalid (claims to be longer than the given 6954 * data) or if the byte array doesn't match; otherwise return the 6955 * requested element struct. 6956 * 6957 * Note: There are no checks on the element length other than 6958 * having to fit into the given data. 6959 */ 6960 static inline const struct element * 6961 cfg80211_find_ext_elem(u8 ext_eid, const u8 *ies, int len) 6962 { 6963 return cfg80211_find_elem_match(WLAN_EID_EXTENSION, ies, len, 6964 &ext_eid, 1, 0); 6965 } 6966 6967 /** 6968 * cfg80211_find_ext_ie - find information element with EID Extension in data 6969 * 6970 * @ext_eid: element ID Extension 6971 * @ies: data consisting of IEs 6972 * @len: length of data 6973 * 6974 * Return: %NULL if the extended element ID could not be found or if 6975 * the element is invalid (claims to be longer than the given 6976 * data), or a pointer to the first byte of the requested 6977 * element, that is the byte containing the element ID. 6978 * 6979 * Note: There are no checks on the element length other than 6980 * having to fit into the given data. 6981 */ 6982 static inline const u8 *cfg80211_find_ext_ie(u8 ext_eid, const u8 *ies, int len) 6983 { 6984 return cfg80211_find_ie_match(WLAN_EID_EXTENSION, ies, len, 6985 &ext_eid, 1, 2); 6986 } 6987 6988 /** 6989 * cfg80211_find_vendor_elem - find vendor specific information element in data 6990 * 6991 * @oui: vendor OUI 6992 * @oui_type: vendor-specific OUI type (must be < 0xff), negative means any 6993 * @ies: data consisting of IEs 6994 * @len: length of data 6995 * 6996 * Return: %NULL if the vendor specific element ID could not be found or if the 6997 * element is invalid (claims to be longer than the given data); otherwise 6998 * return the element structure for the requested element. 6999 * 7000 * Note: There are no checks on the element length other than having to fit into 7001 * the given data. 7002 */ 7003 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type, 7004 const u8 *ies, 7005 unsigned int len); 7006 7007 /** 7008 * cfg80211_find_vendor_ie - find vendor specific information element in data 7009 * 7010 * @oui: vendor OUI 7011 * @oui_type: vendor-specific OUI type (must be < 0xff), negative means any 7012 * @ies: data consisting of IEs 7013 * @len: length of data 7014 * 7015 * Return: %NULL if the vendor specific element ID could not be found or if the 7016 * element is invalid (claims to be longer than the given data), or a pointer to 7017 * the first byte of the requested element, that is the byte containing the 7018 * element ID. 7019 * 7020 * Note: There are no checks on the element length other than having to fit into 7021 * the given data. 7022 */ 7023 static inline const u8 * 7024 cfg80211_find_vendor_ie(unsigned int oui, int oui_type, 7025 const u8 *ies, unsigned int len) 7026 { 7027 return (const void *)cfg80211_find_vendor_elem(oui, oui_type, ies, len); 7028 } 7029 7030 /** 7031 * enum cfg80211_rnr_iter_ret - reduced neighbor report iteration state 7032 * @RNR_ITER_CONTINUE: continue iterating with the next entry 7033 * @RNR_ITER_BREAK: break iteration and return success 7034 * @RNR_ITER_ERROR: break iteration and return error 7035 */ 7036 enum cfg80211_rnr_iter_ret { 7037 RNR_ITER_CONTINUE, 7038 RNR_ITER_BREAK, 7039 RNR_ITER_ERROR, 7040 }; 7041 7042 /** 7043 * cfg80211_iter_rnr - iterate reduced neighbor report entries 7044 * @elems: the frame elements to iterate RNR elements and then 7045 * their entries in 7046 * @elems_len: length of the elements 7047 * @iter: iteration function, see also &enum cfg80211_rnr_iter_ret 7048 * for the return value 7049 * @iter_data: additional data passed to the iteration function 7050 * Return: %true on success (after successfully iterating all entries 7051 * or if the iteration function returned %RNR_ITER_BREAK), 7052 * %false on error (iteration function returned %RNR_ITER_ERROR 7053 * or elements were malformed.) 7054 */ 7055 bool cfg80211_iter_rnr(const u8 *elems, size_t elems_len, 7056 enum cfg80211_rnr_iter_ret 7057 (*iter)(void *data, u8 type, 7058 const struct ieee80211_neighbor_ap_info *info, 7059 const u8 *tbtt_info, u8 tbtt_info_len), 7060 void *iter_data); 7061 7062 /** 7063 * cfg80211_defragment_element - Defrag the given element data into a buffer 7064 * 7065 * @elem: the element to defragment 7066 * @ies: elements where @elem is contained 7067 * @ieslen: length of @ies 7068 * @data: buffer to store element data, or %NULL to just determine size 7069 * @data_len: length of @data, or 0 7070 * @frag_id: the element ID of fragments 7071 * 7072 * Return: length of @data, or -EINVAL on error 7073 * 7074 * Copy out all data from an element that may be fragmented into @data, while 7075 * skipping all headers. 7076 * 7077 * The function uses memmove() internally. It is acceptable to defragment an 7078 * element in-place. 7079 */ 7080 ssize_t cfg80211_defragment_element(const struct element *elem, const u8 *ies, 7081 size_t ieslen, u8 *data, size_t data_len, 7082 u8 frag_id); 7083 7084 /** 7085 * cfg80211_send_layer2_update - send layer 2 update frame 7086 * 7087 * @dev: network device 7088 * @addr: STA MAC address 7089 * 7090 * Wireless drivers can use this function to update forwarding tables in bridge 7091 * devices upon STA association. 7092 */ 7093 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr); 7094 7095 /** 7096 * DOC: Regulatory enforcement infrastructure 7097 * 7098 * TODO 7099 */ 7100 7101 /** 7102 * regulatory_hint - driver hint to the wireless core a regulatory domain 7103 * @wiphy: the wireless device giving the hint (used only for reporting 7104 * conflicts) 7105 * @alpha2: the ISO/IEC 3166 alpha2 the driver claims its regulatory domain 7106 * should be in. If @rd is set this should be NULL. Note that if you 7107 * set this to NULL you should still set rd->alpha2 to some accepted 7108 * alpha2. 7109 * 7110 * Wireless drivers can use this function to hint to the wireless core 7111 * what it believes should be the current regulatory domain by 7112 * giving it an ISO/IEC 3166 alpha2 country code it knows its regulatory 7113 * domain should be in or by providing a completely build regulatory domain. 7114 * If the driver provides an ISO/IEC 3166 alpha2 userspace will be queried 7115 * for a regulatory domain structure for the respective country. 7116 * 7117 * The wiphy must have been registered to cfg80211 prior to this call. 7118 * For cfg80211 drivers this means you must first use wiphy_register(), 7119 * for mac80211 drivers you must first use ieee80211_register_hw(). 7120 * 7121 * Drivers should check the return value, its possible you can get 7122 * an -ENOMEM. 7123 * 7124 * Return: 0 on success. -ENOMEM. 7125 */ 7126 int regulatory_hint(struct wiphy *wiphy, const char *alpha2); 7127 7128 /** 7129 * regulatory_set_wiphy_regd - set regdom info for self managed drivers 7130 * @wiphy: the wireless device we want to process the regulatory domain on 7131 * @rd: the regulatory domain information to use for this wiphy 7132 * 7133 * Set the regulatory domain information for self-managed wiphys, only they 7134 * may use this function. See %REGULATORY_WIPHY_SELF_MANAGED for more 7135 * information. 7136 * 7137 * Return: 0 on success. -EINVAL, -EPERM 7138 */ 7139 int regulatory_set_wiphy_regd(struct wiphy *wiphy, 7140 struct ieee80211_regdomain *rd); 7141 7142 /** 7143 * regulatory_set_wiphy_regd_sync - set regdom for self-managed drivers 7144 * @wiphy: the wireless device we want to process the regulatory domain on 7145 * @rd: the regulatory domain information to use for this wiphy 7146 * 7147 * This functions requires the RTNL and the wiphy mutex to be held and 7148 * applies the new regdomain synchronously to this wiphy. For more details 7149 * see regulatory_set_wiphy_regd(). 7150 * 7151 * Return: 0 on success. -EINVAL, -EPERM 7152 */ 7153 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy, 7154 struct ieee80211_regdomain *rd); 7155 7156 /** 7157 * wiphy_apply_custom_regulatory - apply a custom driver regulatory domain 7158 * @wiphy: the wireless device we want to process the regulatory domain on 7159 * @regd: the custom regulatory domain to use for this wiphy 7160 * 7161 * Drivers can sometimes have custom regulatory domains which do not apply 7162 * to a specific country. Drivers can use this to apply such custom regulatory 7163 * domains. This routine must be called prior to wiphy registration. The 7164 * custom regulatory domain will be trusted completely and as such previous 7165 * default channel settings will be disregarded. If no rule is found for a 7166 * channel on the regulatory domain the channel will be disabled. 7167 * Drivers using this for a wiphy should also set the wiphy flag 7168 * REGULATORY_CUSTOM_REG or cfg80211 will set it for the wiphy 7169 * that called this helper. 7170 */ 7171 void wiphy_apply_custom_regulatory(struct wiphy *wiphy, 7172 const struct ieee80211_regdomain *regd); 7173 7174 /** 7175 * freq_reg_info - get regulatory information for the given frequency 7176 * @wiphy: the wiphy for which we want to process this rule for 7177 * @center_freq: Frequency in KHz for which we want regulatory information for 7178 * 7179 * Use this function to get the regulatory rule for a specific frequency on 7180 * a given wireless device. If the device has a specific regulatory domain 7181 * it wants to follow we respect that unless a country IE has been received 7182 * and processed already. 7183 * 7184 * Return: A valid pointer, or, when an error occurs, for example if no rule 7185 * can be found, the return value is encoded using ERR_PTR(). Use IS_ERR() to 7186 * check and PTR_ERR() to obtain the numeric return value. The numeric return 7187 * value will be -ERANGE if we determine the given center_freq does not even 7188 * have a regulatory rule for a frequency range in the center_freq's band. 7189 * See freq_in_rule_band() for our current definition of a band -- this is 7190 * purely subjective and right now it's 802.11 specific. 7191 */ 7192 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy, 7193 u32 center_freq); 7194 7195 /** 7196 * reg_initiator_name - map regulatory request initiator enum to name 7197 * @initiator: the regulatory request initiator 7198 * 7199 * You can use this to map the regulatory request initiator enum to a 7200 * proper string representation. 7201 * 7202 * Return: pointer to string representation of the initiator 7203 */ 7204 const char *reg_initiator_name(enum nl80211_reg_initiator initiator); 7205 7206 /** 7207 * regulatory_pre_cac_allowed - check if pre-CAC allowed in the current regdom 7208 * @wiphy: wiphy for which pre-CAC capability is checked. 7209 * 7210 * Pre-CAC is allowed only in some regdomains (notable ETSI). 7211 * 7212 * Return: %true if allowed, %false otherwise 7213 */ 7214 bool regulatory_pre_cac_allowed(struct wiphy *wiphy); 7215 7216 /** 7217 * DOC: Internal regulatory db functions 7218 * 7219 */ 7220 7221 /** 7222 * reg_query_regdb_wmm - Query internal regulatory db for wmm rule 7223 * Regulatory self-managed driver can use it to proactively 7224 * 7225 * @alpha2: the ISO/IEC 3166 alpha2 wmm rule to be queried. 7226 * @freq: the frequency (in MHz) to be queried. 7227 * @rule: pointer to store the wmm rule from the regulatory db. 7228 * 7229 * Self-managed wireless drivers can use this function to query 7230 * the internal regulatory database to check whether the given 7231 * ISO/IEC 3166 alpha2 country and freq have wmm rule limitations. 7232 * 7233 * Drivers should check the return value, its possible you can get 7234 * an -ENODATA. 7235 * 7236 * Return: 0 on success. -ENODATA. 7237 */ 7238 int reg_query_regdb_wmm(char *alpha2, int freq, 7239 struct ieee80211_reg_rule *rule); 7240 7241 /* 7242 * callbacks for asynchronous cfg80211 methods, notification 7243 * functions and BSS handling helpers 7244 */ 7245 7246 /** 7247 * cfg80211_scan_done - notify that scan finished 7248 * 7249 * @request: the corresponding scan request 7250 * @info: information about the completed scan 7251 */ 7252 void cfg80211_scan_done(struct cfg80211_scan_request *request, 7253 struct cfg80211_scan_info *info); 7254 7255 /** 7256 * cfg80211_sched_scan_results - notify that new scan results are available 7257 * 7258 * @wiphy: the wiphy which got scheduled scan results 7259 * @reqid: identifier for the related scheduled scan request 7260 */ 7261 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid); 7262 7263 /** 7264 * cfg80211_sched_scan_stopped - notify that the scheduled scan has stopped 7265 * 7266 * @wiphy: the wiphy on which the scheduled scan stopped 7267 * @reqid: identifier for the related scheduled scan request 7268 * 7269 * The driver can call this function to inform cfg80211 that the 7270 * scheduled scan had to be stopped, for whatever reason. The driver 7271 * is then called back via the sched_scan_stop operation when done. 7272 */ 7273 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid); 7274 7275 /** 7276 * cfg80211_sched_scan_stopped_locked - notify that the scheduled scan has stopped 7277 * 7278 * @wiphy: the wiphy on which the scheduled scan stopped 7279 * @reqid: identifier for the related scheduled scan request 7280 * 7281 * The driver can call this function to inform cfg80211 that the 7282 * scheduled scan had to be stopped, for whatever reason. The driver 7283 * is then called back via the sched_scan_stop operation when done. 7284 * This function should be called with the wiphy mutex held. 7285 */ 7286 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid); 7287 7288 /** 7289 * cfg80211_inform_bss_frame_data - inform cfg80211 of a received BSS frame 7290 * @wiphy: the wiphy reporting the BSS 7291 * @data: the BSS metadata 7292 * @mgmt: the management frame (probe response or beacon) 7293 * @len: length of the management frame 7294 * @gfp: context flags 7295 * 7296 * This informs cfg80211 that BSS information was found and 7297 * the BSS should be updated/added. 7298 * 7299 * Return: A referenced struct, must be released with cfg80211_put_bss()! 7300 * Or %NULL on error. 7301 */ 7302 struct cfg80211_bss * __must_check 7303 cfg80211_inform_bss_frame_data(struct wiphy *wiphy, 7304 struct cfg80211_inform_bss *data, 7305 struct ieee80211_mgmt *mgmt, size_t len, 7306 gfp_t gfp); 7307 7308 static inline struct cfg80211_bss * __must_check 7309 cfg80211_inform_bss_frame(struct wiphy *wiphy, 7310 struct ieee80211_channel *rx_channel, 7311 struct ieee80211_mgmt *mgmt, size_t len, 7312 s32 signal, gfp_t gfp) 7313 { 7314 struct cfg80211_inform_bss data = { 7315 .chan = rx_channel, 7316 .signal = signal, 7317 }; 7318 7319 return cfg80211_inform_bss_frame_data(wiphy, &data, mgmt, len, gfp); 7320 } 7321 7322 /** 7323 * cfg80211_gen_new_bssid - generate a nontransmitted BSSID for multi-BSSID 7324 * @bssid: transmitter BSSID 7325 * @max_bssid: max BSSID indicator, taken from Multiple BSSID element 7326 * @mbssid_index: BSSID index, taken from Multiple BSSID index element 7327 * @new_bssid: calculated nontransmitted BSSID 7328 */ 7329 static inline void cfg80211_gen_new_bssid(const u8 *bssid, u8 max_bssid, 7330 u8 mbssid_index, u8 *new_bssid) 7331 { 7332 u64 bssid_u64 = ether_addr_to_u64(bssid); 7333 u64 mask = GENMASK_ULL(max_bssid - 1, 0); 7334 u64 new_bssid_u64; 7335 7336 new_bssid_u64 = bssid_u64 & ~mask; 7337 7338 new_bssid_u64 |= ((bssid_u64 & mask) + mbssid_index) & mask; 7339 7340 u64_to_ether_addr(new_bssid_u64, new_bssid); 7341 } 7342 7343 /** 7344 * cfg80211_is_element_inherited - returns if element ID should be inherited 7345 * @element: element to check 7346 * @non_inherit_element: non inheritance element 7347 * 7348 * Return: %true if should be inherited, %false otherwise 7349 */ 7350 bool cfg80211_is_element_inherited(const struct element *element, 7351 const struct element *non_inherit_element); 7352 7353 /** 7354 * cfg80211_merge_profile - merges a MBSSID profile if it is split between IEs 7355 * @ie: ies 7356 * @ielen: length of IEs 7357 * @mbssid_elem: current MBSSID element 7358 * @sub_elem: current MBSSID subelement (profile) 7359 * @merged_ie: location of the merged profile 7360 * @max_copy_len: max merged profile length 7361 * 7362 * Return: the number of bytes merged 7363 */ 7364 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen, 7365 const struct element *mbssid_elem, 7366 const struct element *sub_elem, 7367 u8 *merged_ie, size_t max_copy_len); 7368 7369 /** 7370 * enum cfg80211_bss_frame_type - frame type that the BSS data came from 7371 * @CFG80211_BSS_FTYPE_UNKNOWN: driver doesn't know whether the data is 7372 * from a beacon or probe response 7373 * @CFG80211_BSS_FTYPE_BEACON: data comes from a beacon 7374 * @CFG80211_BSS_FTYPE_PRESP: data comes from a probe response 7375 * @CFG80211_BSS_FTYPE_S1G_BEACON: data comes from an S1G beacon 7376 */ 7377 enum cfg80211_bss_frame_type { 7378 CFG80211_BSS_FTYPE_UNKNOWN, 7379 CFG80211_BSS_FTYPE_BEACON, 7380 CFG80211_BSS_FTYPE_PRESP, 7381 CFG80211_BSS_FTYPE_S1G_BEACON, 7382 }; 7383 7384 /** 7385 * cfg80211_get_ies_channel_number - returns the channel number from ies 7386 * @ie: IEs 7387 * @ielen: length of IEs 7388 * @band: enum nl80211_band of the channel 7389 * 7390 * Return: the channel number, or -1 if none could be determined. 7391 */ 7392 int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen, 7393 enum nl80211_band band); 7394 7395 /** 7396 * cfg80211_ssid_eq - compare two SSIDs 7397 * @a: first SSID 7398 * @b: second SSID 7399 * 7400 * Return: %true if SSIDs are equal, %false otherwise. 7401 */ 7402 static inline bool 7403 cfg80211_ssid_eq(struct cfg80211_ssid *a, struct cfg80211_ssid *b) 7404 { 7405 if (WARN_ON(!a || !b)) 7406 return false; 7407 if (a->ssid_len != b->ssid_len) 7408 return false; 7409 return memcmp(a->ssid, b->ssid, a->ssid_len) ? false : true; 7410 } 7411 7412 /** 7413 * cfg80211_inform_bss_data - inform cfg80211 of a new BSS 7414 * 7415 * @wiphy: the wiphy reporting the BSS 7416 * @data: the BSS metadata 7417 * @ftype: frame type (if known) 7418 * @bssid: the BSSID of the BSS 7419 * @tsf: the TSF sent by the peer in the beacon/probe response (or 0) 7420 * @capability: the capability field sent by the peer 7421 * @beacon_interval: the beacon interval announced by the peer 7422 * @ie: additional IEs sent by the peer 7423 * @ielen: length of the additional IEs 7424 * @gfp: context flags 7425 * 7426 * This informs cfg80211 that BSS information was found and 7427 * the BSS should be updated/added. 7428 * 7429 * Return: A referenced struct, must be released with cfg80211_put_bss()! 7430 * Or %NULL on error. 7431 */ 7432 struct cfg80211_bss * __must_check 7433 cfg80211_inform_bss_data(struct wiphy *wiphy, 7434 struct cfg80211_inform_bss *data, 7435 enum cfg80211_bss_frame_type ftype, 7436 const u8 *bssid, u64 tsf, u16 capability, 7437 u16 beacon_interval, const u8 *ie, size_t ielen, 7438 gfp_t gfp); 7439 7440 static inline struct cfg80211_bss * __must_check 7441 cfg80211_inform_bss(struct wiphy *wiphy, 7442 struct ieee80211_channel *rx_channel, 7443 enum cfg80211_bss_frame_type ftype, 7444 const u8 *bssid, u64 tsf, u16 capability, 7445 u16 beacon_interval, const u8 *ie, size_t ielen, 7446 s32 signal, gfp_t gfp) 7447 { 7448 struct cfg80211_inform_bss data = { 7449 .chan = rx_channel, 7450 .signal = signal, 7451 }; 7452 7453 return cfg80211_inform_bss_data(wiphy, &data, ftype, bssid, tsf, 7454 capability, beacon_interval, ie, ielen, 7455 gfp); 7456 } 7457 7458 /** 7459 * __cfg80211_get_bss - get a BSS reference 7460 * @wiphy: the wiphy this BSS struct belongs to 7461 * @channel: the channel to search on (or %NULL) 7462 * @bssid: the desired BSSID (or %NULL) 7463 * @ssid: the desired SSID (or %NULL) 7464 * @ssid_len: length of the SSID (or 0) 7465 * @bss_type: type of BSS, see &enum ieee80211_bss_type 7466 * @privacy: privacy filter, see &enum ieee80211_privacy 7467 * @use_for: indicates which use is intended 7468 * 7469 * Return: Reference-counted BSS on success. %NULL on error. 7470 */ 7471 struct cfg80211_bss *__cfg80211_get_bss(struct wiphy *wiphy, 7472 struct ieee80211_channel *channel, 7473 const u8 *bssid, 7474 const u8 *ssid, size_t ssid_len, 7475 enum ieee80211_bss_type bss_type, 7476 enum ieee80211_privacy privacy, 7477 u32 use_for); 7478 7479 /** 7480 * cfg80211_get_bss - get a BSS reference 7481 * @wiphy: the wiphy this BSS struct belongs to 7482 * @channel: the channel to search on (or %NULL) 7483 * @bssid: the desired BSSID (or %NULL) 7484 * @ssid: the desired SSID (or %NULL) 7485 * @ssid_len: length of the SSID (or 0) 7486 * @bss_type: type of BSS, see &enum ieee80211_bss_type 7487 * @privacy: privacy filter, see &enum ieee80211_privacy 7488 * 7489 * This version implies regular usage, %NL80211_BSS_USE_FOR_NORMAL. 7490 * 7491 * Return: Reference-counted BSS on success. %NULL on error. 7492 */ 7493 static inline struct cfg80211_bss * 7494 cfg80211_get_bss(struct wiphy *wiphy, struct ieee80211_channel *channel, 7495 const u8 *bssid, const u8 *ssid, size_t ssid_len, 7496 enum ieee80211_bss_type bss_type, 7497 enum ieee80211_privacy privacy) 7498 { 7499 return __cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, 7500 bss_type, privacy, 7501 NL80211_BSS_USE_FOR_NORMAL); 7502 } 7503 7504 static inline struct cfg80211_bss * 7505 cfg80211_get_ibss(struct wiphy *wiphy, 7506 struct ieee80211_channel *channel, 7507 const u8 *ssid, size_t ssid_len) 7508 { 7509 return cfg80211_get_bss(wiphy, channel, NULL, ssid, ssid_len, 7510 IEEE80211_BSS_TYPE_IBSS, 7511 IEEE80211_PRIVACY_ANY); 7512 } 7513 7514 /** 7515 * cfg80211_ref_bss - reference BSS struct 7516 * @wiphy: the wiphy this BSS struct belongs to 7517 * @bss: the BSS struct to reference 7518 * 7519 * Increments the refcount of the given BSS struct. 7520 */ 7521 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *bss); 7522 7523 /** 7524 * cfg80211_put_bss - unref BSS struct 7525 * @wiphy: the wiphy this BSS struct belongs to 7526 * @bss: the BSS struct 7527 * 7528 * Decrements the refcount of the given BSS struct. 7529 */ 7530 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *bss); 7531 7532 /** 7533 * cfg80211_unlink_bss - unlink BSS from internal data structures 7534 * @wiphy: the wiphy 7535 * @bss: the bss to remove 7536 * 7537 * This function removes the given BSS from the internal data structures 7538 * thereby making it no longer show up in scan results etc. Use this 7539 * function when you detect a BSS is gone. Normally BSSes will also time 7540 * out, so it is not necessary to use this function at all. 7541 */ 7542 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *bss); 7543 7544 /** 7545 * cfg80211_bss_iter - iterate all BSS entries 7546 * 7547 * This function iterates over the BSS entries associated with the given wiphy 7548 * and calls the callback for the iterated BSS. The iterator function is not 7549 * allowed to call functions that might modify the internal state of the BSS DB. 7550 * 7551 * @wiphy: the wiphy 7552 * @chandef: if given, the iterator function will be called only if the channel 7553 * of the currently iterated BSS is a subset of the given channel. 7554 * @iter: the iterator function to call 7555 * @iter_data: an argument to the iterator function 7556 */ 7557 void cfg80211_bss_iter(struct wiphy *wiphy, 7558 struct cfg80211_chan_def *chandef, 7559 void (*iter)(struct wiphy *wiphy, 7560 struct cfg80211_bss *bss, 7561 void *data), 7562 void *iter_data); 7563 7564 /** 7565 * cfg80211_rx_mlme_mgmt - notification of processed MLME management frame 7566 * @dev: network device 7567 * @buf: authentication frame (header + body) 7568 * @len: length of the frame data 7569 * 7570 * This function is called whenever an authentication, disassociation or 7571 * deauthentication frame has been received and processed in station mode. 7572 * After being asked to authenticate via cfg80211_ops::auth() the driver must 7573 * call either this function or cfg80211_auth_timeout(). 7574 * After being asked to associate via cfg80211_ops::assoc() the driver must 7575 * call either this function or cfg80211_auth_timeout(). 7576 * While connected, the driver must calls this for received and processed 7577 * disassociation and deauthentication frames. If the frame couldn't be used 7578 * because it was unprotected, the driver must call the function 7579 * cfg80211_rx_unprot_mlme_mgmt() instead. 7580 * 7581 * This function may sleep. The caller must hold the corresponding wdev's mutex. 7582 */ 7583 void cfg80211_rx_mlme_mgmt(struct net_device *dev, const u8 *buf, size_t len); 7584 7585 /** 7586 * cfg80211_auth_timeout - notification of timed out authentication 7587 * @dev: network device 7588 * @addr: The MAC address of the device with which the authentication timed out 7589 * 7590 * This function may sleep. The caller must hold the corresponding wdev's 7591 * mutex. 7592 */ 7593 void cfg80211_auth_timeout(struct net_device *dev, const u8 *addr); 7594 7595 /** 7596 * struct cfg80211_rx_assoc_resp_data - association response data 7597 * @buf: (Re)Association Response frame (header + body) 7598 * @len: length of the frame data 7599 * @uapsd_queues: bitmap of queues configured for uapsd. Same format 7600 * as the AC bitmap in the QoS info field 7601 * @req_ies: information elements from the (Re)Association Request frame 7602 * @req_ies_len: length of req_ies data 7603 * @ap_mld_addr: AP MLD address (in case of MLO) 7604 * @links: per-link information indexed by link ID, use links[0] for 7605 * non-MLO connections 7606 * @links.bss: the BSS that association was requested with, ownership of the 7607 * pointer moves to cfg80211 in the call to cfg80211_rx_assoc_resp() 7608 * @links.status: Set this (along with a BSS pointer) for links that 7609 * were rejected by the AP. 7610 */ 7611 struct cfg80211_rx_assoc_resp_data { 7612 const u8 *buf; 7613 size_t len; 7614 const u8 *req_ies; 7615 size_t req_ies_len; 7616 int uapsd_queues; 7617 const u8 *ap_mld_addr; 7618 struct { 7619 u8 addr[ETH_ALEN] __aligned(2); 7620 struct cfg80211_bss *bss; 7621 u16 status; 7622 } links[IEEE80211_MLD_MAX_NUM_LINKS]; 7623 }; 7624 7625 /** 7626 * cfg80211_rx_assoc_resp - notification of processed association response 7627 * @dev: network device 7628 * @data: association response data, &struct cfg80211_rx_assoc_resp_data 7629 * 7630 * After being asked to associate via cfg80211_ops::assoc() the driver must 7631 * call either this function or cfg80211_auth_timeout(). 7632 * 7633 * This function may sleep. The caller must hold the corresponding wdev's mutex. 7634 */ 7635 void cfg80211_rx_assoc_resp(struct net_device *dev, 7636 const struct cfg80211_rx_assoc_resp_data *data); 7637 7638 /** 7639 * struct cfg80211_assoc_failure - association failure data 7640 * @ap_mld_addr: AP MLD address, or %NULL 7641 * @bss: list of BSSes, must use entry 0 for non-MLO connections 7642 * (@ap_mld_addr is %NULL) 7643 * @timeout: indicates the association failed due to timeout, otherwise 7644 * the association was abandoned for a reason reported through some 7645 * other API (e.g. deauth RX) 7646 */ 7647 struct cfg80211_assoc_failure { 7648 const u8 *ap_mld_addr; 7649 struct cfg80211_bss *bss[IEEE80211_MLD_MAX_NUM_LINKS]; 7650 bool timeout; 7651 }; 7652 7653 /** 7654 * cfg80211_assoc_failure - notification of association failure 7655 * @dev: network device 7656 * @data: data describing the association failure 7657 * 7658 * This function may sleep. The caller must hold the corresponding wdev's mutex. 7659 */ 7660 void cfg80211_assoc_failure(struct net_device *dev, 7661 struct cfg80211_assoc_failure *data); 7662 7663 /** 7664 * cfg80211_tx_mlme_mgmt - notification of transmitted deauth/disassoc frame 7665 * @dev: network device 7666 * @buf: 802.11 frame (header + body) 7667 * @len: length of the frame data 7668 * @reconnect: immediate reconnect is desired (include the nl80211 attribute) 7669 * 7670 * This function is called whenever deauthentication has been processed in 7671 * station mode. This includes both received deauthentication frames and 7672 * locally generated ones. This function may sleep. The caller must hold the 7673 * corresponding wdev's mutex. 7674 */ 7675 void cfg80211_tx_mlme_mgmt(struct net_device *dev, const u8 *buf, size_t len, 7676 bool reconnect); 7677 7678 /** 7679 * cfg80211_rx_unprot_mlme_mgmt - notification of unprotected mlme mgmt frame 7680 * @dev: network device 7681 * @buf: received management frame (header + body) 7682 * @len: length of the frame data 7683 * 7684 * This function is called whenever a received deauthentication or dissassoc 7685 * frame has been dropped in station mode because of MFP being used but the 7686 * frame was not protected. This is also used to notify reception of a Beacon 7687 * frame that was dropped because it did not include a valid MME MIC while 7688 * beacon protection was enabled (BIGTK configured in station mode). 7689 * 7690 * This function may sleep. 7691 */ 7692 void cfg80211_rx_unprot_mlme_mgmt(struct net_device *dev, 7693 const u8 *buf, size_t len); 7694 7695 /** 7696 * cfg80211_michael_mic_failure - notification of Michael MIC failure (TKIP) 7697 * @dev: network device 7698 * @addr: The source MAC address of the frame 7699 * @key_type: The key type that the received frame used 7700 * @key_id: Key identifier (0..3). Can be -1 if missing. 7701 * @tsc: The TSC value of the frame that generated the MIC failure (6 octets) 7702 * @gfp: allocation flags 7703 * 7704 * This function is called whenever the local MAC detects a MIC failure in a 7705 * received frame. This matches with MLME-MICHAELMICFAILURE.indication() 7706 * primitive. 7707 */ 7708 void cfg80211_michael_mic_failure(struct net_device *dev, const u8 *addr, 7709 enum nl80211_key_type key_type, int key_id, 7710 const u8 *tsc, gfp_t gfp); 7711 7712 /** 7713 * cfg80211_ibss_joined - notify cfg80211 that device joined an IBSS 7714 * 7715 * @dev: network device 7716 * @bssid: the BSSID of the IBSS joined 7717 * @channel: the channel of the IBSS joined 7718 * @gfp: allocation flags 7719 * 7720 * This function notifies cfg80211 that the device joined an IBSS or 7721 * switched to a different BSSID. Before this function can be called, 7722 * either a beacon has to have been received from the IBSS, or one of 7723 * the cfg80211_inform_bss{,_frame} functions must have been called 7724 * with the locally generated beacon -- this guarantees that there is 7725 * always a scan result for this IBSS. cfg80211 will handle the rest. 7726 */ 7727 void cfg80211_ibss_joined(struct net_device *dev, const u8 *bssid, 7728 struct ieee80211_channel *channel, gfp_t gfp); 7729 7730 /** 7731 * cfg80211_notify_new_peer_candidate - notify cfg80211 of a new mesh peer 7732 * candidate 7733 * 7734 * @dev: network device 7735 * @macaddr: the MAC address of the new candidate 7736 * @ie: information elements advertised by the peer candidate 7737 * @ie_len: length of the information elements buffer 7738 * @sig_dbm: signal level in dBm 7739 * @gfp: allocation flags 7740 * 7741 * This function notifies cfg80211 that the mesh peer candidate has been 7742 * detected, most likely via a beacon or, less likely, via a probe response. 7743 * cfg80211 then sends a notification to userspace. 7744 */ 7745 void cfg80211_notify_new_peer_candidate(struct net_device *dev, 7746 const u8 *macaddr, const u8 *ie, u8 ie_len, 7747 int sig_dbm, gfp_t gfp); 7748 7749 /** 7750 * DOC: RFkill integration 7751 * 7752 * RFkill integration in cfg80211 is almost invisible to drivers, 7753 * as cfg80211 automatically registers an rfkill instance for each 7754 * wireless device it knows about. Soft kill is also translated 7755 * into disconnecting and turning all interfaces off. Drivers are 7756 * expected to turn off the device when all interfaces are down. 7757 * 7758 * However, devices may have a hard RFkill line, in which case they 7759 * also need to interact with the rfkill subsystem, via cfg80211. 7760 * They can do this with a few helper functions documented here. 7761 */ 7762 7763 /** 7764 * wiphy_rfkill_set_hw_state_reason - notify cfg80211 about hw block state 7765 * @wiphy: the wiphy 7766 * @blocked: block status 7767 * @reason: one of reasons in &enum rfkill_hard_block_reasons 7768 */ 7769 void wiphy_rfkill_set_hw_state_reason(struct wiphy *wiphy, bool blocked, 7770 enum rfkill_hard_block_reasons reason); 7771 7772 static inline void wiphy_rfkill_set_hw_state(struct wiphy *wiphy, bool blocked) 7773 { 7774 wiphy_rfkill_set_hw_state_reason(wiphy, blocked, 7775 RFKILL_HARD_BLOCK_SIGNAL); 7776 } 7777 7778 /** 7779 * wiphy_rfkill_start_polling - start polling rfkill 7780 * @wiphy: the wiphy 7781 */ 7782 void wiphy_rfkill_start_polling(struct wiphy *wiphy); 7783 7784 /** 7785 * wiphy_rfkill_stop_polling - stop polling rfkill 7786 * @wiphy: the wiphy 7787 */ 7788 static inline void wiphy_rfkill_stop_polling(struct wiphy *wiphy) 7789 { 7790 rfkill_pause_polling(wiphy->rfkill); 7791 } 7792 7793 /** 7794 * DOC: Vendor commands 7795 * 7796 * Occasionally, there are special protocol or firmware features that 7797 * can't be implemented very openly. For this and similar cases, the 7798 * vendor command functionality allows implementing the features with 7799 * (typically closed-source) userspace and firmware, using nl80211 as 7800 * the configuration mechanism. 7801 * 7802 * A driver supporting vendor commands must register them as an array 7803 * in struct wiphy, with handlers for each one. Each command has an 7804 * OUI and sub command ID to identify it. 7805 * 7806 * Note that this feature should not be (ab)used to implement protocol 7807 * features that could openly be shared across drivers. In particular, 7808 * it must never be required to use vendor commands to implement any 7809 * "normal" functionality that higher-level userspace like connection 7810 * managers etc. need. 7811 */ 7812 7813 struct sk_buff *__cfg80211_alloc_reply_skb(struct wiphy *wiphy, 7814 enum nl80211_commands cmd, 7815 enum nl80211_attrs attr, 7816 int approxlen); 7817 7818 struct sk_buff *__cfg80211_alloc_event_skb(struct wiphy *wiphy, 7819 struct wireless_dev *wdev, 7820 enum nl80211_commands cmd, 7821 enum nl80211_attrs attr, 7822 unsigned int portid, 7823 int vendor_event_idx, 7824 int approxlen, gfp_t gfp); 7825 7826 void __cfg80211_send_event_skb(struct sk_buff *skb, gfp_t gfp); 7827 7828 /** 7829 * cfg80211_vendor_cmd_alloc_reply_skb - allocate vendor command reply 7830 * @wiphy: the wiphy 7831 * @approxlen: an upper bound of the length of the data that will 7832 * be put into the skb 7833 * 7834 * This function allocates and pre-fills an skb for a reply to 7835 * a vendor command. Since it is intended for a reply, calling 7836 * it outside of a vendor command's doit() operation is invalid. 7837 * 7838 * The returned skb is pre-filled with some identifying data in 7839 * a way that any data that is put into the skb (with skb_put(), 7840 * nla_put() or similar) will end up being within the 7841 * %NL80211_ATTR_VENDOR_DATA attribute, so all that needs to be done 7842 * with the skb is adding data for the corresponding userspace tool 7843 * which can then read that data out of the vendor data attribute. 7844 * You must not modify the skb in any other way. 7845 * 7846 * When done, call cfg80211_vendor_cmd_reply() with the skb and return 7847 * its error code as the result of the doit() operation. 7848 * 7849 * Return: An allocated and pre-filled skb. %NULL if any errors happen. 7850 */ 7851 static inline struct sk_buff * 7852 cfg80211_vendor_cmd_alloc_reply_skb(struct wiphy *wiphy, int approxlen) 7853 { 7854 return __cfg80211_alloc_reply_skb(wiphy, NL80211_CMD_VENDOR, 7855 NL80211_ATTR_VENDOR_DATA, approxlen); 7856 } 7857 7858 /** 7859 * cfg80211_vendor_cmd_reply - send the reply skb 7860 * @skb: The skb, must have been allocated with 7861 * cfg80211_vendor_cmd_alloc_reply_skb() 7862 * 7863 * Since calling this function will usually be the last thing 7864 * before returning from the vendor command doit() you should 7865 * return the error code. Note that this function consumes the 7866 * skb regardless of the return value. 7867 * 7868 * Return: An error code or 0 on success. 7869 */ 7870 int cfg80211_vendor_cmd_reply(struct sk_buff *skb); 7871 7872 /** 7873 * cfg80211_vendor_cmd_get_sender - get the current sender netlink ID 7874 * @wiphy: the wiphy 7875 * 7876 * Return: the current netlink port ID in a vendor command handler. 7877 * 7878 * Context: May only be called from a vendor command handler 7879 */ 7880 unsigned int cfg80211_vendor_cmd_get_sender(struct wiphy *wiphy); 7881 7882 /** 7883 * cfg80211_vendor_event_alloc - allocate vendor-specific event skb 7884 * @wiphy: the wiphy 7885 * @wdev: the wireless device 7886 * @event_idx: index of the vendor event in the wiphy's vendor_events 7887 * @approxlen: an upper bound of the length of the data that will 7888 * be put into the skb 7889 * @gfp: allocation flags 7890 * 7891 * This function allocates and pre-fills an skb for an event on the 7892 * vendor-specific multicast group. 7893 * 7894 * If wdev != NULL, both the ifindex and identifier of the specified 7895 * wireless device are added to the event message before the vendor data 7896 * attribute. 7897 * 7898 * When done filling the skb, call cfg80211_vendor_event() with the 7899 * skb to send the event. 7900 * 7901 * Return: An allocated and pre-filled skb. %NULL if any errors happen. 7902 */ 7903 static inline struct sk_buff * 7904 cfg80211_vendor_event_alloc(struct wiphy *wiphy, struct wireless_dev *wdev, 7905 int approxlen, int event_idx, gfp_t gfp) 7906 { 7907 return __cfg80211_alloc_event_skb(wiphy, wdev, NL80211_CMD_VENDOR, 7908 NL80211_ATTR_VENDOR_DATA, 7909 0, event_idx, approxlen, gfp); 7910 } 7911 7912 /** 7913 * cfg80211_vendor_event_alloc_ucast - alloc unicast vendor-specific event skb 7914 * @wiphy: the wiphy 7915 * @wdev: the wireless device 7916 * @event_idx: index of the vendor event in the wiphy's vendor_events 7917 * @portid: port ID of the receiver 7918 * @approxlen: an upper bound of the length of the data that will 7919 * be put into the skb 7920 * @gfp: allocation flags 7921 * 7922 * This function allocates and pre-fills an skb for an event to send to 7923 * a specific (userland) socket. This socket would previously have been 7924 * obtained by cfg80211_vendor_cmd_get_sender(), and the caller MUST take 7925 * care to register a netlink notifier to see when the socket closes. 7926 * 7927 * If wdev != NULL, both the ifindex and identifier of the specified 7928 * wireless device are added to the event message before the vendor data 7929 * attribute. 7930 * 7931 * When done filling the skb, call cfg80211_vendor_event() with the 7932 * skb to send the event. 7933 * 7934 * Return: An allocated and pre-filled skb. %NULL if any errors happen. 7935 */ 7936 static inline struct sk_buff * 7937 cfg80211_vendor_event_alloc_ucast(struct wiphy *wiphy, 7938 struct wireless_dev *wdev, 7939 unsigned int portid, int approxlen, 7940 int event_idx, gfp_t gfp) 7941 { 7942 return __cfg80211_alloc_event_skb(wiphy, wdev, NL80211_CMD_VENDOR, 7943 NL80211_ATTR_VENDOR_DATA, 7944 portid, event_idx, approxlen, gfp); 7945 } 7946 7947 /** 7948 * cfg80211_vendor_event - send the event 7949 * @skb: The skb, must have been allocated with cfg80211_vendor_event_alloc() 7950 * @gfp: allocation flags 7951 * 7952 * This function sends the given @skb, which must have been allocated 7953 * by cfg80211_vendor_event_alloc(), as an event. It always consumes it. 7954 */ 7955 static inline void cfg80211_vendor_event(struct sk_buff *skb, gfp_t gfp) 7956 { 7957 __cfg80211_send_event_skb(skb, gfp); 7958 } 7959 7960 #ifdef CONFIG_NL80211_TESTMODE 7961 /** 7962 * DOC: Test mode 7963 * 7964 * Test mode is a set of utility functions to allow drivers to 7965 * interact with driver-specific tools to aid, for instance, 7966 * factory programming. 7967 * 7968 * This chapter describes how drivers interact with it. For more 7969 * information see the nl80211 book's chapter on it. 7970 */ 7971 7972 /** 7973 * cfg80211_testmode_alloc_reply_skb - allocate testmode reply 7974 * @wiphy: the wiphy 7975 * @approxlen: an upper bound of the length of the data that will 7976 * be put into the skb 7977 * 7978 * This function allocates and pre-fills an skb for a reply to 7979 * the testmode command. Since it is intended for a reply, calling 7980 * it outside of the @testmode_cmd operation is invalid. 7981 * 7982 * The returned skb is pre-filled with the wiphy index and set up in 7983 * a way that any data that is put into the skb (with skb_put(), 7984 * nla_put() or similar) will end up being within the 7985 * %NL80211_ATTR_TESTDATA attribute, so all that needs to be done 7986 * with the skb is adding data for the corresponding userspace tool 7987 * which can then read that data out of the testdata attribute. You 7988 * must not modify the skb in any other way. 7989 * 7990 * When done, call cfg80211_testmode_reply() with the skb and return 7991 * its error code as the result of the @testmode_cmd operation. 7992 * 7993 * Return: An allocated and pre-filled skb. %NULL if any errors happen. 7994 */ 7995 static inline struct sk_buff * 7996 cfg80211_testmode_alloc_reply_skb(struct wiphy *wiphy, int approxlen) 7997 { 7998 return __cfg80211_alloc_reply_skb(wiphy, NL80211_CMD_TESTMODE, 7999 NL80211_ATTR_TESTDATA, approxlen); 8000 } 8001 8002 /** 8003 * cfg80211_testmode_reply - send the reply skb 8004 * @skb: The skb, must have been allocated with 8005 * cfg80211_testmode_alloc_reply_skb() 8006 * 8007 * Since calling this function will usually be the last thing 8008 * before returning from the @testmode_cmd you should return 8009 * the error code. Note that this function consumes the skb 8010 * regardless of the return value. 8011 * 8012 * Return: An error code or 0 on success. 8013 */ 8014 static inline int cfg80211_testmode_reply(struct sk_buff *skb) 8015 { 8016 return cfg80211_vendor_cmd_reply(skb); 8017 } 8018 8019 /** 8020 * cfg80211_testmode_alloc_event_skb - allocate testmode event 8021 * @wiphy: the wiphy 8022 * @approxlen: an upper bound of the length of the data that will 8023 * be put into the skb 8024 * @gfp: allocation flags 8025 * 8026 * This function allocates and pre-fills an skb for an event on the 8027 * testmode multicast group. 8028 * 8029 * The returned skb is set up in the same way as with 8030 * cfg80211_testmode_alloc_reply_skb() but prepared for an event. As 8031 * there, you should simply add data to it that will then end up in the 8032 * %NL80211_ATTR_TESTDATA attribute. Again, you must not modify the skb 8033 * in any other way. 8034 * 8035 * When done filling the skb, call cfg80211_testmode_event() with the 8036 * skb to send the event. 8037 * 8038 * Return: An allocated and pre-filled skb. %NULL if any errors happen. 8039 */ 8040 static inline struct sk_buff * 8041 cfg80211_testmode_alloc_event_skb(struct wiphy *wiphy, int approxlen, gfp_t gfp) 8042 { 8043 return __cfg80211_alloc_event_skb(wiphy, NULL, NL80211_CMD_TESTMODE, 8044 NL80211_ATTR_TESTDATA, 0, -1, 8045 approxlen, gfp); 8046 } 8047 8048 /** 8049 * cfg80211_testmode_event - send the event 8050 * @skb: The skb, must have been allocated with 8051 * cfg80211_testmode_alloc_event_skb() 8052 * @gfp: allocation flags 8053 * 8054 * This function sends the given @skb, which must have been allocated 8055 * by cfg80211_testmode_alloc_event_skb(), as an event. It always 8056 * consumes it. 8057 */ 8058 static inline void cfg80211_testmode_event(struct sk_buff *skb, gfp_t gfp) 8059 { 8060 __cfg80211_send_event_skb(skb, gfp); 8061 } 8062 8063 #define CFG80211_TESTMODE_CMD(cmd) .testmode_cmd = (cmd), 8064 #define CFG80211_TESTMODE_DUMP(cmd) .testmode_dump = (cmd), 8065 #else 8066 #define CFG80211_TESTMODE_CMD(cmd) 8067 #define CFG80211_TESTMODE_DUMP(cmd) 8068 #endif 8069 8070 /** 8071 * struct cfg80211_fils_resp_params - FILS connection response params 8072 * @kek: KEK derived from a successful FILS connection (may be %NULL) 8073 * @kek_len: Length of @fils_kek in octets 8074 * @update_erp_next_seq_num: Boolean value to specify whether the value in 8075 * @erp_next_seq_num is valid. 8076 * @erp_next_seq_num: The next sequence number to use in ERP message in 8077 * FILS Authentication. This value should be specified irrespective of the 8078 * status for a FILS connection. 8079 * @pmk: A new PMK if derived from a successful FILS connection (may be %NULL). 8080 * @pmk_len: Length of @pmk in octets 8081 * @pmkid: A new PMKID if derived from a successful FILS connection or the PMKID 8082 * used for this FILS connection (may be %NULL). 8083 */ 8084 struct cfg80211_fils_resp_params { 8085 const u8 *kek; 8086 size_t kek_len; 8087 bool update_erp_next_seq_num; 8088 u16 erp_next_seq_num; 8089 const u8 *pmk; 8090 size_t pmk_len; 8091 const u8 *pmkid; 8092 }; 8093 8094 /** 8095 * struct cfg80211_connect_resp_params - Connection response params 8096 * @status: Status code, %WLAN_STATUS_SUCCESS for successful connection, use 8097 * %WLAN_STATUS_UNSPECIFIED_FAILURE if your device cannot give you 8098 * the real status code for failures. If this call is used to report a 8099 * failure due to a timeout (e.g., not receiving an Authentication frame 8100 * from the AP) instead of an explicit rejection by the AP, -1 is used to 8101 * indicate that this is a failure, but without a status code. 8102 * @timeout_reason is used to report the reason for the timeout in that 8103 * case. 8104 * @req_ie: Association request IEs (may be %NULL) 8105 * @req_ie_len: Association request IEs length 8106 * @resp_ie: Association response IEs (may be %NULL) 8107 * @resp_ie_len: Association response IEs length 8108 * @fils: FILS connection response parameters. 8109 * @timeout_reason: Reason for connection timeout. This is used when the 8110 * connection fails due to a timeout instead of an explicit rejection from 8111 * the AP. %NL80211_TIMEOUT_UNSPECIFIED is used when the timeout reason is 8112 * not known. This value is used only if @status < 0 to indicate that the 8113 * failure is due to a timeout and not due to explicit rejection by the AP. 8114 * This value is ignored in other cases (@status >= 0). 8115 * @valid_links: For MLO connection, BIT mask of the valid link ids. Otherwise 8116 * zero. 8117 * @ap_mld_addr: For MLO connection, MLD address of the AP. Otherwise %NULL. 8118 * @links : For MLO connection, contains link info for the valid links indicated 8119 * using @valid_links. For non-MLO connection, links[0] contains the 8120 * connected AP info. 8121 * @links.addr: For MLO connection, MAC address of the STA link. Otherwise 8122 * %NULL. 8123 * @links.bssid: For MLO connection, MAC address of the AP link. For non-MLO 8124 * connection, links[0].bssid points to the BSSID of the AP (may be %NULL). 8125 * @links.bss: For MLO connection, entry of bss to which STA link is connected. 8126 * For non-MLO connection, links[0].bss points to entry of bss to which STA 8127 * is connected. It can be obtained through cfg80211_get_bss() (may be 8128 * %NULL). It is recommended to store the bss from the connect_request and 8129 * hold a reference to it and return through this param to avoid a warning 8130 * if the bss is expired during the connection, esp. for those drivers 8131 * implementing connect op. Only one parameter among @bssid and @bss needs 8132 * to be specified. 8133 * @links.status: per-link status code, to report a status code that's not 8134 * %WLAN_STATUS_SUCCESS for a given link, it must also be in the 8135 * @valid_links bitmap and may have a BSS pointer (which is then released) 8136 */ 8137 struct cfg80211_connect_resp_params { 8138 int status; 8139 const u8 *req_ie; 8140 size_t req_ie_len; 8141 const u8 *resp_ie; 8142 size_t resp_ie_len; 8143 struct cfg80211_fils_resp_params fils; 8144 enum nl80211_timeout_reason timeout_reason; 8145 8146 const u8 *ap_mld_addr; 8147 u16 valid_links; 8148 struct { 8149 const u8 *addr; 8150 const u8 *bssid; 8151 struct cfg80211_bss *bss; 8152 u16 status; 8153 } links[IEEE80211_MLD_MAX_NUM_LINKS]; 8154 }; 8155 8156 /** 8157 * cfg80211_connect_done - notify cfg80211 of connection result 8158 * 8159 * @dev: network device 8160 * @params: connection response parameters 8161 * @gfp: allocation flags 8162 * 8163 * It should be called by the underlying driver once execution of the connection 8164 * request from connect() has been completed. This is similar to 8165 * cfg80211_connect_bss(), but takes a structure pointer for connection response 8166 * parameters. Only one of the functions among cfg80211_connect_bss(), 8167 * cfg80211_connect_result(), cfg80211_connect_timeout(), 8168 * and cfg80211_connect_done() should be called. 8169 */ 8170 void cfg80211_connect_done(struct net_device *dev, 8171 struct cfg80211_connect_resp_params *params, 8172 gfp_t gfp); 8173 8174 /** 8175 * cfg80211_connect_bss - notify cfg80211 of connection result 8176 * 8177 * @dev: network device 8178 * @bssid: the BSSID of the AP 8179 * @bss: Entry of bss to which STA got connected to, can be obtained through 8180 * cfg80211_get_bss() (may be %NULL). But it is recommended to store the 8181 * bss from the connect_request and hold a reference to it and return 8182 * through this param to avoid a warning if the bss is expired during the 8183 * connection, esp. for those drivers implementing connect op. 8184 * Only one parameter among @bssid and @bss needs to be specified. 8185 * @req_ie: association request IEs (maybe be %NULL) 8186 * @req_ie_len: association request IEs length 8187 * @resp_ie: association response IEs (may be %NULL) 8188 * @resp_ie_len: assoc response IEs length 8189 * @status: status code, %WLAN_STATUS_SUCCESS for successful connection, use 8190 * %WLAN_STATUS_UNSPECIFIED_FAILURE if your device cannot give you 8191 * the real status code for failures. If this call is used to report a 8192 * failure due to a timeout (e.g., not receiving an Authentication frame 8193 * from the AP) instead of an explicit rejection by the AP, -1 is used to 8194 * indicate that this is a failure, but without a status code. 8195 * @timeout_reason is used to report the reason for the timeout in that 8196 * case. 8197 * @gfp: allocation flags 8198 * @timeout_reason: reason for connection timeout. This is used when the 8199 * connection fails due to a timeout instead of an explicit rejection from 8200 * the AP. %NL80211_TIMEOUT_UNSPECIFIED is used when the timeout reason is 8201 * not known. This value is used only if @status < 0 to indicate that the 8202 * failure is due to a timeout and not due to explicit rejection by the AP. 8203 * This value is ignored in other cases (@status >= 0). 8204 * 8205 * It should be called by the underlying driver once execution of the connection 8206 * request from connect() has been completed. This is similar to 8207 * cfg80211_connect_result(), but with the option of identifying the exact bss 8208 * entry for the connection. Only one of the functions among 8209 * cfg80211_connect_bss(), cfg80211_connect_result(), 8210 * cfg80211_connect_timeout(), and cfg80211_connect_done() should be called. 8211 */ 8212 static inline void 8213 cfg80211_connect_bss(struct net_device *dev, const u8 *bssid, 8214 struct cfg80211_bss *bss, const u8 *req_ie, 8215 size_t req_ie_len, const u8 *resp_ie, 8216 size_t resp_ie_len, int status, gfp_t gfp, 8217 enum nl80211_timeout_reason timeout_reason) 8218 { 8219 struct cfg80211_connect_resp_params params; 8220 8221 memset(¶ms, 0, sizeof(params)); 8222 params.status = status; 8223 params.links[0].bssid = bssid; 8224 params.links[0].bss = bss; 8225 params.req_ie = req_ie; 8226 params.req_ie_len = req_ie_len; 8227 params.resp_ie = resp_ie; 8228 params.resp_ie_len = resp_ie_len; 8229 params.timeout_reason = timeout_reason; 8230 8231 cfg80211_connect_done(dev, ¶ms, gfp); 8232 } 8233 8234 /** 8235 * cfg80211_connect_result - notify cfg80211 of connection result 8236 * 8237 * @dev: network device 8238 * @bssid: the BSSID of the AP 8239 * @req_ie: association request IEs (maybe be %NULL) 8240 * @req_ie_len: association request IEs length 8241 * @resp_ie: association response IEs (may be %NULL) 8242 * @resp_ie_len: assoc response IEs length 8243 * @status: status code, %WLAN_STATUS_SUCCESS for successful connection, use 8244 * %WLAN_STATUS_UNSPECIFIED_FAILURE if your device cannot give you 8245 * the real status code for failures. 8246 * @gfp: allocation flags 8247 * 8248 * It should be called by the underlying driver once execution of the connection 8249 * request from connect() has been completed. This is similar to 8250 * cfg80211_connect_bss() which allows the exact bss entry to be specified. Only 8251 * one of the functions among cfg80211_connect_bss(), cfg80211_connect_result(), 8252 * cfg80211_connect_timeout(), and cfg80211_connect_done() should be called. 8253 */ 8254 static inline void 8255 cfg80211_connect_result(struct net_device *dev, const u8 *bssid, 8256 const u8 *req_ie, size_t req_ie_len, 8257 const u8 *resp_ie, size_t resp_ie_len, 8258 u16 status, gfp_t gfp) 8259 { 8260 cfg80211_connect_bss(dev, bssid, NULL, req_ie, req_ie_len, resp_ie, 8261 resp_ie_len, status, gfp, 8262 NL80211_TIMEOUT_UNSPECIFIED); 8263 } 8264 8265 /** 8266 * cfg80211_connect_timeout - notify cfg80211 of connection timeout 8267 * 8268 * @dev: network device 8269 * @bssid: the BSSID of the AP 8270 * @req_ie: association request IEs (maybe be %NULL) 8271 * @req_ie_len: association request IEs length 8272 * @gfp: allocation flags 8273 * @timeout_reason: reason for connection timeout. 8274 * 8275 * It should be called by the underlying driver whenever connect() has failed 8276 * in a sequence where no explicit authentication/association rejection was 8277 * received from the AP. This could happen, e.g., due to not being able to send 8278 * out the Authentication or Association Request frame or timing out while 8279 * waiting for the response. Only one of the functions among 8280 * cfg80211_connect_bss(), cfg80211_connect_result(), 8281 * cfg80211_connect_timeout(), and cfg80211_connect_done() should be called. 8282 */ 8283 static inline void 8284 cfg80211_connect_timeout(struct net_device *dev, const u8 *bssid, 8285 const u8 *req_ie, size_t req_ie_len, gfp_t gfp, 8286 enum nl80211_timeout_reason timeout_reason) 8287 { 8288 cfg80211_connect_bss(dev, bssid, NULL, req_ie, req_ie_len, NULL, 0, -1, 8289 gfp, timeout_reason); 8290 } 8291 8292 /** 8293 * struct cfg80211_roam_info - driver initiated roaming information 8294 * 8295 * @req_ie: association request IEs (maybe be %NULL) 8296 * @req_ie_len: association request IEs length 8297 * @resp_ie: association response IEs (may be %NULL) 8298 * @resp_ie_len: assoc response IEs length 8299 * @fils: FILS related roaming information. 8300 * @valid_links: For MLO roaming, BIT mask of the new valid links is set. 8301 * Otherwise zero. 8302 * @ap_mld_addr: For MLO roaming, MLD address of the new AP. Otherwise %NULL. 8303 * @links : For MLO roaming, contains new link info for the valid links set in 8304 * @valid_links. For non-MLO roaming, links[0] contains the new AP info. 8305 * @links.addr: For MLO roaming, MAC address of the STA link. Otherwise %NULL. 8306 * @links.bssid: For MLO roaming, MAC address of the new AP link. For non-MLO 8307 * roaming, links[0].bssid points to the BSSID of the new AP. May be 8308 * %NULL if %links.bss is set. 8309 * @links.channel: the channel of the new AP. 8310 * @links.bss: For MLO roaming, entry of new bss to which STA link got 8311 * roamed. For non-MLO roaming, links[0].bss points to entry of bss to 8312 * which STA got roamed (may be %NULL if %links.bssid is set) 8313 */ 8314 struct cfg80211_roam_info { 8315 const u8 *req_ie; 8316 size_t req_ie_len; 8317 const u8 *resp_ie; 8318 size_t resp_ie_len; 8319 struct cfg80211_fils_resp_params fils; 8320 8321 const u8 *ap_mld_addr; 8322 u16 valid_links; 8323 struct { 8324 const u8 *addr; 8325 const u8 *bssid; 8326 struct ieee80211_channel *channel; 8327 struct cfg80211_bss *bss; 8328 } links[IEEE80211_MLD_MAX_NUM_LINKS]; 8329 }; 8330 8331 /** 8332 * cfg80211_roamed - notify cfg80211 of roaming 8333 * 8334 * @dev: network device 8335 * @info: information about the new BSS. struct &cfg80211_roam_info. 8336 * @gfp: allocation flags 8337 * 8338 * This function may be called with the driver passing either the BSSID of the 8339 * new AP or passing the bss entry to avoid a race in timeout of the bss entry. 8340 * It should be called by the underlying driver whenever it roamed from one AP 8341 * to another while connected. Drivers which have roaming implemented in 8342 * firmware should pass the bss entry to avoid a race in bss entry timeout where 8343 * the bss entry of the new AP is seen in the driver, but gets timed out by the 8344 * time it is accessed in __cfg80211_roamed() due to delay in scheduling 8345 * rdev->event_work. In case of any failures, the reference is released 8346 * either in cfg80211_roamed() or in __cfg80211_romed(), Otherwise, it will be 8347 * released while disconnecting from the current bss. 8348 */ 8349 void cfg80211_roamed(struct net_device *dev, struct cfg80211_roam_info *info, 8350 gfp_t gfp); 8351 8352 /** 8353 * cfg80211_port_authorized - notify cfg80211 of successful security association 8354 * 8355 * @dev: network device 8356 * @peer_addr: BSSID of the AP/P2P GO in case of STA/GC or STA/GC MAC address 8357 * in case of AP/P2P GO 8358 * @td_bitmap: transition disable policy 8359 * @td_bitmap_len: Length of transition disable policy 8360 * @gfp: allocation flags 8361 * 8362 * This function should be called by a driver that supports 4 way handshake 8363 * offload after a security association was successfully established (i.e., 8364 * the 4 way handshake was completed successfully). The call to this function 8365 * should be preceded with a call to cfg80211_connect_result(), 8366 * cfg80211_connect_done(), cfg80211_connect_bss() or cfg80211_roamed() to 8367 * indicate the 802.11 association. 8368 * This function can also be called by AP/P2P GO driver that supports 8369 * authentication offload. In this case the peer_mac passed is that of 8370 * associated STA/GC. 8371 */ 8372 void cfg80211_port_authorized(struct net_device *dev, const u8 *peer_addr, 8373 const u8* td_bitmap, u8 td_bitmap_len, gfp_t gfp); 8374 8375 /** 8376 * cfg80211_disconnected - notify cfg80211 that connection was dropped 8377 * 8378 * @dev: network device 8379 * @ie: information elements of the deauth/disassoc frame (may be %NULL) 8380 * @ie_len: length of IEs 8381 * @reason: reason code for the disconnection, set it to 0 if unknown 8382 * @locally_generated: disconnection was requested locally 8383 * @gfp: allocation flags 8384 * 8385 * After it calls this function, the driver should enter an idle state 8386 * and not try to connect to any AP any more. 8387 */ 8388 void cfg80211_disconnected(struct net_device *dev, u16 reason, 8389 const u8 *ie, size_t ie_len, 8390 bool locally_generated, gfp_t gfp); 8391 8392 /** 8393 * cfg80211_ready_on_channel - notification of remain_on_channel start 8394 * @wdev: wireless device 8395 * @cookie: the request cookie 8396 * @chan: The current channel (from remain_on_channel request) 8397 * @duration: Duration in milliseconds that the driver intents to remain on the 8398 * channel 8399 * @gfp: allocation flags 8400 */ 8401 void cfg80211_ready_on_channel(struct wireless_dev *wdev, u64 cookie, 8402 struct ieee80211_channel *chan, 8403 unsigned int duration, gfp_t gfp); 8404 8405 /** 8406 * cfg80211_remain_on_channel_expired - remain_on_channel duration expired 8407 * @wdev: wireless device 8408 * @cookie: the request cookie 8409 * @chan: The current channel (from remain_on_channel request) 8410 * @gfp: allocation flags 8411 */ 8412 void cfg80211_remain_on_channel_expired(struct wireless_dev *wdev, u64 cookie, 8413 struct ieee80211_channel *chan, 8414 gfp_t gfp); 8415 8416 /** 8417 * cfg80211_tx_mgmt_expired - tx_mgmt duration expired 8418 * @wdev: wireless device 8419 * @cookie: the requested cookie 8420 * @chan: The current channel (from tx_mgmt request) 8421 * @gfp: allocation flags 8422 */ 8423 void cfg80211_tx_mgmt_expired(struct wireless_dev *wdev, u64 cookie, 8424 struct ieee80211_channel *chan, gfp_t gfp); 8425 8426 /** 8427 * cfg80211_sinfo_alloc_tid_stats - allocate per-tid statistics. 8428 * 8429 * @sinfo: the station information 8430 * @gfp: allocation flags 8431 * 8432 * Return: 0 on success. Non-zero on error. 8433 */ 8434 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp); 8435 8436 /** 8437 * cfg80211_sinfo_release_content - release contents of station info 8438 * @sinfo: the station information 8439 * 8440 * Releases any potentially allocated sub-information of the station 8441 * information, but not the struct itself (since it's typically on 8442 * the stack.) 8443 */ 8444 static inline void cfg80211_sinfo_release_content(struct station_info *sinfo) 8445 { 8446 kfree(sinfo->pertid); 8447 } 8448 8449 /** 8450 * cfg80211_new_sta - notify userspace about station 8451 * 8452 * @dev: the netdev 8453 * @mac_addr: the station's address 8454 * @sinfo: the station information 8455 * @gfp: allocation flags 8456 */ 8457 void cfg80211_new_sta(struct net_device *dev, const u8 *mac_addr, 8458 struct station_info *sinfo, gfp_t gfp); 8459 8460 /** 8461 * cfg80211_del_sta_sinfo - notify userspace about deletion of a station 8462 * @dev: the netdev 8463 * @mac_addr: the station's address. For MLD station, MLD address is used. 8464 * @sinfo: the station information/statistics 8465 * @gfp: allocation flags 8466 */ 8467 void cfg80211_del_sta_sinfo(struct net_device *dev, const u8 *mac_addr, 8468 struct station_info *sinfo, gfp_t gfp); 8469 8470 /** 8471 * cfg80211_del_sta - notify userspace about deletion of a station 8472 * 8473 * @dev: the netdev 8474 * @mac_addr: the station's address. For MLD station, MLD address is used. 8475 * @gfp: allocation flags 8476 */ 8477 static inline void cfg80211_del_sta(struct net_device *dev, 8478 const u8 *mac_addr, gfp_t gfp) 8479 { 8480 cfg80211_del_sta_sinfo(dev, mac_addr, NULL, gfp); 8481 } 8482 8483 /** 8484 * cfg80211_conn_failed - connection request failed notification 8485 * 8486 * @dev: the netdev 8487 * @mac_addr: the station's address 8488 * @reason: the reason for connection failure 8489 * @gfp: allocation flags 8490 * 8491 * Whenever a station tries to connect to an AP and if the station 8492 * could not connect to the AP as the AP has rejected the connection 8493 * for some reasons, this function is called. 8494 * 8495 * The reason for connection failure can be any of the value from 8496 * nl80211_connect_failed_reason enum 8497 */ 8498 void cfg80211_conn_failed(struct net_device *dev, const u8 *mac_addr, 8499 enum nl80211_connect_failed_reason reason, 8500 gfp_t gfp); 8501 8502 /** 8503 * struct cfg80211_rx_info - received management frame info 8504 * 8505 * @freq: Frequency on which the frame was received in kHz 8506 * @sig_dbm: signal strength in dBm, or 0 if unknown 8507 * @have_link_id: indicates the frame was received on a link of 8508 * an MLD, i.e. the @link_id field is valid 8509 * @link_id: the ID of the link the frame was received on 8510 * @buf: Management frame (header + body) 8511 * @len: length of the frame data 8512 * @flags: flags, as defined in &enum nl80211_rxmgmt_flags 8513 * @rx_tstamp: Hardware timestamp of frame RX in nanoseconds 8514 * @ack_tstamp: Hardware timestamp of ack TX in nanoseconds 8515 */ 8516 struct cfg80211_rx_info { 8517 int freq; 8518 int sig_dbm; 8519 bool have_link_id; 8520 u8 link_id; 8521 const u8 *buf; 8522 size_t len; 8523 u32 flags; 8524 u64 rx_tstamp; 8525 u64 ack_tstamp; 8526 }; 8527 8528 /** 8529 * cfg80211_rx_mgmt_ext - management frame notification with extended info 8530 * @wdev: wireless device receiving the frame 8531 * @info: RX info as defined in struct cfg80211_rx_info 8532 * 8533 * This function is called whenever an Action frame is received for a station 8534 * mode interface, but is not processed in kernel. 8535 * 8536 * Return: %true if a user space application has registered for this frame. 8537 * For action frames, that makes it responsible for rejecting unrecognized 8538 * action frames; %false otherwise, in which case for action frames the 8539 * driver is responsible for rejecting the frame. 8540 */ 8541 bool cfg80211_rx_mgmt_ext(struct wireless_dev *wdev, 8542 struct cfg80211_rx_info *info); 8543 8544 /** 8545 * cfg80211_rx_mgmt_khz - notification of received, unprocessed management frame 8546 * @wdev: wireless device receiving the frame 8547 * @freq: Frequency on which the frame was received in KHz 8548 * @sig_dbm: signal strength in dBm, or 0 if unknown 8549 * @buf: Management frame (header + body) 8550 * @len: length of the frame data 8551 * @flags: flags, as defined in enum nl80211_rxmgmt_flags 8552 * 8553 * This function is called whenever an Action frame is received for a station 8554 * mode interface, but is not processed in kernel. 8555 * 8556 * Return: %true if a user space application has registered for this frame. 8557 * For action frames, that makes it responsible for rejecting unrecognized 8558 * action frames; %false otherwise, in which case for action frames the 8559 * driver is responsible for rejecting the frame. 8560 */ 8561 static inline bool cfg80211_rx_mgmt_khz(struct wireless_dev *wdev, int freq, 8562 int sig_dbm, const u8 *buf, size_t len, 8563 u32 flags) 8564 { 8565 struct cfg80211_rx_info info = { 8566 .freq = freq, 8567 .sig_dbm = sig_dbm, 8568 .buf = buf, 8569 .len = len, 8570 .flags = flags 8571 }; 8572 8573 return cfg80211_rx_mgmt_ext(wdev, &info); 8574 } 8575 8576 /** 8577 * cfg80211_rx_mgmt - notification of received, unprocessed management frame 8578 * @wdev: wireless device receiving the frame 8579 * @freq: Frequency on which the frame was received in MHz 8580 * @sig_dbm: signal strength in dBm, or 0 if unknown 8581 * @buf: Management frame (header + body) 8582 * @len: length of the frame data 8583 * @flags: flags, as defined in enum nl80211_rxmgmt_flags 8584 * 8585 * This function is called whenever an Action frame is received for a station 8586 * mode interface, but is not processed in kernel. 8587 * 8588 * Return: %true if a user space application has registered for this frame. 8589 * For action frames, that makes it responsible for rejecting unrecognized 8590 * action frames; %false otherwise, in which case for action frames the 8591 * driver is responsible for rejecting the frame. 8592 */ 8593 static inline bool cfg80211_rx_mgmt(struct wireless_dev *wdev, int freq, 8594 int sig_dbm, const u8 *buf, size_t len, 8595 u32 flags) 8596 { 8597 struct cfg80211_rx_info info = { 8598 .freq = MHZ_TO_KHZ(freq), 8599 .sig_dbm = sig_dbm, 8600 .buf = buf, 8601 .len = len, 8602 .flags = flags 8603 }; 8604 8605 return cfg80211_rx_mgmt_ext(wdev, &info); 8606 } 8607 8608 /** 8609 * struct cfg80211_tx_status - TX status for management frame information 8610 * 8611 * @cookie: Cookie returned by cfg80211_ops::mgmt_tx() 8612 * @tx_tstamp: hardware TX timestamp in nanoseconds 8613 * @ack_tstamp: hardware ack RX timestamp in nanoseconds 8614 * @buf: Management frame (header + body) 8615 * @len: length of the frame data 8616 * @ack: Whether frame was acknowledged 8617 */ 8618 struct cfg80211_tx_status { 8619 u64 cookie; 8620 u64 tx_tstamp; 8621 u64 ack_tstamp; 8622 const u8 *buf; 8623 size_t len; 8624 bool ack; 8625 }; 8626 8627 /** 8628 * cfg80211_mgmt_tx_status_ext - TX status notification with extended info 8629 * @wdev: wireless device receiving the frame 8630 * @status: TX status data 8631 * @gfp: context flags 8632 * 8633 * This function is called whenever a management frame was requested to be 8634 * transmitted with cfg80211_ops::mgmt_tx() to report the TX status of the 8635 * transmission attempt with extended info. 8636 */ 8637 void cfg80211_mgmt_tx_status_ext(struct wireless_dev *wdev, 8638 struct cfg80211_tx_status *status, gfp_t gfp); 8639 8640 /** 8641 * cfg80211_mgmt_tx_status - notification of TX status for management frame 8642 * @wdev: wireless device receiving the frame 8643 * @cookie: Cookie returned by cfg80211_ops::mgmt_tx() 8644 * @buf: Management frame (header + body) 8645 * @len: length of the frame data 8646 * @ack: Whether frame was acknowledged 8647 * @gfp: context flags 8648 * 8649 * This function is called whenever a management frame was requested to be 8650 * transmitted with cfg80211_ops::mgmt_tx() to report the TX status of the 8651 * transmission attempt. 8652 */ 8653 static inline void cfg80211_mgmt_tx_status(struct wireless_dev *wdev, 8654 u64 cookie, const u8 *buf, 8655 size_t len, bool ack, gfp_t gfp) 8656 { 8657 struct cfg80211_tx_status status = { 8658 .cookie = cookie, 8659 .buf = buf, 8660 .len = len, 8661 .ack = ack 8662 }; 8663 8664 cfg80211_mgmt_tx_status_ext(wdev, &status, gfp); 8665 } 8666 8667 /** 8668 * cfg80211_control_port_tx_status - notification of TX status for control 8669 * port frames 8670 * @wdev: wireless device receiving the frame 8671 * @cookie: Cookie returned by cfg80211_ops::tx_control_port() 8672 * @buf: Data frame (header + body) 8673 * @len: length of the frame data 8674 * @ack: Whether frame was acknowledged 8675 * @gfp: context flags 8676 * 8677 * This function is called whenever a control port frame was requested to be 8678 * transmitted with cfg80211_ops::tx_control_port() to report the TX status of 8679 * the transmission attempt. 8680 */ 8681 void cfg80211_control_port_tx_status(struct wireless_dev *wdev, u64 cookie, 8682 const u8 *buf, size_t len, bool ack, 8683 gfp_t gfp); 8684 8685 /** 8686 * cfg80211_rx_control_port - notification about a received control port frame 8687 * @dev: The device the frame matched to 8688 * @skb: The skbuf with the control port frame. It is assumed that the skbuf 8689 * is 802.3 formatted (with 802.3 header). The skb can be non-linear. 8690 * This function does not take ownership of the skb, so the caller is 8691 * responsible for any cleanup. The caller must also ensure that 8692 * skb->protocol is set appropriately. 8693 * @unencrypted: Whether the frame was received unencrypted 8694 * @link_id: the link the frame was received on, -1 if not applicable or unknown 8695 * 8696 * This function is used to inform userspace about a received control port 8697 * frame. It should only be used if userspace indicated it wants to receive 8698 * control port frames over nl80211. 8699 * 8700 * The frame is the data portion of the 802.3 or 802.11 data frame with all 8701 * network layer headers removed (e.g. the raw EAPoL frame). 8702 * 8703 * Return: %true if the frame was passed to userspace 8704 */ 8705 bool cfg80211_rx_control_port(struct net_device *dev, struct sk_buff *skb, 8706 bool unencrypted, int link_id); 8707 8708 /** 8709 * cfg80211_cqm_rssi_notify - connection quality monitoring rssi event 8710 * @dev: network device 8711 * @rssi_event: the triggered RSSI event 8712 * @rssi_level: new RSSI level value or 0 if not available 8713 * @gfp: context flags 8714 * 8715 * This function is called when a configured connection quality monitoring 8716 * rssi threshold reached event occurs. 8717 */ 8718 void cfg80211_cqm_rssi_notify(struct net_device *dev, 8719 enum nl80211_cqm_rssi_threshold_event rssi_event, 8720 s32 rssi_level, gfp_t gfp); 8721 8722 /** 8723 * cfg80211_cqm_pktloss_notify - notify userspace about packetloss to peer 8724 * @dev: network device 8725 * @peer: peer's MAC address 8726 * @num_packets: how many packets were lost -- should be a fixed threshold 8727 * but probably no less than maybe 50, or maybe a throughput dependent 8728 * threshold (to account for temporary interference) 8729 * @gfp: context flags 8730 */ 8731 void cfg80211_cqm_pktloss_notify(struct net_device *dev, 8732 const u8 *peer, u32 num_packets, gfp_t gfp); 8733 8734 /** 8735 * cfg80211_cqm_txe_notify - TX error rate event 8736 * @dev: network device 8737 * @peer: peer's MAC address 8738 * @num_packets: how many packets were lost 8739 * @rate: % of packets which failed transmission 8740 * @intvl: interval (in s) over which the TX failure threshold was breached. 8741 * @gfp: context flags 8742 * 8743 * Notify userspace when configured % TX failures over number of packets in a 8744 * given interval is exceeded. 8745 */ 8746 void cfg80211_cqm_txe_notify(struct net_device *dev, const u8 *peer, 8747 u32 num_packets, u32 rate, u32 intvl, gfp_t gfp); 8748 8749 /** 8750 * cfg80211_cqm_beacon_loss_notify - beacon loss event 8751 * @dev: network device 8752 * @gfp: context flags 8753 * 8754 * Notify userspace about beacon loss from the connected AP. 8755 */ 8756 void cfg80211_cqm_beacon_loss_notify(struct net_device *dev, gfp_t gfp); 8757 8758 /** 8759 * __cfg80211_radar_event - radar detection event 8760 * @wiphy: the wiphy 8761 * @chandef: chandef for the current channel 8762 * @offchan: the radar has been detected on the offchannel chain 8763 * @gfp: context flags 8764 * 8765 * This function is called when a radar is detected on the current chanenl. 8766 */ 8767 void __cfg80211_radar_event(struct wiphy *wiphy, 8768 struct cfg80211_chan_def *chandef, 8769 bool offchan, gfp_t gfp); 8770 8771 static inline void 8772 cfg80211_radar_event(struct wiphy *wiphy, 8773 struct cfg80211_chan_def *chandef, 8774 gfp_t gfp) 8775 { 8776 __cfg80211_radar_event(wiphy, chandef, false, gfp); 8777 } 8778 8779 static inline void 8780 cfg80211_background_radar_event(struct wiphy *wiphy, 8781 struct cfg80211_chan_def *chandef, 8782 gfp_t gfp) 8783 { 8784 __cfg80211_radar_event(wiphy, chandef, true, gfp); 8785 } 8786 8787 /** 8788 * cfg80211_sta_opmode_change_notify - STA's ht/vht operation mode change event 8789 * @dev: network device 8790 * @mac: MAC address of a station which opmode got modified 8791 * @sta_opmode: station's current opmode value 8792 * @gfp: context flags 8793 * 8794 * Driver should call this function when station's opmode modified via action 8795 * frame. 8796 */ 8797 void cfg80211_sta_opmode_change_notify(struct net_device *dev, const u8 *mac, 8798 struct sta_opmode_info *sta_opmode, 8799 gfp_t gfp); 8800 8801 /** 8802 * cfg80211_cac_event - Channel availability check (CAC) event 8803 * @netdev: network device 8804 * @chandef: chandef for the current channel 8805 * @event: type of event 8806 * @gfp: context flags 8807 * @link_id: valid link_id for MLO operation or 0 otherwise. 8808 * 8809 * This function is called when a Channel availability check (CAC) is finished 8810 * or aborted. This must be called to notify the completion of a CAC process, 8811 * also by full-MAC drivers. 8812 */ 8813 void cfg80211_cac_event(struct net_device *netdev, 8814 const struct cfg80211_chan_def *chandef, 8815 enum nl80211_radar_event event, gfp_t gfp, 8816 unsigned int link_id); 8817 8818 /** 8819 * cfg80211_background_cac_abort - Channel Availability Check offchan abort event 8820 * @wiphy: the wiphy 8821 * 8822 * This function is called by the driver when a Channel Availability Check 8823 * (CAC) is aborted by a offchannel dedicated chain. 8824 */ 8825 void cfg80211_background_cac_abort(struct wiphy *wiphy); 8826 8827 /** 8828 * cfg80211_gtk_rekey_notify - notify userspace about driver rekeying 8829 * @dev: network device 8830 * @bssid: BSSID of AP (to avoid races) 8831 * @replay_ctr: new replay counter 8832 * @gfp: allocation flags 8833 */ 8834 void cfg80211_gtk_rekey_notify(struct net_device *dev, const u8 *bssid, 8835 const u8 *replay_ctr, gfp_t gfp); 8836 8837 /** 8838 * cfg80211_pmksa_candidate_notify - notify about PMKSA caching candidate 8839 * @dev: network device 8840 * @index: candidate index (the smaller the index, the higher the priority) 8841 * @bssid: BSSID of AP 8842 * @preauth: Whether AP advertises support for RSN pre-authentication 8843 * @gfp: allocation flags 8844 */ 8845 void cfg80211_pmksa_candidate_notify(struct net_device *dev, int index, 8846 const u8 *bssid, bool preauth, gfp_t gfp); 8847 8848 /** 8849 * cfg80211_rx_spurious_frame - inform userspace about a spurious frame 8850 * @dev: The device the frame matched to 8851 * @addr: the transmitter address 8852 * @gfp: context flags 8853 * 8854 * This function is used in AP mode (only!) to inform userspace that 8855 * a spurious class 3 frame was received, to be able to deauth the 8856 * sender. 8857 * Return: %true if the frame was passed to userspace (or this failed 8858 * for a reason other than not having a subscription.) 8859 */ 8860 bool cfg80211_rx_spurious_frame(struct net_device *dev, 8861 const u8 *addr, gfp_t gfp); 8862 8863 /** 8864 * cfg80211_rx_unexpected_4addr_frame - inform about unexpected WDS frame 8865 * @dev: The device the frame matched to 8866 * @addr: the transmitter address 8867 * @gfp: context flags 8868 * 8869 * This function is used in AP mode (only!) to inform userspace that 8870 * an associated station sent a 4addr frame but that wasn't expected. 8871 * It is allowed and desirable to send this event only once for each 8872 * station to avoid event flooding. 8873 * Return: %true if the frame was passed to userspace (or this failed 8874 * for a reason other than not having a subscription.) 8875 */ 8876 bool cfg80211_rx_unexpected_4addr_frame(struct net_device *dev, 8877 const u8 *addr, gfp_t gfp); 8878 8879 /** 8880 * cfg80211_probe_status - notify userspace about probe status 8881 * @dev: the device the probe was sent on 8882 * @addr: the address of the peer 8883 * @cookie: the cookie filled in @probe_client previously 8884 * @acked: indicates whether probe was acked or not 8885 * @ack_signal: signal strength (in dBm) of the ACK frame. 8886 * @is_valid_ack_signal: indicates the ack_signal is valid or not. 8887 * @gfp: allocation flags 8888 */ 8889 void cfg80211_probe_status(struct net_device *dev, const u8 *addr, 8890 u64 cookie, bool acked, s32 ack_signal, 8891 bool is_valid_ack_signal, gfp_t gfp); 8892 8893 /** 8894 * cfg80211_report_obss_beacon_khz - report beacon from other APs 8895 * @wiphy: The wiphy that received the beacon 8896 * @frame: the frame 8897 * @len: length of the frame 8898 * @freq: frequency the frame was received on in KHz 8899 * @sig_dbm: signal strength in dBm, or 0 if unknown 8900 * 8901 * Use this function to report to userspace when a beacon was 8902 * received. It is not useful to call this when there is no 8903 * netdev that is in AP/GO mode. 8904 */ 8905 void cfg80211_report_obss_beacon_khz(struct wiphy *wiphy, const u8 *frame, 8906 size_t len, int freq, int sig_dbm); 8907 8908 /** 8909 * cfg80211_report_obss_beacon - report beacon from other APs 8910 * @wiphy: The wiphy that received the beacon 8911 * @frame: the frame 8912 * @len: length of the frame 8913 * @freq: frequency the frame was received on 8914 * @sig_dbm: signal strength in dBm, or 0 if unknown 8915 * 8916 * Use this function to report to userspace when a beacon was 8917 * received. It is not useful to call this when there is no 8918 * netdev that is in AP/GO mode. 8919 */ 8920 static inline void cfg80211_report_obss_beacon(struct wiphy *wiphy, 8921 const u8 *frame, size_t len, 8922 int freq, int sig_dbm) 8923 { 8924 cfg80211_report_obss_beacon_khz(wiphy, frame, len, MHZ_TO_KHZ(freq), 8925 sig_dbm); 8926 } 8927 8928 /** 8929 * struct cfg80211_beaconing_check_config - beacon check configuration 8930 * @iftype: the interface type to check for 8931 * @relax: allow IR-relaxation conditions to apply (e.g. another 8932 * interface connected already on the same channel) 8933 * NOTE: If this is set, wiphy mutex must be held. 8934 * @reg_power: &enum ieee80211_ap_reg_power value indicating the 8935 * advertised/used 6 GHz regulatory power setting 8936 */ 8937 struct cfg80211_beaconing_check_config { 8938 enum nl80211_iftype iftype; 8939 enum ieee80211_ap_reg_power reg_power; 8940 bool relax; 8941 }; 8942 8943 /** 8944 * cfg80211_reg_check_beaconing - check if beaconing is allowed 8945 * @wiphy: the wiphy 8946 * @chandef: the channel definition 8947 * @cfg: additional parameters for the checking 8948 * 8949 * Return: %true if there is no secondary channel or the secondary channel(s) 8950 * can be used for beaconing (i.e. is not a radar channel etc.) 8951 */ 8952 bool cfg80211_reg_check_beaconing(struct wiphy *wiphy, 8953 struct cfg80211_chan_def *chandef, 8954 struct cfg80211_beaconing_check_config *cfg); 8955 8956 /** 8957 * cfg80211_reg_can_beacon - check if beaconing is allowed 8958 * @wiphy: the wiphy 8959 * @chandef: the channel definition 8960 * @iftype: interface type 8961 * 8962 * Return: %true if there is no secondary channel or the secondary channel(s) 8963 * can be used for beaconing (i.e. is not a radar channel etc.) 8964 */ 8965 static inline bool 8966 cfg80211_reg_can_beacon(struct wiphy *wiphy, 8967 struct cfg80211_chan_def *chandef, 8968 enum nl80211_iftype iftype) 8969 { 8970 struct cfg80211_beaconing_check_config config = { 8971 .iftype = iftype, 8972 }; 8973 8974 return cfg80211_reg_check_beaconing(wiphy, chandef, &config); 8975 } 8976 8977 /** 8978 * cfg80211_reg_can_beacon_relax - check if beaconing is allowed with relaxation 8979 * @wiphy: the wiphy 8980 * @chandef: the channel definition 8981 * @iftype: interface type 8982 * 8983 * Return: %true if there is no secondary channel or the secondary channel(s) 8984 * can be used for beaconing (i.e. is not a radar channel etc.). This version 8985 * also checks if IR-relaxation conditions apply, to allow beaconing under 8986 * more permissive conditions. 8987 * 8988 * Context: Requires the wiphy mutex to be held. 8989 */ 8990 static inline bool 8991 cfg80211_reg_can_beacon_relax(struct wiphy *wiphy, 8992 struct cfg80211_chan_def *chandef, 8993 enum nl80211_iftype iftype) 8994 { 8995 struct cfg80211_beaconing_check_config config = { 8996 .iftype = iftype, 8997 .relax = true, 8998 }; 8999 9000 return cfg80211_reg_check_beaconing(wiphy, chandef, &config); 9001 } 9002 9003 /** 9004 * cfg80211_ch_switch_notify - update wdev channel and notify userspace 9005 * @dev: the device which switched channels 9006 * @chandef: the new channel definition 9007 * @link_id: the link ID for MLO, must be 0 for non-MLO 9008 * 9009 * Caller must hold wiphy mutex, therefore must only be called from sleepable 9010 * driver context! 9011 */ 9012 void cfg80211_ch_switch_notify(struct net_device *dev, 9013 struct cfg80211_chan_def *chandef, 9014 unsigned int link_id); 9015 9016 /** 9017 * cfg80211_ch_switch_started_notify - notify channel switch start 9018 * @dev: the device on which the channel switch started 9019 * @chandef: the future channel definition 9020 * @link_id: the link ID for MLO, must be 0 for non-MLO 9021 * @count: the number of TBTTs until the channel switch happens 9022 * @quiet: whether or not immediate quiet was requested by the AP 9023 * 9024 * Inform the userspace about the channel switch that has just 9025 * started, so that it can take appropriate actions (eg. starting 9026 * channel switch on other vifs), if necessary. 9027 */ 9028 void cfg80211_ch_switch_started_notify(struct net_device *dev, 9029 struct cfg80211_chan_def *chandef, 9030 unsigned int link_id, u8 count, 9031 bool quiet); 9032 9033 /** 9034 * ieee80211_operating_class_to_band - convert operating class to band 9035 * 9036 * @operating_class: the operating class to convert 9037 * @band: band pointer to fill 9038 * 9039 * Return: %true if the conversion was successful, %false otherwise. 9040 */ 9041 bool ieee80211_operating_class_to_band(u8 operating_class, 9042 enum nl80211_band *band); 9043 9044 /** 9045 * ieee80211_operating_class_to_chandef - convert operating class to chandef 9046 * 9047 * @operating_class: the operating class to convert 9048 * @chan: the ieee80211_channel to convert 9049 * @chandef: a pointer to the resulting chandef 9050 * 9051 * Return: %true if the conversion was successful, %false otherwise. 9052 */ 9053 bool ieee80211_operating_class_to_chandef(u8 operating_class, 9054 struct ieee80211_channel *chan, 9055 struct cfg80211_chan_def *chandef); 9056 9057 /** 9058 * ieee80211_chandef_to_operating_class - convert chandef to operation class 9059 * 9060 * @chandef: the chandef to convert 9061 * @op_class: a pointer to the resulting operating class 9062 * 9063 * Return: %true if the conversion was successful, %false otherwise. 9064 */ 9065 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef, 9066 u8 *op_class); 9067 9068 /** 9069 * ieee80211_chandef_to_khz - convert chandef to frequency in KHz 9070 * 9071 * @chandef: the chandef to convert 9072 * 9073 * Return: the center frequency of chandef (1st segment) in KHz. 9074 */ 9075 static inline u32 9076 ieee80211_chandef_to_khz(const struct cfg80211_chan_def *chandef) 9077 { 9078 return MHZ_TO_KHZ(chandef->center_freq1) + chandef->freq1_offset; 9079 } 9080 9081 /** 9082 * cfg80211_tdls_oper_request - request userspace to perform TDLS operation 9083 * @dev: the device on which the operation is requested 9084 * @peer: the MAC address of the peer device 9085 * @oper: the requested TDLS operation (NL80211_TDLS_SETUP or 9086 * NL80211_TDLS_TEARDOWN) 9087 * @reason_code: the reason code for teardown request 9088 * @gfp: allocation flags 9089 * 9090 * This function is used to request userspace to perform TDLS operation that 9091 * requires knowledge of keys, i.e., link setup or teardown when the AP 9092 * connection uses encryption. This is optional mechanism for the driver to use 9093 * if it can automatically determine when a TDLS link could be useful (e.g., 9094 * based on traffic and signal strength for a peer). 9095 */ 9096 void cfg80211_tdls_oper_request(struct net_device *dev, const u8 *peer, 9097 enum nl80211_tdls_operation oper, 9098 u16 reason_code, gfp_t gfp); 9099 9100 /** 9101 * cfg80211_calculate_bitrate - calculate actual bitrate (in 100Kbps units) 9102 * @rate: given rate_info to calculate bitrate from 9103 * 9104 * Return: calculated bitrate 9105 */ 9106 u32 cfg80211_calculate_bitrate(struct rate_info *rate); 9107 9108 /** 9109 * cfg80211_unregister_wdev - remove the given wdev 9110 * @wdev: struct wireless_dev to remove 9111 * 9112 * This function removes the device so it can no longer be used. It is necessary 9113 * to call this function even when cfg80211 requests the removal of the device 9114 * by calling the del_virtual_intf() callback. The function must also be called 9115 * when the driver wishes to unregister the wdev, e.g. when the hardware device 9116 * is unbound from the driver. 9117 * 9118 * Context: Requires the RTNL and wiphy mutex to be held. 9119 */ 9120 void cfg80211_unregister_wdev(struct wireless_dev *wdev); 9121 9122 /** 9123 * cfg80211_register_netdevice - register the given netdev 9124 * @dev: the netdev to register 9125 * 9126 * Note: In contexts coming from cfg80211 callbacks, you must call this rather 9127 * than register_netdevice(), unregister_netdev() is impossible as the RTNL is 9128 * held. Otherwise, both register_netdevice() and register_netdev() are usable 9129 * instead as well. 9130 * 9131 * Context: Requires the RTNL and wiphy mutex to be held. 9132 * 9133 * Return: 0 on success. Non-zero on error. 9134 */ 9135 int cfg80211_register_netdevice(struct net_device *dev); 9136 9137 /** 9138 * cfg80211_unregister_netdevice - unregister the given netdev 9139 * @dev: the netdev to register 9140 * 9141 * Note: In contexts coming from cfg80211 callbacks, you must call this rather 9142 * than unregister_netdevice(), unregister_netdev() is impossible as the RTNL 9143 * is held. Otherwise, both unregister_netdevice() and unregister_netdev() are 9144 * usable instead as well. 9145 * 9146 * Context: Requires the RTNL and wiphy mutex to be held. 9147 */ 9148 static inline void cfg80211_unregister_netdevice(struct net_device *dev) 9149 { 9150 #if IS_ENABLED(CONFIG_CFG80211) 9151 cfg80211_unregister_wdev(dev->ieee80211_ptr); 9152 #endif 9153 } 9154 9155 /** 9156 * struct cfg80211_ft_event_params - FT Information Elements 9157 * @ies: FT IEs 9158 * @ies_len: length of the FT IE in bytes 9159 * @target_ap: target AP's MAC address 9160 * @ric_ies: RIC IE 9161 * @ric_ies_len: length of the RIC IE in bytes 9162 */ 9163 struct cfg80211_ft_event_params { 9164 const u8 *ies; 9165 size_t ies_len; 9166 const u8 *target_ap; 9167 const u8 *ric_ies; 9168 size_t ric_ies_len; 9169 }; 9170 9171 /** 9172 * cfg80211_ft_event - notify userspace about FT IE and RIC IE 9173 * @netdev: network device 9174 * @ft_event: IE information 9175 */ 9176 void cfg80211_ft_event(struct net_device *netdev, 9177 struct cfg80211_ft_event_params *ft_event); 9178 9179 /** 9180 * cfg80211_get_p2p_attr - find and copy a P2P attribute from IE buffer 9181 * @ies: the input IE buffer 9182 * @len: the input length 9183 * @attr: the attribute ID to find 9184 * @buf: output buffer, can be %NULL if the data isn't needed, e.g. 9185 * if the function is only called to get the needed buffer size 9186 * @bufsize: size of the output buffer 9187 * 9188 * The function finds a given P2P attribute in the (vendor) IEs and 9189 * copies its contents to the given buffer. 9190 * 9191 * Return: A negative error code (-%EILSEQ or -%ENOENT) if the data is 9192 * malformed or the attribute can't be found (respectively), or the 9193 * length of the found attribute (which can be zero). 9194 */ 9195 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len, 9196 enum ieee80211_p2p_attr_id attr, 9197 u8 *buf, unsigned int bufsize); 9198 9199 /** 9200 * ieee80211_ie_split_ric - split an IE buffer according to ordering (with RIC) 9201 * @ies: the IE buffer 9202 * @ielen: the length of the IE buffer 9203 * @ids: an array with element IDs that are allowed before 9204 * the split. A WLAN_EID_EXTENSION value means that the next 9205 * EID in the list is a sub-element of the EXTENSION IE. 9206 * @n_ids: the size of the element ID array 9207 * @after_ric: array IE types that come after the RIC element 9208 * @n_after_ric: size of the @after_ric array 9209 * @offset: offset where to start splitting in the buffer 9210 * 9211 * This function splits an IE buffer by updating the @offset 9212 * variable to point to the location where the buffer should be 9213 * split. 9214 * 9215 * It assumes that the given IE buffer is well-formed, this 9216 * has to be guaranteed by the caller! 9217 * 9218 * It also assumes that the IEs in the buffer are ordered 9219 * correctly, if not the result of using this function will not 9220 * be ordered correctly either, i.e. it does no reordering. 9221 * 9222 * Return: The offset where the next part of the buffer starts, which 9223 * may be @ielen if the entire (remainder) of the buffer should be 9224 * used. 9225 */ 9226 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen, 9227 const u8 *ids, int n_ids, 9228 const u8 *after_ric, int n_after_ric, 9229 size_t offset); 9230 9231 /** 9232 * ieee80211_ie_split - split an IE buffer according to ordering 9233 * @ies: the IE buffer 9234 * @ielen: the length of the IE buffer 9235 * @ids: an array with element IDs that are allowed before 9236 * the split. A WLAN_EID_EXTENSION value means that the next 9237 * EID in the list is a sub-element of the EXTENSION IE. 9238 * @n_ids: the size of the element ID array 9239 * @offset: offset where to start splitting in the buffer 9240 * 9241 * This function splits an IE buffer by updating the @offset 9242 * variable to point to the location where the buffer should be 9243 * split. 9244 * 9245 * It assumes that the given IE buffer is well-formed, this 9246 * has to be guaranteed by the caller! 9247 * 9248 * It also assumes that the IEs in the buffer are ordered 9249 * correctly, if not the result of using this function will not 9250 * be ordered correctly either, i.e. it does no reordering. 9251 * 9252 * Return: The offset where the next part of the buffer starts, which 9253 * may be @ielen if the entire (remainder) of the buffer should be 9254 * used. 9255 */ 9256 static inline size_t ieee80211_ie_split(const u8 *ies, size_t ielen, 9257 const u8 *ids, int n_ids, size_t offset) 9258 { 9259 return ieee80211_ie_split_ric(ies, ielen, ids, n_ids, NULL, 0, offset); 9260 } 9261 9262 /** 9263 * ieee80211_fragment_element - fragment the last element in skb 9264 * @skb: The skbuf that the element was added to 9265 * @len_pos: Pointer to length of the element to fragment 9266 * @frag_id: The element ID to use for fragments 9267 * 9268 * This function fragments all data after @len_pos, adding fragmentation 9269 * elements with the given ID as appropriate. The SKB will grow in size 9270 * accordingly. 9271 */ 9272 void ieee80211_fragment_element(struct sk_buff *skb, u8 *len_pos, u8 frag_id); 9273 9274 /** 9275 * cfg80211_report_wowlan_wakeup - report wakeup from WoWLAN 9276 * @wdev: the wireless device reporting the wakeup 9277 * @wakeup: the wakeup report 9278 * @gfp: allocation flags 9279 * 9280 * This function reports that the given device woke up. If it 9281 * caused the wakeup, report the reason(s), otherwise you may 9282 * pass %NULL as the @wakeup parameter to advertise that something 9283 * else caused the wakeup. 9284 */ 9285 void cfg80211_report_wowlan_wakeup(struct wireless_dev *wdev, 9286 struct cfg80211_wowlan_wakeup *wakeup, 9287 gfp_t gfp); 9288 9289 /** 9290 * cfg80211_crit_proto_stopped() - indicate critical protocol stopped by driver. 9291 * 9292 * @wdev: the wireless device for which critical protocol is stopped. 9293 * @gfp: allocation flags 9294 * 9295 * This function can be called by the driver to indicate it has reverted 9296 * operation back to normal. One reason could be that the duration given 9297 * by .crit_proto_start() has expired. 9298 */ 9299 void cfg80211_crit_proto_stopped(struct wireless_dev *wdev, gfp_t gfp); 9300 9301 /** 9302 * ieee80211_get_num_supported_channels - get number of channels device has 9303 * @wiphy: the wiphy 9304 * 9305 * Return: the number of channels supported by the device. 9306 */ 9307 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy); 9308 9309 /** 9310 * cfg80211_check_combinations - check interface combinations 9311 * 9312 * @wiphy: the wiphy 9313 * @params: the interface combinations parameter 9314 * 9315 * This function can be called by the driver to check whether a 9316 * combination of interfaces and their types are allowed according to 9317 * the interface combinations. 9318 * 9319 * Return: 0 if combinations are allowed. Non-zero on error. 9320 */ 9321 int cfg80211_check_combinations(struct wiphy *wiphy, 9322 struct iface_combination_params *params); 9323 9324 /** 9325 * cfg80211_iter_combinations - iterate over matching combinations 9326 * 9327 * @wiphy: the wiphy 9328 * @params: the interface combinations parameter 9329 * @iter: function to call for each matching combination 9330 * @data: pointer to pass to iter function 9331 * 9332 * This function can be called by the driver to check what possible 9333 * combinations it fits in at a given moment, e.g. for channel switching 9334 * purposes. 9335 * 9336 * Return: 0 on success. Non-zero on error. 9337 */ 9338 int cfg80211_iter_combinations(struct wiphy *wiphy, 9339 struct iface_combination_params *params, 9340 void (*iter)(const struct ieee80211_iface_combination *c, 9341 void *data), 9342 void *data); 9343 9344 /** 9345 * cfg80211_stop_iface - trigger interface disconnection 9346 * 9347 * @wiphy: the wiphy 9348 * @wdev: wireless device 9349 * @gfp: context flags 9350 * 9351 * Trigger interface to be stopped as if AP was stopped, IBSS/mesh left, STA 9352 * disconnected. 9353 * 9354 * Note: This doesn't need any locks and is asynchronous. 9355 */ 9356 void cfg80211_stop_iface(struct wiphy *wiphy, struct wireless_dev *wdev, 9357 gfp_t gfp); 9358 9359 /** 9360 * cfg80211_shutdown_all_interfaces - shut down all interfaces for a wiphy 9361 * @wiphy: the wiphy to shut down 9362 * 9363 * This function shuts down all interfaces belonging to this wiphy by 9364 * calling dev_close() (and treating non-netdev interfaces as needed). 9365 * It shouldn't really be used unless there are some fatal device errors 9366 * that really can't be recovered in any other way. 9367 * 9368 * Callers must hold the RTNL and be able to deal with callbacks into 9369 * the driver while the function is running. 9370 */ 9371 void cfg80211_shutdown_all_interfaces(struct wiphy *wiphy); 9372 9373 /** 9374 * wiphy_ext_feature_set - set the extended feature flag 9375 * 9376 * @wiphy: the wiphy to modify. 9377 * @ftidx: extended feature bit index. 9378 * 9379 * The extended features are flagged in multiple bytes (see 9380 * &struct wiphy.@ext_features) 9381 */ 9382 static inline void wiphy_ext_feature_set(struct wiphy *wiphy, 9383 enum nl80211_ext_feature_index ftidx) 9384 { 9385 u8 *ft_byte; 9386 9387 ft_byte = &wiphy->ext_features[ftidx / 8]; 9388 *ft_byte |= BIT(ftidx % 8); 9389 } 9390 9391 /** 9392 * wiphy_ext_feature_isset - check the extended feature flag 9393 * 9394 * @wiphy: the wiphy to modify. 9395 * @ftidx: extended feature bit index. 9396 * 9397 * The extended features are flagged in multiple bytes (see 9398 * &struct wiphy.@ext_features) 9399 * 9400 * Return: %true if extended feature flag is set, %false otherwise 9401 */ 9402 static inline bool 9403 wiphy_ext_feature_isset(struct wiphy *wiphy, 9404 enum nl80211_ext_feature_index ftidx) 9405 { 9406 u8 ft_byte; 9407 9408 ft_byte = wiphy->ext_features[ftidx / 8]; 9409 return (ft_byte & BIT(ftidx % 8)) != 0; 9410 } 9411 9412 /** 9413 * cfg80211_free_nan_func - free NAN function 9414 * @f: NAN function that should be freed 9415 * 9416 * Frees all the NAN function and all it's allocated members. 9417 */ 9418 void cfg80211_free_nan_func(struct cfg80211_nan_func *f); 9419 9420 /** 9421 * struct cfg80211_nan_match_params - NAN match parameters 9422 * @type: the type of the function that triggered a match. If it is 9423 * %NL80211_NAN_FUNC_SUBSCRIBE it means that we replied to a subscriber. 9424 * If it is %NL80211_NAN_FUNC_PUBLISH, it means that we got a discovery 9425 * result. 9426 * If it is %NL80211_NAN_FUNC_FOLLOW_UP, we received a follow up. 9427 * @inst_id: the local instance id 9428 * @peer_inst_id: the instance id of the peer's function 9429 * @addr: the MAC address of the peer 9430 * @info_len: the length of the &info 9431 * @info: the Service Specific Info from the peer (if any) 9432 * @cookie: unique identifier of the corresponding function 9433 */ 9434 struct cfg80211_nan_match_params { 9435 enum nl80211_nan_function_type type; 9436 u8 inst_id; 9437 u8 peer_inst_id; 9438 const u8 *addr; 9439 u8 info_len; 9440 const u8 *info; 9441 u64 cookie; 9442 }; 9443 9444 /** 9445 * cfg80211_nan_match - report a match for a NAN function. 9446 * @wdev: the wireless device reporting the match 9447 * @match: match notification parameters 9448 * @gfp: allocation flags 9449 * 9450 * This function reports that the a NAN function had a match. This 9451 * can be a subscribe that had a match or a solicited publish that 9452 * was sent. It can also be a follow up that was received. 9453 */ 9454 void cfg80211_nan_match(struct wireless_dev *wdev, 9455 struct cfg80211_nan_match_params *match, gfp_t gfp); 9456 9457 /** 9458 * cfg80211_nan_func_terminated - notify about NAN function termination. 9459 * 9460 * @wdev: the wireless device reporting the match 9461 * @inst_id: the local instance id 9462 * @reason: termination reason (one of the NL80211_NAN_FUNC_TERM_REASON_*) 9463 * @cookie: unique NAN function identifier 9464 * @gfp: allocation flags 9465 * 9466 * This function reports that the a NAN function is terminated. 9467 */ 9468 void cfg80211_nan_func_terminated(struct wireless_dev *wdev, 9469 u8 inst_id, 9470 enum nl80211_nan_func_term_reason reason, 9471 u64 cookie, gfp_t gfp); 9472 9473 /* ethtool helper */ 9474 void cfg80211_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info); 9475 9476 /** 9477 * cfg80211_external_auth_request - userspace request for authentication 9478 * @netdev: network device 9479 * @params: External authentication parameters 9480 * @gfp: allocation flags 9481 * Returns: 0 on success, < 0 on error 9482 */ 9483 int cfg80211_external_auth_request(struct net_device *netdev, 9484 struct cfg80211_external_auth_params *params, 9485 gfp_t gfp); 9486 9487 /** 9488 * cfg80211_pmsr_report - report peer measurement result data 9489 * @wdev: the wireless device reporting the measurement 9490 * @req: the original measurement request 9491 * @result: the result data 9492 * @gfp: allocation flags 9493 */ 9494 void cfg80211_pmsr_report(struct wireless_dev *wdev, 9495 struct cfg80211_pmsr_request *req, 9496 struct cfg80211_pmsr_result *result, 9497 gfp_t gfp); 9498 9499 /** 9500 * cfg80211_pmsr_complete - report peer measurement completed 9501 * @wdev: the wireless device reporting the measurement 9502 * @req: the original measurement request 9503 * @gfp: allocation flags 9504 * 9505 * Report that the entire measurement completed, after this 9506 * the request pointer will no longer be valid. 9507 */ 9508 void cfg80211_pmsr_complete(struct wireless_dev *wdev, 9509 struct cfg80211_pmsr_request *req, 9510 gfp_t gfp); 9511 9512 /** 9513 * cfg80211_iftype_allowed - check whether the interface can be allowed 9514 * @wiphy: the wiphy 9515 * @iftype: interface type 9516 * @is_4addr: use_4addr flag, must be '0' when check_swif is '1' 9517 * @check_swif: check iftype against software interfaces 9518 * 9519 * Check whether the interface is allowed to operate; additionally, this API 9520 * can be used to check iftype against the software interfaces when 9521 * check_swif is '1'. 9522 * 9523 * Return: %true if allowed, %false otherwise 9524 */ 9525 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype, 9526 bool is_4addr, u8 check_swif); 9527 9528 9529 /** 9530 * cfg80211_assoc_comeback - notification of association that was 9531 * temporarily rejected with a comeback 9532 * @netdev: network device 9533 * @ap_addr: AP (MLD) address that rejected the association 9534 * @timeout: timeout interval value TUs. 9535 * 9536 * this function may sleep. the caller must hold the corresponding wdev's mutex. 9537 */ 9538 void cfg80211_assoc_comeback(struct net_device *netdev, 9539 const u8 *ap_addr, u32 timeout); 9540 9541 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 9542 9543 /* wiphy_printk helpers, similar to dev_printk */ 9544 9545 #define wiphy_printk(level, wiphy, format, args...) \ 9546 dev_printk(level, &(wiphy)->dev, format, ##args) 9547 #define wiphy_emerg(wiphy, format, args...) \ 9548 dev_emerg(&(wiphy)->dev, format, ##args) 9549 #define wiphy_alert(wiphy, format, args...) \ 9550 dev_alert(&(wiphy)->dev, format, ##args) 9551 #define wiphy_crit(wiphy, format, args...) \ 9552 dev_crit(&(wiphy)->dev, format, ##args) 9553 #define wiphy_err(wiphy, format, args...) \ 9554 dev_err(&(wiphy)->dev, format, ##args) 9555 #define wiphy_warn(wiphy, format, args...) \ 9556 dev_warn(&(wiphy)->dev, format, ##args) 9557 #define wiphy_notice(wiphy, format, args...) \ 9558 dev_notice(&(wiphy)->dev, format, ##args) 9559 #define wiphy_info(wiphy, format, args...) \ 9560 dev_info(&(wiphy)->dev, format, ##args) 9561 #define wiphy_info_once(wiphy, format, args...) \ 9562 dev_info_once(&(wiphy)->dev, format, ##args) 9563 9564 #define wiphy_err_ratelimited(wiphy, format, args...) \ 9565 dev_err_ratelimited(&(wiphy)->dev, format, ##args) 9566 #define wiphy_warn_ratelimited(wiphy, format, args...) \ 9567 dev_warn_ratelimited(&(wiphy)->dev, format, ##args) 9568 9569 #define wiphy_debug(wiphy, format, args...) \ 9570 wiphy_printk(KERN_DEBUG, wiphy, format, ##args) 9571 9572 #define wiphy_dbg(wiphy, format, args...) \ 9573 dev_dbg(&(wiphy)->dev, format, ##args) 9574 9575 #if defined(VERBOSE_DEBUG) 9576 #define wiphy_vdbg wiphy_dbg 9577 #else 9578 #define wiphy_vdbg(wiphy, format, args...) \ 9579 ({ \ 9580 if (0) \ 9581 wiphy_printk(KERN_DEBUG, wiphy, format, ##args); \ 9582 0; \ 9583 }) 9584 #endif 9585 9586 /* 9587 * wiphy_WARN() acts like wiphy_printk(), but with the key difference 9588 * of using a WARN/WARN_ON to get the message out, including the 9589 * file/line information and a backtrace. 9590 */ 9591 #define wiphy_WARN(wiphy, format, args...) \ 9592 WARN(1, "wiphy: %s\n" format, wiphy_name(wiphy), ##args); 9593 9594 /** 9595 * cfg80211_update_owe_info_event - Notify the peer's OWE info to user space 9596 * @netdev: network device 9597 * @owe_info: peer's owe info 9598 * @gfp: allocation flags 9599 */ 9600 void cfg80211_update_owe_info_event(struct net_device *netdev, 9601 struct cfg80211_update_owe_info *owe_info, 9602 gfp_t gfp); 9603 9604 /** 9605 * cfg80211_bss_flush - resets all the scan entries 9606 * @wiphy: the wiphy 9607 */ 9608 void cfg80211_bss_flush(struct wiphy *wiphy); 9609 9610 /** 9611 * cfg80211_bss_color_notify - notify about bss color event 9612 * @dev: network device 9613 * @cmd: the actual event we want to notify 9614 * @count: the number of TBTTs until the color change happens 9615 * @color_bitmap: representations of the colors that the local BSS is aware of 9616 * @link_id: valid link_id in case of MLO or 0 for non-MLO. 9617 * 9618 * Return: 0 on success. Non-zero on error. 9619 */ 9620 int cfg80211_bss_color_notify(struct net_device *dev, 9621 enum nl80211_commands cmd, u8 count, 9622 u64 color_bitmap, u8 link_id); 9623 9624 /** 9625 * cfg80211_obss_color_collision_notify - notify about bss color collision 9626 * @dev: network device 9627 * @color_bitmap: representations of the colors that the local BSS is aware of 9628 * @link_id: valid link_id in case of MLO or 0 for non-MLO. 9629 * 9630 * Return: 0 on success. Non-zero on error. 9631 */ 9632 static inline int cfg80211_obss_color_collision_notify(struct net_device *dev, 9633 u64 color_bitmap, 9634 u8 link_id) 9635 { 9636 return cfg80211_bss_color_notify(dev, NL80211_CMD_OBSS_COLOR_COLLISION, 9637 0, color_bitmap, link_id); 9638 } 9639 9640 /** 9641 * cfg80211_color_change_started_notify - notify color change start 9642 * @dev: the device on which the color is switched 9643 * @count: the number of TBTTs until the color change happens 9644 * @link_id: valid link_id in case of MLO or 0 for non-MLO. 9645 * 9646 * Inform the userspace about the color change that has started. 9647 * 9648 * Return: 0 on success. Non-zero on error. 9649 */ 9650 static inline int cfg80211_color_change_started_notify(struct net_device *dev, 9651 u8 count, u8 link_id) 9652 { 9653 return cfg80211_bss_color_notify(dev, NL80211_CMD_COLOR_CHANGE_STARTED, 9654 count, 0, link_id); 9655 } 9656 9657 /** 9658 * cfg80211_color_change_aborted_notify - notify color change abort 9659 * @dev: the device on which the color is switched 9660 * @link_id: valid link_id in case of MLO or 0 for non-MLO. 9661 * 9662 * Inform the userspace about the color change that has aborted. 9663 * 9664 * Return: 0 on success. Non-zero on error. 9665 */ 9666 static inline int cfg80211_color_change_aborted_notify(struct net_device *dev, 9667 u8 link_id) 9668 { 9669 return cfg80211_bss_color_notify(dev, NL80211_CMD_COLOR_CHANGE_ABORTED, 9670 0, 0, link_id); 9671 } 9672 9673 /** 9674 * cfg80211_color_change_notify - notify color change completion 9675 * @dev: the device on which the color was switched 9676 * @link_id: valid link_id in case of MLO or 0 for non-MLO. 9677 * 9678 * Inform the userspace about the color change that has completed. 9679 * 9680 * Return: 0 on success. Non-zero on error. 9681 */ 9682 static inline int cfg80211_color_change_notify(struct net_device *dev, 9683 u8 link_id) 9684 { 9685 return cfg80211_bss_color_notify(dev, 9686 NL80211_CMD_COLOR_CHANGE_COMPLETED, 9687 0, 0, link_id); 9688 } 9689 9690 /** 9691 * cfg80211_links_removed - Notify about removed STA MLD setup links. 9692 * @dev: network device. 9693 * @link_mask: BIT mask of removed STA MLD setup link IDs. 9694 * 9695 * Inform cfg80211 and the userspace about removed STA MLD setup links due to 9696 * AP MLD removing the corresponding affiliated APs with Multi-Link 9697 * reconfiguration. Note that it's not valid to remove all links, in this 9698 * case disconnect instead. 9699 * Also note that the wdev mutex must be held. 9700 */ 9701 void cfg80211_links_removed(struct net_device *dev, u16 link_mask); 9702 9703 /** 9704 * cfg80211_schedule_channels_check - schedule regulatory check if needed 9705 * @wdev: the wireless device to check 9706 * 9707 * In case the device supports NO_IR or DFS relaxations, schedule regulatory 9708 * channels check, as previous concurrent operation conditions may not 9709 * hold anymore. 9710 */ 9711 void cfg80211_schedule_channels_check(struct wireless_dev *wdev); 9712 9713 #ifdef CONFIG_CFG80211_DEBUGFS 9714 /** 9715 * wiphy_locked_debugfs_read - do a locked read in debugfs 9716 * @wiphy: the wiphy to use 9717 * @file: the file being read 9718 * @buf: the buffer to fill and then read from 9719 * @bufsize: size of the buffer 9720 * @userbuf: the user buffer to copy to 9721 * @count: read count 9722 * @ppos: read position 9723 * @handler: the read handler to call (under wiphy lock) 9724 * @data: additional data to pass to the read handler 9725 * 9726 * Return: the number of characters read, or a negative errno 9727 */ 9728 ssize_t wiphy_locked_debugfs_read(struct wiphy *wiphy, struct file *file, 9729 char *buf, size_t bufsize, 9730 char __user *userbuf, size_t count, 9731 loff_t *ppos, 9732 ssize_t (*handler)(struct wiphy *wiphy, 9733 struct file *file, 9734 char *buf, 9735 size_t bufsize, 9736 void *data), 9737 void *data); 9738 9739 /** 9740 * wiphy_locked_debugfs_write - do a locked write in debugfs 9741 * @wiphy: the wiphy to use 9742 * @file: the file being written to 9743 * @buf: the buffer to copy the user data to 9744 * @bufsize: size of the buffer 9745 * @userbuf: the user buffer to copy from 9746 * @count: read count 9747 * @handler: the write handler to call (under wiphy lock) 9748 * @data: additional data to pass to the write handler 9749 * 9750 * Return: the number of characters written, or a negative errno 9751 */ 9752 ssize_t wiphy_locked_debugfs_write(struct wiphy *wiphy, struct file *file, 9753 char *buf, size_t bufsize, 9754 const char __user *userbuf, size_t count, 9755 ssize_t (*handler)(struct wiphy *wiphy, 9756 struct file *file, 9757 char *buf, 9758 size_t count, 9759 void *data), 9760 void *data); 9761 #endif 9762 9763 #endif /* __NET_CFG80211_H */ 9764