1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 #ifndef __NET_CFG80211_H 3 #define __NET_CFG80211_H 4 /* 5 * 802.11 device and configuration interface 6 * 7 * Copyright 2006-2010 Johannes Berg <johannes@sipsolutions.net> 8 * Copyright 2013-2014 Intel Mobile Communications GmbH 9 * Copyright 2015-2017 Intel Deutschland GmbH 10 * Copyright (C) 2018-2024 Intel Corporation 11 */ 12 13 #include <linux/ethtool.h> 14 #include <uapi/linux/rfkill.h> 15 #include <linux/netdevice.h> 16 #include <linux/debugfs.h> 17 #include <linux/list.h> 18 #include <linux/bug.h> 19 #include <linux/netlink.h> 20 #include <linux/skbuff.h> 21 #include <linux/nl80211.h> 22 #include <linux/if_ether.h> 23 #include <linux/ieee80211.h> 24 #include <linux/net.h> 25 #include <linux/rfkill.h> 26 #include <net/regulatory.h> 27 28 /** 29 * DOC: Introduction 30 * 31 * cfg80211 is the configuration API for 802.11 devices in Linux. It bridges 32 * userspace and drivers, and offers some utility functionality associated 33 * with 802.11. cfg80211 must, directly or indirectly via mac80211, be used 34 * by all modern wireless drivers in Linux, so that they offer a consistent 35 * API through nl80211. For backward compatibility, cfg80211 also offers 36 * wireless extensions to userspace, but hides them from drivers completely. 37 * 38 * Additionally, cfg80211 contains code to help enforce regulatory spectrum 39 * use restrictions. 40 */ 41 42 43 /** 44 * DOC: Device registration 45 * 46 * In order for a driver to use cfg80211, it must register the hardware device 47 * with cfg80211. This happens through a number of hardware capability structs 48 * described below. 49 * 50 * The fundamental structure for each device is the 'wiphy', of which each 51 * instance describes a physical wireless device connected to the system. Each 52 * such wiphy can have zero, one, or many virtual interfaces associated with 53 * it, which need to be identified as such by pointing the network interface's 54 * @ieee80211_ptr pointer to a &struct wireless_dev which further describes 55 * the wireless part of the interface. Normally this struct is embedded in the 56 * network interface's private data area. Drivers can optionally allow creating 57 * or destroying virtual interfaces on the fly, but without at least one or the 58 * ability to create some the wireless device isn't useful. 59 * 60 * Each wiphy structure contains device capability information, and also has 61 * a pointer to the various operations the driver offers. The definitions and 62 * structures here describe these capabilities in detail. 63 */ 64 65 struct wiphy; 66 67 /* 68 * wireless hardware capability structures 69 */ 70 71 /** 72 * enum ieee80211_channel_flags - channel flags 73 * 74 * Channel flags set by the regulatory control code. 75 * 76 * @IEEE80211_CHAN_DISABLED: This channel is disabled. 77 * @IEEE80211_CHAN_NO_IR: do not initiate radiation, this includes 78 * sending probe requests or beaconing. 79 * @IEEE80211_CHAN_PSD: Power spectral density (in dBm) is set for this 80 * channel. 81 * @IEEE80211_CHAN_RADAR: Radar detection is required on this channel. 82 * @IEEE80211_CHAN_NO_HT40PLUS: extension channel above this channel 83 * is not permitted. 84 * @IEEE80211_CHAN_NO_HT40MINUS: extension channel below this channel 85 * is not permitted. 86 * @IEEE80211_CHAN_NO_OFDM: OFDM is not allowed on this channel. 87 * @IEEE80211_CHAN_NO_80MHZ: If the driver supports 80 MHz on the band, 88 * this flag indicates that an 80 MHz channel cannot use this 89 * channel as the control or any of the secondary channels. 90 * This may be due to the driver or due to regulatory bandwidth 91 * restrictions. 92 * @IEEE80211_CHAN_NO_160MHZ: If the driver supports 160 MHz on the band, 93 * this flag indicates that an 160 MHz channel cannot use this 94 * channel as the control or any of the secondary channels. 95 * This may be due to the driver or due to regulatory bandwidth 96 * restrictions. 97 * @IEEE80211_CHAN_INDOOR_ONLY: see %NL80211_FREQUENCY_ATTR_INDOOR_ONLY 98 * @IEEE80211_CHAN_IR_CONCURRENT: see %NL80211_FREQUENCY_ATTR_IR_CONCURRENT 99 * @IEEE80211_CHAN_NO_20MHZ: 20 MHz bandwidth is not permitted 100 * on this channel. 101 * @IEEE80211_CHAN_NO_10MHZ: 10 MHz bandwidth is not permitted 102 * on this channel. 103 * @IEEE80211_CHAN_NO_HE: HE operation is not permitted on this channel. 104 * @IEEE80211_CHAN_1MHZ: 1 MHz bandwidth is permitted 105 * on this channel. 106 * @IEEE80211_CHAN_2MHZ: 2 MHz bandwidth is permitted 107 * on this channel. 108 * @IEEE80211_CHAN_4MHZ: 4 MHz bandwidth is permitted 109 * on this channel. 110 * @IEEE80211_CHAN_8MHZ: 8 MHz bandwidth is permitted 111 * on this channel. 112 * @IEEE80211_CHAN_16MHZ: 16 MHz bandwidth is permitted 113 * on this channel. 114 * @IEEE80211_CHAN_NO_320MHZ: If the driver supports 320 MHz on the band, 115 * this flag indicates that a 320 MHz channel cannot use this 116 * channel as the control or any of the secondary channels. 117 * This may be due to the driver or due to regulatory bandwidth 118 * restrictions. 119 * @IEEE80211_CHAN_NO_EHT: EHT operation is not permitted on this channel. 120 * @IEEE80211_CHAN_DFS_CONCURRENT: See %NL80211_RRF_DFS_CONCURRENT 121 * @IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT: Client connection with VLP AP 122 * not permitted using this channel 123 * @IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT: Client connection with AFC AP 124 * not permitted using this channel 125 * @IEEE80211_CHAN_CAN_MONITOR: This channel can be used for monitor 126 * mode even in the presence of other (regulatory) restrictions, 127 * even if it is otherwise disabled. 128 * @IEEE80211_CHAN_ALLOW_6GHZ_VLP_AP: Allow using this channel for AP operation 129 * with very low power (VLP), even if otherwise set to NO_IR. 130 */ 131 enum ieee80211_channel_flags { 132 IEEE80211_CHAN_DISABLED = BIT(0), 133 IEEE80211_CHAN_NO_IR = BIT(1), 134 IEEE80211_CHAN_PSD = BIT(2), 135 IEEE80211_CHAN_RADAR = BIT(3), 136 IEEE80211_CHAN_NO_HT40PLUS = BIT(4), 137 IEEE80211_CHAN_NO_HT40MINUS = BIT(5), 138 IEEE80211_CHAN_NO_OFDM = BIT(6), 139 IEEE80211_CHAN_NO_80MHZ = BIT(7), 140 IEEE80211_CHAN_NO_160MHZ = BIT(8), 141 IEEE80211_CHAN_INDOOR_ONLY = BIT(9), 142 IEEE80211_CHAN_IR_CONCURRENT = BIT(10), 143 IEEE80211_CHAN_NO_20MHZ = BIT(11), 144 IEEE80211_CHAN_NO_10MHZ = BIT(12), 145 IEEE80211_CHAN_NO_HE = BIT(13), 146 IEEE80211_CHAN_1MHZ = BIT(14), 147 IEEE80211_CHAN_2MHZ = BIT(15), 148 IEEE80211_CHAN_4MHZ = BIT(16), 149 IEEE80211_CHAN_8MHZ = BIT(17), 150 IEEE80211_CHAN_16MHZ = BIT(18), 151 IEEE80211_CHAN_NO_320MHZ = BIT(19), 152 IEEE80211_CHAN_NO_EHT = BIT(20), 153 IEEE80211_CHAN_DFS_CONCURRENT = BIT(21), 154 IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT = BIT(22), 155 IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT = BIT(23), 156 IEEE80211_CHAN_CAN_MONITOR = BIT(24), 157 IEEE80211_CHAN_ALLOW_6GHZ_VLP_AP = BIT(25), 158 }; 159 160 #define IEEE80211_CHAN_NO_HT40 \ 161 (IEEE80211_CHAN_NO_HT40PLUS | IEEE80211_CHAN_NO_HT40MINUS) 162 163 #define IEEE80211_DFS_MIN_CAC_TIME_MS 60000 164 #define IEEE80211_DFS_MIN_NOP_TIME_MS (30 * 60 * 1000) 165 166 /** 167 * struct ieee80211_channel - channel definition 168 * 169 * This structure describes a single channel for use 170 * with cfg80211. 171 * 172 * @center_freq: center frequency in MHz 173 * @freq_offset: offset from @center_freq, in KHz 174 * @hw_value: hardware-specific value for the channel 175 * @flags: channel flags from &enum ieee80211_channel_flags. 176 * @orig_flags: channel flags at registration time, used by regulatory 177 * code to support devices with additional restrictions 178 * @band: band this channel belongs to. 179 * @max_antenna_gain: maximum antenna gain in dBi 180 * @max_power: maximum transmission power (in dBm) 181 * @max_reg_power: maximum regulatory transmission power (in dBm) 182 * @beacon_found: helper to regulatory code to indicate when a beacon 183 * has been found on this channel. Use regulatory_hint_found_beacon() 184 * to enable this, this is useful only on 5 GHz band. 185 * @orig_mag: internal use 186 * @orig_mpwr: internal use 187 * @dfs_state: current state of this channel. Only relevant if radar is required 188 * on this channel. 189 * @dfs_state_entered: timestamp (jiffies) when the dfs state was entered. 190 * @dfs_cac_ms: DFS CAC time in milliseconds, this is valid for DFS channels. 191 * @psd: power spectral density (in dBm) 192 */ 193 struct ieee80211_channel { 194 enum nl80211_band band; 195 u32 center_freq; 196 u16 freq_offset; 197 u16 hw_value; 198 u32 flags; 199 int max_antenna_gain; 200 int max_power; 201 int max_reg_power; 202 bool beacon_found; 203 u32 orig_flags; 204 int orig_mag, orig_mpwr; 205 enum nl80211_dfs_state dfs_state; 206 unsigned long dfs_state_entered; 207 unsigned int dfs_cac_ms; 208 s8 psd; 209 }; 210 211 /** 212 * enum ieee80211_rate_flags - rate flags 213 * 214 * Hardware/specification flags for rates. These are structured 215 * in a way that allows using the same bitrate structure for 216 * different bands/PHY modes. 217 * 218 * @IEEE80211_RATE_SHORT_PREAMBLE: Hardware can send with short 219 * preamble on this bitrate; only relevant in 2.4GHz band and 220 * with CCK rates. 221 * @IEEE80211_RATE_MANDATORY_A: This bitrate is a mandatory rate 222 * when used with 802.11a (on the 5 GHz band); filled by the 223 * core code when registering the wiphy. 224 * @IEEE80211_RATE_MANDATORY_B: This bitrate is a mandatory rate 225 * when used with 802.11b (on the 2.4 GHz band); filled by the 226 * core code when registering the wiphy. 227 * @IEEE80211_RATE_MANDATORY_G: This bitrate is a mandatory rate 228 * when used with 802.11g (on the 2.4 GHz band); filled by the 229 * core code when registering the wiphy. 230 * @IEEE80211_RATE_ERP_G: This is an ERP rate in 802.11g mode. 231 * @IEEE80211_RATE_SUPPORTS_5MHZ: Rate can be used in 5 MHz mode 232 * @IEEE80211_RATE_SUPPORTS_10MHZ: Rate can be used in 10 MHz mode 233 */ 234 enum ieee80211_rate_flags { 235 IEEE80211_RATE_SHORT_PREAMBLE = BIT(0), 236 IEEE80211_RATE_MANDATORY_A = BIT(1), 237 IEEE80211_RATE_MANDATORY_B = BIT(2), 238 IEEE80211_RATE_MANDATORY_G = BIT(3), 239 IEEE80211_RATE_ERP_G = BIT(4), 240 IEEE80211_RATE_SUPPORTS_5MHZ = BIT(5), 241 IEEE80211_RATE_SUPPORTS_10MHZ = BIT(6), 242 }; 243 244 /** 245 * enum ieee80211_bss_type - BSS type filter 246 * 247 * @IEEE80211_BSS_TYPE_ESS: Infrastructure BSS 248 * @IEEE80211_BSS_TYPE_PBSS: Personal BSS 249 * @IEEE80211_BSS_TYPE_IBSS: Independent BSS 250 * @IEEE80211_BSS_TYPE_MBSS: Mesh BSS 251 * @IEEE80211_BSS_TYPE_ANY: Wildcard value for matching any BSS type 252 */ 253 enum ieee80211_bss_type { 254 IEEE80211_BSS_TYPE_ESS, 255 IEEE80211_BSS_TYPE_PBSS, 256 IEEE80211_BSS_TYPE_IBSS, 257 IEEE80211_BSS_TYPE_MBSS, 258 IEEE80211_BSS_TYPE_ANY 259 }; 260 261 /** 262 * enum ieee80211_privacy - BSS privacy filter 263 * 264 * @IEEE80211_PRIVACY_ON: privacy bit set 265 * @IEEE80211_PRIVACY_OFF: privacy bit clear 266 * @IEEE80211_PRIVACY_ANY: Wildcard value for matching any privacy setting 267 */ 268 enum ieee80211_privacy { 269 IEEE80211_PRIVACY_ON, 270 IEEE80211_PRIVACY_OFF, 271 IEEE80211_PRIVACY_ANY 272 }; 273 274 #define IEEE80211_PRIVACY(x) \ 275 ((x) ? IEEE80211_PRIVACY_ON : IEEE80211_PRIVACY_OFF) 276 277 /** 278 * struct ieee80211_rate - bitrate definition 279 * 280 * This structure describes a bitrate that an 802.11 PHY can 281 * operate with. The two values @hw_value and @hw_value_short 282 * are only for driver use when pointers to this structure are 283 * passed around. 284 * 285 * @flags: rate-specific flags from &enum ieee80211_rate_flags 286 * @bitrate: bitrate in units of 100 Kbps 287 * @hw_value: driver/hardware value for this rate 288 * @hw_value_short: driver/hardware value for this rate when 289 * short preamble is used 290 */ 291 struct ieee80211_rate { 292 u32 flags; 293 u16 bitrate; 294 u16 hw_value, hw_value_short; 295 }; 296 297 /** 298 * struct ieee80211_he_obss_pd - AP settings for spatial reuse 299 * 300 * @enable: is the feature enabled. 301 * @sr_ctrl: The SR Control field of SRP element. 302 * @non_srg_max_offset: non-SRG maximum tx power offset 303 * @min_offset: minimal tx power offset an associated station shall use 304 * @max_offset: maximum tx power offset an associated station shall use 305 * @bss_color_bitmap: bitmap that indicates the BSS color values used by 306 * members of the SRG 307 * @partial_bssid_bitmap: bitmap that indicates the partial BSSID values 308 * used by members of the SRG 309 */ 310 struct ieee80211_he_obss_pd { 311 bool enable; 312 u8 sr_ctrl; 313 u8 non_srg_max_offset; 314 u8 min_offset; 315 u8 max_offset; 316 u8 bss_color_bitmap[8]; 317 u8 partial_bssid_bitmap[8]; 318 }; 319 320 /** 321 * struct cfg80211_he_bss_color - AP settings for BSS coloring 322 * 323 * @color: the current color. 324 * @enabled: HE BSS color is used 325 * @partial: define the AID equation. 326 */ 327 struct cfg80211_he_bss_color { 328 u8 color; 329 bool enabled; 330 bool partial; 331 }; 332 333 /** 334 * struct ieee80211_sta_ht_cap - STA's HT capabilities 335 * 336 * This structure describes most essential parameters needed 337 * to describe 802.11n HT capabilities for an STA. 338 * 339 * @ht_supported: is HT supported by the STA 340 * @cap: HT capabilities map as described in 802.11n spec 341 * @ampdu_factor: Maximum A-MPDU length factor 342 * @ampdu_density: Minimum A-MPDU spacing 343 * @mcs: Supported MCS rates 344 */ 345 struct ieee80211_sta_ht_cap { 346 u16 cap; /* use IEEE80211_HT_CAP_ */ 347 bool ht_supported; 348 u8 ampdu_factor; 349 u8 ampdu_density; 350 struct ieee80211_mcs_info mcs; 351 }; 352 353 /** 354 * struct ieee80211_sta_vht_cap - STA's VHT capabilities 355 * 356 * This structure describes most essential parameters needed 357 * to describe 802.11ac VHT capabilities for an STA. 358 * 359 * @vht_supported: is VHT supported by the STA 360 * @cap: VHT capabilities map as described in 802.11ac spec 361 * @vht_mcs: Supported VHT MCS rates 362 */ 363 struct ieee80211_sta_vht_cap { 364 bool vht_supported; 365 u32 cap; /* use IEEE80211_VHT_CAP_ */ 366 struct ieee80211_vht_mcs_info vht_mcs; 367 }; 368 369 #define IEEE80211_HE_PPE_THRES_MAX_LEN 25 370 371 /** 372 * struct ieee80211_sta_he_cap - STA's HE capabilities 373 * 374 * This structure describes most essential parameters needed 375 * to describe 802.11ax HE capabilities for a STA. 376 * 377 * @has_he: true iff HE data is valid. 378 * @he_cap_elem: Fixed portion of the HE capabilities element. 379 * @he_mcs_nss_supp: The supported NSS/MCS combinations. 380 * @ppe_thres: Holds the PPE Thresholds data. 381 */ 382 struct ieee80211_sta_he_cap { 383 bool has_he; 384 struct ieee80211_he_cap_elem he_cap_elem; 385 struct ieee80211_he_mcs_nss_supp he_mcs_nss_supp; 386 u8 ppe_thres[IEEE80211_HE_PPE_THRES_MAX_LEN]; 387 }; 388 389 /** 390 * struct ieee80211_eht_mcs_nss_supp - EHT max supported NSS per MCS 391 * 392 * See P802.11be_D1.3 Table 9-401k - "Subfields of the Supported EHT-MCS 393 * and NSS Set field" 394 * 395 * @only_20mhz: MCS/NSS support for 20 MHz-only STA. 396 * @bw: MCS/NSS support for 80, 160 and 320 MHz 397 * @bw._80: MCS/NSS support for BW <= 80 MHz 398 * @bw._160: MCS/NSS support for BW = 160 MHz 399 * @bw._320: MCS/NSS support for BW = 320 MHz 400 */ 401 struct ieee80211_eht_mcs_nss_supp { 402 union { 403 struct ieee80211_eht_mcs_nss_supp_20mhz_only only_20mhz; 404 struct { 405 struct ieee80211_eht_mcs_nss_supp_bw _80; 406 struct ieee80211_eht_mcs_nss_supp_bw _160; 407 struct ieee80211_eht_mcs_nss_supp_bw _320; 408 } __packed bw; 409 } __packed; 410 } __packed; 411 412 #define IEEE80211_EHT_PPE_THRES_MAX_LEN 32 413 414 /** 415 * struct ieee80211_sta_eht_cap - STA's EHT capabilities 416 * 417 * This structure describes most essential parameters needed 418 * to describe 802.11be EHT capabilities for a STA. 419 * 420 * @has_eht: true iff EHT data is valid. 421 * @eht_cap_elem: Fixed portion of the eht capabilities element. 422 * @eht_mcs_nss_supp: The supported NSS/MCS combinations. 423 * @eht_ppe_thres: Holds the PPE Thresholds data. 424 */ 425 struct ieee80211_sta_eht_cap { 426 bool has_eht; 427 struct ieee80211_eht_cap_elem_fixed eht_cap_elem; 428 struct ieee80211_eht_mcs_nss_supp eht_mcs_nss_supp; 429 u8 eht_ppe_thres[IEEE80211_EHT_PPE_THRES_MAX_LEN]; 430 }; 431 432 /* sparse defines __CHECKER__; see Documentation/dev-tools/sparse.rst */ 433 #ifdef __CHECKER__ 434 /* 435 * This is used to mark the sband->iftype_data pointer which is supposed 436 * to be an array with special access semantics (per iftype), but a lot 437 * of code got it wrong in the past, so with this marking sparse will be 438 * noisy when the pointer is used directly. 439 */ 440 # define __iftd __attribute__((noderef, address_space(__iftype_data))) 441 #else 442 # define __iftd 443 #endif /* __CHECKER__ */ 444 445 /** 446 * struct ieee80211_sband_iftype_data - sband data per interface type 447 * 448 * This structure encapsulates sband data that is relevant for the 449 * interface types defined in @types_mask. Each type in the 450 * @types_mask must be unique across all instances of iftype_data. 451 * 452 * @types_mask: interface types mask 453 * @he_cap: holds the HE capabilities 454 * @he_6ghz_capa: HE 6 GHz capabilities, must be filled in for a 455 * 6 GHz band channel (and 0 may be valid value). 456 * @eht_cap: STA's EHT capabilities 457 * @vendor_elems: vendor element(s) to advertise 458 * @vendor_elems.data: vendor element(s) data 459 * @vendor_elems.len: vendor element(s) length 460 */ 461 struct ieee80211_sband_iftype_data { 462 u16 types_mask; 463 struct ieee80211_sta_he_cap he_cap; 464 struct ieee80211_he_6ghz_capa he_6ghz_capa; 465 struct ieee80211_sta_eht_cap eht_cap; 466 struct { 467 const u8 *data; 468 unsigned int len; 469 } vendor_elems; 470 }; 471 472 /** 473 * enum ieee80211_edmg_bw_config - allowed channel bandwidth configurations 474 * 475 * @IEEE80211_EDMG_BW_CONFIG_4: 2.16GHz 476 * @IEEE80211_EDMG_BW_CONFIG_5: 2.16GHz and 4.32GHz 477 * @IEEE80211_EDMG_BW_CONFIG_6: 2.16GHz, 4.32GHz and 6.48GHz 478 * @IEEE80211_EDMG_BW_CONFIG_7: 2.16GHz, 4.32GHz, 6.48GHz and 8.64GHz 479 * @IEEE80211_EDMG_BW_CONFIG_8: 2.16GHz and 2.16GHz + 2.16GHz 480 * @IEEE80211_EDMG_BW_CONFIG_9: 2.16GHz, 4.32GHz and 2.16GHz + 2.16GHz 481 * @IEEE80211_EDMG_BW_CONFIG_10: 2.16GHz, 4.32GHz, 6.48GHz and 2.16GHz+2.16GHz 482 * @IEEE80211_EDMG_BW_CONFIG_11: 2.16GHz, 4.32GHz, 6.48GHz, 8.64GHz and 483 * 2.16GHz+2.16GHz 484 * @IEEE80211_EDMG_BW_CONFIG_12: 2.16GHz, 2.16GHz + 2.16GHz and 485 * 4.32GHz + 4.32GHz 486 * @IEEE80211_EDMG_BW_CONFIG_13: 2.16GHz, 4.32GHz, 2.16GHz + 2.16GHz and 487 * 4.32GHz + 4.32GHz 488 * @IEEE80211_EDMG_BW_CONFIG_14: 2.16GHz, 4.32GHz, 6.48GHz, 2.16GHz + 2.16GHz 489 * and 4.32GHz + 4.32GHz 490 * @IEEE80211_EDMG_BW_CONFIG_15: 2.16GHz, 4.32GHz, 6.48GHz, 8.64GHz, 491 * 2.16GHz + 2.16GHz and 4.32GHz + 4.32GHz 492 */ 493 enum ieee80211_edmg_bw_config { 494 IEEE80211_EDMG_BW_CONFIG_4 = 4, 495 IEEE80211_EDMG_BW_CONFIG_5 = 5, 496 IEEE80211_EDMG_BW_CONFIG_6 = 6, 497 IEEE80211_EDMG_BW_CONFIG_7 = 7, 498 IEEE80211_EDMG_BW_CONFIG_8 = 8, 499 IEEE80211_EDMG_BW_CONFIG_9 = 9, 500 IEEE80211_EDMG_BW_CONFIG_10 = 10, 501 IEEE80211_EDMG_BW_CONFIG_11 = 11, 502 IEEE80211_EDMG_BW_CONFIG_12 = 12, 503 IEEE80211_EDMG_BW_CONFIG_13 = 13, 504 IEEE80211_EDMG_BW_CONFIG_14 = 14, 505 IEEE80211_EDMG_BW_CONFIG_15 = 15, 506 }; 507 508 /** 509 * struct ieee80211_edmg - EDMG configuration 510 * 511 * This structure describes most essential parameters needed 512 * to describe 802.11ay EDMG configuration 513 * 514 * @channels: bitmap that indicates the 2.16 GHz channel(s) 515 * that are allowed to be used for transmissions. 516 * Bit 0 indicates channel 1, bit 1 indicates channel 2, etc. 517 * Set to 0 indicate EDMG not supported. 518 * @bw_config: Channel BW Configuration subfield encodes 519 * the allowed channel bandwidth configurations 520 */ 521 struct ieee80211_edmg { 522 u8 channels; 523 enum ieee80211_edmg_bw_config bw_config; 524 }; 525 526 /** 527 * struct ieee80211_sta_s1g_cap - STA's S1G capabilities 528 * 529 * This structure describes most essential parameters needed 530 * to describe 802.11ah S1G capabilities for a STA. 531 * 532 * @s1g: is STA an S1G STA 533 * @cap: S1G capabilities information 534 * @nss_mcs: Supported NSS MCS set 535 */ 536 struct ieee80211_sta_s1g_cap { 537 bool s1g; 538 u8 cap[10]; /* use S1G_CAPAB_ */ 539 u8 nss_mcs[5]; 540 }; 541 542 /** 543 * struct ieee80211_supported_band - frequency band definition 544 * 545 * This structure describes a frequency band a wiphy 546 * is able to operate in. 547 * 548 * @channels: Array of channels the hardware can operate with 549 * in this band. 550 * @band: the band this structure represents 551 * @n_channels: Number of channels in @channels 552 * @bitrates: Array of bitrates the hardware can operate with 553 * in this band. Must be sorted to give a valid "supported 554 * rates" IE, i.e. CCK rates first, then OFDM. 555 * @n_bitrates: Number of bitrates in @bitrates 556 * @ht_cap: HT capabilities in this band 557 * @vht_cap: VHT capabilities in this band 558 * @s1g_cap: S1G capabilities in this band 559 * @edmg_cap: EDMG capabilities in this band 560 * @s1g_cap: S1G capabilities in this band (S1B band only, of course) 561 * @n_iftype_data: number of iftype data entries 562 * @iftype_data: interface type data entries. Note that the bits in 563 * @types_mask inside this structure cannot overlap (i.e. only 564 * one occurrence of each type is allowed across all instances of 565 * iftype_data). 566 */ 567 struct ieee80211_supported_band { 568 struct ieee80211_channel *channels; 569 struct ieee80211_rate *bitrates; 570 enum nl80211_band band; 571 int n_channels; 572 int n_bitrates; 573 struct ieee80211_sta_ht_cap ht_cap; 574 struct ieee80211_sta_vht_cap vht_cap; 575 struct ieee80211_sta_s1g_cap s1g_cap; 576 struct ieee80211_edmg edmg_cap; 577 u16 n_iftype_data; 578 const struct ieee80211_sband_iftype_data __iftd *iftype_data; 579 }; 580 581 /** 582 * _ieee80211_set_sband_iftype_data - set sband iftype data array 583 * @sband: the sband to initialize 584 * @iftd: the iftype data array pointer 585 * @n_iftd: the length of the iftype data array 586 * 587 * Set the sband iftype data array; use this where the length cannot 588 * be derived from the ARRAY_SIZE() of the argument, but prefer 589 * ieee80211_set_sband_iftype_data() where it can be used. 590 */ 591 static inline void 592 _ieee80211_set_sband_iftype_data(struct ieee80211_supported_band *sband, 593 const struct ieee80211_sband_iftype_data *iftd, 594 u16 n_iftd) 595 { 596 sband->iftype_data = (const void __iftd __force *)iftd; 597 sband->n_iftype_data = n_iftd; 598 } 599 600 /** 601 * ieee80211_set_sband_iftype_data - set sband iftype data array 602 * @sband: the sband to initialize 603 * @iftd: the iftype data array 604 */ 605 #define ieee80211_set_sband_iftype_data(sband, iftd) \ 606 _ieee80211_set_sband_iftype_data(sband, iftd, ARRAY_SIZE(iftd)) 607 608 /** 609 * for_each_sband_iftype_data - iterate sband iftype data entries 610 * @sband: the sband whose iftype_data array to iterate 611 * @i: iterator counter 612 * @iftd: iftype data pointer to set 613 */ 614 #define for_each_sband_iftype_data(sband, i, iftd) \ 615 for (i = 0, iftd = (const void __force *)&(sband)->iftype_data[i]; \ 616 i < (sband)->n_iftype_data; \ 617 i++, iftd = (const void __force *)&(sband)->iftype_data[i]) 618 619 /** 620 * ieee80211_get_sband_iftype_data - return sband data for a given iftype 621 * @sband: the sband to search for the STA on 622 * @iftype: enum nl80211_iftype 623 * 624 * Return: pointer to struct ieee80211_sband_iftype_data, or NULL is none found 625 */ 626 static inline const struct ieee80211_sband_iftype_data * 627 ieee80211_get_sband_iftype_data(const struct ieee80211_supported_band *sband, 628 u8 iftype) 629 { 630 const struct ieee80211_sband_iftype_data *data; 631 int i; 632 633 if (WARN_ON(iftype >= NL80211_IFTYPE_MAX)) 634 return NULL; 635 636 if (iftype == NL80211_IFTYPE_AP_VLAN) 637 iftype = NL80211_IFTYPE_AP; 638 639 for_each_sband_iftype_data(sband, i, data) { 640 if (data->types_mask & BIT(iftype)) 641 return data; 642 } 643 644 return NULL; 645 } 646 647 /** 648 * ieee80211_get_he_iftype_cap - return HE capabilities for an sband's iftype 649 * @sband: the sband to search for the iftype on 650 * @iftype: enum nl80211_iftype 651 * 652 * Return: pointer to the struct ieee80211_sta_he_cap, or NULL is none found 653 */ 654 static inline const struct ieee80211_sta_he_cap * 655 ieee80211_get_he_iftype_cap(const struct ieee80211_supported_band *sband, 656 u8 iftype) 657 { 658 const struct ieee80211_sband_iftype_data *data = 659 ieee80211_get_sband_iftype_data(sband, iftype); 660 661 if (data && data->he_cap.has_he) 662 return &data->he_cap; 663 664 return NULL; 665 } 666 667 /** 668 * ieee80211_get_he_6ghz_capa - return HE 6 GHz capabilities 669 * @sband: the sband to search for the STA on 670 * @iftype: the iftype to search for 671 * 672 * Return: the 6GHz capabilities 673 */ 674 static inline __le16 675 ieee80211_get_he_6ghz_capa(const struct ieee80211_supported_band *sband, 676 enum nl80211_iftype iftype) 677 { 678 const struct ieee80211_sband_iftype_data *data = 679 ieee80211_get_sband_iftype_data(sband, iftype); 680 681 if (WARN_ON(!data || !data->he_cap.has_he)) 682 return 0; 683 684 return data->he_6ghz_capa.capa; 685 } 686 687 /** 688 * ieee80211_get_eht_iftype_cap - return ETH capabilities for an sband's iftype 689 * @sband: the sband to search for the iftype on 690 * @iftype: enum nl80211_iftype 691 * 692 * Return: pointer to the struct ieee80211_sta_eht_cap, or NULL is none found 693 */ 694 static inline const struct ieee80211_sta_eht_cap * 695 ieee80211_get_eht_iftype_cap(const struct ieee80211_supported_band *sband, 696 enum nl80211_iftype iftype) 697 { 698 const struct ieee80211_sband_iftype_data *data = 699 ieee80211_get_sband_iftype_data(sband, iftype); 700 701 if (data && data->eht_cap.has_eht) 702 return &data->eht_cap; 703 704 return NULL; 705 } 706 707 /** 708 * wiphy_read_of_freq_limits - read frequency limits from device tree 709 * 710 * @wiphy: the wireless device to get extra limits for 711 * 712 * Some devices may have extra limitations specified in DT. This may be useful 713 * for chipsets that normally support more bands but are limited due to board 714 * design (e.g. by antennas or external power amplifier). 715 * 716 * This function reads info from DT and uses it to *modify* channels (disable 717 * unavailable ones). It's usually a *bad* idea to use it in drivers with 718 * shared channel data as DT limitations are device specific. You should make 719 * sure to call it only if channels in wiphy are copied and can be modified 720 * without affecting other devices. 721 * 722 * As this function access device node it has to be called after set_wiphy_dev. 723 * It also modifies channels so they have to be set first. 724 * If using this helper, call it before wiphy_register(). 725 */ 726 #ifdef CONFIG_OF 727 void wiphy_read_of_freq_limits(struct wiphy *wiphy); 728 #else /* CONFIG_OF */ 729 static inline void wiphy_read_of_freq_limits(struct wiphy *wiphy) 730 { 731 } 732 #endif /* !CONFIG_OF */ 733 734 735 /* 736 * Wireless hardware/device configuration structures and methods 737 */ 738 739 /** 740 * DOC: Actions and configuration 741 * 742 * Each wireless device and each virtual interface offer a set of configuration 743 * operations and other actions that are invoked by userspace. Each of these 744 * actions is described in the operations structure, and the parameters these 745 * operations use are described separately. 746 * 747 * Additionally, some operations are asynchronous and expect to get status 748 * information via some functions that drivers need to call. 749 * 750 * Scanning and BSS list handling with its associated functionality is described 751 * in a separate chapter. 752 */ 753 754 #define VHT_MUMIMO_GROUPS_DATA_LEN (WLAN_MEMBERSHIP_LEN +\ 755 WLAN_USER_POSITION_LEN) 756 757 /** 758 * struct vif_params - describes virtual interface parameters 759 * @flags: monitor interface flags, unchanged if 0, otherwise 760 * %MONITOR_FLAG_CHANGED will be set 761 * @use_4addr: use 4-address frames 762 * @macaddr: address to use for this virtual interface. 763 * If this parameter is set to zero address the driver may 764 * determine the address as needed. 765 * This feature is only fully supported by drivers that enable the 766 * %NL80211_FEATURE_MAC_ON_CREATE flag. Others may support creating 767 ** only p2p devices with specified MAC. 768 * @vht_mumimo_groups: MU-MIMO groupID, used for monitoring MU-MIMO packets 769 * belonging to that MU-MIMO groupID; %NULL if not changed 770 * @vht_mumimo_follow_addr: MU-MIMO follow address, used for monitoring 771 * MU-MIMO packets going to the specified station; %NULL if not changed 772 */ 773 struct vif_params { 774 u32 flags; 775 int use_4addr; 776 u8 macaddr[ETH_ALEN]; 777 const u8 *vht_mumimo_groups; 778 const u8 *vht_mumimo_follow_addr; 779 }; 780 781 /** 782 * struct key_params - key information 783 * 784 * Information about a key 785 * 786 * @key: key material 787 * @key_len: length of key material 788 * @cipher: cipher suite selector 789 * @seq: sequence counter (IV/PN) for TKIP and CCMP keys, only used 790 * with the get_key() callback, must be in little endian, 791 * length given by @seq_len. 792 * @seq_len: length of @seq. 793 * @vlan_id: vlan_id for VLAN group key (if nonzero) 794 * @mode: key install mode (RX_TX, NO_TX or SET_TX) 795 */ 796 struct key_params { 797 const u8 *key; 798 const u8 *seq; 799 int key_len; 800 int seq_len; 801 u16 vlan_id; 802 u32 cipher; 803 enum nl80211_key_mode mode; 804 }; 805 806 /** 807 * struct cfg80211_chan_def - channel definition 808 * @chan: the (control) channel 809 * @width: channel width 810 * @center_freq1: center frequency of first segment 811 * @center_freq2: center frequency of second segment 812 * (only with 80+80 MHz) 813 * @edmg: define the EDMG channels configuration. 814 * If edmg is requested (i.e. the .channels member is non-zero), 815 * chan will define the primary channel and all other 816 * parameters are ignored. 817 * @freq1_offset: offset from @center_freq1, in KHz 818 * @punctured: mask of the punctured 20 MHz subchannels, with 819 * bits turned on being disabled (punctured); numbered 820 * from lower to higher frequency (like in the spec) 821 */ 822 struct cfg80211_chan_def { 823 struct ieee80211_channel *chan; 824 enum nl80211_chan_width width; 825 u32 center_freq1; 826 u32 center_freq2; 827 struct ieee80211_edmg edmg; 828 u16 freq1_offset; 829 u16 punctured; 830 }; 831 832 /* 833 * cfg80211_bitrate_mask - masks for bitrate control 834 */ 835 struct cfg80211_bitrate_mask { 836 struct { 837 u32 legacy; 838 u8 ht_mcs[IEEE80211_HT_MCS_MASK_LEN]; 839 u16 vht_mcs[NL80211_VHT_NSS_MAX]; 840 u16 he_mcs[NL80211_HE_NSS_MAX]; 841 enum nl80211_txrate_gi gi; 842 enum nl80211_he_gi he_gi; 843 enum nl80211_he_ltf he_ltf; 844 } control[NUM_NL80211_BANDS]; 845 }; 846 847 848 /** 849 * struct cfg80211_tid_cfg - TID specific configuration 850 * @config_override: Flag to notify driver to reset TID configuration 851 * of the peer. 852 * @tids: bitmap of TIDs to modify 853 * @mask: bitmap of attributes indicating which parameter changed, 854 * similar to &nl80211_tid_config_supp. 855 * @noack: noack configuration value for the TID 856 * @retry_long: retry count value 857 * @retry_short: retry count value 858 * @ampdu: Enable/Disable MPDU aggregation 859 * @rtscts: Enable/Disable RTS/CTS 860 * @amsdu: Enable/Disable MSDU aggregation 861 * @txrate_type: Tx bitrate mask type 862 * @txrate_mask: Tx bitrate to be applied for the TID 863 */ 864 struct cfg80211_tid_cfg { 865 bool config_override; 866 u8 tids; 867 u64 mask; 868 enum nl80211_tid_config noack; 869 u8 retry_long, retry_short; 870 enum nl80211_tid_config ampdu; 871 enum nl80211_tid_config rtscts; 872 enum nl80211_tid_config amsdu; 873 enum nl80211_tx_rate_setting txrate_type; 874 struct cfg80211_bitrate_mask txrate_mask; 875 }; 876 877 /** 878 * struct cfg80211_tid_config - TID configuration 879 * @peer: Station's MAC address 880 * @n_tid_conf: Number of TID specific configurations to be applied 881 * @tid_conf: Configuration change info 882 */ 883 struct cfg80211_tid_config { 884 const u8 *peer; 885 u32 n_tid_conf; 886 struct cfg80211_tid_cfg tid_conf[] __counted_by(n_tid_conf); 887 }; 888 889 /** 890 * struct cfg80211_fils_aad - FILS AAD data 891 * @macaddr: STA MAC address 892 * @kek: FILS KEK 893 * @kek_len: FILS KEK length 894 * @snonce: STA Nonce 895 * @anonce: AP Nonce 896 */ 897 struct cfg80211_fils_aad { 898 const u8 *macaddr; 899 const u8 *kek; 900 u8 kek_len; 901 const u8 *snonce; 902 const u8 *anonce; 903 }; 904 905 /** 906 * struct cfg80211_set_hw_timestamp - enable/disable HW timestamping 907 * @macaddr: peer MAC address. NULL to enable/disable HW timestamping for all 908 * addresses. 909 * @enable: if set, enable HW timestamping for the specified MAC address. 910 * Otherwise disable HW timestamping for the specified MAC address. 911 */ 912 struct cfg80211_set_hw_timestamp { 913 const u8 *macaddr; 914 bool enable; 915 }; 916 917 /** 918 * cfg80211_get_chandef_type - return old channel type from chandef 919 * @chandef: the channel definition 920 * 921 * Return: The old channel type (NOHT, HT20, HT40+/-) from a given 922 * chandef, which must have a bandwidth allowing this conversion. 923 */ 924 static inline enum nl80211_channel_type 925 cfg80211_get_chandef_type(const struct cfg80211_chan_def *chandef) 926 { 927 switch (chandef->width) { 928 case NL80211_CHAN_WIDTH_20_NOHT: 929 return NL80211_CHAN_NO_HT; 930 case NL80211_CHAN_WIDTH_20: 931 return NL80211_CHAN_HT20; 932 case NL80211_CHAN_WIDTH_40: 933 if (chandef->center_freq1 > chandef->chan->center_freq) 934 return NL80211_CHAN_HT40PLUS; 935 return NL80211_CHAN_HT40MINUS; 936 default: 937 WARN_ON(1); 938 return NL80211_CHAN_NO_HT; 939 } 940 } 941 942 /** 943 * cfg80211_chandef_create - create channel definition using channel type 944 * @chandef: the channel definition struct to fill 945 * @channel: the control channel 946 * @chantype: the channel type 947 * 948 * Given a channel type, create a channel definition. 949 */ 950 void cfg80211_chandef_create(struct cfg80211_chan_def *chandef, 951 struct ieee80211_channel *channel, 952 enum nl80211_channel_type chantype); 953 954 /** 955 * cfg80211_chandef_identical - check if two channel definitions are identical 956 * @chandef1: first channel definition 957 * @chandef2: second channel definition 958 * 959 * Return: %true if the channels defined by the channel definitions are 960 * identical, %false otherwise. 961 */ 962 static inline bool 963 cfg80211_chandef_identical(const struct cfg80211_chan_def *chandef1, 964 const struct cfg80211_chan_def *chandef2) 965 { 966 return (chandef1->chan == chandef2->chan && 967 chandef1->width == chandef2->width && 968 chandef1->center_freq1 == chandef2->center_freq1 && 969 chandef1->freq1_offset == chandef2->freq1_offset && 970 chandef1->center_freq2 == chandef2->center_freq2 && 971 chandef1->punctured == chandef2->punctured); 972 } 973 974 /** 975 * cfg80211_chandef_is_edmg - check if chandef represents an EDMG channel 976 * 977 * @chandef: the channel definition 978 * 979 * Return: %true if EDMG defined, %false otherwise. 980 */ 981 static inline bool 982 cfg80211_chandef_is_edmg(const struct cfg80211_chan_def *chandef) 983 { 984 return chandef->edmg.channels || chandef->edmg.bw_config; 985 } 986 987 /** 988 * cfg80211_chandef_compatible - check if two channel definitions are compatible 989 * @chandef1: first channel definition 990 * @chandef2: second channel definition 991 * 992 * Return: %NULL if the given channel definitions are incompatible, 993 * chandef1 or chandef2 otherwise. 994 */ 995 const struct cfg80211_chan_def * 996 cfg80211_chandef_compatible(const struct cfg80211_chan_def *chandef1, 997 const struct cfg80211_chan_def *chandef2); 998 999 /** 1000 * nl80211_chan_width_to_mhz - get the channel width in MHz 1001 * @chan_width: the channel width from &enum nl80211_chan_width 1002 * 1003 * Return: channel width in MHz if the chan_width from &enum nl80211_chan_width 1004 * is valid. -1 otherwise. 1005 */ 1006 int nl80211_chan_width_to_mhz(enum nl80211_chan_width chan_width); 1007 1008 /** 1009 * cfg80211_chandef_valid - check if a channel definition is valid 1010 * @chandef: the channel definition to check 1011 * Return: %true if the channel definition is valid. %false otherwise. 1012 */ 1013 bool cfg80211_chandef_valid(const struct cfg80211_chan_def *chandef); 1014 1015 /** 1016 * cfg80211_chandef_usable - check if secondary channels can be used 1017 * @wiphy: the wiphy to validate against 1018 * @chandef: the channel definition to check 1019 * @prohibited_flags: the regulatory channel flags that must not be set 1020 * Return: %true if secondary channels are usable. %false otherwise. 1021 */ 1022 bool cfg80211_chandef_usable(struct wiphy *wiphy, 1023 const struct cfg80211_chan_def *chandef, 1024 u32 prohibited_flags); 1025 1026 /** 1027 * cfg80211_chandef_dfs_required - checks if radar detection is required 1028 * @wiphy: the wiphy to validate against 1029 * @chandef: the channel definition to check 1030 * @iftype: the interface type as specified in &enum nl80211_iftype 1031 * Returns: 1032 * 1 if radar detection is required, 0 if it is not, < 0 on error 1033 */ 1034 int cfg80211_chandef_dfs_required(struct wiphy *wiphy, 1035 const struct cfg80211_chan_def *chandef, 1036 enum nl80211_iftype iftype); 1037 1038 /** 1039 * cfg80211_chandef_dfs_usable - checks if chandef is DFS usable and we 1040 * can/need start CAC on such channel 1041 * @wiphy: the wiphy to validate against 1042 * @chandef: the channel definition to check 1043 * 1044 * Return: true if all channels available and at least 1045 * one channel requires CAC (NL80211_DFS_USABLE) 1046 */ 1047 bool cfg80211_chandef_dfs_usable(struct wiphy *wiphy, 1048 const struct cfg80211_chan_def *chandef); 1049 1050 /** 1051 * cfg80211_chandef_dfs_cac_time - get the DFS CAC time (in ms) for given 1052 * channel definition 1053 * @wiphy: the wiphy to validate against 1054 * @chandef: the channel definition to check 1055 * 1056 * Returns: DFS CAC time (in ms) which applies for this channel definition 1057 */ 1058 unsigned int 1059 cfg80211_chandef_dfs_cac_time(struct wiphy *wiphy, 1060 const struct cfg80211_chan_def *chandef); 1061 1062 /** 1063 * cfg80211_chandef_primary - calculate primary 40/80/160 MHz freq 1064 * @chandef: chandef to calculate for 1065 * @primary_chan_width: primary channel width to calculate center for 1066 * @punctured: punctured sub-channel bitmap, will be recalculated 1067 * according to the new bandwidth, can be %NULL 1068 * 1069 * Returns: the primary 40/80/160 MHz channel center frequency, or -1 1070 * for errors, updating the punctured bitmap 1071 */ 1072 int cfg80211_chandef_primary(const struct cfg80211_chan_def *chandef, 1073 enum nl80211_chan_width primary_chan_width, 1074 u16 *punctured); 1075 1076 /** 1077 * nl80211_send_chandef - sends the channel definition. 1078 * @msg: the msg to send channel definition 1079 * @chandef: the channel definition to check 1080 * 1081 * Returns: 0 if sent the channel definition to msg, < 0 on error 1082 **/ 1083 int nl80211_send_chandef(struct sk_buff *msg, const struct cfg80211_chan_def *chandef); 1084 1085 /** 1086 * ieee80211_chanwidth_rate_flags - return rate flags for channel width 1087 * @width: the channel width of the channel 1088 * 1089 * In some channel types, not all rates may be used - for example CCK 1090 * rates may not be used in 5/10 MHz channels. 1091 * 1092 * Returns: rate flags which apply for this channel width 1093 */ 1094 static inline enum ieee80211_rate_flags 1095 ieee80211_chanwidth_rate_flags(enum nl80211_chan_width width) 1096 { 1097 switch (width) { 1098 case NL80211_CHAN_WIDTH_5: 1099 return IEEE80211_RATE_SUPPORTS_5MHZ; 1100 case NL80211_CHAN_WIDTH_10: 1101 return IEEE80211_RATE_SUPPORTS_10MHZ; 1102 default: 1103 break; 1104 } 1105 return 0; 1106 } 1107 1108 /** 1109 * ieee80211_chandef_rate_flags - returns rate flags for a channel 1110 * @chandef: channel definition for the channel 1111 * 1112 * See ieee80211_chanwidth_rate_flags(). 1113 * 1114 * Returns: rate flags which apply for this channel 1115 */ 1116 static inline enum ieee80211_rate_flags 1117 ieee80211_chandef_rate_flags(struct cfg80211_chan_def *chandef) 1118 { 1119 return ieee80211_chanwidth_rate_flags(chandef->width); 1120 } 1121 1122 /** 1123 * ieee80211_chandef_max_power - maximum transmission power for the chandef 1124 * 1125 * In some regulations, the transmit power may depend on the configured channel 1126 * bandwidth which may be defined as dBm/MHz. This function returns the actual 1127 * max_power for non-standard (20 MHz) channels. 1128 * 1129 * @chandef: channel definition for the channel 1130 * 1131 * Returns: maximum allowed transmission power in dBm for the chandef 1132 */ 1133 static inline int 1134 ieee80211_chandef_max_power(struct cfg80211_chan_def *chandef) 1135 { 1136 switch (chandef->width) { 1137 case NL80211_CHAN_WIDTH_5: 1138 return min(chandef->chan->max_reg_power - 6, 1139 chandef->chan->max_power); 1140 case NL80211_CHAN_WIDTH_10: 1141 return min(chandef->chan->max_reg_power - 3, 1142 chandef->chan->max_power); 1143 default: 1144 break; 1145 } 1146 return chandef->chan->max_power; 1147 } 1148 1149 /** 1150 * cfg80211_any_usable_channels - check for usable channels 1151 * @wiphy: the wiphy to check for 1152 * @band_mask: which bands to check on 1153 * @prohibited_flags: which channels to not consider usable, 1154 * %IEEE80211_CHAN_DISABLED is always taken into account 1155 * 1156 * Return: %true if usable channels found, %false otherwise 1157 */ 1158 bool cfg80211_any_usable_channels(struct wiphy *wiphy, 1159 unsigned long band_mask, 1160 u32 prohibited_flags); 1161 1162 /** 1163 * enum survey_info_flags - survey information flags 1164 * 1165 * @SURVEY_INFO_NOISE_DBM: noise (in dBm) was filled in 1166 * @SURVEY_INFO_IN_USE: channel is currently being used 1167 * @SURVEY_INFO_TIME: active time (in ms) was filled in 1168 * @SURVEY_INFO_TIME_BUSY: busy time was filled in 1169 * @SURVEY_INFO_TIME_EXT_BUSY: extension channel busy time was filled in 1170 * @SURVEY_INFO_TIME_RX: receive time was filled in 1171 * @SURVEY_INFO_TIME_TX: transmit time was filled in 1172 * @SURVEY_INFO_TIME_SCAN: scan time was filled in 1173 * @SURVEY_INFO_TIME_BSS_RX: local BSS receive time was filled in 1174 * 1175 * Used by the driver to indicate which info in &struct survey_info 1176 * it has filled in during the get_survey(). 1177 */ 1178 enum survey_info_flags { 1179 SURVEY_INFO_NOISE_DBM = BIT(0), 1180 SURVEY_INFO_IN_USE = BIT(1), 1181 SURVEY_INFO_TIME = BIT(2), 1182 SURVEY_INFO_TIME_BUSY = BIT(3), 1183 SURVEY_INFO_TIME_EXT_BUSY = BIT(4), 1184 SURVEY_INFO_TIME_RX = BIT(5), 1185 SURVEY_INFO_TIME_TX = BIT(6), 1186 SURVEY_INFO_TIME_SCAN = BIT(7), 1187 SURVEY_INFO_TIME_BSS_RX = BIT(8), 1188 }; 1189 1190 /** 1191 * struct survey_info - channel survey response 1192 * 1193 * @channel: the channel this survey record reports, may be %NULL for a single 1194 * record to report global statistics 1195 * @filled: bitflag of flags from &enum survey_info_flags 1196 * @noise: channel noise in dBm. This and all following fields are 1197 * optional 1198 * @time: amount of time in ms the radio was turn on (on the channel) 1199 * @time_busy: amount of time the primary channel was sensed busy 1200 * @time_ext_busy: amount of time the extension channel was sensed busy 1201 * @time_rx: amount of time the radio spent receiving data 1202 * @time_tx: amount of time the radio spent transmitting data 1203 * @time_scan: amount of time the radio spent for scanning 1204 * @time_bss_rx: amount of time the radio spent receiving data on a local BSS 1205 * 1206 * Used by dump_survey() to report back per-channel survey information. 1207 * 1208 * This structure can later be expanded with things like 1209 * channel duty cycle etc. 1210 */ 1211 struct survey_info { 1212 struct ieee80211_channel *channel; 1213 u64 time; 1214 u64 time_busy; 1215 u64 time_ext_busy; 1216 u64 time_rx; 1217 u64 time_tx; 1218 u64 time_scan; 1219 u64 time_bss_rx; 1220 u32 filled; 1221 s8 noise; 1222 }; 1223 1224 #define CFG80211_MAX_NUM_AKM_SUITES 10 1225 1226 /** 1227 * struct cfg80211_crypto_settings - Crypto settings 1228 * @wpa_versions: indicates which, if any, WPA versions are enabled 1229 * (from enum nl80211_wpa_versions) 1230 * @cipher_group: group key cipher suite (or 0 if unset) 1231 * @n_ciphers_pairwise: number of AP supported unicast ciphers 1232 * @ciphers_pairwise: unicast key cipher suites 1233 * @n_akm_suites: number of AKM suites 1234 * @akm_suites: AKM suites 1235 * @control_port: Whether user space controls IEEE 802.1X port, i.e., 1236 * sets/clears %NL80211_STA_FLAG_AUTHORIZED. If true, the driver is 1237 * required to assume that the port is unauthorized until authorized by 1238 * user space. Otherwise, port is marked authorized by default. 1239 * @control_port_ethertype: the control port protocol that should be 1240 * allowed through even on unauthorized ports 1241 * @control_port_no_encrypt: TRUE to prevent encryption of control port 1242 * protocol frames. 1243 * @control_port_over_nl80211: TRUE if userspace expects to exchange control 1244 * port frames over NL80211 instead of the network interface. 1245 * @control_port_no_preauth: disables pre-auth rx over the nl80211 control 1246 * port for mac80211 1247 * @psk: PSK (for devices supporting 4-way-handshake offload) 1248 * @sae_pwd: password for SAE authentication (for devices supporting SAE 1249 * offload) 1250 * @sae_pwd_len: length of SAE password (for devices supporting SAE offload) 1251 * @sae_pwe: The mechanisms allowed for SAE PWE derivation: 1252 * 1253 * NL80211_SAE_PWE_UNSPECIFIED 1254 * Not-specified, used to indicate userspace did not specify any 1255 * preference. The driver should follow its internal policy in 1256 * such a scenario. 1257 * 1258 * NL80211_SAE_PWE_HUNT_AND_PECK 1259 * Allow hunting-and-pecking loop only 1260 * 1261 * NL80211_SAE_PWE_HASH_TO_ELEMENT 1262 * Allow hash-to-element only 1263 * 1264 * NL80211_SAE_PWE_BOTH 1265 * Allow either hunting-and-pecking loop or hash-to-element 1266 */ 1267 struct cfg80211_crypto_settings { 1268 u32 wpa_versions; 1269 u32 cipher_group; 1270 int n_ciphers_pairwise; 1271 u32 ciphers_pairwise[NL80211_MAX_NR_CIPHER_SUITES]; 1272 int n_akm_suites; 1273 u32 akm_suites[CFG80211_MAX_NUM_AKM_SUITES]; 1274 bool control_port; 1275 __be16 control_port_ethertype; 1276 bool control_port_no_encrypt; 1277 bool control_port_over_nl80211; 1278 bool control_port_no_preauth; 1279 const u8 *psk; 1280 const u8 *sae_pwd; 1281 u8 sae_pwd_len; 1282 enum nl80211_sae_pwe_mechanism sae_pwe; 1283 }; 1284 1285 /** 1286 * struct cfg80211_mbssid_config - AP settings for multi bssid 1287 * 1288 * @tx_wdev: pointer to the transmitted interface in the MBSSID set 1289 * @index: index of this AP in the multi bssid group. 1290 * @ema: set to true if the beacons should be sent out in EMA mode. 1291 */ 1292 struct cfg80211_mbssid_config { 1293 struct wireless_dev *tx_wdev; 1294 u8 index; 1295 bool ema; 1296 }; 1297 1298 /** 1299 * struct cfg80211_mbssid_elems - Multiple BSSID elements 1300 * 1301 * @cnt: Number of elements in array %elems. 1302 * 1303 * @elem: Array of multiple BSSID element(s) to be added into Beacon frames. 1304 * @elem.data: Data for multiple BSSID elements. 1305 * @elem.len: Length of data. 1306 */ 1307 struct cfg80211_mbssid_elems { 1308 u8 cnt; 1309 struct { 1310 const u8 *data; 1311 size_t len; 1312 } elem[] __counted_by(cnt); 1313 }; 1314 1315 /** 1316 * struct cfg80211_rnr_elems - Reduced neighbor report (RNR) elements 1317 * 1318 * @cnt: Number of elements in array %elems. 1319 * 1320 * @elem: Array of RNR element(s) to be added into Beacon frames. 1321 * @elem.data: Data for RNR elements. 1322 * @elem.len: Length of data. 1323 */ 1324 struct cfg80211_rnr_elems { 1325 u8 cnt; 1326 struct { 1327 const u8 *data; 1328 size_t len; 1329 } elem[] __counted_by(cnt); 1330 }; 1331 1332 /** 1333 * struct cfg80211_beacon_data - beacon data 1334 * @link_id: the link ID for the AP MLD link sending this beacon 1335 * @head: head portion of beacon (before TIM IE) 1336 * or %NULL if not changed 1337 * @tail: tail portion of beacon (after TIM IE) 1338 * or %NULL if not changed 1339 * @head_len: length of @head 1340 * @tail_len: length of @tail 1341 * @beacon_ies: extra information element(s) to add into Beacon frames or %NULL 1342 * @beacon_ies_len: length of beacon_ies in octets 1343 * @proberesp_ies: extra information element(s) to add into Probe Response 1344 * frames or %NULL 1345 * @proberesp_ies_len: length of proberesp_ies in octets 1346 * @assocresp_ies: extra information element(s) to add into (Re)Association 1347 * Response frames or %NULL 1348 * @assocresp_ies_len: length of assocresp_ies in octets 1349 * @probe_resp_len: length of probe response template (@probe_resp) 1350 * @probe_resp: probe response template (AP mode only) 1351 * @mbssid_ies: multiple BSSID elements 1352 * @rnr_ies: reduced neighbor report elements 1353 * @ftm_responder: enable FTM responder functionality; -1 for no change 1354 * (which also implies no change in LCI/civic location data) 1355 * @lci: Measurement Report element content, starting with Measurement Token 1356 * (measurement type 8) 1357 * @civicloc: Measurement Report element content, starting with Measurement 1358 * Token (measurement type 11) 1359 * @lci_len: LCI data length 1360 * @civicloc_len: Civic location data length 1361 * @he_bss_color: BSS Color settings 1362 * @he_bss_color_valid: indicates whether bss color 1363 * attribute is present in beacon data or not. 1364 */ 1365 struct cfg80211_beacon_data { 1366 unsigned int link_id; 1367 1368 const u8 *head, *tail; 1369 const u8 *beacon_ies; 1370 const u8 *proberesp_ies; 1371 const u8 *assocresp_ies; 1372 const u8 *probe_resp; 1373 const u8 *lci; 1374 const u8 *civicloc; 1375 struct cfg80211_mbssid_elems *mbssid_ies; 1376 struct cfg80211_rnr_elems *rnr_ies; 1377 s8 ftm_responder; 1378 1379 size_t head_len, tail_len; 1380 size_t beacon_ies_len; 1381 size_t proberesp_ies_len; 1382 size_t assocresp_ies_len; 1383 size_t probe_resp_len; 1384 size_t lci_len; 1385 size_t civicloc_len; 1386 struct cfg80211_he_bss_color he_bss_color; 1387 bool he_bss_color_valid; 1388 }; 1389 1390 struct mac_address { 1391 u8 addr[ETH_ALEN]; 1392 }; 1393 1394 /** 1395 * struct cfg80211_acl_data - Access control list data 1396 * 1397 * @acl_policy: ACL policy to be applied on the station's 1398 * entry specified by mac_addr 1399 * @n_acl_entries: Number of MAC address entries passed 1400 * @mac_addrs: List of MAC addresses of stations to be used for ACL 1401 */ 1402 struct cfg80211_acl_data { 1403 enum nl80211_acl_policy acl_policy; 1404 int n_acl_entries; 1405 1406 /* Keep it last */ 1407 struct mac_address mac_addrs[] __counted_by(n_acl_entries); 1408 }; 1409 1410 /** 1411 * struct cfg80211_fils_discovery - FILS discovery parameters from 1412 * IEEE Std 802.11ai-2016, Annex C.3 MIB detail. 1413 * 1414 * @update: Set to true if the feature configuration should be updated. 1415 * @min_interval: Minimum packet interval in TUs (0 - 10000) 1416 * @max_interval: Maximum packet interval in TUs (0 - 10000) 1417 * @tmpl_len: Template length 1418 * @tmpl: Template data for FILS discovery frame including the action 1419 * frame headers. 1420 */ 1421 struct cfg80211_fils_discovery { 1422 bool update; 1423 u32 min_interval; 1424 u32 max_interval; 1425 size_t tmpl_len; 1426 const u8 *tmpl; 1427 }; 1428 1429 /** 1430 * struct cfg80211_unsol_bcast_probe_resp - Unsolicited broadcast probe 1431 * response parameters in 6GHz. 1432 * 1433 * @update: Set to true if the feature configuration should be updated. 1434 * @interval: Packet interval in TUs. Maximum allowed is 20 TU, as mentioned 1435 * in IEEE P802.11ax/D6.0 26.17.2.3.2 - AP behavior for fast passive 1436 * scanning 1437 * @tmpl_len: Template length 1438 * @tmpl: Template data for probe response 1439 */ 1440 struct cfg80211_unsol_bcast_probe_resp { 1441 bool update; 1442 u32 interval; 1443 size_t tmpl_len; 1444 const u8 *tmpl; 1445 }; 1446 1447 /** 1448 * struct cfg80211_ap_settings - AP configuration 1449 * 1450 * Used to configure an AP interface. 1451 * 1452 * @chandef: defines the channel to use 1453 * @beacon: beacon data 1454 * @beacon_interval: beacon interval 1455 * @dtim_period: DTIM period 1456 * @ssid: SSID to be used in the BSS (note: may be %NULL if not provided from 1457 * user space) 1458 * @ssid_len: length of @ssid 1459 * @hidden_ssid: whether to hide the SSID in Beacon/Probe Response frames 1460 * @crypto: crypto settings 1461 * @privacy: the BSS uses privacy 1462 * @auth_type: Authentication type (algorithm) 1463 * @smps_mode: SMPS mode 1464 * @inactivity_timeout: time in seconds to determine station's inactivity. 1465 * @p2p_ctwindow: P2P CT Window 1466 * @p2p_opp_ps: P2P opportunistic PS 1467 * @acl: ACL configuration used by the drivers which has support for 1468 * MAC address based access control 1469 * @pbss: If set, start as a PCP instead of AP. Relevant for DMG 1470 * networks. 1471 * @beacon_rate: bitrate to be used for beacons 1472 * @ht_cap: HT capabilities (or %NULL if HT isn't enabled) 1473 * @vht_cap: VHT capabilities (or %NULL if VHT isn't enabled) 1474 * @he_cap: HE capabilities (or %NULL if HE isn't enabled) 1475 * @eht_cap: EHT capabilities (or %NULL if EHT isn't enabled) 1476 * @eht_oper: EHT operation IE (or %NULL if EHT isn't enabled) 1477 * @ht_required: stations must support HT 1478 * @vht_required: stations must support VHT 1479 * @twt_responder: Enable Target Wait Time 1480 * @he_required: stations must support HE 1481 * @sae_h2e_required: stations must support direct H2E technique in SAE 1482 * @flags: flags, as defined in &enum nl80211_ap_settings_flags 1483 * @he_obss_pd: OBSS Packet Detection settings 1484 * @he_oper: HE operation IE (or %NULL if HE isn't enabled) 1485 * @fils_discovery: FILS discovery transmission parameters 1486 * @unsol_bcast_probe_resp: Unsolicited broadcast probe response parameters 1487 * @mbssid_config: AP settings for multiple bssid 1488 */ 1489 struct cfg80211_ap_settings { 1490 struct cfg80211_chan_def chandef; 1491 1492 struct cfg80211_beacon_data beacon; 1493 1494 int beacon_interval, dtim_period; 1495 const u8 *ssid; 1496 size_t ssid_len; 1497 enum nl80211_hidden_ssid hidden_ssid; 1498 struct cfg80211_crypto_settings crypto; 1499 bool privacy; 1500 enum nl80211_auth_type auth_type; 1501 enum nl80211_smps_mode smps_mode; 1502 int inactivity_timeout; 1503 u8 p2p_ctwindow; 1504 bool p2p_opp_ps; 1505 const struct cfg80211_acl_data *acl; 1506 bool pbss; 1507 struct cfg80211_bitrate_mask beacon_rate; 1508 1509 const struct ieee80211_ht_cap *ht_cap; 1510 const struct ieee80211_vht_cap *vht_cap; 1511 const struct ieee80211_he_cap_elem *he_cap; 1512 const struct ieee80211_he_operation *he_oper; 1513 const struct ieee80211_eht_cap_elem *eht_cap; 1514 const struct ieee80211_eht_operation *eht_oper; 1515 bool ht_required, vht_required, he_required, sae_h2e_required; 1516 bool twt_responder; 1517 u32 flags; 1518 struct ieee80211_he_obss_pd he_obss_pd; 1519 struct cfg80211_fils_discovery fils_discovery; 1520 struct cfg80211_unsol_bcast_probe_resp unsol_bcast_probe_resp; 1521 struct cfg80211_mbssid_config mbssid_config; 1522 }; 1523 1524 1525 /** 1526 * struct cfg80211_ap_update - AP configuration update 1527 * 1528 * Subset of &struct cfg80211_ap_settings, for updating a running AP. 1529 * 1530 * @beacon: beacon data 1531 * @fils_discovery: FILS discovery transmission parameters 1532 * @unsol_bcast_probe_resp: Unsolicited broadcast probe response parameters 1533 */ 1534 struct cfg80211_ap_update { 1535 struct cfg80211_beacon_data beacon; 1536 struct cfg80211_fils_discovery fils_discovery; 1537 struct cfg80211_unsol_bcast_probe_resp unsol_bcast_probe_resp; 1538 }; 1539 1540 /** 1541 * struct cfg80211_csa_settings - channel switch settings 1542 * 1543 * Used for channel switch 1544 * 1545 * @chandef: defines the channel to use after the switch 1546 * @beacon_csa: beacon data while performing the switch 1547 * @counter_offsets_beacon: offsets of the counters within the beacon (tail) 1548 * @counter_offsets_presp: offsets of the counters within the probe response 1549 * @n_counter_offsets_beacon: number of csa counters the beacon (tail) 1550 * @n_counter_offsets_presp: number of csa counters in the probe response 1551 * @beacon_after: beacon data to be used on the new channel 1552 * @radar_required: whether radar detection is required on the new channel 1553 * @block_tx: whether transmissions should be blocked while changing 1554 * @count: number of beacons until switch 1555 * @link_id: defines the link on which channel switch is expected during 1556 * MLO. 0 in case of non-MLO. 1557 */ 1558 struct cfg80211_csa_settings { 1559 struct cfg80211_chan_def chandef; 1560 struct cfg80211_beacon_data beacon_csa; 1561 const u16 *counter_offsets_beacon; 1562 const u16 *counter_offsets_presp; 1563 unsigned int n_counter_offsets_beacon; 1564 unsigned int n_counter_offsets_presp; 1565 struct cfg80211_beacon_data beacon_after; 1566 bool radar_required; 1567 bool block_tx; 1568 u8 count; 1569 u8 link_id; 1570 }; 1571 1572 /** 1573 * struct cfg80211_color_change_settings - color change settings 1574 * 1575 * Used for bss color change 1576 * 1577 * @beacon_color_change: beacon data while performing the color countdown 1578 * @counter_offset_beacon: offsets of the counters within the beacon (tail) 1579 * @counter_offset_presp: offsets of the counters within the probe response 1580 * @beacon_next: beacon data to be used after the color change 1581 * @count: number of beacons until the color change 1582 * @color: the color used after the change 1583 * @link_id: defines the link on which color change is expected during MLO. 1584 * 0 in case of non-MLO. 1585 */ 1586 struct cfg80211_color_change_settings { 1587 struct cfg80211_beacon_data beacon_color_change; 1588 u16 counter_offset_beacon; 1589 u16 counter_offset_presp; 1590 struct cfg80211_beacon_data beacon_next; 1591 u8 count; 1592 u8 color; 1593 u8 link_id; 1594 }; 1595 1596 /** 1597 * struct iface_combination_params - input parameters for interface combinations 1598 * 1599 * Used to pass interface combination parameters 1600 * 1601 * @radio_idx: wiphy radio index or -1 for global 1602 * @num_different_channels: the number of different channels we want 1603 * to use for verification 1604 * @radar_detect: a bitmap where each bit corresponds to a channel 1605 * width where radar detection is needed, as in the definition of 1606 * &struct ieee80211_iface_combination.@radar_detect_widths 1607 * @iftype_num: array with the number of interfaces of each interface 1608 * type. The index is the interface type as specified in &enum 1609 * nl80211_iftype. 1610 * @new_beacon_int: set this to the beacon interval of a new interface 1611 * that's not operating yet, if such is to be checked as part of 1612 * the verification 1613 */ 1614 struct iface_combination_params { 1615 int radio_idx; 1616 int num_different_channels; 1617 u8 radar_detect; 1618 int iftype_num[NUM_NL80211_IFTYPES]; 1619 u32 new_beacon_int; 1620 }; 1621 1622 /** 1623 * enum station_parameters_apply_mask - station parameter values to apply 1624 * @STATION_PARAM_APPLY_UAPSD: apply new uAPSD parameters (uapsd_queues, max_sp) 1625 * @STATION_PARAM_APPLY_CAPABILITY: apply new capability 1626 * @STATION_PARAM_APPLY_PLINK_STATE: apply new plink state 1627 * 1628 * Not all station parameters have in-band "no change" signalling, 1629 * for those that don't these flags will are used. 1630 */ 1631 enum station_parameters_apply_mask { 1632 STATION_PARAM_APPLY_UAPSD = BIT(0), 1633 STATION_PARAM_APPLY_CAPABILITY = BIT(1), 1634 STATION_PARAM_APPLY_PLINK_STATE = BIT(2), 1635 }; 1636 1637 /** 1638 * struct sta_txpwr - station txpower configuration 1639 * 1640 * Used to configure txpower for station. 1641 * 1642 * @power: tx power (in dBm) to be used for sending data traffic. If tx power 1643 * is not provided, the default per-interface tx power setting will be 1644 * overriding. Driver should be picking up the lowest tx power, either tx 1645 * power per-interface or per-station. 1646 * @type: In particular if TPC %type is NL80211_TX_POWER_LIMITED then tx power 1647 * will be less than or equal to specified from userspace, whereas if TPC 1648 * %type is NL80211_TX_POWER_AUTOMATIC then it indicates default tx power. 1649 * NL80211_TX_POWER_FIXED is not a valid configuration option for 1650 * per peer TPC. 1651 */ 1652 struct sta_txpwr { 1653 s16 power; 1654 enum nl80211_tx_power_setting type; 1655 }; 1656 1657 /** 1658 * struct link_station_parameters - link station parameters 1659 * 1660 * Used to change and create a new link station. 1661 * 1662 * @mld_mac: MAC address of the station 1663 * @link_id: the link id (-1 for non-MLD station) 1664 * @link_mac: MAC address of the link 1665 * @supported_rates: supported rates in IEEE 802.11 format 1666 * (or NULL for no change) 1667 * @supported_rates_len: number of supported rates 1668 * @ht_capa: HT capabilities of station 1669 * @vht_capa: VHT capabilities of station 1670 * @opmode_notif: operating mode field from Operating Mode Notification 1671 * @opmode_notif_used: information if operating mode field is used 1672 * @he_capa: HE capabilities of station 1673 * @he_capa_len: the length of the HE capabilities 1674 * @txpwr: transmit power for an associated station 1675 * @txpwr_set: txpwr field is set 1676 * @he_6ghz_capa: HE 6 GHz Band capabilities of station 1677 * @eht_capa: EHT capabilities of station 1678 * @eht_capa_len: the length of the EHT capabilities 1679 */ 1680 struct link_station_parameters { 1681 const u8 *mld_mac; 1682 int link_id; 1683 const u8 *link_mac; 1684 const u8 *supported_rates; 1685 u8 supported_rates_len; 1686 const struct ieee80211_ht_cap *ht_capa; 1687 const struct ieee80211_vht_cap *vht_capa; 1688 u8 opmode_notif; 1689 bool opmode_notif_used; 1690 const struct ieee80211_he_cap_elem *he_capa; 1691 u8 he_capa_len; 1692 struct sta_txpwr txpwr; 1693 bool txpwr_set; 1694 const struct ieee80211_he_6ghz_capa *he_6ghz_capa; 1695 const struct ieee80211_eht_cap_elem *eht_capa; 1696 u8 eht_capa_len; 1697 }; 1698 1699 /** 1700 * struct link_station_del_parameters - link station deletion parameters 1701 * 1702 * Used to delete a link station entry (or all stations). 1703 * 1704 * @mld_mac: MAC address of the station 1705 * @link_id: the link id 1706 */ 1707 struct link_station_del_parameters { 1708 const u8 *mld_mac; 1709 u32 link_id; 1710 }; 1711 1712 /** 1713 * struct cfg80211_ttlm_params: TID to link mapping parameters 1714 * 1715 * Used for setting a TID to link mapping. 1716 * 1717 * @dlink: Downlink TID to link mapping, as defined in section 9.4.2.314 1718 * (TID-To-Link Mapping element) in Draft P802.11be_D4.0. 1719 * @ulink: Uplink TID to link mapping, as defined in section 9.4.2.314 1720 * (TID-To-Link Mapping element) in Draft P802.11be_D4.0. 1721 */ 1722 struct cfg80211_ttlm_params { 1723 u16 dlink[8]; 1724 u16 ulink[8]; 1725 }; 1726 1727 /** 1728 * struct station_parameters - station parameters 1729 * 1730 * Used to change and create a new station. 1731 * 1732 * @vlan: vlan interface station should belong to 1733 * @sta_flags_mask: station flags that changed 1734 * (bitmask of BIT(%NL80211_STA_FLAG_...)) 1735 * @sta_flags_set: station flags values 1736 * (bitmask of BIT(%NL80211_STA_FLAG_...)) 1737 * @listen_interval: listen interval or -1 for no change 1738 * @aid: AID or zero for no change 1739 * @vlan_id: VLAN ID for station (if nonzero) 1740 * @peer_aid: mesh peer AID or zero for no change 1741 * @plink_action: plink action to take 1742 * @plink_state: set the peer link state for a station 1743 * @uapsd_queues: bitmap of queues configured for uapsd. same format 1744 * as the AC bitmap in the QoS info field 1745 * @max_sp: max Service Period. same format as the MAX_SP in the 1746 * QoS info field (but already shifted down) 1747 * @sta_modify_mask: bitmap indicating which parameters changed 1748 * (for those that don't have a natural "no change" value), 1749 * see &enum station_parameters_apply_mask 1750 * @local_pm: local link-specific mesh power save mode (no change when set 1751 * to unknown) 1752 * @capability: station capability 1753 * @ext_capab: extended capabilities of the station 1754 * @ext_capab_len: number of extended capabilities 1755 * @supported_channels: supported channels in IEEE 802.11 format 1756 * @supported_channels_len: number of supported channels 1757 * @supported_oper_classes: supported oper classes in IEEE 802.11 format 1758 * @supported_oper_classes_len: number of supported operating classes 1759 * @support_p2p_ps: information if station supports P2P PS mechanism 1760 * @airtime_weight: airtime scheduler weight for this station 1761 * @link_sta_params: link related params. 1762 */ 1763 struct station_parameters { 1764 struct net_device *vlan; 1765 u32 sta_flags_mask, sta_flags_set; 1766 u32 sta_modify_mask; 1767 int listen_interval; 1768 u16 aid; 1769 u16 vlan_id; 1770 u16 peer_aid; 1771 u8 plink_action; 1772 u8 plink_state; 1773 u8 uapsd_queues; 1774 u8 max_sp; 1775 enum nl80211_mesh_power_mode local_pm; 1776 u16 capability; 1777 const u8 *ext_capab; 1778 u8 ext_capab_len; 1779 const u8 *supported_channels; 1780 u8 supported_channels_len; 1781 const u8 *supported_oper_classes; 1782 u8 supported_oper_classes_len; 1783 int support_p2p_ps; 1784 u16 airtime_weight; 1785 struct link_station_parameters link_sta_params; 1786 }; 1787 1788 /** 1789 * struct station_del_parameters - station deletion parameters 1790 * 1791 * Used to delete a station entry (or all stations). 1792 * 1793 * @mac: MAC address of the station to remove or NULL to remove all stations 1794 * @subtype: Management frame subtype to use for indicating removal 1795 * (10 = Disassociation, 12 = Deauthentication) 1796 * @reason_code: Reason code for the Disassociation/Deauthentication frame 1797 * @link_id: Link ID indicating a link that stations to be flushed must be 1798 * using; valid only for MLO, but can also be -1 for MLO to really 1799 * remove all stations. 1800 */ 1801 struct station_del_parameters { 1802 const u8 *mac; 1803 u8 subtype; 1804 u16 reason_code; 1805 int link_id; 1806 }; 1807 1808 /** 1809 * enum cfg80211_station_type - the type of station being modified 1810 * @CFG80211_STA_AP_CLIENT: client of an AP interface 1811 * @CFG80211_STA_AP_CLIENT_UNASSOC: client of an AP interface that is still 1812 * unassociated (update properties for this type of client is permitted) 1813 * @CFG80211_STA_AP_MLME_CLIENT: client of an AP interface that has 1814 * the AP MLME in the device 1815 * @CFG80211_STA_AP_STA: AP station on managed interface 1816 * @CFG80211_STA_IBSS: IBSS station 1817 * @CFG80211_STA_TDLS_PEER_SETUP: TDLS peer on managed interface (dummy entry 1818 * while TDLS setup is in progress, it moves out of this state when 1819 * being marked authorized; use this only if TDLS with external setup is 1820 * supported/used) 1821 * @CFG80211_STA_TDLS_PEER_ACTIVE: TDLS peer on managed interface (active 1822 * entry that is operating, has been marked authorized by userspace) 1823 * @CFG80211_STA_MESH_PEER_KERNEL: peer on mesh interface (kernel managed) 1824 * @CFG80211_STA_MESH_PEER_USER: peer on mesh interface (user managed) 1825 */ 1826 enum cfg80211_station_type { 1827 CFG80211_STA_AP_CLIENT, 1828 CFG80211_STA_AP_CLIENT_UNASSOC, 1829 CFG80211_STA_AP_MLME_CLIENT, 1830 CFG80211_STA_AP_STA, 1831 CFG80211_STA_IBSS, 1832 CFG80211_STA_TDLS_PEER_SETUP, 1833 CFG80211_STA_TDLS_PEER_ACTIVE, 1834 CFG80211_STA_MESH_PEER_KERNEL, 1835 CFG80211_STA_MESH_PEER_USER, 1836 }; 1837 1838 /** 1839 * cfg80211_check_station_change - validate parameter changes 1840 * @wiphy: the wiphy this operates on 1841 * @params: the new parameters for a station 1842 * @statype: the type of station being modified 1843 * 1844 * Utility function for the @change_station driver method. Call this function 1845 * with the appropriate station type looking up the station (and checking that 1846 * it exists). It will verify whether the station change is acceptable. 1847 * 1848 * Return: 0 if the change is acceptable, otherwise an error code. Note that 1849 * it may modify the parameters for backward compatibility reasons, so don't 1850 * use them before calling this. 1851 */ 1852 int cfg80211_check_station_change(struct wiphy *wiphy, 1853 struct station_parameters *params, 1854 enum cfg80211_station_type statype); 1855 1856 /** 1857 * enum rate_info_flags - bitrate info flags 1858 * 1859 * Used by the driver to indicate the specific rate transmission 1860 * type for 802.11n transmissions. 1861 * 1862 * @RATE_INFO_FLAGS_MCS: mcs field filled with HT MCS 1863 * @RATE_INFO_FLAGS_VHT_MCS: mcs field filled with VHT MCS 1864 * @RATE_INFO_FLAGS_SHORT_GI: 400ns guard interval 1865 * @RATE_INFO_FLAGS_DMG: 60GHz MCS 1866 * @RATE_INFO_FLAGS_HE_MCS: HE MCS information 1867 * @RATE_INFO_FLAGS_EDMG: 60GHz MCS in EDMG mode 1868 * @RATE_INFO_FLAGS_EXTENDED_SC_DMG: 60GHz extended SC MCS 1869 * @RATE_INFO_FLAGS_EHT_MCS: EHT MCS information 1870 * @RATE_INFO_FLAGS_S1G_MCS: MCS field filled with S1G MCS 1871 */ 1872 enum rate_info_flags { 1873 RATE_INFO_FLAGS_MCS = BIT(0), 1874 RATE_INFO_FLAGS_VHT_MCS = BIT(1), 1875 RATE_INFO_FLAGS_SHORT_GI = BIT(2), 1876 RATE_INFO_FLAGS_DMG = BIT(3), 1877 RATE_INFO_FLAGS_HE_MCS = BIT(4), 1878 RATE_INFO_FLAGS_EDMG = BIT(5), 1879 RATE_INFO_FLAGS_EXTENDED_SC_DMG = BIT(6), 1880 RATE_INFO_FLAGS_EHT_MCS = BIT(7), 1881 RATE_INFO_FLAGS_S1G_MCS = BIT(8), 1882 }; 1883 1884 /** 1885 * enum rate_info_bw - rate bandwidth information 1886 * 1887 * Used by the driver to indicate the rate bandwidth. 1888 * 1889 * @RATE_INFO_BW_5: 5 MHz bandwidth 1890 * @RATE_INFO_BW_10: 10 MHz bandwidth 1891 * @RATE_INFO_BW_20: 20 MHz bandwidth 1892 * @RATE_INFO_BW_40: 40 MHz bandwidth 1893 * @RATE_INFO_BW_80: 80 MHz bandwidth 1894 * @RATE_INFO_BW_160: 160 MHz bandwidth 1895 * @RATE_INFO_BW_HE_RU: bandwidth determined by HE RU allocation 1896 * @RATE_INFO_BW_320: 320 MHz bandwidth 1897 * @RATE_INFO_BW_EHT_RU: bandwidth determined by EHT RU allocation 1898 * @RATE_INFO_BW_1: 1 MHz bandwidth 1899 * @RATE_INFO_BW_2: 2 MHz bandwidth 1900 * @RATE_INFO_BW_4: 4 MHz bandwidth 1901 * @RATE_INFO_BW_8: 8 MHz bandwidth 1902 * @RATE_INFO_BW_16: 16 MHz bandwidth 1903 */ 1904 enum rate_info_bw { 1905 RATE_INFO_BW_20 = 0, 1906 RATE_INFO_BW_5, 1907 RATE_INFO_BW_10, 1908 RATE_INFO_BW_40, 1909 RATE_INFO_BW_80, 1910 RATE_INFO_BW_160, 1911 RATE_INFO_BW_HE_RU, 1912 RATE_INFO_BW_320, 1913 RATE_INFO_BW_EHT_RU, 1914 RATE_INFO_BW_1, 1915 RATE_INFO_BW_2, 1916 RATE_INFO_BW_4, 1917 RATE_INFO_BW_8, 1918 RATE_INFO_BW_16, 1919 }; 1920 1921 /** 1922 * struct rate_info - bitrate information 1923 * 1924 * Information about a receiving or transmitting bitrate 1925 * 1926 * @flags: bitflag of flags from &enum rate_info_flags 1927 * @legacy: bitrate in 100kbit/s for 802.11abg 1928 * @mcs: mcs index if struct describes an HT/VHT/HE/EHT/S1G rate 1929 * @nss: number of streams (VHT & HE only) 1930 * @bw: bandwidth (from &enum rate_info_bw) 1931 * @he_gi: HE guard interval (from &enum nl80211_he_gi) 1932 * @he_dcm: HE DCM value 1933 * @he_ru_alloc: HE RU allocation (from &enum nl80211_he_ru_alloc, 1934 * only valid if bw is %RATE_INFO_BW_HE_RU) 1935 * @n_bonded_ch: In case of EDMG the number of bonded channels (1-4) 1936 * @eht_gi: EHT guard interval (from &enum nl80211_eht_gi) 1937 * @eht_ru_alloc: EHT RU allocation (from &enum nl80211_eht_ru_alloc, 1938 * only valid if bw is %RATE_INFO_BW_EHT_RU) 1939 */ 1940 struct rate_info { 1941 u16 flags; 1942 u16 legacy; 1943 u8 mcs; 1944 u8 nss; 1945 u8 bw; 1946 u8 he_gi; 1947 u8 he_dcm; 1948 u8 he_ru_alloc; 1949 u8 n_bonded_ch; 1950 u8 eht_gi; 1951 u8 eht_ru_alloc; 1952 }; 1953 1954 /** 1955 * enum bss_param_flags - bitrate info flags 1956 * 1957 * Used by the driver to indicate the specific rate transmission 1958 * type for 802.11n transmissions. 1959 * 1960 * @BSS_PARAM_FLAGS_CTS_PROT: whether CTS protection is enabled 1961 * @BSS_PARAM_FLAGS_SHORT_PREAMBLE: whether short preamble is enabled 1962 * @BSS_PARAM_FLAGS_SHORT_SLOT_TIME: whether short slot time is enabled 1963 */ 1964 enum bss_param_flags { 1965 BSS_PARAM_FLAGS_CTS_PROT = BIT(0), 1966 BSS_PARAM_FLAGS_SHORT_PREAMBLE = BIT(1), 1967 BSS_PARAM_FLAGS_SHORT_SLOT_TIME = BIT(2), 1968 }; 1969 1970 /** 1971 * struct sta_bss_parameters - BSS parameters for the attached station 1972 * 1973 * Information about the currently associated BSS 1974 * 1975 * @flags: bitflag of flags from &enum bss_param_flags 1976 * @dtim_period: DTIM period for the BSS 1977 * @beacon_interval: beacon interval 1978 */ 1979 struct sta_bss_parameters { 1980 u8 flags; 1981 u8 dtim_period; 1982 u16 beacon_interval; 1983 }; 1984 1985 /** 1986 * struct cfg80211_txq_stats - TXQ statistics for this TID 1987 * @filled: bitmap of flags using the bits of &enum nl80211_txq_stats to 1988 * indicate the relevant values in this struct are filled 1989 * @backlog_bytes: total number of bytes currently backlogged 1990 * @backlog_packets: total number of packets currently backlogged 1991 * @flows: number of new flows seen 1992 * @drops: total number of packets dropped 1993 * @ecn_marks: total number of packets marked with ECN CE 1994 * @overlimit: number of drops due to queue space overflow 1995 * @overmemory: number of drops due to memory limit overflow 1996 * @collisions: number of hash collisions 1997 * @tx_bytes: total number of bytes dequeued 1998 * @tx_packets: total number of packets dequeued 1999 * @max_flows: maximum number of flows supported 2000 */ 2001 struct cfg80211_txq_stats { 2002 u32 filled; 2003 u32 backlog_bytes; 2004 u32 backlog_packets; 2005 u32 flows; 2006 u32 drops; 2007 u32 ecn_marks; 2008 u32 overlimit; 2009 u32 overmemory; 2010 u32 collisions; 2011 u32 tx_bytes; 2012 u32 tx_packets; 2013 u32 max_flows; 2014 }; 2015 2016 /** 2017 * struct cfg80211_tid_stats - per-TID statistics 2018 * @filled: bitmap of flags using the bits of &enum nl80211_tid_stats to 2019 * indicate the relevant values in this struct are filled 2020 * @rx_msdu: number of received MSDUs 2021 * @tx_msdu: number of (attempted) transmitted MSDUs 2022 * @tx_msdu_retries: number of retries (not counting the first) for 2023 * transmitted MSDUs 2024 * @tx_msdu_failed: number of failed transmitted MSDUs 2025 * @txq_stats: TXQ statistics 2026 */ 2027 struct cfg80211_tid_stats { 2028 u32 filled; 2029 u64 rx_msdu; 2030 u64 tx_msdu; 2031 u64 tx_msdu_retries; 2032 u64 tx_msdu_failed; 2033 struct cfg80211_txq_stats txq_stats; 2034 }; 2035 2036 #define IEEE80211_MAX_CHAINS 4 2037 2038 /** 2039 * struct station_info - station information 2040 * 2041 * Station information filled by driver for get_station() and dump_station. 2042 * 2043 * @filled: bitflag of flags using the bits of &enum nl80211_sta_info to 2044 * indicate the relevant values in this struct for them 2045 * @connected_time: time(in secs) since a station is last connected 2046 * @inactive_time: time since last station activity (tx/rx) in milliseconds 2047 * @assoc_at: bootime (ns) of the last association 2048 * @rx_bytes: bytes (size of MPDUs) received from this station 2049 * @tx_bytes: bytes (size of MPDUs) transmitted to this station 2050 * @llid: mesh local link id 2051 * @plid: mesh peer link id 2052 * @plink_state: mesh peer link state 2053 * @signal: The signal strength, type depends on the wiphy's signal_type. 2054 * For CFG80211_SIGNAL_TYPE_MBM, value is expressed in _dBm_. 2055 * @signal_avg: Average signal strength, type depends on the wiphy's signal_type. 2056 * For CFG80211_SIGNAL_TYPE_MBM, value is expressed in _dBm_. 2057 * @chains: bitmask for filled values in @chain_signal, @chain_signal_avg 2058 * @chain_signal: per-chain signal strength of last received packet in dBm 2059 * @chain_signal_avg: per-chain signal strength average in dBm 2060 * @txrate: current unicast bitrate from this station 2061 * @rxrate: current unicast bitrate to this station 2062 * @rx_packets: packets (MSDUs & MMPDUs) received from this station 2063 * @tx_packets: packets (MSDUs & MMPDUs) transmitted to this station 2064 * @tx_retries: cumulative retry counts (MPDUs) 2065 * @tx_failed: number of failed transmissions (MPDUs) (retries exceeded, no ACK) 2066 * @rx_dropped_misc: Dropped for un-specified reason. 2067 * @bss_param: current BSS parameters 2068 * @generation: generation number for nl80211 dumps. 2069 * This number should increase every time the list of stations 2070 * changes, i.e. when a station is added or removed, so that 2071 * userspace can tell whether it got a consistent snapshot. 2072 * @assoc_req_ies: IEs from (Re)Association Request. 2073 * This is used only when in AP mode with drivers that do not use 2074 * user space MLME/SME implementation. The information is provided for 2075 * the cfg80211_new_sta() calls to notify user space of the IEs. 2076 * @assoc_req_ies_len: Length of assoc_req_ies buffer in octets. 2077 * @sta_flags: station flags mask & values 2078 * @beacon_loss_count: Number of times beacon loss event has triggered. 2079 * @t_offset: Time offset of the station relative to this host. 2080 * @local_pm: local mesh STA power save mode 2081 * @peer_pm: peer mesh STA power save mode 2082 * @nonpeer_pm: non-peer mesh STA power save mode 2083 * @expected_throughput: expected throughput in kbps (including 802.11 headers) 2084 * towards this station. 2085 * @rx_beacon: number of beacons received from this peer 2086 * @rx_beacon_signal_avg: signal strength average (in dBm) for beacons received 2087 * from this peer 2088 * @connected_to_gate: true if mesh STA has a path to mesh gate 2089 * @rx_duration: aggregate PPDU duration(usecs) for all the frames from a peer 2090 * @tx_duration: aggregate PPDU duration(usecs) for all the frames to a peer 2091 * @airtime_weight: current airtime scheduling weight 2092 * @pertid: per-TID statistics, see &struct cfg80211_tid_stats, using the last 2093 * (IEEE80211_NUM_TIDS) index for MSDUs not encapsulated in QoS-MPDUs. 2094 * Note that this doesn't use the @filled bit, but is used if non-NULL. 2095 * @ack_signal: signal strength (in dBm) of the last ACK frame. 2096 * @avg_ack_signal: average rssi value of ack packet for the no of msdu's has 2097 * been sent. 2098 * @rx_mpdu_count: number of MPDUs received from this station 2099 * @fcs_err_count: number of packets (MPDUs) received from this station with 2100 * an FCS error. This counter should be incremented only when TA of the 2101 * received packet with an FCS error matches the peer MAC address. 2102 * @airtime_link_metric: mesh airtime link metric. 2103 * @connected_to_as: true if mesh STA has a path to authentication server 2104 * @mlo_params_valid: Indicates @assoc_link_id and @mld_addr fields are filled 2105 * by driver. Drivers use this only in cfg80211_new_sta() calls when AP 2106 * MLD's MLME/SME is offload to driver. Drivers won't fill this 2107 * information in cfg80211_del_sta_sinfo(), get_station() and 2108 * dump_station() callbacks. 2109 * @assoc_link_id: Indicates MLO link ID of the AP, with which the station 2110 * completed (re)association. This information filled for both MLO 2111 * and non-MLO STA connections when the AP affiliated with an MLD. 2112 * @mld_addr: For MLO STA connection, filled with MLD address of the station. 2113 * For non-MLO STA connection, filled with all zeros. 2114 * @assoc_resp_ies: IEs from (Re)Association Response. 2115 * This is used only when in AP mode with drivers that do not use user 2116 * space MLME/SME implementation. The information is provided only for the 2117 * cfg80211_new_sta() calls to notify user space of the IEs. Drivers won't 2118 * fill this information in cfg80211_del_sta_sinfo(), get_station() and 2119 * dump_station() callbacks. User space needs this information to determine 2120 * the accepted and rejected affiliated links of the connected station. 2121 * @assoc_resp_ies_len: Length of @assoc_resp_ies buffer in octets. 2122 */ 2123 struct station_info { 2124 u64 filled; 2125 u32 connected_time; 2126 u32 inactive_time; 2127 u64 assoc_at; 2128 u64 rx_bytes; 2129 u64 tx_bytes; 2130 u16 llid; 2131 u16 plid; 2132 u8 plink_state; 2133 s8 signal; 2134 s8 signal_avg; 2135 2136 u8 chains; 2137 s8 chain_signal[IEEE80211_MAX_CHAINS]; 2138 s8 chain_signal_avg[IEEE80211_MAX_CHAINS]; 2139 2140 struct rate_info txrate; 2141 struct rate_info rxrate; 2142 u32 rx_packets; 2143 u32 tx_packets; 2144 u32 tx_retries; 2145 u32 tx_failed; 2146 u32 rx_dropped_misc; 2147 struct sta_bss_parameters bss_param; 2148 struct nl80211_sta_flag_update sta_flags; 2149 2150 int generation; 2151 2152 const u8 *assoc_req_ies; 2153 size_t assoc_req_ies_len; 2154 2155 u32 beacon_loss_count; 2156 s64 t_offset; 2157 enum nl80211_mesh_power_mode local_pm; 2158 enum nl80211_mesh_power_mode peer_pm; 2159 enum nl80211_mesh_power_mode nonpeer_pm; 2160 2161 u32 expected_throughput; 2162 2163 u64 tx_duration; 2164 u64 rx_duration; 2165 u64 rx_beacon; 2166 u8 rx_beacon_signal_avg; 2167 u8 connected_to_gate; 2168 2169 struct cfg80211_tid_stats *pertid; 2170 s8 ack_signal; 2171 s8 avg_ack_signal; 2172 2173 u16 airtime_weight; 2174 2175 u32 rx_mpdu_count; 2176 u32 fcs_err_count; 2177 2178 u32 airtime_link_metric; 2179 2180 u8 connected_to_as; 2181 2182 bool mlo_params_valid; 2183 u8 assoc_link_id; 2184 u8 mld_addr[ETH_ALEN] __aligned(2); 2185 const u8 *assoc_resp_ies; 2186 size_t assoc_resp_ies_len; 2187 }; 2188 2189 /** 2190 * struct cfg80211_sar_sub_specs - sub specs limit 2191 * @power: power limitation in 0.25dbm 2192 * @freq_range_index: index the power limitation applies to 2193 */ 2194 struct cfg80211_sar_sub_specs { 2195 s32 power; 2196 u32 freq_range_index; 2197 }; 2198 2199 /** 2200 * struct cfg80211_sar_specs - sar limit specs 2201 * @type: it's set with power in 0.25dbm or other types 2202 * @num_sub_specs: number of sar sub specs 2203 * @sub_specs: memory to hold the sar sub specs 2204 */ 2205 struct cfg80211_sar_specs { 2206 enum nl80211_sar_type type; 2207 u32 num_sub_specs; 2208 struct cfg80211_sar_sub_specs sub_specs[] __counted_by(num_sub_specs); 2209 }; 2210 2211 2212 /** 2213 * struct cfg80211_sar_freq_ranges - sar frequency ranges 2214 * @start_freq: start range edge frequency 2215 * @end_freq: end range edge frequency 2216 */ 2217 struct cfg80211_sar_freq_ranges { 2218 u32 start_freq; 2219 u32 end_freq; 2220 }; 2221 2222 /** 2223 * struct cfg80211_sar_capa - sar limit capability 2224 * @type: it's set via power in 0.25dbm or other types 2225 * @num_freq_ranges: number of frequency ranges 2226 * @freq_ranges: memory to hold the freq ranges. 2227 * 2228 * Note: WLAN driver may append new ranges or split an existing 2229 * range to small ones and then append them. 2230 */ 2231 struct cfg80211_sar_capa { 2232 enum nl80211_sar_type type; 2233 u32 num_freq_ranges; 2234 const struct cfg80211_sar_freq_ranges *freq_ranges; 2235 }; 2236 2237 #if IS_ENABLED(CONFIG_CFG80211) 2238 /** 2239 * cfg80211_get_station - retrieve information about a given station 2240 * @dev: the device where the station is supposed to be connected to 2241 * @mac_addr: the mac address of the station of interest 2242 * @sinfo: pointer to the structure to fill with the information 2243 * 2244 * Return: 0 on success and sinfo is filled with the available information 2245 * otherwise returns a negative error code and the content of sinfo has to be 2246 * considered undefined. 2247 */ 2248 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr, 2249 struct station_info *sinfo); 2250 #else 2251 static inline int cfg80211_get_station(struct net_device *dev, 2252 const u8 *mac_addr, 2253 struct station_info *sinfo) 2254 { 2255 return -ENOENT; 2256 } 2257 #endif 2258 2259 /** 2260 * enum monitor_flags - monitor flags 2261 * 2262 * Monitor interface configuration flags. Note that these must be the bits 2263 * according to the nl80211 flags. 2264 * 2265 * @MONITOR_FLAG_CHANGED: set if the flags were changed 2266 * @MONITOR_FLAG_FCSFAIL: pass frames with bad FCS 2267 * @MONITOR_FLAG_PLCPFAIL: pass frames with bad PLCP 2268 * @MONITOR_FLAG_CONTROL: pass control frames 2269 * @MONITOR_FLAG_OTHER_BSS: disable BSSID filtering 2270 * @MONITOR_FLAG_COOK_FRAMES: report frames after processing 2271 * @MONITOR_FLAG_ACTIVE: active monitor, ACKs frames on its MAC address 2272 */ 2273 enum monitor_flags { 2274 MONITOR_FLAG_CHANGED = BIT(__NL80211_MNTR_FLAG_INVALID), 2275 MONITOR_FLAG_FCSFAIL = BIT(NL80211_MNTR_FLAG_FCSFAIL), 2276 MONITOR_FLAG_PLCPFAIL = BIT(NL80211_MNTR_FLAG_PLCPFAIL), 2277 MONITOR_FLAG_CONTROL = BIT(NL80211_MNTR_FLAG_CONTROL), 2278 MONITOR_FLAG_OTHER_BSS = BIT(NL80211_MNTR_FLAG_OTHER_BSS), 2279 MONITOR_FLAG_COOK_FRAMES = BIT(NL80211_MNTR_FLAG_COOK_FRAMES), 2280 MONITOR_FLAG_ACTIVE = BIT(NL80211_MNTR_FLAG_ACTIVE), 2281 }; 2282 2283 /** 2284 * enum mpath_info_flags - mesh path information flags 2285 * 2286 * Used by the driver to indicate which info in &struct mpath_info it has filled 2287 * in during get_station() or dump_station(). 2288 * 2289 * @MPATH_INFO_FRAME_QLEN: @frame_qlen filled 2290 * @MPATH_INFO_SN: @sn filled 2291 * @MPATH_INFO_METRIC: @metric filled 2292 * @MPATH_INFO_EXPTIME: @exptime filled 2293 * @MPATH_INFO_DISCOVERY_TIMEOUT: @discovery_timeout filled 2294 * @MPATH_INFO_DISCOVERY_RETRIES: @discovery_retries filled 2295 * @MPATH_INFO_FLAGS: @flags filled 2296 * @MPATH_INFO_HOP_COUNT: @hop_count filled 2297 * @MPATH_INFO_PATH_CHANGE: @path_change_count filled 2298 */ 2299 enum mpath_info_flags { 2300 MPATH_INFO_FRAME_QLEN = BIT(0), 2301 MPATH_INFO_SN = BIT(1), 2302 MPATH_INFO_METRIC = BIT(2), 2303 MPATH_INFO_EXPTIME = BIT(3), 2304 MPATH_INFO_DISCOVERY_TIMEOUT = BIT(4), 2305 MPATH_INFO_DISCOVERY_RETRIES = BIT(5), 2306 MPATH_INFO_FLAGS = BIT(6), 2307 MPATH_INFO_HOP_COUNT = BIT(7), 2308 MPATH_INFO_PATH_CHANGE = BIT(8), 2309 }; 2310 2311 /** 2312 * struct mpath_info - mesh path information 2313 * 2314 * Mesh path information filled by driver for get_mpath() and dump_mpath(). 2315 * 2316 * @filled: bitfield of flags from &enum mpath_info_flags 2317 * @frame_qlen: number of queued frames for this destination 2318 * @sn: target sequence number 2319 * @metric: metric (cost) of this mesh path 2320 * @exptime: expiration time for the mesh path from now, in msecs 2321 * @flags: mesh path flags from &enum mesh_path_flags 2322 * @discovery_timeout: total mesh path discovery timeout, in msecs 2323 * @discovery_retries: mesh path discovery retries 2324 * @generation: generation number for nl80211 dumps. 2325 * This number should increase every time the list of mesh paths 2326 * changes, i.e. when a station is added or removed, so that 2327 * userspace can tell whether it got a consistent snapshot. 2328 * @hop_count: hops to destination 2329 * @path_change_count: total number of path changes to destination 2330 */ 2331 struct mpath_info { 2332 u32 filled; 2333 u32 frame_qlen; 2334 u32 sn; 2335 u32 metric; 2336 u32 exptime; 2337 u32 discovery_timeout; 2338 u8 discovery_retries; 2339 u8 flags; 2340 u8 hop_count; 2341 u32 path_change_count; 2342 2343 int generation; 2344 }; 2345 2346 /** 2347 * struct bss_parameters - BSS parameters 2348 * 2349 * Used to change BSS parameters (mainly for AP mode). 2350 * 2351 * @link_id: link_id or -1 for non-MLD 2352 * @use_cts_prot: Whether to use CTS protection 2353 * (0 = no, 1 = yes, -1 = do not change) 2354 * @use_short_preamble: Whether the use of short preambles is allowed 2355 * (0 = no, 1 = yes, -1 = do not change) 2356 * @use_short_slot_time: Whether the use of short slot time is allowed 2357 * (0 = no, 1 = yes, -1 = do not change) 2358 * @basic_rates: basic rates in IEEE 802.11 format 2359 * (or NULL for no change) 2360 * @basic_rates_len: number of basic rates 2361 * @ap_isolate: do not forward packets between connected stations 2362 * (0 = no, 1 = yes, -1 = do not change) 2363 * @ht_opmode: HT Operation mode 2364 * (u16 = opmode, -1 = do not change) 2365 * @p2p_ctwindow: P2P CT Window (-1 = no change) 2366 * @p2p_opp_ps: P2P opportunistic PS (-1 = no change) 2367 */ 2368 struct bss_parameters { 2369 int link_id; 2370 int use_cts_prot; 2371 int use_short_preamble; 2372 int use_short_slot_time; 2373 const u8 *basic_rates; 2374 u8 basic_rates_len; 2375 int ap_isolate; 2376 int ht_opmode; 2377 s8 p2p_ctwindow, p2p_opp_ps; 2378 }; 2379 2380 /** 2381 * struct mesh_config - 802.11s mesh configuration 2382 * 2383 * These parameters can be changed while the mesh is active. 2384 * 2385 * @dot11MeshRetryTimeout: the initial retry timeout in millisecond units used 2386 * by the Mesh Peering Open message 2387 * @dot11MeshConfirmTimeout: the initial retry timeout in millisecond units 2388 * used by the Mesh Peering Open message 2389 * @dot11MeshHoldingTimeout: the confirm timeout in millisecond units used by 2390 * the mesh peering management to close a mesh peering 2391 * @dot11MeshMaxPeerLinks: the maximum number of peer links allowed on this 2392 * mesh interface 2393 * @dot11MeshMaxRetries: the maximum number of peer link open retries that can 2394 * be sent to establish a new peer link instance in a mesh 2395 * @dot11MeshTTL: the value of TTL field set at a source mesh STA 2396 * @element_ttl: the value of TTL field set at a mesh STA for path selection 2397 * elements 2398 * @auto_open_plinks: whether we should automatically open peer links when we 2399 * detect compatible mesh peers 2400 * @dot11MeshNbrOffsetMaxNeighbor: the maximum number of neighbors to 2401 * synchronize to for 11s default synchronization method 2402 * @dot11MeshHWMPmaxPREQretries: the number of action frames containing a PREQ 2403 * that an originator mesh STA can send to a particular path target 2404 * @path_refresh_time: how frequently to refresh mesh paths in milliseconds 2405 * @min_discovery_timeout: the minimum length of time to wait until giving up on 2406 * a path discovery in milliseconds 2407 * @dot11MeshHWMPactivePathTimeout: the time (in TUs) for which mesh STAs 2408 * receiving a PREQ shall consider the forwarding information from the 2409 * root to be valid. (TU = time unit) 2410 * @dot11MeshHWMPpreqMinInterval: the minimum interval of time (in TUs) during 2411 * which a mesh STA can send only one action frame containing a PREQ 2412 * element 2413 * @dot11MeshHWMPperrMinInterval: the minimum interval of time (in TUs) during 2414 * which a mesh STA can send only one Action frame containing a PERR 2415 * element 2416 * @dot11MeshHWMPnetDiameterTraversalTime: the interval of time (in TUs) that 2417 * it takes for an HWMP information element to propagate across the mesh 2418 * @dot11MeshHWMPRootMode: the configuration of a mesh STA as root mesh STA 2419 * @dot11MeshHWMPRannInterval: the interval of time (in TUs) between root 2420 * announcements are transmitted 2421 * @dot11MeshGateAnnouncementProtocol: whether to advertise that this mesh 2422 * station has access to a broader network beyond the MBSS. (This is 2423 * missnamed in draft 12.0: dot11MeshGateAnnouncementProtocol set to true 2424 * only means that the station will announce others it's a mesh gate, but 2425 * not necessarily using the gate announcement protocol. Still keeping the 2426 * same nomenclature to be in sync with the spec) 2427 * @dot11MeshForwarding: whether the Mesh STA is forwarding or non-forwarding 2428 * entity (default is TRUE - forwarding entity) 2429 * @rssi_threshold: the threshold for average signal strength of candidate 2430 * station to establish a peer link 2431 * @ht_opmode: mesh HT protection mode 2432 * 2433 * @dot11MeshHWMPactivePathToRootTimeout: The time (in TUs) for which mesh STAs 2434 * receiving a proactive PREQ shall consider the forwarding information to 2435 * the root mesh STA to be valid. 2436 * 2437 * @dot11MeshHWMProotInterval: The interval of time (in TUs) between proactive 2438 * PREQs are transmitted. 2439 * @dot11MeshHWMPconfirmationInterval: The minimum interval of time (in TUs) 2440 * during which a mesh STA can send only one Action frame containing 2441 * a PREQ element for root path confirmation. 2442 * @power_mode: The default mesh power save mode which will be the initial 2443 * setting for new peer links. 2444 * @dot11MeshAwakeWindowDuration: The duration in TUs the STA will remain awake 2445 * after transmitting its beacon. 2446 * @plink_timeout: If no tx activity is seen from a STA we've established 2447 * peering with for longer than this time (in seconds), then remove it 2448 * from the STA's list of peers. Default is 30 minutes. 2449 * @dot11MeshConnectedToAuthServer: if set to true then this mesh STA 2450 * will advertise that it is connected to a authentication server 2451 * in the mesh formation field. 2452 * @dot11MeshConnectedToMeshGate: if set to true, advertise that this STA is 2453 * connected to a mesh gate in mesh formation info. If false, the 2454 * value in mesh formation is determined by the presence of root paths 2455 * in the mesh path table 2456 * @dot11MeshNolearn: Try to avoid multi-hop path discovery (e.g. PREQ/PREP 2457 * for HWMP) if the destination is a direct neighbor. Note that this might 2458 * not be the optimal decision as a multi-hop route might be better. So 2459 * if using this setting you will likely also want to disable 2460 * dot11MeshForwarding and use another mesh routing protocol on top. 2461 */ 2462 struct mesh_config { 2463 u16 dot11MeshRetryTimeout; 2464 u16 dot11MeshConfirmTimeout; 2465 u16 dot11MeshHoldingTimeout; 2466 u16 dot11MeshMaxPeerLinks; 2467 u8 dot11MeshMaxRetries; 2468 u8 dot11MeshTTL; 2469 u8 element_ttl; 2470 bool auto_open_plinks; 2471 u32 dot11MeshNbrOffsetMaxNeighbor; 2472 u8 dot11MeshHWMPmaxPREQretries; 2473 u32 path_refresh_time; 2474 u16 min_discovery_timeout; 2475 u32 dot11MeshHWMPactivePathTimeout; 2476 u16 dot11MeshHWMPpreqMinInterval; 2477 u16 dot11MeshHWMPperrMinInterval; 2478 u16 dot11MeshHWMPnetDiameterTraversalTime; 2479 u8 dot11MeshHWMPRootMode; 2480 bool dot11MeshConnectedToMeshGate; 2481 bool dot11MeshConnectedToAuthServer; 2482 u16 dot11MeshHWMPRannInterval; 2483 bool dot11MeshGateAnnouncementProtocol; 2484 bool dot11MeshForwarding; 2485 s32 rssi_threshold; 2486 u16 ht_opmode; 2487 u32 dot11MeshHWMPactivePathToRootTimeout; 2488 u16 dot11MeshHWMProotInterval; 2489 u16 dot11MeshHWMPconfirmationInterval; 2490 enum nl80211_mesh_power_mode power_mode; 2491 u16 dot11MeshAwakeWindowDuration; 2492 u32 plink_timeout; 2493 bool dot11MeshNolearn; 2494 }; 2495 2496 /** 2497 * struct mesh_setup - 802.11s mesh setup configuration 2498 * @chandef: defines the channel to use 2499 * @mesh_id: the mesh ID 2500 * @mesh_id_len: length of the mesh ID, at least 1 and at most 32 bytes 2501 * @sync_method: which synchronization method to use 2502 * @path_sel_proto: which path selection protocol to use 2503 * @path_metric: which metric to use 2504 * @auth_id: which authentication method this mesh is using 2505 * @ie: vendor information elements (optional) 2506 * @ie_len: length of vendor information elements 2507 * @is_authenticated: this mesh requires authentication 2508 * @is_secure: this mesh uses security 2509 * @user_mpm: userspace handles all MPM functions 2510 * @dtim_period: DTIM period to use 2511 * @beacon_interval: beacon interval to use 2512 * @mcast_rate: multicast rate for Mesh Node [6Mbps is the default for 802.11a] 2513 * @basic_rates: basic rates to use when creating the mesh 2514 * @beacon_rate: bitrate to be used for beacons 2515 * @userspace_handles_dfs: whether user space controls DFS operation, i.e. 2516 * changes the channel when a radar is detected. This is required 2517 * to operate on DFS channels. 2518 * @control_port_over_nl80211: TRUE if userspace expects to exchange control 2519 * port frames over NL80211 instead of the network interface. 2520 * 2521 * These parameters are fixed when the mesh is created. 2522 */ 2523 struct mesh_setup { 2524 struct cfg80211_chan_def chandef; 2525 const u8 *mesh_id; 2526 u8 mesh_id_len; 2527 u8 sync_method; 2528 u8 path_sel_proto; 2529 u8 path_metric; 2530 u8 auth_id; 2531 const u8 *ie; 2532 u8 ie_len; 2533 bool is_authenticated; 2534 bool is_secure; 2535 bool user_mpm; 2536 u8 dtim_period; 2537 u16 beacon_interval; 2538 int mcast_rate[NUM_NL80211_BANDS]; 2539 u32 basic_rates; 2540 struct cfg80211_bitrate_mask beacon_rate; 2541 bool userspace_handles_dfs; 2542 bool control_port_over_nl80211; 2543 }; 2544 2545 /** 2546 * struct ocb_setup - 802.11p OCB mode setup configuration 2547 * @chandef: defines the channel to use 2548 * 2549 * These parameters are fixed when connecting to the network 2550 */ 2551 struct ocb_setup { 2552 struct cfg80211_chan_def chandef; 2553 }; 2554 2555 /** 2556 * struct ieee80211_txq_params - TX queue parameters 2557 * @ac: AC identifier 2558 * @txop: Maximum burst time in units of 32 usecs, 0 meaning disabled 2559 * @cwmin: Minimum contention window [a value of the form 2^n-1 in the range 2560 * 1..32767] 2561 * @cwmax: Maximum contention window [a value of the form 2^n-1 in the range 2562 * 1..32767] 2563 * @aifs: Arbitration interframe space [0..255] 2564 * @link_id: link_id or -1 for non-MLD 2565 */ 2566 struct ieee80211_txq_params { 2567 enum nl80211_ac ac; 2568 u16 txop; 2569 u16 cwmin; 2570 u16 cwmax; 2571 u8 aifs; 2572 int link_id; 2573 }; 2574 2575 /** 2576 * DOC: Scanning and BSS list handling 2577 * 2578 * The scanning process itself is fairly simple, but cfg80211 offers quite 2579 * a bit of helper functionality. To start a scan, the scan operation will 2580 * be invoked with a scan definition. This scan definition contains the 2581 * channels to scan, and the SSIDs to send probe requests for (including the 2582 * wildcard, if desired). A passive scan is indicated by having no SSIDs to 2583 * probe. Additionally, a scan request may contain extra information elements 2584 * that should be added to the probe request. The IEs are guaranteed to be 2585 * well-formed, and will not exceed the maximum length the driver advertised 2586 * in the wiphy structure. 2587 * 2588 * When scanning finds a BSS, cfg80211 needs to be notified of that, because 2589 * it is responsible for maintaining the BSS list; the driver should not 2590 * maintain a list itself. For this notification, various functions exist. 2591 * 2592 * Since drivers do not maintain a BSS list, there are also a number of 2593 * functions to search for a BSS and obtain information about it from the 2594 * BSS structure cfg80211 maintains. The BSS list is also made available 2595 * to userspace. 2596 */ 2597 2598 /** 2599 * struct cfg80211_ssid - SSID description 2600 * @ssid: the SSID 2601 * @ssid_len: length of the ssid 2602 */ 2603 struct cfg80211_ssid { 2604 u8 ssid[IEEE80211_MAX_SSID_LEN]; 2605 u8 ssid_len; 2606 }; 2607 2608 /** 2609 * struct cfg80211_scan_info - information about completed scan 2610 * @scan_start_tsf: scan start time in terms of the TSF of the BSS that the 2611 * wireless device that requested the scan is connected to. If this 2612 * information is not available, this field is left zero. 2613 * @tsf_bssid: the BSSID according to which %scan_start_tsf is set. 2614 * @aborted: set to true if the scan was aborted for any reason, 2615 * userspace will be notified of that 2616 */ 2617 struct cfg80211_scan_info { 2618 u64 scan_start_tsf; 2619 u8 tsf_bssid[ETH_ALEN] __aligned(2); 2620 bool aborted; 2621 }; 2622 2623 /** 2624 * struct cfg80211_scan_6ghz_params - relevant for 6 GHz only 2625 * 2626 * @short_ssid: short ssid to scan for 2627 * @bssid: bssid to scan for 2628 * @channel_idx: idx of the channel in the channel array in the scan request 2629 * which the above info is relevant to 2630 * @unsolicited_probe: the AP transmits unsolicited probe response every 20 TU 2631 * @short_ssid_valid: @short_ssid is valid and can be used 2632 * @psc_no_listen: when set, and the channel is a PSC channel, no need to wait 2633 * 20 TUs before starting to send probe requests. 2634 * @psd_20: The AP's 20 MHz PSD value. 2635 */ 2636 struct cfg80211_scan_6ghz_params { 2637 u32 short_ssid; 2638 u32 channel_idx; 2639 u8 bssid[ETH_ALEN]; 2640 bool unsolicited_probe; 2641 bool short_ssid_valid; 2642 bool psc_no_listen; 2643 s8 psd_20; 2644 }; 2645 2646 /** 2647 * struct cfg80211_scan_request - scan request description 2648 * 2649 * @ssids: SSIDs to scan for (active scan only) 2650 * @n_ssids: number of SSIDs 2651 * @channels: channels to scan on. 2652 * @n_channels: total number of channels to scan 2653 * @ie: optional information element(s) to add into Probe Request or %NULL 2654 * @ie_len: length of ie in octets 2655 * @duration: how long to listen on each channel, in TUs. If 2656 * %duration_mandatory is not set, this is the maximum dwell time and 2657 * the actual dwell time may be shorter. 2658 * @duration_mandatory: if set, the scan duration must be as specified by the 2659 * %duration field. 2660 * @flags: control flags from &enum nl80211_scan_flags 2661 * @rates: bitmap of rates to advertise for each band 2662 * @wiphy: the wiphy this was for 2663 * @scan_start: time (in jiffies) when the scan started 2664 * @wdev: the wireless device to scan for 2665 * @info: (internal) information about completed scan 2666 * @notified: (internal) scan request was notified as done or aborted 2667 * @no_cck: used to send probe requests at non CCK rate in 2GHz band 2668 * @mac_addr: MAC address used with randomisation 2669 * @mac_addr_mask: MAC address mask used with randomisation, bits that 2670 * are 0 in the mask should be randomised, bits that are 1 should 2671 * be taken from the @mac_addr 2672 * @scan_6ghz: relevant for split scan request only, 2673 * true if this is the second scan request 2674 * @n_6ghz_params: number of 6 GHz params 2675 * @scan_6ghz_params: 6 GHz params 2676 * @bssid: BSSID to scan for (most commonly, the wildcard BSSID) 2677 * @tsf_report_link_id: for MLO, indicates the link ID of the BSS that should be 2678 * used for TSF reporting. Can be set to -1 to indicate no preference. 2679 */ 2680 struct cfg80211_scan_request { 2681 struct cfg80211_ssid *ssids; 2682 int n_ssids; 2683 u32 n_channels; 2684 const u8 *ie; 2685 size_t ie_len; 2686 u16 duration; 2687 bool duration_mandatory; 2688 u32 flags; 2689 2690 u32 rates[NUM_NL80211_BANDS]; 2691 2692 struct wireless_dev *wdev; 2693 2694 u8 mac_addr[ETH_ALEN] __aligned(2); 2695 u8 mac_addr_mask[ETH_ALEN] __aligned(2); 2696 u8 bssid[ETH_ALEN] __aligned(2); 2697 2698 /* internal */ 2699 struct wiphy *wiphy; 2700 unsigned long scan_start; 2701 struct cfg80211_scan_info info; 2702 bool notified; 2703 bool no_cck; 2704 bool scan_6ghz; 2705 u32 n_6ghz_params; 2706 struct cfg80211_scan_6ghz_params *scan_6ghz_params; 2707 s8 tsf_report_link_id; 2708 2709 /* keep last */ 2710 struct ieee80211_channel *channels[] __counted_by(n_channels); 2711 }; 2712 2713 static inline void get_random_mask_addr(u8 *buf, const u8 *addr, const u8 *mask) 2714 { 2715 int i; 2716 2717 get_random_bytes(buf, ETH_ALEN); 2718 for (i = 0; i < ETH_ALEN; i++) { 2719 buf[i] &= ~mask[i]; 2720 buf[i] |= addr[i] & mask[i]; 2721 } 2722 } 2723 2724 /** 2725 * struct cfg80211_match_set - sets of attributes to match 2726 * 2727 * @ssid: SSID to be matched; may be zero-length in case of BSSID match 2728 * or no match (RSSI only) 2729 * @bssid: BSSID to be matched; may be all-zero BSSID in case of SSID match 2730 * or no match (RSSI only) 2731 * @rssi_thold: don't report scan results below this threshold (in s32 dBm) 2732 */ 2733 struct cfg80211_match_set { 2734 struct cfg80211_ssid ssid; 2735 u8 bssid[ETH_ALEN]; 2736 s32 rssi_thold; 2737 }; 2738 2739 /** 2740 * struct cfg80211_sched_scan_plan - scan plan for scheduled scan 2741 * 2742 * @interval: interval between scheduled scan iterations. In seconds. 2743 * @iterations: number of scan iterations in this scan plan. Zero means 2744 * infinite loop. 2745 * The last scan plan will always have this parameter set to zero, 2746 * all other scan plans will have a finite number of iterations. 2747 */ 2748 struct cfg80211_sched_scan_plan { 2749 u32 interval; 2750 u32 iterations; 2751 }; 2752 2753 /** 2754 * struct cfg80211_bss_select_adjust - BSS selection with RSSI adjustment. 2755 * 2756 * @band: band of BSS which should match for RSSI level adjustment. 2757 * @delta: value of RSSI level adjustment. 2758 */ 2759 struct cfg80211_bss_select_adjust { 2760 enum nl80211_band band; 2761 s8 delta; 2762 }; 2763 2764 /** 2765 * struct cfg80211_sched_scan_request - scheduled scan request description 2766 * 2767 * @reqid: identifies this request. 2768 * @ssids: SSIDs to scan for (passed in the probe_reqs in active scans) 2769 * @n_ssids: number of SSIDs 2770 * @n_channels: total number of channels to scan 2771 * @ie: optional information element(s) to add into Probe Request or %NULL 2772 * @ie_len: length of ie in octets 2773 * @flags: control flags from &enum nl80211_scan_flags 2774 * @match_sets: sets of parameters to be matched for a scan result 2775 * entry to be considered valid and to be passed to the host 2776 * (others are filtered out). 2777 * If omitted, all results are passed. 2778 * @n_match_sets: number of match sets 2779 * @report_results: indicates that results were reported for this request 2780 * @wiphy: the wiphy this was for 2781 * @dev: the interface 2782 * @scan_start: start time of the scheduled scan 2783 * @channels: channels to scan 2784 * @min_rssi_thold: for drivers only supporting a single threshold, this 2785 * contains the minimum over all matchsets 2786 * @mac_addr: MAC address used with randomisation 2787 * @mac_addr_mask: MAC address mask used with randomisation, bits that 2788 * are 0 in the mask should be randomised, bits that are 1 should 2789 * be taken from the @mac_addr 2790 * @scan_plans: scan plans to be executed in this scheduled scan. Lowest 2791 * index must be executed first. 2792 * @n_scan_plans: number of scan plans, at least 1. 2793 * @rcu_head: RCU callback used to free the struct 2794 * @owner_nlportid: netlink portid of owner (if this should is a request 2795 * owned by a particular socket) 2796 * @nl_owner_dead: netlink owner socket was closed - this request be freed 2797 * @list: for keeping list of requests. 2798 * @delay: delay in seconds to use before starting the first scan 2799 * cycle. The driver may ignore this parameter and start 2800 * immediately (or at any other time), if this feature is not 2801 * supported. 2802 * @relative_rssi_set: Indicates whether @relative_rssi is set or not. 2803 * @relative_rssi: Relative RSSI threshold in dB to restrict scan result 2804 * reporting in connected state to cases where a matching BSS is determined 2805 * to have better or slightly worse RSSI than the current connected BSS. 2806 * The relative RSSI threshold values are ignored in disconnected state. 2807 * @rssi_adjust: delta dB of RSSI preference to be given to the BSSs that belong 2808 * to the specified band while deciding whether a better BSS is reported 2809 * using @relative_rssi. If delta is a negative number, the BSSs that 2810 * belong to the specified band will be penalized by delta dB in relative 2811 * comparisons. 2812 */ 2813 struct cfg80211_sched_scan_request { 2814 u64 reqid; 2815 struct cfg80211_ssid *ssids; 2816 int n_ssids; 2817 u32 n_channels; 2818 const u8 *ie; 2819 size_t ie_len; 2820 u32 flags; 2821 struct cfg80211_match_set *match_sets; 2822 int n_match_sets; 2823 s32 min_rssi_thold; 2824 u32 delay; 2825 struct cfg80211_sched_scan_plan *scan_plans; 2826 int n_scan_plans; 2827 2828 u8 mac_addr[ETH_ALEN] __aligned(2); 2829 u8 mac_addr_mask[ETH_ALEN] __aligned(2); 2830 2831 bool relative_rssi_set; 2832 s8 relative_rssi; 2833 struct cfg80211_bss_select_adjust rssi_adjust; 2834 2835 /* internal */ 2836 struct wiphy *wiphy; 2837 struct net_device *dev; 2838 unsigned long scan_start; 2839 bool report_results; 2840 struct rcu_head rcu_head; 2841 u32 owner_nlportid; 2842 bool nl_owner_dead; 2843 struct list_head list; 2844 2845 /* keep last */ 2846 struct ieee80211_channel *channels[] __counted_by(n_channels); 2847 }; 2848 2849 /** 2850 * enum cfg80211_signal_type - signal type 2851 * 2852 * @CFG80211_SIGNAL_TYPE_NONE: no signal strength information available 2853 * @CFG80211_SIGNAL_TYPE_MBM: signal strength in mBm (100*dBm) 2854 * @CFG80211_SIGNAL_TYPE_UNSPEC: signal strength, increasing from 0 through 100 2855 */ 2856 enum cfg80211_signal_type { 2857 CFG80211_SIGNAL_TYPE_NONE, 2858 CFG80211_SIGNAL_TYPE_MBM, 2859 CFG80211_SIGNAL_TYPE_UNSPEC, 2860 }; 2861 2862 /** 2863 * struct cfg80211_inform_bss - BSS inform data 2864 * @chan: channel the frame was received on 2865 * @signal: signal strength value, according to the wiphy's 2866 * signal type 2867 * @boottime_ns: timestamp (CLOCK_BOOTTIME) when the information was 2868 * received; should match the time when the frame was actually 2869 * received by the device (not just by the host, in case it was 2870 * buffered on the device) and be accurate to about 10ms. 2871 * If the frame isn't buffered, just passing the return value of 2872 * ktime_get_boottime_ns() is likely appropriate. 2873 * @parent_tsf: the time at the start of reception of the first octet of the 2874 * timestamp field of the frame. The time is the TSF of the BSS specified 2875 * by %parent_bssid. 2876 * @parent_bssid: the BSS according to which %parent_tsf is set. This is set to 2877 * the BSS that requested the scan in which the beacon/probe was received. 2878 * @chains: bitmask for filled values in @chain_signal. 2879 * @chain_signal: per-chain signal strength of last received BSS in dBm. 2880 * @restrict_use: restrict usage, if not set, assume @use_for is 2881 * %NL80211_BSS_USE_FOR_NORMAL. 2882 * @use_for: bitmap of possible usage for this BSS, see 2883 * &enum nl80211_bss_use_for 2884 * @cannot_use_reasons: the reasons (bitmap) for not being able to connect, 2885 * if @restrict_use is set and @use_for is zero (empty); may be 0 for 2886 * unspecified reasons; see &enum nl80211_bss_cannot_use_reasons 2887 * @drv_data: Data to be passed through to @inform_bss 2888 */ 2889 struct cfg80211_inform_bss { 2890 struct ieee80211_channel *chan; 2891 s32 signal; 2892 u64 boottime_ns; 2893 u64 parent_tsf; 2894 u8 parent_bssid[ETH_ALEN] __aligned(2); 2895 u8 chains; 2896 s8 chain_signal[IEEE80211_MAX_CHAINS]; 2897 2898 u8 restrict_use:1, use_for:7; 2899 u8 cannot_use_reasons; 2900 2901 void *drv_data; 2902 }; 2903 2904 /** 2905 * struct cfg80211_bss_ies - BSS entry IE data 2906 * @tsf: TSF contained in the frame that carried these IEs 2907 * @rcu_head: internal use, for freeing 2908 * @len: length of the IEs 2909 * @from_beacon: these IEs are known to come from a beacon 2910 * @data: IE data 2911 */ 2912 struct cfg80211_bss_ies { 2913 u64 tsf; 2914 struct rcu_head rcu_head; 2915 int len; 2916 bool from_beacon; 2917 u8 data[]; 2918 }; 2919 2920 /** 2921 * struct cfg80211_bss - BSS description 2922 * 2923 * This structure describes a BSS (which may also be a mesh network) 2924 * for use in scan results and similar. 2925 * 2926 * @channel: channel this BSS is on 2927 * @bssid: BSSID of the BSS 2928 * @beacon_interval: the beacon interval as from the frame 2929 * @capability: the capability field in host byte order 2930 * @ies: the information elements (Note that there is no guarantee that these 2931 * are well-formed!); this is a pointer to either the beacon_ies or 2932 * proberesp_ies depending on whether Probe Response frame has been 2933 * received. It is always non-%NULL. 2934 * @beacon_ies: the information elements from the last Beacon frame 2935 * (implementation note: if @hidden_beacon_bss is set this struct doesn't 2936 * own the beacon_ies, but they're just pointers to the ones from the 2937 * @hidden_beacon_bss struct) 2938 * @proberesp_ies: the information elements from the last Probe Response frame 2939 * @proberesp_ecsa_stuck: ECSA element is stuck in the Probe Response frame, 2940 * cannot rely on it having valid data 2941 * @hidden_beacon_bss: in case this BSS struct represents a probe response from 2942 * a BSS that hides the SSID in its beacon, this points to the BSS struct 2943 * that holds the beacon data. @beacon_ies is still valid, of course, and 2944 * points to the same data as hidden_beacon_bss->beacon_ies in that case. 2945 * @transmitted_bss: pointer to the transmitted BSS, if this is a 2946 * non-transmitted one (multi-BSSID support) 2947 * @nontrans_list: list of non-transmitted BSS, if this is a transmitted one 2948 * (multi-BSSID support) 2949 * @signal: signal strength value (type depends on the wiphy's signal_type) 2950 * @chains: bitmask for filled values in @chain_signal. 2951 * @chain_signal: per-chain signal strength of last received BSS in dBm. 2952 * @bssid_index: index in the multiple BSS set 2953 * @max_bssid_indicator: max number of members in the BSS set 2954 * @use_for: bitmap of possible usage for this BSS, see 2955 * &enum nl80211_bss_use_for 2956 * @cannot_use_reasons: the reasons (bitmap) for not being able to connect, 2957 * if @restrict_use is set and @use_for is zero (empty); may be 0 for 2958 * unspecified reasons; see &enum nl80211_bss_cannot_use_reasons 2959 * @priv: private area for driver use, has at least wiphy->bss_priv_size bytes 2960 */ 2961 struct cfg80211_bss { 2962 struct ieee80211_channel *channel; 2963 2964 const struct cfg80211_bss_ies __rcu *ies; 2965 const struct cfg80211_bss_ies __rcu *beacon_ies; 2966 const struct cfg80211_bss_ies __rcu *proberesp_ies; 2967 2968 struct cfg80211_bss *hidden_beacon_bss; 2969 struct cfg80211_bss *transmitted_bss; 2970 struct list_head nontrans_list; 2971 2972 s32 signal; 2973 2974 u16 beacon_interval; 2975 u16 capability; 2976 2977 u8 bssid[ETH_ALEN]; 2978 u8 chains; 2979 s8 chain_signal[IEEE80211_MAX_CHAINS]; 2980 2981 u8 proberesp_ecsa_stuck:1; 2982 2983 u8 bssid_index; 2984 u8 max_bssid_indicator; 2985 2986 u8 use_for; 2987 u8 cannot_use_reasons; 2988 2989 u8 priv[] __aligned(sizeof(void *)); 2990 }; 2991 2992 /** 2993 * ieee80211_bss_get_elem - find element with given ID 2994 * @bss: the bss to search 2995 * @id: the element ID 2996 * 2997 * Note that the return value is an RCU-protected pointer, so 2998 * rcu_read_lock() must be held when calling this function. 2999 * Return: %NULL if not found. 3000 */ 3001 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id); 3002 3003 /** 3004 * ieee80211_bss_get_ie - find IE with given ID 3005 * @bss: the bss to search 3006 * @id: the element ID 3007 * 3008 * Note that the return value is an RCU-protected pointer, so 3009 * rcu_read_lock() must be held when calling this function. 3010 * Return: %NULL if not found. 3011 */ 3012 static inline const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 id) 3013 { 3014 return (const void *)ieee80211_bss_get_elem(bss, id); 3015 } 3016 3017 3018 /** 3019 * struct cfg80211_auth_request - Authentication request data 3020 * 3021 * This structure provides information needed to complete IEEE 802.11 3022 * authentication. 3023 * 3024 * @bss: The BSS to authenticate with, the callee must obtain a reference 3025 * to it if it needs to keep it. 3026 * @auth_type: Authentication type (algorithm) 3027 * @ie: Extra IEs to add to Authentication frame or %NULL 3028 * @ie_len: Length of ie buffer in octets 3029 * @key_len: length of WEP key for shared key authentication 3030 * @key_idx: index of WEP key for shared key authentication 3031 * @key: WEP key for shared key authentication 3032 * @auth_data: Fields and elements in Authentication frames. This contains 3033 * the authentication frame body (non-IE and IE data), excluding the 3034 * Authentication algorithm number, i.e., starting at the Authentication 3035 * transaction sequence number field. 3036 * @auth_data_len: Length of auth_data buffer in octets 3037 * @link_id: if >= 0, indicates authentication should be done as an MLD, 3038 * the interface address is included as the MLD address and the 3039 * necessary link (with the given link_id) will be created (and 3040 * given an MLD address) by the driver 3041 * @ap_mld_addr: AP MLD address in case of authentication request with 3042 * an AP MLD, valid iff @link_id >= 0 3043 */ 3044 struct cfg80211_auth_request { 3045 struct cfg80211_bss *bss; 3046 const u8 *ie; 3047 size_t ie_len; 3048 enum nl80211_auth_type auth_type; 3049 const u8 *key; 3050 u8 key_len; 3051 s8 key_idx; 3052 const u8 *auth_data; 3053 size_t auth_data_len; 3054 s8 link_id; 3055 const u8 *ap_mld_addr; 3056 }; 3057 3058 /** 3059 * struct cfg80211_assoc_link - per-link information for MLO association 3060 * @bss: the BSS pointer, see also &struct cfg80211_assoc_request::bss; 3061 * if this is %NULL for a link, that link is not requested 3062 * @elems: extra elements for the per-STA profile for this link 3063 * @elems_len: length of the elements 3064 * @disabled: If set this link should be included during association etc. but it 3065 * should not be used until enabled by the AP MLD. 3066 * @error: per-link error code, must be <= 0. If there is an error, then the 3067 * operation as a whole must fail. 3068 */ 3069 struct cfg80211_assoc_link { 3070 struct cfg80211_bss *bss; 3071 const u8 *elems; 3072 size_t elems_len; 3073 bool disabled; 3074 int error; 3075 }; 3076 3077 /** 3078 * enum cfg80211_assoc_req_flags - Over-ride default behaviour in association. 3079 * 3080 * @ASSOC_REQ_DISABLE_HT: Disable HT (802.11n) 3081 * @ASSOC_REQ_DISABLE_VHT: Disable VHT 3082 * @ASSOC_REQ_USE_RRM: Declare RRM capability in this association 3083 * @CONNECT_REQ_EXTERNAL_AUTH_SUPPORT: User space indicates external 3084 * authentication capability. Drivers can offload authentication to 3085 * userspace if this flag is set. Only applicable for cfg80211_connect() 3086 * request (connect callback). 3087 * @ASSOC_REQ_DISABLE_HE: Disable HE 3088 * @ASSOC_REQ_DISABLE_EHT: Disable EHT 3089 * @CONNECT_REQ_MLO_SUPPORT: Userspace indicates support for handling MLD links. 3090 * Drivers shall disable MLO features for the current association if this 3091 * flag is not set. 3092 * @ASSOC_REQ_SPP_AMSDU: SPP A-MSDUs will be used on this connection (if any) 3093 */ 3094 enum cfg80211_assoc_req_flags { 3095 ASSOC_REQ_DISABLE_HT = BIT(0), 3096 ASSOC_REQ_DISABLE_VHT = BIT(1), 3097 ASSOC_REQ_USE_RRM = BIT(2), 3098 CONNECT_REQ_EXTERNAL_AUTH_SUPPORT = BIT(3), 3099 ASSOC_REQ_DISABLE_HE = BIT(4), 3100 ASSOC_REQ_DISABLE_EHT = BIT(5), 3101 CONNECT_REQ_MLO_SUPPORT = BIT(6), 3102 ASSOC_REQ_SPP_AMSDU = BIT(7), 3103 }; 3104 3105 /** 3106 * struct cfg80211_assoc_request - (Re)Association request data 3107 * 3108 * This structure provides information needed to complete IEEE 802.11 3109 * (re)association. 3110 * @bss: The BSS to associate with. If the call is successful the driver is 3111 * given a reference that it must give back to cfg80211_send_rx_assoc() 3112 * or to cfg80211_assoc_timeout(). To ensure proper refcounting, new 3113 * association requests while already associating must be rejected. 3114 * This also applies to the @links.bss parameter, which is used instead 3115 * of this one (it is %NULL) for MLO associations. 3116 * @ie: Extra IEs to add to (Re)Association Request frame or %NULL 3117 * @ie_len: Length of ie buffer in octets 3118 * @use_mfp: Use management frame protection (IEEE 802.11w) in this association 3119 * @crypto: crypto settings 3120 * @prev_bssid: previous BSSID, if not %NULL use reassociate frame. This is used 3121 * to indicate a request to reassociate within the ESS instead of a request 3122 * do the initial association with the ESS. When included, this is set to 3123 * the BSSID of the current association, i.e., to the value that is 3124 * included in the Current AP address field of the Reassociation Request 3125 * frame. 3126 * @flags: See &enum cfg80211_assoc_req_flags 3127 * @ht_capa: HT Capabilities over-rides. Values set in ht_capa_mask 3128 * will be used in ht_capa. Un-supported values will be ignored. 3129 * @ht_capa_mask: The bits of ht_capa which are to be used. 3130 * @vht_capa: VHT capability override 3131 * @vht_capa_mask: VHT capability mask indicating which fields to use 3132 * @fils_kek: FILS KEK for protecting (Re)Association Request/Response frame or 3133 * %NULL if FILS is not used. 3134 * @fils_kek_len: Length of fils_kek in octets 3135 * @fils_nonces: FILS nonces (part of AAD) for protecting (Re)Association 3136 * Request/Response frame or %NULL if FILS is not used. This field starts 3137 * with 16 octets of STA Nonce followed by 16 octets of AP Nonce. 3138 * @s1g_capa: S1G capability override 3139 * @s1g_capa_mask: S1G capability override mask 3140 * @links: per-link information for MLO connections 3141 * @link_id: >= 0 for MLO connections, where links are given, and indicates 3142 * the link on which the association request should be sent 3143 * @ap_mld_addr: AP MLD address in case of MLO association request, 3144 * valid iff @link_id >= 0 3145 */ 3146 struct cfg80211_assoc_request { 3147 struct cfg80211_bss *bss; 3148 const u8 *ie, *prev_bssid; 3149 size_t ie_len; 3150 struct cfg80211_crypto_settings crypto; 3151 bool use_mfp; 3152 u32 flags; 3153 struct ieee80211_ht_cap ht_capa; 3154 struct ieee80211_ht_cap ht_capa_mask; 3155 struct ieee80211_vht_cap vht_capa, vht_capa_mask; 3156 const u8 *fils_kek; 3157 size_t fils_kek_len; 3158 const u8 *fils_nonces; 3159 struct ieee80211_s1g_cap s1g_capa, s1g_capa_mask; 3160 struct cfg80211_assoc_link links[IEEE80211_MLD_MAX_NUM_LINKS]; 3161 const u8 *ap_mld_addr; 3162 s8 link_id; 3163 }; 3164 3165 /** 3166 * struct cfg80211_deauth_request - Deauthentication request data 3167 * 3168 * This structure provides information needed to complete IEEE 802.11 3169 * deauthentication. 3170 * 3171 * @bssid: the BSSID or AP MLD address to deauthenticate from 3172 * @ie: Extra IEs to add to Deauthentication frame or %NULL 3173 * @ie_len: Length of ie buffer in octets 3174 * @reason_code: The reason code for the deauthentication 3175 * @local_state_change: if set, change local state only and 3176 * do not set a deauth frame 3177 */ 3178 struct cfg80211_deauth_request { 3179 const u8 *bssid; 3180 const u8 *ie; 3181 size_t ie_len; 3182 u16 reason_code; 3183 bool local_state_change; 3184 }; 3185 3186 /** 3187 * struct cfg80211_disassoc_request - Disassociation request data 3188 * 3189 * This structure provides information needed to complete IEEE 802.11 3190 * disassociation. 3191 * 3192 * @ap_addr: the BSSID or AP MLD address to disassociate from 3193 * @ie: Extra IEs to add to Disassociation frame or %NULL 3194 * @ie_len: Length of ie buffer in octets 3195 * @reason_code: The reason code for the disassociation 3196 * @local_state_change: This is a request for a local state only, i.e., no 3197 * Disassociation frame is to be transmitted. 3198 */ 3199 struct cfg80211_disassoc_request { 3200 const u8 *ap_addr; 3201 const u8 *ie; 3202 size_t ie_len; 3203 u16 reason_code; 3204 bool local_state_change; 3205 }; 3206 3207 /** 3208 * struct cfg80211_ibss_params - IBSS parameters 3209 * 3210 * This structure defines the IBSS parameters for the join_ibss() 3211 * method. 3212 * 3213 * @ssid: The SSID, will always be non-null. 3214 * @ssid_len: The length of the SSID, will always be non-zero. 3215 * @bssid: Fixed BSSID requested, maybe be %NULL, if set do not 3216 * search for IBSSs with a different BSSID. 3217 * @chandef: defines the channel to use if no other IBSS to join can be found 3218 * @channel_fixed: The channel should be fixed -- do not search for 3219 * IBSSs to join on other channels. 3220 * @ie: information element(s) to include in the beacon 3221 * @ie_len: length of that 3222 * @beacon_interval: beacon interval to use 3223 * @privacy: this is a protected network, keys will be configured 3224 * after joining 3225 * @control_port: whether user space controls IEEE 802.1X port, i.e., 3226 * sets/clears %NL80211_STA_FLAG_AUTHORIZED. If true, the driver is 3227 * required to assume that the port is unauthorized until authorized by 3228 * user space. Otherwise, port is marked authorized by default. 3229 * @control_port_over_nl80211: TRUE if userspace expects to exchange control 3230 * port frames over NL80211 instead of the network interface. 3231 * @userspace_handles_dfs: whether user space controls DFS operation, i.e. 3232 * changes the channel when a radar is detected. This is required 3233 * to operate on DFS channels. 3234 * @basic_rates: bitmap of basic rates to use when creating the IBSS 3235 * @mcast_rate: per-band multicast rate index + 1 (0: disabled) 3236 * @ht_capa: HT Capabilities over-rides. Values set in ht_capa_mask 3237 * will be used in ht_capa. Un-supported values will be ignored. 3238 * @ht_capa_mask: The bits of ht_capa which are to be used. 3239 * @wep_keys: static WEP keys, if not NULL points to an array of 3240 * CFG80211_MAX_WEP_KEYS WEP keys 3241 * @wep_tx_key: key index (0..3) of the default TX static WEP key 3242 */ 3243 struct cfg80211_ibss_params { 3244 const u8 *ssid; 3245 const u8 *bssid; 3246 struct cfg80211_chan_def chandef; 3247 const u8 *ie; 3248 u8 ssid_len, ie_len; 3249 u16 beacon_interval; 3250 u32 basic_rates; 3251 bool channel_fixed; 3252 bool privacy; 3253 bool control_port; 3254 bool control_port_over_nl80211; 3255 bool userspace_handles_dfs; 3256 int mcast_rate[NUM_NL80211_BANDS]; 3257 struct ieee80211_ht_cap ht_capa; 3258 struct ieee80211_ht_cap ht_capa_mask; 3259 struct key_params *wep_keys; 3260 int wep_tx_key; 3261 }; 3262 3263 /** 3264 * struct cfg80211_bss_selection - connection parameters for BSS selection. 3265 * 3266 * @behaviour: requested BSS selection behaviour. 3267 * @param: parameters for requestion behaviour. 3268 * @param.band_pref: preferred band for %NL80211_BSS_SELECT_ATTR_BAND_PREF. 3269 * @param.adjust: parameters for %NL80211_BSS_SELECT_ATTR_RSSI_ADJUST. 3270 */ 3271 struct cfg80211_bss_selection { 3272 enum nl80211_bss_select_attr behaviour; 3273 union { 3274 enum nl80211_band band_pref; 3275 struct cfg80211_bss_select_adjust adjust; 3276 } param; 3277 }; 3278 3279 /** 3280 * struct cfg80211_connect_params - Connection parameters 3281 * 3282 * This structure provides information needed to complete IEEE 802.11 3283 * authentication and association. 3284 * 3285 * @channel: The channel to use or %NULL if not specified (auto-select based 3286 * on scan results) 3287 * @channel_hint: The channel of the recommended BSS for initial connection or 3288 * %NULL if not specified 3289 * @bssid: The AP BSSID or %NULL if not specified (auto-select based on scan 3290 * results) 3291 * @bssid_hint: The recommended AP BSSID for initial connection to the BSS or 3292 * %NULL if not specified. Unlike the @bssid parameter, the driver is 3293 * allowed to ignore this @bssid_hint if it has knowledge of a better BSS 3294 * to use. 3295 * @ssid: SSID 3296 * @ssid_len: Length of ssid in octets 3297 * @auth_type: Authentication type (algorithm) 3298 * @ie: IEs for association request 3299 * @ie_len: Length of assoc_ie in octets 3300 * @privacy: indicates whether privacy-enabled APs should be used 3301 * @mfp: indicate whether management frame protection is used 3302 * @crypto: crypto settings 3303 * @key_len: length of WEP key for shared key authentication 3304 * @key_idx: index of WEP key for shared key authentication 3305 * @key: WEP key for shared key authentication 3306 * @flags: See &enum cfg80211_assoc_req_flags 3307 * @bg_scan_period: Background scan period in seconds 3308 * or -1 to indicate that default value is to be used. 3309 * @ht_capa: HT Capabilities over-rides. Values set in ht_capa_mask 3310 * will be used in ht_capa. Un-supported values will be ignored. 3311 * @ht_capa_mask: The bits of ht_capa which are to be used. 3312 * @vht_capa: VHT Capability overrides 3313 * @vht_capa_mask: The bits of vht_capa which are to be used. 3314 * @pbss: if set, connect to a PCP instead of AP. Valid for DMG 3315 * networks. 3316 * @bss_select: criteria to be used for BSS selection. 3317 * @prev_bssid: previous BSSID, if not %NULL use reassociate frame. This is used 3318 * to indicate a request to reassociate within the ESS instead of a request 3319 * do the initial association with the ESS. When included, this is set to 3320 * the BSSID of the current association, i.e., to the value that is 3321 * included in the Current AP address field of the Reassociation Request 3322 * frame. 3323 * @fils_erp_username: EAP re-authentication protocol (ERP) username part of the 3324 * NAI or %NULL if not specified. This is used to construct FILS wrapped 3325 * data IE. 3326 * @fils_erp_username_len: Length of @fils_erp_username in octets. 3327 * @fils_erp_realm: EAP re-authentication protocol (ERP) realm part of NAI or 3328 * %NULL if not specified. This specifies the domain name of ER server and 3329 * is used to construct FILS wrapped data IE. 3330 * @fils_erp_realm_len: Length of @fils_erp_realm in octets. 3331 * @fils_erp_next_seq_num: The next sequence number to use in the FILS ERP 3332 * messages. This is also used to construct FILS wrapped data IE. 3333 * @fils_erp_rrk: ERP re-authentication Root Key (rRK) used to derive additional 3334 * keys in FILS or %NULL if not specified. 3335 * @fils_erp_rrk_len: Length of @fils_erp_rrk in octets. 3336 * @want_1x: indicates user-space supports and wants to use 802.1X driver 3337 * offload of 4-way handshake. 3338 * @edmg: define the EDMG channels. 3339 * This may specify multiple channels and bonding options for the driver 3340 * to choose from, based on BSS configuration. 3341 */ 3342 struct cfg80211_connect_params { 3343 struct ieee80211_channel *channel; 3344 struct ieee80211_channel *channel_hint; 3345 const u8 *bssid; 3346 const u8 *bssid_hint; 3347 const u8 *ssid; 3348 size_t ssid_len; 3349 enum nl80211_auth_type auth_type; 3350 const u8 *ie; 3351 size_t ie_len; 3352 bool privacy; 3353 enum nl80211_mfp mfp; 3354 struct cfg80211_crypto_settings crypto; 3355 const u8 *key; 3356 u8 key_len, key_idx; 3357 u32 flags; 3358 int bg_scan_period; 3359 struct ieee80211_ht_cap ht_capa; 3360 struct ieee80211_ht_cap ht_capa_mask; 3361 struct ieee80211_vht_cap vht_capa; 3362 struct ieee80211_vht_cap vht_capa_mask; 3363 bool pbss; 3364 struct cfg80211_bss_selection bss_select; 3365 const u8 *prev_bssid; 3366 const u8 *fils_erp_username; 3367 size_t fils_erp_username_len; 3368 const u8 *fils_erp_realm; 3369 size_t fils_erp_realm_len; 3370 u16 fils_erp_next_seq_num; 3371 const u8 *fils_erp_rrk; 3372 size_t fils_erp_rrk_len; 3373 bool want_1x; 3374 struct ieee80211_edmg edmg; 3375 }; 3376 3377 /** 3378 * enum cfg80211_connect_params_changed - Connection parameters being updated 3379 * 3380 * This enum provides information of all connect parameters that 3381 * have to be updated as part of update_connect_params() call. 3382 * 3383 * @UPDATE_ASSOC_IES: Indicates whether association request IEs are updated 3384 * @UPDATE_FILS_ERP_INFO: Indicates that FILS connection parameters (realm, 3385 * username, erp sequence number and rrk) are updated 3386 * @UPDATE_AUTH_TYPE: Indicates that authentication type is updated 3387 */ 3388 enum cfg80211_connect_params_changed { 3389 UPDATE_ASSOC_IES = BIT(0), 3390 UPDATE_FILS_ERP_INFO = BIT(1), 3391 UPDATE_AUTH_TYPE = BIT(2), 3392 }; 3393 3394 /** 3395 * enum wiphy_params_flags - set_wiphy_params bitfield values 3396 * @WIPHY_PARAM_RETRY_SHORT: wiphy->retry_short has changed 3397 * @WIPHY_PARAM_RETRY_LONG: wiphy->retry_long has changed 3398 * @WIPHY_PARAM_FRAG_THRESHOLD: wiphy->frag_threshold has changed 3399 * @WIPHY_PARAM_RTS_THRESHOLD: wiphy->rts_threshold has changed 3400 * @WIPHY_PARAM_COVERAGE_CLASS: coverage class changed 3401 * @WIPHY_PARAM_DYN_ACK: dynack has been enabled 3402 * @WIPHY_PARAM_TXQ_LIMIT: TXQ packet limit has been changed 3403 * @WIPHY_PARAM_TXQ_MEMORY_LIMIT: TXQ memory limit has been changed 3404 * @WIPHY_PARAM_TXQ_QUANTUM: TXQ scheduler quantum 3405 */ 3406 enum wiphy_params_flags { 3407 WIPHY_PARAM_RETRY_SHORT = BIT(0), 3408 WIPHY_PARAM_RETRY_LONG = BIT(1), 3409 WIPHY_PARAM_FRAG_THRESHOLD = BIT(2), 3410 WIPHY_PARAM_RTS_THRESHOLD = BIT(3), 3411 WIPHY_PARAM_COVERAGE_CLASS = BIT(4), 3412 WIPHY_PARAM_DYN_ACK = BIT(5), 3413 WIPHY_PARAM_TXQ_LIMIT = BIT(6), 3414 WIPHY_PARAM_TXQ_MEMORY_LIMIT = BIT(7), 3415 WIPHY_PARAM_TXQ_QUANTUM = BIT(8), 3416 }; 3417 3418 #define IEEE80211_DEFAULT_AIRTIME_WEIGHT 256 3419 3420 /* The per TXQ device queue limit in airtime */ 3421 #define IEEE80211_DEFAULT_AQL_TXQ_LIMIT_L 5000 3422 #define IEEE80211_DEFAULT_AQL_TXQ_LIMIT_H 12000 3423 3424 /* The per interface airtime threshold to switch to lower queue limit */ 3425 #define IEEE80211_AQL_THRESHOLD 24000 3426 3427 /** 3428 * struct cfg80211_pmksa - PMK Security Association 3429 * 3430 * This structure is passed to the set/del_pmksa() method for PMKSA 3431 * caching. 3432 * 3433 * @bssid: The AP's BSSID (may be %NULL). 3434 * @pmkid: The identifier to refer a PMKSA. 3435 * @pmk: The PMK for the PMKSA identified by @pmkid. This is used for key 3436 * derivation by a FILS STA. Otherwise, %NULL. 3437 * @pmk_len: Length of the @pmk. The length of @pmk can differ depending on 3438 * the hash algorithm used to generate this. 3439 * @ssid: SSID to specify the ESS within which a PMKSA is valid when using FILS 3440 * cache identifier (may be %NULL). 3441 * @ssid_len: Length of the @ssid in octets. 3442 * @cache_id: 2-octet cache identifier advertized by a FILS AP identifying the 3443 * scope of PMKSA. This is valid only if @ssid_len is non-zero (may be 3444 * %NULL). 3445 * @pmk_lifetime: Maximum lifetime for PMKSA in seconds 3446 * (dot11RSNAConfigPMKLifetime) or 0 if not specified. 3447 * The configured PMKSA must not be used for PMKSA caching after 3448 * expiration and any keys derived from this PMK become invalid on 3449 * expiration, i.e., the current association must be dropped if the PMK 3450 * used for it expires. 3451 * @pmk_reauth_threshold: Threshold time for reauthentication (percentage of 3452 * PMK lifetime, dot11RSNAConfigPMKReauthThreshold) or 0 if not specified. 3453 * Drivers are expected to trigger a full authentication instead of using 3454 * this PMKSA for caching when reassociating to a new BSS after this 3455 * threshold to generate a new PMK before the current one expires. 3456 */ 3457 struct cfg80211_pmksa { 3458 const u8 *bssid; 3459 const u8 *pmkid; 3460 const u8 *pmk; 3461 size_t pmk_len; 3462 const u8 *ssid; 3463 size_t ssid_len; 3464 const u8 *cache_id; 3465 u32 pmk_lifetime; 3466 u8 pmk_reauth_threshold; 3467 }; 3468 3469 /** 3470 * struct cfg80211_pkt_pattern - packet pattern 3471 * @mask: bitmask where to match pattern and where to ignore bytes, 3472 * one bit per byte, in same format as nl80211 3473 * @pattern: bytes to match where bitmask is 1 3474 * @pattern_len: length of pattern (in bytes) 3475 * @pkt_offset: packet offset (in bytes) 3476 * 3477 * Internal note: @mask and @pattern are allocated in one chunk of 3478 * memory, free @mask only! 3479 */ 3480 struct cfg80211_pkt_pattern { 3481 const u8 *mask, *pattern; 3482 int pattern_len; 3483 int pkt_offset; 3484 }; 3485 3486 /** 3487 * struct cfg80211_wowlan_tcp - TCP connection parameters 3488 * 3489 * @sock: (internal) socket for source port allocation 3490 * @src: source IP address 3491 * @dst: destination IP address 3492 * @dst_mac: destination MAC address 3493 * @src_port: source port 3494 * @dst_port: destination port 3495 * @payload_len: data payload length 3496 * @payload: data payload buffer 3497 * @payload_seq: payload sequence stamping configuration 3498 * @data_interval: interval at which to send data packets 3499 * @wake_len: wakeup payload match length 3500 * @wake_data: wakeup payload match data 3501 * @wake_mask: wakeup payload match mask 3502 * @tokens_size: length of the tokens buffer 3503 * @payload_tok: payload token usage configuration 3504 */ 3505 struct cfg80211_wowlan_tcp { 3506 struct socket *sock; 3507 __be32 src, dst; 3508 u16 src_port, dst_port; 3509 u8 dst_mac[ETH_ALEN]; 3510 int payload_len; 3511 const u8 *payload; 3512 struct nl80211_wowlan_tcp_data_seq payload_seq; 3513 u32 data_interval; 3514 u32 wake_len; 3515 const u8 *wake_data, *wake_mask; 3516 u32 tokens_size; 3517 /* must be last, variable member */ 3518 struct nl80211_wowlan_tcp_data_token payload_tok; 3519 }; 3520 3521 /** 3522 * struct cfg80211_wowlan - Wake on Wireless-LAN support info 3523 * 3524 * This structure defines the enabled WoWLAN triggers for the device. 3525 * @any: wake up on any activity -- special trigger if device continues 3526 * operating as normal during suspend 3527 * @disconnect: wake up if getting disconnected 3528 * @magic_pkt: wake up on receiving magic packet 3529 * @patterns: wake up on receiving packet matching a pattern 3530 * @n_patterns: number of patterns 3531 * @gtk_rekey_failure: wake up on GTK rekey failure 3532 * @eap_identity_req: wake up on EAP identity request packet 3533 * @four_way_handshake: wake up on 4-way handshake 3534 * @rfkill_release: wake up when rfkill is released 3535 * @tcp: TCP connection establishment/wakeup parameters, see nl80211.h. 3536 * NULL if not configured. 3537 * @nd_config: configuration for the scan to be used for net detect wake. 3538 */ 3539 struct cfg80211_wowlan { 3540 bool any, disconnect, magic_pkt, gtk_rekey_failure, 3541 eap_identity_req, four_way_handshake, 3542 rfkill_release; 3543 struct cfg80211_pkt_pattern *patterns; 3544 struct cfg80211_wowlan_tcp *tcp; 3545 int n_patterns; 3546 struct cfg80211_sched_scan_request *nd_config; 3547 }; 3548 3549 /** 3550 * struct cfg80211_coalesce_rules - Coalesce rule parameters 3551 * 3552 * This structure defines coalesce rule for the device. 3553 * @delay: maximum coalescing delay in msecs. 3554 * @condition: condition for packet coalescence. 3555 * see &enum nl80211_coalesce_condition. 3556 * @patterns: array of packet patterns 3557 * @n_patterns: number of patterns 3558 */ 3559 struct cfg80211_coalesce_rules { 3560 int delay; 3561 enum nl80211_coalesce_condition condition; 3562 struct cfg80211_pkt_pattern *patterns; 3563 int n_patterns; 3564 }; 3565 3566 /** 3567 * struct cfg80211_coalesce - Packet coalescing settings 3568 * 3569 * This structure defines coalescing settings. 3570 * @rules: array of coalesce rules 3571 * @n_rules: number of rules 3572 */ 3573 struct cfg80211_coalesce { 3574 int n_rules; 3575 struct cfg80211_coalesce_rules rules[] __counted_by(n_rules); 3576 }; 3577 3578 /** 3579 * struct cfg80211_wowlan_nd_match - information about the match 3580 * 3581 * @ssid: SSID of the match that triggered the wake up 3582 * @n_channels: Number of channels where the match occurred. This 3583 * value may be zero if the driver can't report the channels. 3584 * @channels: center frequencies of the channels where a match 3585 * occurred (in MHz) 3586 */ 3587 struct cfg80211_wowlan_nd_match { 3588 struct cfg80211_ssid ssid; 3589 int n_channels; 3590 u32 channels[] __counted_by(n_channels); 3591 }; 3592 3593 /** 3594 * struct cfg80211_wowlan_nd_info - net detect wake up information 3595 * 3596 * @n_matches: Number of match information instances provided in 3597 * @matches. This value may be zero if the driver can't provide 3598 * match information. 3599 * @matches: Array of pointers to matches containing information about 3600 * the matches that triggered the wake up. 3601 */ 3602 struct cfg80211_wowlan_nd_info { 3603 int n_matches; 3604 struct cfg80211_wowlan_nd_match *matches[] __counted_by(n_matches); 3605 }; 3606 3607 /** 3608 * struct cfg80211_wowlan_wakeup - wakeup report 3609 * @disconnect: woke up by getting disconnected 3610 * @magic_pkt: woke up by receiving magic packet 3611 * @gtk_rekey_failure: woke up by GTK rekey failure 3612 * @eap_identity_req: woke up by EAP identity request packet 3613 * @four_way_handshake: woke up by 4-way handshake 3614 * @rfkill_release: woke up by rfkill being released 3615 * @pattern_idx: pattern that caused wakeup, -1 if not due to pattern 3616 * @packet_present_len: copied wakeup packet data 3617 * @packet_len: original wakeup packet length 3618 * @packet: The packet causing the wakeup, if any. 3619 * @packet_80211: For pattern match, magic packet and other data 3620 * frame triggers an 802.3 frame should be reported, for 3621 * disconnect due to deauth 802.11 frame. This indicates which 3622 * it is. 3623 * @tcp_match: TCP wakeup packet received 3624 * @tcp_connlost: TCP connection lost or failed to establish 3625 * @tcp_nomoretokens: TCP data ran out of tokens 3626 * @net_detect: if not %NULL, woke up because of net detect 3627 * @unprot_deauth_disassoc: woke up due to unprotected deauth or 3628 * disassoc frame (in MFP). 3629 */ 3630 struct cfg80211_wowlan_wakeup { 3631 bool disconnect, magic_pkt, gtk_rekey_failure, 3632 eap_identity_req, four_way_handshake, 3633 rfkill_release, packet_80211, 3634 tcp_match, tcp_connlost, tcp_nomoretokens, 3635 unprot_deauth_disassoc; 3636 s32 pattern_idx; 3637 u32 packet_present_len, packet_len; 3638 const void *packet; 3639 struct cfg80211_wowlan_nd_info *net_detect; 3640 }; 3641 3642 /** 3643 * struct cfg80211_gtk_rekey_data - rekey data 3644 * @kek: key encryption key (@kek_len bytes) 3645 * @kck: key confirmation key (@kck_len bytes) 3646 * @replay_ctr: replay counter (NL80211_REPLAY_CTR_LEN bytes) 3647 * @kek_len: length of kek 3648 * @kck_len: length of kck 3649 * @akm: akm (oui, id) 3650 */ 3651 struct cfg80211_gtk_rekey_data { 3652 const u8 *kek, *kck, *replay_ctr; 3653 u32 akm; 3654 u8 kek_len, kck_len; 3655 }; 3656 3657 /** 3658 * struct cfg80211_update_ft_ies_params - FT IE Information 3659 * 3660 * This structure provides information needed to update the fast transition IE 3661 * 3662 * @md: The Mobility Domain ID, 2 Octet value 3663 * @ie: Fast Transition IEs 3664 * @ie_len: Length of ft_ie in octets 3665 */ 3666 struct cfg80211_update_ft_ies_params { 3667 u16 md; 3668 const u8 *ie; 3669 size_t ie_len; 3670 }; 3671 3672 /** 3673 * struct cfg80211_mgmt_tx_params - mgmt tx parameters 3674 * 3675 * This structure provides information needed to transmit a mgmt frame 3676 * 3677 * @chan: channel to use 3678 * @offchan: indicates whether off channel operation is required 3679 * @wait: duration for ROC 3680 * @buf: buffer to transmit 3681 * @len: buffer length 3682 * @no_cck: don't use cck rates for this frame 3683 * @dont_wait_for_ack: tells the low level not to wait for an ack 3684 * @n_csa_offsets: length of csa_offsets array 3685 * @csa_offsets: array of all the csa offsets in the frame 3686 * @link_id: for MLO, the link ID to transmit on, -1 if not given; note 3687 * that the link ID isn't validated (much), it's in range but the 3688 * link might not exist (or be used by the receiver STA) 3689 */ 3690 struct cfg80211_mgmt_tx_params { 3691 struct ieee80211_channel *chan; 3692 bool offchan; 3693 unsigned int wait; 3694 const u8 *buf; 3695 size_t len; 3696 bool no_cck; 3697 bool dont_wait_for_ack; 3698 int n_csa_offsets; 3699 const u16 *csa_offsets; 3700 int link_id; 3701 }; 3702 3703 /** 3704 * struct cfg80211_dscp_exception - DSCP exception 3705 * 3706 * @dscp: DSCP value that does not adhere to the user priority range definition 3707 * @up: user priority value to which the corresponding DSCP value belongs 3708 */ 3709 struct cfg80211_dscp_exception { 3710 u8 dscp; 3711 u8 up; 3712 }; 3713 3714 /** 3715 * struct cfg80211_dscp_range - DSCP range definition for user priority 3716 * 3717 * @low: lowest DSCP value of this user priority range, inclusive 3718 * @high: highest DSCP value of this user priority range, inclusive 3719 */ 3720 struct cfg80211_dscp_range { 3721 u8 low; 3722 u8 high; 3723 }; 3724 3725 /* QoS Map Set element length defined in IEEE Std 802.11-2012, 8.4.2.97 */ 3726 #define IEEE80211_QOS_MAP_MAX_EX 21 3727 #define IEEE80211_QOS_MAP_LEN_MIN 16 3728 #define IEEE80211_QOS_MAP_LEN_MAX \ 3729 (IEEE80211_QOS_MAP_LEN_MIN + 2 * IEEE80211_QOS_MAP_MAX_EX) 3730 3731 /** 3732 * struct cfg80211_qos_map - QoS Map Information 3733 * 3734 * This struct defines the Interworking QoS map setting for DSCP values 3735 * 3736 * @num_des: number of DSCP exceptions (0..21) 3737 * @dscp_exception: optionally up to maximum of 21 DSCP exceptions from 3738 * the user priority DSCP range definition 3739 * @up: DSCP range definition for a particular user priority 3740 */ 3741 struct cfg80211_qos_map { 3742 u8 num_des; 3743 struct cfg80211_dscp_exception dscp_exception[IEEE80211_QOS_MAP_MAX_EX]; 3744 struct cfg80211_dscp_range up[8]; 3745 }; 3746 3747 /** 3748 * struct cfg80211_nan_conf - NAN configuration 3749 * 3750 * This struct defines NAN configuration parameters 3751 * 3752 * @master_pref: master preference (1 - 255) 3753 * @bands: operating bands, a bitmap of &enum nl80211_band values. 3754 * For instance, for NL80211_BAND_2GHZ, bit 0 would be set 3755 * (i.e. BIT(NL80211_BAND_2GHZ)). 3756 */ 3757 struct cfg80211_nan_conf { 3758 u8 master_pref; 3759 u8 bands; 3760 }; 3761 3762 /** 3763 * enum cfg80211_nan_conf_changes - indicates changed fields in NAN 3764 * configuration 3765 * 3766 * @CFG80211_NAN_CONF_CHANGED_PREF: master preference 3767 * @CFG80211_NAN_CONF_CHANGED_BANDS: operating bands 3768 */ 3769 enum cfg80211_nan_conf_changes { 3770 CFG80211_NAN_CONF_CHANGED_PREF = BIT(0), 3771 CFG80211_NAN_CONF_CHANGED_BANDS = BIT(1), 3772 }; 3773 3774 /** 3775 * struct cfg80211_nan_func_filter - a NAN function Rx / Tx filter 3776 * 3777 * @filter: the content of the filter 3778 * @len: the length of the filter 3779 */ 3780 struct cfg80211_nan_func_filter { 3781 const u8 *filter; 3782 u8 len; 3783 }; 3784 3785 /** 3786 * struct cfg80211_nan_func - a NAN function 3787 * 3788 * @type: &enum nl80211_nan_function_type 3789 * @service_id: the service ID of the function 3790 * @publish_type: &nl80211_nan_publish_type 3791 * @close_range: if true, the range should be limited. Threshold is 3792 * implementation specific. 3793 * @publish_bcast: if true, the solicited publish should be broadcasted 3794 * @subscribe_active: if true, the subscribe is active 3795 * @followup_id: the instance ID for follow up 3796 * @followup_reqid: the requester instance ID for follow up 3797 * @followup_dest: MAC address of the recipient of the follow up 3798 * @ttl: time to live counter in DW. 3799 * @serv_spec_info: Service Specific Info 3800 * @serv_spec_info_len: Service Specific Info length 3801 * @srf_include: if true, SRF is inclusive 3802 * @srf_bf: Bloom Filter 3803 * @srf_bf_len: Bloom Filter length 3804 * @srf_bf_idx: Bloom Filter index 3805 * @srf_macs: SRF MAC addresses 3806 * @srf_num_macs: number of MAC addresses in SRF 3807 * @rx_filters: rx filters that are matched with corresponding peer's tx_filter 3808 * @tx_filters: filters that should be transmitted in the SDF. 3809 * @num_rx_filters: length of &rx_filters. 3810 * @num_tx_filters: length of &tx_filters. 3811 * @instance_id: driver allocated id of the function. 3812 * @cookie: unique NAN function identifier. 3813 */ 3814 struct cfg80211_nan_func { 3815 enum nl80211_nan_function_type type; 3816 u8 service_id[NL80211_NAN_FUNC_SERVICE_ID_LEN]; 3817 u8 publish_type; 3818 bool close_range; 3819 bool publish_bcast; 3820 bool subscribe_active; 3821 u8 followup_id; 3822 u8 followup_reqid; 3823 struct mac_address followup_dest; 3824 u32 ttl; 3825 const u8 *serv_spec_info; 3826 u8 serv_spec_info_len; 3827 bool srf_include; 3828 const u8 *srf_bf; 3829 u8 srf_bf_len; 3830 u8 srf_bf_idx; 3831 struct mac_address *srf_macs; 3832 int srf_num_macs; 3833 struct cfg80211_nan_func_filter *rx_filters; 3834 struct cfg80211_nan_func_filter *tx_filters; 3835 u8 num_tx_filters; 3836 u8 num_rx_filters; 3837 u8 instance_id; 3838 u64 cookie; 3839 }; 3840 3841 /** 3842 * struct cfg80211_pmk_conf - PMK configuration 3843 * 3844 * @aa: authenticator address 3845 * @pmk_len: PMK length in bytes. 3846 * @pmk: the PMK material 3847 * @pmk_r0_name: PMK-R0 Name. NULL if not applicable (i.e., the PMK 3848 * is not PMK-R0). When pmk_r0_name is not NULL, the pmk field 3849 * holds PMK-R0. 3850 */ 3851 struct cfg80211_pmk_conf { 3852 const u8 *aa; 3853 u8 pmk_len; 3854 const u8 *pmk; 3855 const u8 *pmk_r0_name; 3856 }; 3857 3858 /** 3859 * struct cfg80211_external_auth_params - Trigger External authentication. 3860 * 3861 * Commonly used across the external auth request and event interfaces. 3862 * 3863 * @action: action type / trigger for external authentication. Only significant 3864 * for the authentication request event interface (driver to user space). 3865 * @bssid: BSSID of the peer with which the authentication has 3866 * to happen. Used by both the authentication request event and 3867 * authentication response command interface. 3868 * @ssid: SSID of the AP. Used by both the authentication request event and 3869 * authentication response command interface. 3870 * @key_mgmt_suite: AKM suite of the respective authentication. Used by the 3871 * authentication request event interface. 3872 * @status: status code, %WLAN_STATUS_SUCCESS for successful authentication, 3873 * use %WLAN_STATUS_UNSPECIFIED_FAILURE if user space cannot give you 3874 * the real status code for failures. Used only for the authentication 3875 * response command interface (user space to driver). 3876 * @pmkid: The identifier to refer a PMKSA. 3877 * @mld_addr: MLD address of the peer. Used by the authentication request event 3878 * interface. Driver indicates this to enable MLO during the authentication 3879 * offload to user space. Driver shall look at %NL80211_ATTR_MLO_SUPPORT 3880 * flag capability in NL80211_CMD_CONNECT to know whether the user space 3881 * supports enabling MLO during the authentication offload. 3882 * User space should use the address of the interface (on which the 3883 * authentication request event reported) as self MLD address. User space 3884 * and driver should use MLD addresses in RA, TA and BSSID fields of 3885 * authentication frames sent or received via cfg80211. The driver 3886 * translates the MLD addresses to/from link addresses based on the link 3887 * chosen for the authentication. 3888 */ 3889 struct cfg80211_external_auth_params { 3890 enum nl80211_external_auth_action action; 3891 u8 bssid[ETH_ALEN] __aligned(2); 3892 struct cfg80211_ssid ssid; 3893 unsigned int key_mgmt_suite; 3894 u16 status; 3895 const u8 *pmkid; 3896 u8 mld_addr[ETH_ALEN] __aligned(2); 3897 }; 3898 3899 /** 3900 * struct cfg80211_ftm_responder_stats - FTM responder statistics 3901 * 3902 * @filled: bitflag of flags using the bits of &enum nl80211_ftm_stats to 3903 * indicate the relevant values in this struct for them 3904 * @success_num: number of FTM sessions in which all frames were successfully 3905 * answered 3906 * @partial_num: number of FTM sessions in which part of frames were 3907 * successfully answered 3908 * @failed_num: number of failed FTM sessions 3909 * @asap_num: number of ASAP FTM sessions 3910 * @non_asap_num: number of non-ASAP FTM sessions 3911 * @total_duration_ms: total sessions durations - gives an indication 3912 * of how much time the responder was busy 3913 * @unknown_triggers_num: number of unknown FTM triggers - triggers from 3914 * initiators that didn't finish successfully the negotiation phase with 3915 * the responder 3916 * @reschedule_requests_num: number of FTM reschedule requests - initiator asks 3917 * for a new scheduling although it already has scheduled FTM slot 3918 * @out_of_window_triggers_num: total FTM triggers out of scheduled window 3919 */ 3920 struct cfg80211_ftm_responder_stats { 3921 u32 filled; 3922 u32 success_num; 3923 u32 partial_num; 3924 u32 failed_num; 3925 u32 asap_num; 3926 u32 non_asap_num; 3927 u64 total_duration_ms; 3928 u32 unknown_triggers_num; 3929 u32 reschedule_requests_num; 3930 u32 out_of_window_triggers_num; 3931 }; 3932 3933 /** 3934 * struct cfg80211_pmsr_ftm_result - FTM result 3935 * @failure_reason: if this measurement failed (PMSR status is 3936 * %NL80211_PMSR_STATUS_FAILURE), this gives a more precise 3937 * reason than just "failure" 3938 * @burst_index: if reporting partial results, this is the index 3939 * in [0 .. num_bursts-1] of the burst that's being reported 3940 * @num_ftmr_attempts: number of FTM request frames transmitted 3941 * @num_ftmr_successes: number of FTM request frames acked 3942 * @busy_retry_time: if failure_reason is %NL80211_PMSR_FTM_FAILURE_PEER_BUSY, 3943 * fill this to indicate in how many seconds a retry is deemed possible 3944 * by the responder 3945 * @num_bursts_exp: actual number of bursts exponent negotiated 3946 * @burst_duration: actual burst duration negotiated 3947 * @ftms_per_burst: actual FTMs per burst negotiated 3948 * @lci_len: length of LCI information (if present) 3949 * @civicloc_len: length of civic location information (if present) 3950 * @lci: LCI data (may be %NULL) 3951 * @civicloc: civic location data (may be %NULL) 3952 * @rssi_avg: average RSSI over FTM action frames reported 3953 * @rssi_spread: spread of the RSSI over FTM action frames reported 3954 * @tx_rate: bitrate for transmitted FTM action frame response 3955 * @rx_rate: bitrate of received FTM action frame 3956 * @rtt_avg: average of RTTs measured (must have either this or @dist_avg) 3957 * @rtt_variance: variance of RTTs measured (note that standard deviation is 3958 * the square root of the variance) 3959 * @rtt_spread: spread of the RTTs measured 3960 * @dist_avg: average of distances (mm) measured 3961 * (must have either this or @rtt_avg) 3962 * @dist_variance: variance of distances measured (see also @rtt_variance) 3963 * @dist_spread: spread of distances measured (see also @rtt_spread) 3964 * @num_ftmr_attempts_valid: @num_ftmr_attempts is valid 3965 * @num_ftmr_successes_valid: @num_ftmr_successes is valid 3966 * @rssi_avg_valid: @rssi_avg is valid 3967 * @rssi_spread_valid: @rssi_spread is valid 3968 * @tx_rate_valid: @tx_rate is valid 3969 * @rx_rate_valid: @rx_rate is valid 3970 * @rtt_avg_valid: @rtt_avg is valid 3971 * @rtt_variance_valid: @rtt_variance is valid 3972 * @rtt_spread_valid: @rtt_spread is valid 3973 * @dist_avg_valid: @dist_avg is valid 3974 * @dist_variance_valid: @dist_variance is valid 3975 * @dist_spread_valid: @dist_spread is valid 3976 */ 3977 struct cfg80211_pmsr_ftm_result { 3978 const u8 *lci; 3979 const u8 *civicloc; 3980 unsigned int lci_len; 3981 unsigned int civicloc_len; 3982 enum nl80211_peer_measurement_ftm_failure_reasons failure_reason; 3983 u32 num_ftmr_attempts, num_ftmr_successes; 3984 s16 burst_index; 3985 u8 busy_retry_time; 3986 u8 num_bursts_exp; 3987 u8 burst_duration; 3988 u8 ftms_per_burst; 3989 s32 rssi_avg; 3990 s32 rssi_spread; 3991 struct rate_info tx_rate, rx_rate; 3992 s64 rtt_avg; 3993 s64 rtt_variance; 3994 s64 rtt_spread; 3995 s64 dist_avg; 3996 s64 dist_variance; 3997 s64 dist_spread; 3998 3999 u16 num_ftmr_attempts_valid:1, 4000 num_ftmr_successes_valid:1, 4001 rssi_avg_valid:1, 4002 rssi_spread_valid:1, 4003 tx_rate_valid:1, 4004 rx_rate_valid:1, 4005 rtt_avg_valid:1, 4006 rtt_variance_valid:1, 4007 rtt_spread_valid:1, 4008 dist_avg_valid:1, 4009 dist_variance_valid:1, 4010 dist_spread_valid:1; 4011 }; 4012 4013 /** 4014 * struct cfg80211_pmsr_result - peer measurement result 4015 * @addr: address of the peer 4016 * @host_time: host time (use ktime_get_boottime() adjust to the time when the 4017 * measurement was made) 4018 * @ap_tsf: AP's TSF at measurement time 4019 * @status: status of the measurement 4020 * @final: if reporting partial results, mark this as the last one; if not 4021 * reporting partial results always set this flag 4022 * @ap_tsf_valid: indicates the @ap_tsf value is valid 4023 * @type: type of the measurement reported, note that we only support reporting 4024 * one type at a time, but you can report multiple results separately and 4025 * they're all aggregated for userspace. 4026 * @ftm: FTM result 4027 */ 4028 struct cfg80211_pmsr_result { 4029 u64 host_time, ap_tsf; 4030 enum nl80211_peer_measurement_status status; 4031 4032 u8 addr[ETH_ALEN]; 4033 4034 u8 final:1, 4035 ap_tsf_valid:1; 4036 4037 enum nl80211_peer_measurement_type type; 4038 4039 union { 4040 struct cfg80211_pmsr_ftm_result ftm; 4041 }; 4042 }; 4043 4044 /** 4045 * struct cfg80211_pmsr_ftm_request_peer - FTM request data 4046 * @requested: indicates FTM is requested 4047 * @preamble: frame preamble to use 4048 * @burst_period: burst period to use 4049 * @asap: indicates to use ASAP mode 4050 * @num_bursts_exp: number of bursts exponent 4051 * @burst_duration: burst duration 4052 * @ftms_per_burst: number of FTMs per burst 4053 * @ftmr_retries: number of retries for FTM request 4054 * @request_lci: request LCI information 4055 * @request_civicloc: request civic location information 4056 * @trigger_based: use trigger based ranging for the measurement 4057 * If neither @trigger_based nor @non_trigger_based is set, 4058 * EDCA based ranging will be used. 4059 * @non_trigger_based: use non trigger based ranging for the measurement 4060 * If neither @trigger_based nor @non_trigger_based is set, 4061 * EDCA based ranging will be used. 4062 * @lmr_feedback: negotiate for I2R LMR feedback. Only valid if either 4063 * @trigger_based or @non_trigger_based is set. 4064 * @bss_color: the bss color of the responder. Optional. Set to zero to 4065 * indicate the driver should set the BSS color. Only valid if 4066 * @non_trigger_based or @trigger_based is set. 4067 * 4068 * See also nl80211 for the respective attribute documentation. 4069 */ 4070 struct cfg80211_pmsr_ftm_request_peer { 4071 enum nl80211_preamble preamble; 4072 u16 burst_period; 4073 u8 requested:1, 4074 asap:1, 4075 request_lci:1, 4076 request_civicloc:1, 4077 trigger_based:1, 4078 non_trigger_based:1, 4079 lmr_feedback:1; 4080 u8 num_bursts_exp; 4081 u8 burst_duration; 4082 u8 ftms_per_burst; 4083 u8 ftmr_retries; 4084 u8 bss_color; 4085 }; 4086 4087 /** 4088 * struct cfg80211_pmsr_request_peer - peer data for a peer measurement request 4089 * @addr: MAC address 4090 * @chandef: channel to use 4091 * @report_ap_tsf: report the associated AP's TSF 4092 * @ftm: FTM data, see &struct cfg80211_pmsr_ftm_request_peer 4093 */ 4094 struct cfg80211_pmsr_request_peer { 4095 u8 addr[ETH_ALEN]; 4096 struct cfg80211_chan_def chandef; 4097 u8 report_ap_tsf:1; 4098 struct cfg80211_pmsr_ftm_request_peer ftm; 4099 }; 4100 4101 /** 4102 * struct cfg80211_pmsr_request - peer measurement request 4103 * @cookie: cookie, set by cfg80211 4104 * @nl_portid: netlink portid - used by cfg80211 4105 * @drv_data: driver data for this request, if required for aborting, 4106 * not otherwise freed or anything by cfg80211 4107 * @mac_addr: MAC address used for (randomised) request 4108 * @mac_addr_mask: MAC address mask used for randomisation, bits that 4109 * are 0 in the mask should be randomised, bits that are 1 should 4110 * be taken from the @mac_addr 4111 * @list: used by cfg80211 to hold on to the request 4112 * @timeout: timeout (in milliseconds) for the whole operation, if 4113 * zero it means there's no timeout 4114 * @n_peers: number of peers to do measurements with 4115 * @peers: per-peer measurement request data 4116 */ 4117 struct cfg80211_pmsr_request { 4118 u64 cookie; 4119 void *drv_data; 4120 u32 n_peers; 4121 u32 nl_portid; 4122 4123 u32 timeout; 4124 4125 u8 mac_addr[ETH_ALEN] __aligned(2); 4126 u8 mac_addr_mask[ETH_ALEN] __aligned(2); 4127 4128 struct list_head list; 4129 4130 struct cfg80211_pmsr_request_peer peers[] __counted_by(n_peers); 4131 }; 4132 4133 /** 4134 * struct cfg80211_update_owe_info - OWE Information 4135 * 4136 * This structure provides information needed for the drivers to offload OWE 4137 * (Opportunistic Wireless Encryption) processing to the user space. 4138 * 4139 * Commonly used across update_owe_info request and event interfaces. 4140 * 4141 * @peer: MAC address of the peer device for which the OWE processing 4142 * has to be done. 4143 * @status: status code, %WLAN_STATUS_SUCCESS for successful OWE info 4144 * processing, use %WLAN_STATUS_UNSPECIFIED_FAILURE if user space 4145 * cannot give you the real status code for failures. Used only for 4146 * OWE update request command interface (user space to driver). 4147 * @ie: IEs obtained from the peer or constructed by the user space. These are 4148 * the IEs of the remote peer in the event from the host driver and 4149 * the constructed IEs by the user space in the request interface. 4150 * @ie_len: Length of IEs in octets. 4151 * @assoc_link_id: MLO link ID of the AP, with which (re)association requested 4152 * by peer. This will be filled by driver for both MLO and non-MLO station 4153 * connections when the AP affiliated with an MLD. For non-MLD AP mode, it 4154 * will be -1. Used only with OWE update event (driver to user space). 4155 * @peer_mld_addr: For MLO connection, MLD address of the peer. For non-MLO 4156 * connection, it will be all zeros. This is applicable only when 4157 * @assoc_link_id is not -1, i.e., the AP affiliated with an MLD. Used only 4158 * with OWE update event (driver to user space). 4159 */ 4160 struct cfg80211_update_owe_info { 4161 u8 peer[ETH_ALEN] __aligned(2); 4162 u16 status; 4163 const u8 *ie; 4164 size_t ie_len; 4165 int assoc_link_id; 4166 u8 peer_mld_addr[ETH_ALEN] __aligned(2); 4167 }; 4168 4169 /** 4170 * struct mgmt_frame_regs - management frame registrations data 4171 * @global_stypes: bitmap of management frame subtypes registered 4172 * for the entire device 4173 * @interface_stypes: bitmap of management frame subtypes registered 4174 * for the given interface 4175 * @global_mcast_stypes: mcast RX is needed globally for these subtypes 4176 * @interface_mcast_stypes: mcast RX is needed on this interface 4177 * for these subtypes 4178 */ 4179 struct mgmt_frame_regs { 4180 u32 global_stypes, interface_stypes; 4181 u32 global_mcast_stypes, interface_mcast_stypes; 4182 }; 4183 4184 /** 4185 * struct cfg80211_ops - backend description for wireless configuration 4186 * 4187 * This struct is registered by fullmac card drivers and/or wireless stacks 4188 * in order to handle configuration requests on their interfaces. 4189 * 4190 * All callbacks except where otherwise noted should return 0 4191 * on success or a negative error code. 4192 * 4193 * All operations are invoked with the wiphy mutex held. The RTNL may be 4194 * held in addition (due to wireless extensions) but this cannot be relied 4195 * upon except in cases where documented below. Note that due to ordering, 4196 * the RTNL also cannot be acquired in any handlers. 4197 * 4198 * @suspend: wiphy device needs to be suspended. The variable @wow will 4199 * be %NULL or contain the enabled Wake-on-Wireless triggers that are 4200 * configured for the device. 4201 * @resume: wiphy device needs to be resumed 4202 * @set_wakeup: Called when WoWLAN is enabled/disabled, use this callback 4203 * to call device_set_wakeup_enable() to enable/disable wakeup from 4204 * the device. 4205 * 4206 * @add_virtual_intf: create a new virtual interface with the given name, 4207 * must set the struct wireless_dev's iftype. Beware: You must create 4208 * the new netdev in the wiphy's network namespace! Returns the struct 4209 * wireless_dev, or an ERR_PTR. For P2P device wdevs, the driver must 4210 * also set the address member in the wdev. 4211 * This additionally holds the RTNL to be able to do netdev changes. 4212 * 4213 * @del_virtual_intf: remove the virtual interface 4214 * This additionally holds the RTNL to be able to do netdev changes. 4215 * 4216 * @change_virtual_intf: change type/configuration of virtual interface, 4217 * keep the struct wireless_dev's iftype updated. 4218 * This additionally holds the RTNL to be able to do netdev changes. 4219 * 4220 * @add_intf_link: Add a new MLO link to the given interface. Note that 4221 * the wdev->link[] data structure has been updated, so the new link 4222 * address is available. 4223 * @del_intf_link: Remove an MLO link from the given interface. 4224 * 4225 * @add_key: add a key with the given parameters. @mac_addr will be %NULL 4226 * when adding a group key. @link_id will be -1 for non-MLO connection. 4227 * For MLO connection, @link_id will be >= 0 for group key and -1 for 4228 * pairwise key, @mac_addr will be peer's MLD address for MLO pairwise key. 4229 * 4230 * @get_key: get information about the key with the given parameters. 4231 * @mac_addr will be %NULL when requesting information for a group 4232 * key. All pointers given to the @callback function need not be valid 4233 * after it returns. This function should return an error if it is 4234 * not possible to retrieve the key, -ENOENT if it doesn't exist. 4235 * @link_id will be -1 for non-MLO connection. For MLO connection, 4236 * @link_id will be >= 0 for group key and -1 for pairwise key, @mac_addr 4237 * will be peer's MLD address for MLO pairwise key. 4238 * 4239 * @del_key: remove a key given the @mac_addr (%NULL for a group key) 4240 * and @key_index, return -ENOENT if the key doesn't exist. @link_id will 4241 * be -1 for non-MLO connection. For MLO connection, @link_id will be >= 0 4242 * for group key and -1 for pairwise key, @mac_addr will be peer's MLD 4243 * address for MLO pairwise key. 4244 * 4245 * @set_default_key: set the default key on an interface. @link_id will be >= 0 4246 * for MLO connection and -1 for non-MLO connection. 4247 * 4248 * @set_default_mgmt_key: set the default management frame key on an interface. 4249 * @link_id will be >= 0 for MLO connection and -1 for non-MLO connection. 4250 * 4251 * @set_default_beacon_key: set the default Beacon frame key on an interface. 4252 * @link_id will be >= 0 for MLO connection and -1 for non-MLO connection. 4253 * 4254 * @set_rekey_data: give the data necessary for GTK rekeying to the driver 4255 * 4256 * @start_ap: Start acting in AP mode defined by the parameters. 4257 * @change_beacon: Change the beacon parameters for an access point mode 4258 * interface. This should reject the call when AP mode wasn't started. 4259 * @stop_ap: Stop being an AP, including stopping beaconing. 4260 * 4261 * @add_station: Add a new station. 4262 * @del_station: Remove a station 4263 * @change_station: Modify a given station. Note that flags changes are not much 4264 * validated in cfg80211, in particular the auth/assoc/authorized flags 4265 * might come to the driver in invalid combinations -- make sure to check 4266 * them, also against the existing state! Drivers must call 4267 * cfg80211_check_station_change() to validate the information. 4268 * @get_station: get station information for the station identified by @mac 4269 * @dump_station: dump station callback -- resume dump at index @idx 4270 * 4271 * @add_mpath: add a fixed mesh path 4272 * @del_mpath: delete a given mesh path 4273 * @change_mpath: change a given mesh path 4274 * @get_mpath: get a mesh path for the given parameters 4275 * @dump_mpath: dump mesh path callback -- resume dump at index @idx 4276 * @get_mpp: get a mesh proxy path for the given parameters 4277 * @dump_mpp: dump mesh proxy path callback -- resume dump at index @idx 4278 * @join_mesh: join the mesh network with the specified parameters 4279 * (invoked with the wireless_dev mutex held) 4280 * @leave_mesh: leave the current mesh network 4281 * (invoked with the wireless_dev mutex held) 4282 * 4283 * @get_mesh_config: Get the current mesh configuration 4284 * 4285 * @update_mesh_config: Update mesh parameters on a running mesh. 4286 * The mask is a bitfield which tells us which parameters to 4287 * set, and which to leave alone. 4288 * 4289 * @change_bss: Modify parameters for a given BSS. 4290 * 4291 * @inform_bss: Called by cfg80211 while being informed about new BSS data 4292 * for every BSS found within the reported data or frame. This is called 4293 * from within the cfg8011 inform_bss handlers while holding the bss_lock. 4294 * The data parameter is passed through from drv_data inside 4295 * struct cfg80211_inform_bss. 4296 * The new IE data for the BSS is explicitly passed. 4297 * 4298 * @set_txq_params: Set TX queue parameters 4299 * 4300 * @libertas_set_mesh_channel: Only for backward compatibility for libertas, 4301 * as it doesn't implement join_mesh and needs to set the channel to 4302 * join the mesh instead. 4303 * 4304 * @set_monitor_channel: Set the monitor mode channel for the device. If other 4305 * interfaces are active this callback should reject the configuration. 4306 * If no interfaces are active or the device is down, the channel should 4307 * be stored for when a monitor interface becomes active. 4308 * 4309 * @scan: Request to do a scan. If returning zero, the scan request is given 4310 * the driver, and will be valid until passed to cfg80211_scan_done(). 4311 * For scan results, call cfg80211_inform_bss(); you can call this outside 4312 * the scan/scan_done bracket too. 4313 * @abort_scan: Tell the driver to abort an ongoing scan. The driver shall 4314 * indicate the status of the scan through cfg80211_scan_done(). 4315 * 4316 * @auth: Request to authenticate with the specified peer 4317 * (invoked with the wireless_dev mutex held) 4318 * @assoc: Request to (re)associate with the specified peer 4319 * (invoked with the wireless_dev mutex held) 4320 * @deauth: Request to deauthenticate from the specified peer 4321 * (invoked with the wireless_dev mutex held) 4322 * @disassoc: Request to disassociate from the specified peer 4323 * (invoked with the wireless_dev mutex held) 4324 * 4325 * @connect: Connect to the ESS with the specified parameters. When connected, 4326 * call cfg80211_connect_result()/cfg80211_connect_bss() with status code 4327 * %WLAN_STATUS_SUCCESS. If the connection fails for some reason, call 4328 * cfg80211_connect_result()/cfg80211_connect_bss() with the status code 4329 * from the AP or cfg80211_connect_timeout() if no frame with status code 4330 * was received. 4331 * The driver is allowed to roam to other BSSes within the ESS when the 4332 * other BSS matches the connect parameters. When such roaming is initiated 4333 * by the driver, the driver is expected to verify that the target matches 4334 * the configured security parameters and to use Reassociation Request 4335 * frame instead of Association Request frame. 4336 * The connect function can also be used to request the driver to perform a 4337 * specific roam when connected to an ESS. In that case, the prev_bssid 4338 * parameter is set to the BSSID of the currently associated BSS as an 4339 * indication of requesting reassociation. 4340 * In both the driver-initiated and new connect() call initiated roaming 4341 * cases, the result of roaming is indicated with a call to 4342 * cfg80211_roamed(). (invoked with the wireless_dev mutex held) 4343 * @update_connect_params: Update the connect parameters while connected to a 4344 * BSS. The updated parameters can be used by driver/firmware for 4345 * subsequent BSS selection (roaming) decisions and to form the 4346 * Authentication/(Re)Association Request frames. This call does not 4347 * request an immediate disassociation or reassociation with the current 4348 * BSS, i.e., this impacts only subsequent (re)associations. The bits in 4349 * changed are defined in &enum cfg80211_connect_params_changed. 4350 * (invoked with the wireless_dev mutex held) 4351 * @disconnect: Disconnect from the BSS/ESS or stop connection attempts if 4352 * connection is in progress. Once done, call cfg80211_disconnected() in 4353 * case connection was already established (invoked with the 4354 * wireless_dev mutex held), otherwise call cfg80211_connect_timeout(). 4355 * 4356 * @join_ibss: Join the specified IBSS (or create if necessary). Once done, call 4357 * cfg80211_ibss_joined(), also call that function when changing BSSID due 4358 * to a merge. 4359 * (invoked with the wireless_dev mutex held) 4360 * @leave_ibss: Leave the IBSS. 4361 * (invoked with the wireless_dev mutex held) 4362 * 4363 * @set_mcast_rate: Set the specified multicast rate (only if vif is in ADHOC or 4364 * MESH mode) 4365 * 4366 * @set_wiphy_params: Notify that wiphy parameters have changed; 4367 * @changed bitfield (see &enum wiphy_params_flags) describes which values 4368 * have changed. The actual parameter values are available in 4369 * struct wiphy. If returning an error, no value should be changed. 4370 * 4371 * @set_tx_power: set the transmit power according to the parameters, 4372 * the power passed is in mBm, to get dBm use MBM_TO_DBM(). The 4373 * wdev may be %NULL if power was set for the wiphy, and will 4374 * always be %NULL unless the driver supports per-vif TX power 4375 * (as advertised by the nl80211 feature flag.) 4376 * @get_tx_power: store the current TX power into the dbm variable; 4377 * return 0 if successful 4378 * 4379 * @rfkill_poll: polls the hw rfkill line, use cfg80211 reporting 4380 * functions to adjust rfkill hw state 4381 * 4382 * @dump_survey: get site survey information. 4383 * 4384 * @remain_on_channel: Request the driver to remain awake on the specified 4385 * channel for the specified duration to complete an off-channel 4386 * operation (e.g., public action frame exchange). When the driver is 4387 * ready on the requested channel, it must indicate this with an event 4388 * notification by calling cfg80211_ready_on_channel(). 4389 * @cancel_remain_on_channel: Cancel an on-going remain-on-channel operation. 4390 * This allows the operation to be terminated prior to timeout based on 4391 * the duration value. 4392 * @mgmt_tx: Transmit a management frame. 4393 * @mgmt_tx_cancel_wait: Cancel the wait time from transmitting a management 4394 * frame on another channel 4395 * 4396 * @testmode_cmd: run a test mode command; @wdev may be %NULL 4397 * @testmode_dump: Implement a test mode dump. The cb->args[2] and up may be 4398 * used by the function, but 0 and 1 must not be touched. Additionally, 4399 * return error codes other than -ENOBUFS and -ENOENT will terminate the 4400 * dump and return to userspace with an error, so be careful. If any data 4401 * was passed in from userspace then the data/len arguments will be present 4402 * and point to the data contained in %NL80211_ATTR_TESTDATA. 4403 * 4404 * @set_bitrate_mask: set the bitrate mask configuration 4405 * 4406 * @set_pmksa: Cache a PMKID for a BSSID. This is mostly useful for fullmac 4407 * devices running firmwares capable of generating the (re) association 4408 * RSN IE. It allows for faster roaming between WPA2 BSSIDs. 4409 * @del_pmksa: Delete a cached PMKID. 4410 * @flush_pmksa: Flush all cached PMKIDs. 4411 * @set_power_mgmt: Configure WLAN power management. A timeout value of -1 4412 * allows the driver to adjust the dynamic ps timeout value. 4413 * @set_cqm_rssi_config: Configure connection quality monitor RSSI threshold. 4414 * After configuration, the driver should (soon) send an event indicating 4415 * the current level is above/below the configured threshold; this may 4416 * need some care when the configuration is changed (without first being 4417 * disabled.) 4418 * @set_cqm_rssi_range_config: Configure two RSSI thresholds in the 4419 * connection quality monitor. An event is to be sent only when the 4420 * signal level is found to be outside the two values. The driver should 4421 * set %NL80211_EXT_FEATURE_CQM_RSSI_LIST if this method is implemented. 4422 * If it is provided then there's no point providing @set_cqm_rssi_config. 4423 * @set_cqm_txe_config: Configure connection quality monitor TX error 4424 * thresholds. 4425 * @sched_scan_start: Tell the driver to start a scheduled scan. 4426 * @sched_scan_stop: Tell the driver to stop an ongoing scheduled scan with 4427 * given request id. This call must stop the scheduled scan and be ready 4428 * for starting a new one before it returns, i.e. @sched_scan_start may be 4429 * called immediately after that again and should not fail in that case. 4430 * The driver should not call cfg80211_sched_scan_stopped() for a requested 4431 * stop (when this method returns 0). 4432 * 4433 * @update_mgmt_frame_registrations: Notify the driver that management frame 4434 * registrations were updated. The callback is allowed to sleep. 4435 * 4436 * @set_antenna: Set antenna configuration (tx_ant, rx_ant) on the device. 4437 * Parameters are bitmaps of allowed antennas to use for TX/RX. Drivers may 4438 * reject TX/RX mask combinations they cannot support by returning -EINVAL 4439 * (also see nl80211.h @NL80211_ATTR_WIPHY_ANTENNA_TX). 4440 * 4441 * @get_antenna: Get current antenna configuration from device (tx_ant, rx_ant). 4442 * 4443 * @tdls_mgmt: Transmit a TDLS management frame. 4444 * @tdls_oper: Perform a high-level TDLS operation (e.g. TDLS link setup). 4445 * 4446 * @probe_client: probe an associated client, must return a cookie that it 4447 * later passes to cfg80211_probe_status(). 4448 * 4449 * @set_noack_map: Set the NoAck Map for the TIDs. 4450 * 4451 * @get_channel: Get the current operating channel for the virtual interface. 4452 * For monitor interfaces, it should return %NULL unless there's a single 4453 * current monitoring channel. 4454 * 4455 * @start_p2p_device: Start the given P2P device. 4456 * @stop_p2p_device: Stop the given P2P device. 4457 * 4458 * @set_mac_acl: Sets MAC address control list in AP and P2P GO mode. 4459 * Parameters include ACL policy, an array of MAC address of stations 4460 * and the number of MAC addresses. If there is already a list in driver 4461 * this new list replaces the existing one. Driver has to clear its ACL 4462 * when number of MAC addresses entries is passed as 0. Drivers which 4463 * advertise the support for MAC based ACL have to implement this callback. 4464 * 4465 * @start_radar_detection: Start radar detection in the driver. 4466 * 4467 * @end_cac: End running CAC, probably because a related CAC 4468 * was finished on another phy. 4469 * 4470 * @update_ft_ies: Provide updated Fast BSS Transition information to the 4471 * driver. If the SME is in the driver/firmware, this information can be 4472 * used in building Authentication and Reassociation Request frames. 4473 * 4474 * @crit_proto_start: Indicates a critical protocol needs more link reliability 4475 * for a given duration (milliseconds). The protocol is provided so the 4476 * driver can take the most appropriate actions. 4477 * @crit_proto_stop: Indicates critical protocol no longer needs increased link 4478 * reliability. This operation can not fail. 4479 * @set_coalesce: Set coalesce parameters. 4480 * 4481 * @channel_switch: initiate channel-switch procedure (with CSA). Driver is 4482 * responsible for veryfing if the switch is possible. Since this is 4483 * inherently tricky driver may decide to disconnect an interface later 4484 * with cfg80211_stop_iface(). This doesn't mean driver can accept 4485 * everything. It should do it's best to verify requests and reject them 4486 * as soon as possible. 4487 * 4488 * @set_qos_map: Set QoS mapping information to the driver 4489 * 4490 * @set_ap_chanwidth: Set the AP (including P2P GO) mode channel width for the 4491 * given interface This is used e.g. for dynamic HT 20/40 MHz channel width 4492 * changes during the lifetime of the BSS. 4493 * 4494 * @add_tx_ts: validate (if admitted_time is 0) or add a TX TS to the device 4495 * with the given parameters; action frame exchange has been handled by 4496 * userspace so this just has to modify the TX path to take the TS into 4497 * account. 4498 * If the admitted time is 0 just validate the parameters to make sure 4499 * the session can be created at all; it is valid to just always return 4500 * success for that but that may result in inefficient behaviour (handshake 4501 * with the peer followed by immediate teardown when the addition is later 4502 * rejected) 4503 * @del_tx_ts: remove an existing TX TS 4504 * 4505 * @join_ocb: join the OCB network with the specified parameters 4506 * (invoked with the wireless_dev mutex held) 4507 * @leave_ocb: leave the current OCB network 4508 * (invoked with the wireless_dev mutex held) 4509 * 4510 * @tdls_channel_switch: Start channel-switching with a TDLS peer. The driver 4511 * is responsible for continually initiating channel-switching operations 4512 * and returning to the base channel for communication with the AP. 4513 * @tdls_cancel_channel_switch: Stop channel-switching with a TDLS peer. Both 4514 * peers must be on the base channel when the call completes. 4515 * @start_nan: Start the NAN interface. 4516 * @stop_nan: Stop the NAN interface. 4517 * @add_nan_func: Add a NAN function. Returns negative value on failure. 4518 * On success @nan_func ownership is transferred to the driver and 4519 * it may access it outside of the scope of this function. The driver 4520 * should free the @nan_func when no longer needed by calling 4521 * cfg80211_free_nan_func(). 4522 * On success the driver should assign an instance_id in the 4523 * provided @nan_func. 4524 * @del_nan_func: Delete a NAN function. 4525 * @nan_change_conf: changes NAN configuration. The changed parameters must 4526 * be specified in @changes (using &enum cfg80211_nan_conf_changes); 4527 * All other parameters must be ignored. 4528 * 4529 * @set_multicast_to_unicast: configure multicast to unicast conversion for BSS 4530 * 4531 * @get_txq_stats: Get TXQ stats for interface or phy. If wdev is %NULL, this 4532 * function should return phy stats, and interface stats otherwise. 4533 * 4534 * @set_pmk: configure the PMK to be used for offloaded 802.1X 4-Way handshake. 4535 * If not deleted through @del_pmk the PMK remains valid until disconnect 4536 * upon which the driver should clear it. 4537 * (invoked with the wireless_dev mutex held) 4538 * @del_pmk: delete the previously configured PMK for the given authenticator. 4539 * (invoked with the wireless_dev mutex held) 4540 * 4541 * @external_auth: indicates result of offloaded authentication processing from 4542 * user space 4543 * 4544 * @tx_control_port: TX a control port frame (EAPoL). The noencrypt parameter 4545 * tells the driver that the frame should not be encrypted. 4546 * 4547 * @get_ftm_responder_stats: Retrieve FTM responder statistics, if available. 4548 * Statistics should be cumulative, currently no way to reset is provided. 4549 * @start_pmsr: start peer measurement (e.g. FTM) 4550 * @abort_pmsr: abort peer measurement 4551 * 4552 * @update_owe_info: Provide updated OWE info to driver. Driver implementing SME 4553 * but offloading OWE processing to the user space will get the updated 4554 * DH IE through this interface. 4555 * 4556 * @probe_mesh_link: Probe direct Mesh peer's link quality by sending data frame 4557 * and overrule HWMP path selection algorithm. 4558 * @set_tid_config: TID specific configuration, this can be peer or BSS specific 4559 * This callback may sleep. 4560 * @reset_tid_config: Reset TID specific configuration for the peer, for the 4561 * given TIDs. This callback may sleep. 4562 * 4563 * @set_sar_specs: Update the SAR (TX power) settings. 4564 * 4565 * @color_change: Initiate a color change. 4566 * 4567 * @set_fils_aad: Set FILS AAD data to the AP driver so that the driver can use 4568 * those to decrypt (Re)Association Request and encrypt (Re)Association 4569 * Response frame. 4570 * 4571 * @set_radar_background: Configure dedicated offchannel chain available for 4572 * radar/CAC detection on some hw. This chain can't be used to transmit 4573 * or receive frames and it is bounded to a running wdev. 4574 * Background radar/CAC detection allows to avoid the CAC downtime 4575 * switching to a different channel during CAC detection on the selected 4576 * radar channel. 4577 * The caller is expected to set chandef pointer to NULL in order to 4578 * disable background CAC/radar detection. 4579 * @add_link_station: Add a link to a station. 4580 * @mod_link_station: Modify a link of a station. 4581 * @del_link_station: Remove a link of a station. 4582 * 4583 * @set_hw_timestamp: Enable/disable HW timestamping of TM/FTM frames. 4584 * @set_ttlm: set the TID to link mapping. 4585 * @get_radio_mask: get bitmask of radios in use. 4586 * (invoked with the wiphy mutex held) 4587 */ 4588 struct cfg80211_ops { 4589 int (*suspend)(struct wiphy *wiphy, struct cfg80211_wowlan *wow); 4590 int (*resume)(struct wiphy *wiphy); 4591 void (*set_wakeup)(struct wiphy *wiphy, bool enabled); 4592 4593 struct wireless_dev * (*add_virtual_intf)(struct wiphy *wiphy, 4594 const char *name, 4595 unsigned char name_assign_type, 4596 enum nl80211_iftype type, 4597 struct vif_params *params); 4598 int (*del_virtual_intf)(struct wiphy *wiphy, 4599 struct wireless_dev *wdev); 4600 int (*change_virtual_intf)(struct wiphy *wiphy, 4601 struct net_device *dev, 4602 enum nl80211_iftype type, 4603 struct vif_params *params); 4604 4605 int (*add_intf_link)(struct wiphy *wiphy, 4606 struct wireless_dev *wdev, 4607 unsigned int link_id); 4608 void (*del_intf_link)(struct wiphy *wiphy, 4609 struct wireless_dev *wdev, 4610 unsigned int link_id); 4611 4612 int (*add_key)(struct wiphy *wiphy, struct net_device *netdev, 4613 int link_id, u8 key_index, bool pairwise, 4614 const u8 *mac_addr, struct key_params *params); 4615 int (*get_key)(struct wiphy *wiphy, struct net_device *netdev, 4616 int link_id, u8 key_index, bool pairwise, 4617 const u8 *mac_addr, void *cookie, 4618 void (*callback)(void *cookie, struct key_params*)); 4619 int (*del_key)(struct wiphy *wiphy, struct net_device *netdev, 4620 int link_id, u8 key_index, bool pairwise, 4621 const u8 *mac_addr); 4622 int (*set_default_key)(struct wiphy *wiphy, 4623 struct net_device *netdev, int link_id, 4624 u8 key_index, bool unicast, bool multicast); 4625 int (*set_default_mgmt_key)(struct wiphy *wiphy, 4626 struct net_device *netdev, int link_id, 4627 u8 key_index); 4628 int (*set_default_beacon_key)(struct wiphy *wiphy, 4629 struct net_device *netdev, 4630 int link_id, 4631 u8 key_index); 4632 4633 int (*start_ap)(struct wiphy *wiphy, struct net_device *dev, 4634 struct cfg80211_ap_settings *settings); 4635 int (*change_beacon)(struct wiphy *wiphy, struct net_device *dev, 4636 struct cfg80211_ap_update *info); 4637 int (*stop_ap)(struct wiphy *wiphy, struct net_device *dev, 4638 unsigned int link_id); 4639 4640 4641 int (*add_station)(struct wiphy *wiphy, struct net_device *dev, 4642 const u8 *mac, 4643 struct station_parameters *params); 4644 int (*del_station)(struct wiphy *wiphy, struct net_device *dev, 4645 struct station_del_parameters *params); 4646 int (*change_station)(struct wiphy *wiphy, struct net_device *dev, 4647 const u8 *mac, 4648 struct station_parameters *params); 4649 int (*get_station)(struct wiphy *wiphy, struct net_device *dev, 4650 const u8 *mac, struct station_info *sinfo); 4651 int (*dump_station)(struct wiphy *wiphy, struct net_device *dev, 4652 int idx, u8 *mac, struct station_info *sinfo); 4653 4654 int (*add_mpath)(struct wiphy *wiphy, struct net_device *dev, 4655 const u8 *dst, const u8 *next_hop); 4656 int (*del_mpath)(struct wiphy *wiphy, struct net_device *dev, 4657 const u8 *dst); 4658 int (*change_mpath)(struct wiphy *wiphy, struct net_device *dev, 4659 const u8 *dst, const u8 *next_hop); 4660 int (*get_mpath)(struct wiphy *wiphy, struct net_device *dev, 4661 u8 *dst, u8 *next_hop, struct mpath_info *pinfo); 4662 int (*dump_mpath)(struct wiphy *wiphy, struct net_device *dev, 4663 int idx, u8 *dst, u8 *next_hop, 4664 struct mpath_info *pinfo); 4665 int (*get_mpp)(struct wiphy *wiphy, struct net_device *dev, 4666 u8 *dst, u8 *mpp, struct mpath_info *pinfo); 4667 int (*dump_mpp)(struct wiphy *wiphy, struct net_device *dev, 4668 int idx, u8 *dst, u8 *mpp, 4669 struct mpath_info *pinfo); 4670 int (*get_mesh_config)(struct wiphy *wiphy, 4671 struct net_device *dev, 4672 struct mesh_config *conf); 4673 int (*update_mesh_config)(struct wiphy *wiphy, 4674 struct net_device *dev, u32 mask, 4675 const struct mesh_config *nconf); 4676 int (*join_mesh)(struct wiphy *wiphy, struct net_device *dev, 4677 const struct mesh_config *conf, 4678 const struct mesh_setup *setup); 4679 int (*leave_mesh)(struct wiphy *wiphy, struct net_device *dev); 4680 4681 int (*join_ocb)(struct wiphy *wiphy, struct net_device *dev, 4682 struct ocb_setup *setup); 4683 int (*leave_ocb)(struct wiphy *wiphy, struct net_device *dev); 4684 4685 int (*change_bss)(struct wiphy *wiphy, struct net_device *dev, 4686 struct bss_parameters *params); 4687 4688 void (*inform_bss)(struct wiphy *wiphy, struct cfg80211_bss *bss, 4689 const struct cfg80211_bss_ies *ies, void *data); 4690 4691 int (*set_txq_params)(struct wiphy *wiphy, struct net_device *dev, 4692 struct ieee80211_txq_params *params); 4693 4694 int (*libertas_set_mesh_channel)(struct wiphy *wiphy, 4695 struct net_device *dev, 4696 struct ieee80211_channel *chan); 4697 4698 int (*set_monitor_channel)(struct wiphy *wiphy, 4699 struct cfg80211_chan_def *chandef); 4700 4701 int (*scan)(struct wiphy *wiphy, 4702 struct cfg80211_scan_request *request); 4703 void (*abort_scan)(struct wiphy *wiphy, struct wireless_dev *wdev); 4704 4705 int (*auth)(struct wiphy *wiphy, struct net_device *dev, 4706 struct cfg80211_auth_request *req); 4707 int (*assoc)(struct wiphy *wiphy, struct net_device *dev, 4708 struct cfg80211_assoc_request *req); 4709 int (*deauth)(struct wiphy *wiphy, struct net_device *dev, 4710 struct cfg80211_deauth_request *req); 4711 int (*disassoc)(struct wiphy *wiphy, struct net_device *dev, 4712 struct cfg80211_disassoc_request *req); 4713 4714 int (*connect)(struct wiphy *wiphy, struct net_device *dev, 4715 struct cfg80211_connect_params *sme); 4716 int (*update_connect_params)(struct wiphy *wiphy, 4717 struct net_device *dev, 4718 struct cfg80211_connect_params *sme, 4719 u32 changed); 4720 int (*disconnect)(struct wiphy *wiphy, struct net_device *dev, 4721 u16 reason_code); 4722 4723 int (*join_ibss)(struct wiphy *wiphy, struct net_device *dev, 4724 struct cfg80211_ibss_params *params); 4725 int (*leave_ibss)(struct wiphy *wiphy, struct net_device *dev); 4726 4727 int (*set_mcast_rate)(struct wiphy *wiphy, struct net_device *dev, 4728 int rate[NUM_NL80211_BANDS]); 4729 4730 int (*set_wiphy_params)(struct wiphy *wiphy, u32 changed); 4731 4732 int (*set_tx_power)(struct wiphy *wiphy, struct wireless_dev *wdev, 4733 enum nl80211_tx_power_setting type, int mbm); 4734 int (*get_tx_power)(struct wiphy *wiphy, struct wireless_dev *wdev, 4735 int *dbm); 4736 4737 void (*rfkill_poll)(struct wiphy *wiphy); 4738 4739 #ifdef CONFIG_NL80211_TESTMODE 4740 int (*testmode_cmd)(struct wiphy *wiphy, struct wireless_dev *wdev, 4741 void *data, int len); 4742 int (*testmode_dump)(struct wiphy *wiphy, struct sk_buff *skb, 4743 struct netlink_callback *cb, 4744 void *data, int len); 4745 #endif 4746 4747 int (*set_bitrate_mask)(struct wiphy *wiphy, 4748 struct net_device *dev, 4749 unsigned int link_id, 4750 const u8 *peer, 4751 const struct cfg80211_bitrate_mask *mask); 4752 4753 int (*dump_survey)(struct wiphy *wiphy, struct net_device *netdev, 4754 int idx, struct survey_info *info); 4755 4756 int (*set_pmksa)(struct wiphy *wiphy, struct net_device *netdev, 4757 struct cfg80211_pmksa *pmksa); 4758 int (*del_pmksa)(struct wiphy *wiphy, struct net_device *netdev, 4759 struct cfg80211_pmksa *pmksa); 4760 int (*flush_pmksa)(struct wiphy *wiphy, struct net_device *netdev); 4761 4762 int (*remain_on_channel)(struct wiphy *wiphy, 4763 struct wireless_dev *wdev, 4764 struct ieee80211_channel *chan, 4765 unsigned int duration, 4766 u64 *cookie); 4767 int (*cancel_remain_on_channel)(struct wiphy *wiphy, 4768 struct wireless_dev *wdev, 4769 u64 cookie); 4770 4771 int (*mgmt_tx)(struct wiphy *wiphy, struct wireless_dev *wdev, 4772 struct cfg80211_mgmt_tx_params *params, 4773 u64 *cookie); 4774 int (*mgmt_tx_cancel_wait)(struct wiphy *wiphy, 4775 struct wireless_dev *wdev, 4776 u64 cookie); 4777 4778 int (*set_power_mgmt)(struct wiphy *wiphy, struct net_device *dev, 4779 bool enabled, int timeout); 4780 4781 int (*set_cqm_rssi_config)(struct wiphy *wiphy, 4782 struct net_device *dev, 4783 s32 rssi_thold, u32 rssi_hyst); 4784 4785 int (*set_cqm_rssi_range_config)(struct wiphy *wiphy, 4786 struct net_device *dev, 4787 s32 rssi_low, s32 rssi_high); 4788 4789 int (*set_cqm_txe_config)(struct wiphy *wiphy, 4790 struct net_device *dev, 4791 u32 rate, u32 pkts, u32 intvl); 4792 4793 void (*update_mgmt_frame_registrations)(struct wiphy *wiphy, 4794 struct wireless_dev *wdev, 4795 struct mgmt_frame_regs *upd); 4796 4797 int (*set_antenna)(struct wiphy *wiphy, u32 tx_ant, u32 rx_ant); 4798 int (*get_antenna)(struct wiphy *wiphy, u32 *tx_ant, u32 *rx_ant); 4799 4800 int (*sched_scan_start)(struct wiphy *wiphy, 4801 struct net_device *dev, 4802 struct cfg80211_sched_scan_request *request); 4803 int (*sched_scan_stop)(struct wiphy *wiphy, struct net_device *dev, 4804 u64 reqid); 4805 4806 int (*set_rekey_data)(struct wiphy *wiphy, struct net_device *dev, 4807 struct cfg80211_gtk_rekey_data *data); 4808 4809 int (*tdls_mgmt)(struct wiphy *wiphy, struct net_device *dev, 4810 const u8 *peer, int link_id, 4811 u8 action_code, u8 dialog_token, u16 status_code, 4812 u32 peer_capability, bool initiator, 4813 const u8 *buf, size_t len); 4814 int (*tdls_oper)(struct wiphy *wiphy, struct net_device *dev, 4815 const u8 *peer, enum nl80211_tdls_operation oper); 4816 4817 int (*probe_client)(struct wiphy *wiphy, struct net_device *dev, 4818 const u8 *peer, u64 *cookie); 4819 4820 int (*set_noack_map)(struct wiphy *wiphy, 4821 struct net_device *dev, 4822 u16 noack_map); 4823 4824 int (*get_channel)(struct wiphy *wiphy, 4825 struct wireless_dev *wdev, 4826 unsigned int link_id, 4827 struct cfg80211_chan_def *chandef); 4828 4829 int (*start_p2p_device)(struct wiphy *wiphy, 4830 struct wireless_dev *wdev); 4831 void (*stop_p2p_device)(struct wiphy *wiphy, 4832 struct wireless_dev *wdev); 4833 4834 int (*set_mac_acl)(struct wiphy *wiphy, struct net_device *dev, 4835 const struct cfg80211_acl_data *params); 4836 4837 int (*start_radar_detection)(struct wiphy *wiphy, 4838 struct net_device *dev, 4839 struct cfg80211_chan_def *chandef, 4840 u32 cac_time_ms, int link_id); 4841 void (*end_cac)(struct wiphy *wiphy, 4842 struct net_device *dev, unsigned int link_id); 4843 int (*update_ft_ies)(struct wiphy *wiphy, struct net_device *dev, 4844 struct cfg80211_update_ft_ies_params *ftie); 4845 int (*crit_proto_start)(struct wiphy *wiphy, 4846 struct wireless_dev *wdev, 4847 enum nl80211_crit_proto_id protocol, 4848 u16 duration); 4849 void (*crit_proto_stop)(struct wiphy *wiphy, 4850 struct wireless_dev *wdev); 4851 int (*set_coalesce)(struct wiphy *wiphy, 4852 struct cfg80211_coalesce *coalesce); 4853 4854 int (*channel_switch)(struct wiphy *wiphy, 4855 struct net_device *dev, 4856 struct cfg80211_csa_settings *params); 4857 4858 int (*set_qos_map)(struct wiphy *wiphy, 4859 struct net_device *dev, 4860 struct cfg80211_qos_map *qos_map); 4861 4862 int (*set_ap_chanwidth)(struct wiphy *wiphy, struct net_device *dev, 4863 unsigned int link_id, 4864 struct cfg80211_chan_def *chandef); 4865 4866 int (*add_tx_ts)(struct wiphy *wiphy, struct net_device *dev, 4867 u8 tsid, const u8 *peer, u8 user_prio, 4868 u16 admitted_time); 4869 int (*del_tx_ts)(struct wiphy *wiphy, struct net_device *dev, 4870 u8 tsid, const u8 *peer); 4871 4872 int (*tdls_channel_switch)(struct wiphy *wiphy, 4873 struct net_device *dev, 4874 const u8 *addr, u8 oper_class, 4875 struct cfg80211_chan_def *chandef); 4876 void (*tdls_cancel_channel_switch)(struct wiphy *wiphy, 4877 struct net_device *dev, 4878 const u8 *addr); 4879 int (*start_nan)(struct wiphy *wiphy, struct wireless_dev *wdev, 4880 struct cfg80211_nan_conf *conf); 4881 void (*stop_nan)(struct wiphy *wiphy, struct wireless_dev *wdev); 4882 int (*add_nan_func)(struct wiphy *wiphy, struct wireless_dev *wdev, 4883 struct cfg80211_nan_func *nan_func); 4884 void (*del_nan_func)(struct wiphy *wiphy, struct wireless_dev *wdev, 4885 u64 cookie); 4886 int (*nan_change_conf)(struct wiphy *wiphy, 4887 struct wireless_dev *wdev, 4888 struct cfg80211_nan_conf *conf, 4889 u32 changes); 4890 4891 int (*set_multicast_to_unicast)(struct wiphy *wiphy, 4892 struct net_device *dev, 4893 const bool enabled); 4894 4895 int (*get_txq_stats)(struct wiphy *wiphy, 4896 struct wireless_dev *wdev, 4897 struct cfg80211_txq_stats *txqstats); 4898 4899 int (*set_pmk)(struct wiphy *wiphy, struct net_device *dev, 4900 const struct cfg80211_pmk_conf *conf); 4901 int (*del_pmk)(struct wiphy *wiphy, struct net_device *dev, 4902 const u8 *aa); 4903 int (*external_auth)(struct wiphy *wiphy, struct net_device *dev, 4904 struct cfg80211_external_auth_params *params); 4905 4906 int (*tx_control_port)(struct wiphy *wiphy, 4907 struct net_device *dev, 4908 const u8 *buf, size_t len, 4909 const u8 *dest, const __be16 proto, 4910 const bool noencrypt, int link_id, 4911 u64 *cookie); 4912 4913 int (*get_ftm_responder_stats)(struct wiphy *wiphy, 4914 struct net_device *dev, 4915 struct cfg80211_ftm_responder_stats *ftm_stats); 4916 4917 int (*start_pmsr)(struct wiphy *wiphy, struct wireless_dev *wdev, 4918 struct cfg80211_pmsr_request *request); 4919 void (*abort_pmsr)(struct wiphy *wiphy, struct wireless_dev *wdev, 4920 struct cfg80211_pmsr_request *request); 4921 int (*update_owe_info)(struct wiphy *wiphy, struct net_device *dev, 4922 struct cfg80211_update_owe_info *owe_info); 4923 int (*probe_mesh_link)(struct wiphy *wiphy, struct net_device *dev, 4924 const u8 *buf, size_t len); 4925 int (*set_tid_config)(struct wiphy *wiphy, struct net_device *dev, 4926 struct cfg80211_tid_config *tid_conf); 4927 int (*reset_tid_config)(struct wiphy *wiphy, struct net_device *dev, 4928 const u8 *peer, u8 tids); 4929 int (*set_sar_specs)(struct wiphy *wiphy, 4930 struct cfg80211_sar_specs *sar); 4931 int (*color_change)(struct wiphy *wiphy, 4932 struct net_device *dev, 4933 struct cfg80211_color_change_settings *params); 4934 int (*set_fils_aad)(struct wiphy *wiphy, struct net_device *dev, 4935 struct cfg80211_fils_aad *fils_aad); 4936 int (*set_radar_background)(struct wiphy *wiphy, 4937 struct cfg80211_chan_def *chandef); 4938 int (*add_link_station)(struct wiphy *wiphy, struct net_device *dev, 4939 struct link_station_parameters *params); 4940 int (*mod_link_station)(struct wiphy *wiphy, struct net_device *dev, 4941 struct link_station_parameters *params); 4942 int (*del_link_station)(struct wiphy *wiphy, struct net_device *dev, 4943 struct link_station_del_parameters *params); 4944 int (*set_hw_timestamp)(struct wiphy *wiphy, struct net_device *dev, 4945 struct cfg80211_set_hw_timestamp *hwts); 4946 int (*set_ttlm)(struct wiphy *wiphy, struct net_device *dev, 4947 struct cfg80211_ttlm_params *params); 4948 u32 (*get_radio_mask)(struct wiphy *wiphy, struct net_device *dev); 4949 }; 4950 4951 /* 4952 * wireless hardware and networking interfaces structures 4953 * and registration/helper functions 4954 */ 4955 4956 /** 4957 * enum wiphy_flags - wiphy capability flags 4958 * 4959 * @WIPHY_FLAG_SPLIT_SCAN_6GHZ: if set to true, the scan request will be split 4960 * into two, first for legacy bands and second for 6 GHz. 4961 * @WIPHY_FLAG_NETNS_OK: if not set, do not allow changing the netns of this 4962 * wiphy at all 4963 * @WIPHY_FLAG_PS_ON_BY_DEFAULT: if set to true, powersave will be enabled 4964 * by default -- this flag will be set depending on the kernel's default 4965 * on wiphy_new(), but can be changed by the driver if it has a good 4966 * reason to override the default 4967 * @WIPHY_FLAG_4ADDR_AP: supports 4addr mode even on AP (with a single station 4968 * on a VLAN interface). This flag also serves an extra purpose of 4969 * supporting 4ADDR AP mode on devices which do not support AP/VLAN iftype. 4970 * @WIPHY_FLAG_4ADDR_STATION: supports 4addr mode even as a station 4971 * @WIPHY_FLAG_CONTROL_PORT_PROTOCOL: This device supports setting the 4972 * control port protocol ethertype. The device also honours the 4973 * control_port_no_encrypt flag. 4974 * @WIPHY_FLAG_IBSS_RSN: The device supports IBSS RSN. 4975 * @WIPHY_FLAG_MESH_AUTH: The device supports mesh authentication by routing 4976 * auth frames to userspace. See @NL80211_MESH_SETUP_USERSPACE_AUTH. 4977 * @WIPHY_FLAG_SUPPORTS_FW_ROAM: The device supports roaming feature in the 4978 * firmware. 4979 * @WIPHY_FLAG_AP_UAPSD: The device supports uapsd on AP. 4980 * @WIPHY_FLAG_SUPPORTS_TDLS: The device supports TDLS (802.11z) operation. 4981 * @WIPHY_FLAG_TDLS_EXTERNAL_SETUP: The device does not handle TDLS (802.11z) 4982 * link setup/discovery operations internally. Setup, discovery and 4983 * teardown packets should be sent through the @NL80211_CMD_TDLS_MGMT 4984 * command. When this flag is not set, @NL80211_CMD_TDLS_OPER should be 4985 * used for asking the driver/firmware to perform a TDLS operation. 4986 * @WIPHY_FLAG_HAVE_AP_SME: device integrates AP SME 4987 * @WIPHY_FLAG_REPORTS_OBSS: the device will report beacons from other BSSes 4988 * when there are virtual interfaces in AP mode by calling 4989 * cfg80211_report_obss_beacon(). 4990 * @WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD: When operating as an AP, the device 4991 * responds to probe-requests in hardware. 4992 * @WIPHY_FLAG_OFFCHAN_TX: Device supports direct off-channel TX. 4993 * @WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL: Device supports remain-on-channel call. 4994 * @WIPHY_FLAG_SUPPORTS_5_10_MHZ: Device supports 5 MHz and 10 MHz channels. 4995 * @WIPHY_FLAG_HAS_CHANNEL_SWITCH: Device supports channel switch in 4996 * beaconing mode (AP, IBSS, Mesh, ...). 4997 * @WIPHY_FLAG_SUPPORTS_EXT_KEK_KCK: The device supports bigger kek and kck keys 4998 * @WIPHY_FLAG_SUPPORTS_MLO: This is a temporary flag gating the MLO APIs, 4999 * in order to not have them reachable in normal drivers, until we have 5000 * complete feature/interface combinations/etc. advertisement. No driver 5001 * should set this flag for now. 5002 * @WIPHY_FLAG_SUPPORTS_EXT_KCK_32: The device supports 32-byte KCK keys. 5003 * @WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER: The device could handle reg notify for 5004 * NL80211_REGDOM_SET_BY_DRIVER. 5005 * @WIPHY_FLAG_CHANNEL_CHANGE_ON_BEACON: reg_call_notifier() is called if driver 5006 * set this flag to update channels on beacon hints. 5007 * @WIPHY_FLAG_SUPPORTS_NSTR_NONPRIMARY: support connection to non-primary link 5008 * of an NSTR mobile AP MLD. 5009 * @WIPHY_FLAG_DISABLE_WEXT: disable wireless extensions for this device 5010 */ 5011 enum wiphy_flags { 5012 WIPHY_FLAG_SUPPORTS_EXT_KEK_KCK = BIT(0), 5013 WIPHY_FLAG_SUPPORTS_MLO = BIT(1), 5014 WIPHY_FLAG_SPLIT_SCAN_6GHZ = BIT(2), 5015 WIPHY_FLAG_NETNS_OK = BIT(3), 5016 WIPHY_FLAG_PS_ON_BY_DEFAULT = BIT(4), 5017 WIPHY_FLAG_4ADDR_AP = BIT(5), 5018 WIPHY_FLAG_4ADDR_STATION = BIT(6), 5019 WIPHY_FLAG_CONTROL_PORT_PROTOCOL = BIT(7), 5020 WIPHY_FLAG_IBSS_RSN = BIT(8), 5021 WIPHY_FLAG_DISABLE_WEXT = BIT(9), 5022 WIPHY_FLAG_MESH_AUTH = BIT(10), 5023 WIPHY_FLAG_SUPPORTS_EXT_KCK_32 = BIT(11), 5024 WIPHY_FLAG_SUPPORTS_NSTR_NONPRIMARY = BIT(12), 5025 WIPHY_FLAG_SUPPORTS_FW_ROAM = BIT(13), 5026 WIPHY_FLAG_AP_UAPSD = BIT(14), 5027 WIPHY_FLAG_SUPPORTS_TDLS = BIT(15), 5028 WIPHY_FLAG_TDLS_EXTERNAL_SETUP = BIT(16), 5029 WIPHY_FLAG_HAVE_AP_SME = BIT(17), 5030 WIPHY_FLAG_REPORTS_OBSS = BIT(18), 5031 WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD = BIT(19), 5032 WIPHY_FLAG_OFFCHAN_TX = BIT(20), 5033 WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL = BIT(21), 5034 WIPHY_FLAG_SUPPORTS_5_10_MHZ = BIT(22), 5035 WIPHY_FLAG_HAS_CHANNEL_SWITCH = BIT(23), 5036 WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER = BIT(24), 5037 WIPHY_FLAG_CHANNEL_CHANGE_ON_BEACON = BIT(25), 5038 }; 5039 5040 /** 5041 * struct ieee80211_iface_limit - limit on certain interface types 5042 * @max: maximum number of interfaces of these types 5043 * @types: interface types (bits) 5044 */ 5045 struct ieee80211_iface_limit { 5046 u16 max; 5047 u16 types; 5048 }; 5049 5050 /** 5051 * struct ieee80211_iface_combination - possible interface combination 5052 * 5053 * With this structure the driver can describe which interface 5054 * combinations it supports concurrently. When set in a struct wiphy_radio, 5055 * the combinations refer to combinations of interfaces currently active on 5056 * that radio. 5057 * 5058 * Examples: 5059 * 5060 * 1. Allow #STA <= 1, #AP <= 1, matching BI, channels = 1, 2 total: 5061 * 5062 * .. code-block:: c 5063 * 5064 * struct ieee80211_iface_limit limits1[] = { 5065 * { .max = 1, .types = BIT(NL80211_IFTYPE_STATION), }, 5066 * { .max = 1, .types = BIT(NL80211_IFTYPE_AP), }, 5067 * }; 5068 * struct ieee80211_iface_combination combination1 = { 5069 * .limits = limits1, 5070 * .n_limits = ARRAY_SIZE(limits1), 5071 * .max_interfaces = 2, 5072 * .beacon_int_infra_match = true, 5073 * }; 5074 * 5075 * 5076 * 2. Allow #{AP, P2P-GO} <= 8, channels = 1, 8 total: 5077 * 5078 * .. code-block:: c 5079 * 5080 * struct ieee80211_iface_limit limits2[] = { 5081 * { .max = 8, .types = BIT(NL80211_IFTYPE_AP) | 5082 * BIT(NL80211_IFTYPE_P2P_GO), }, 5083 * }; 5084 * struct ieee80211_iface_combination combination2 = { 5085 * .limits = limits2, 5086 * .n_limits = ARRAY_SIZE(limits2), 5087 * .max_interfaces = 8, 5088 * .num_different_channels = 1, 5089 * }; 5090 * 5091 * 5092 * 3. Allow #STA <= 1, #{P2P-client,P2P-GO} <= 3 on two channels, 4 total. 5093 * 5094 * This allows for an infrastructure connection and three P2P connections. 5095 * 5096 * .. code-block:: c 5097 * 5098 * struct ieee80211_iface_limit limits3[] = { 5099 * { .max = 1, .types = BIT(NL80211_IFTYPE_STATION), }, 5100 * { .max = 3, .types = BIT(NL80211_IFTYPE_P2P_GO) | 5101 * BIT(NL80211_IFTYPE_P2P_CLIENT), }, 5102 * }; 5103 * struct ieee80211_iface_combination combination3 = { 5104 * .limits = limits3, 5105 * .n_limits = ARRAY_SIZE(limits3), 5106 * .max_interfaces = 4, 5107 * .num_different_channels = 2, 5108 * }; 5109 * 5110 */ 5111 struct ieee80211_iface_combination { 5112 /** 5113 * @limits: 5114 * limits for the given interface types 5115 */ 5116 const struct ieee80211_iface_limit *limits; 5117 5118 /** 5119 * @num_different_channels: 5120 * can use up to this many different channels 5121 */ 5122 u32 num_different_channels; 5123 5124 /** 5125 * @max_interfaces: 5126 * maximum number of interfaces in total allowed in this group 5127 */ 5128 u16 max_interfaces; 5129 5130 /** 5131 * @n_limits: 5132 * number of limitations 5133 */ 5134 u8 n_limits; 5135 5136 /** 5137 * @beacon_int_infra_match: 5138 * In this combination, the beacon intervals between infrastructure 5139 * and AP types must match. This is required only in special cases. 5140 */ 5141 bool beacon_int_infra_match; 5142 5143 /** 5144 * @radar_detect_widths: 5145 * bitmap of channel widths supported for radar detection 5146 */ 5147 u8 radar_detect_widths; 5148 5149 /** 5150 * @radar_detect_regions: 5151 * bitmap of regions supported for radar detection 5152 */ 5153 u8 radar_detect_regions; 5154 5155 /** 5156 * @beacon_int_min_gcd: 5157 * This interface combination supports different beacon intervals. 5158 * 5159 * = 0 5160 * all beacon intervals for different interface must be same. 5161 * > 0 5162 * any beacon interval for the interface part of this combination AND 5163 * GCD of all beacon intervals from beaconing interfaces of this 5164 * combination must be greater or equal to this value. 5165 */ 5166 u32 beacon_int_min_gcd; 5167 }; 5168 5169 struct ieee80211_txrx_stypes { 5170 u16 tx, rx; 5171 }; 5172 5173 /** 5174 * enum wiphy_wowlan_support_flags - WoWLAN support flags 5175 * @WIPHY_WOWLAN_ANY: supports wakeup for the special "any" 5176 * trigger that keeps the device operating as-is and 5177 * wakes up the host on any activity, for example a 5178 * received packet that passed filtering; note that the 5179 * packet should be preserved in that case 5180 * @WIPHY_WOWLAN_MAGIC_PKT: supports wakeup on magic packet 5181 * (see nl80211.h) 5182 * @WIPHY_WOWLAN_DISCONNECT: supports wakeup on disconnect 5183 * @WIPHY_WOWLAN_SUPPORTS_GTK_REKEY: supports GTK rekeying while asleep 5184 * @WIPHY_WOWLAN_GTK_REKEY_FAILURE: supports wakeup on GTK rekey failure 5185 * @WIPHY_WOWLAN_EAP_IDENTITY_REQ: supports wakeup on EAP identity request 5186 * @WIPHY_WOWLAN_4WAY_HANDSHAKE: supports wakeup on 4-way handshake failure 5187 * @WIPHY_WOWLAN_RFKILL_RELEASE: supports wakeup on RF-kill release 5188 * @WIPHY_WOWLAN_NET_DETECT: supports wakeup on network detection 5189 */ 5190 enum wiphy_wowlan_support_flags { 5191 WIPHY_WOWLAN_ANY = BIT(0), 5192 WIPHY_WOWLAN_MAGIC_PKT = BIT(1), 5193 WIPHY_WOWLAN_DISCONNECT = BIT(2), 5194 WIPHY_WOWLAN_SUPPORTS_GTK_REKEY = BIT(3), 5195 WIPHY_WOWLAN_GTK_REKEY_FAILURE = BIT(4), 5196 WIPHY_WOWLAN_EAP_IDENTITY_REQ = BIT(5), 5197 WIPHY_WOWLAN_4WAY_HANDSHAKE = BIT(6), 5198 WIPHY_WOWLAN_RFKILL_RELEASE = BIT(7), 5199 WIPHY_WOWLAN_NET_DETECT = BIT(8), 5200 }; 5201 5202 struct wiphy_wowlan_tcp_support { 5203 const struct nl80211_wowlan_tcp_data_token_feature *tok; 5204 u32 data_payload_max; 5205 u32 data_interval_max; 5206 u32 wake_payload_max; 5207 bool seq; 5208 }; 5209 5210 /** 5211 * struct wiphy_wowlan_support - WoWLAN support data 5212 * @flags: see &enum wiphy_wowlan_support_flags 5213 * @n_patterns: number of supported wakeup patterns 5214 * (see nl80211.h for the pattern definition) 5215 * @pattern_max_len: maximum length of each pattern 5216 * @pattern_min_len: minimum length of each pattern 5217 * @max_pkt_offset: maximum Rx packet offset 5218 * @max_nd_match_sets: maximum number of matchsets for net-detect, 5219 * similar, but not necessarily identical, to max_match_sets for 5220 * scheduled scans. 5221 * See &struct cfg80211_sched_scan_request.@match_sets for more 5222 * details. 5223 * @tcp: TCP wakeup support information 5224 */ 5225 struct wiphy_wowlan_support { 5226 u32 flags; 5227 int n_patterns; 5228 int pattern_max_len; 5229 int pattern_min_len; 5230 int max_pkt_offset; 5231 int max_nd_match_sets; 5232 const struct wiphy_wowlan_tcp_support *tcp; 5233 }; 5234 5235 /** 5236 * struct wiphy_coalesce_support - coalesce support data 5237 * @n_rules: maximum number of coalesce rules 5238 * @max_delay: maximum supported coalescing delay in msecs 5239 * @n_patterns: number of supported patterns in a rule 5240 * (see nl80211.h for the pattern definition) 5241 * @pattern_max_len: maximum length of each pattern 5242 * @pattern_min_len: minimum length of each pattern 5243 * @max_pkt_offset: maximum Rx packet offset 5244 */ 5245 struct wiphy_coalesce_support { 5246 int n_rules; 5247 int max_delay; 5248 int n_patterns; 5249 int pattern_max_len; 5250 int pattern_min_len; 5251 int max_pkt_offset; 5252 }; 5253 5254 /** 5255 * enum wiphy_vendor_command_flags - validation flags for vendor commands 5256 * @WIPHY_VENDOR_CMD_NEED_WDEV: vendor command requires wdev 5257 * @WIPHY_VENDOR_CMD_NEED_NETDEV: vendor command requires netdev 5258 * @WIPHY_VENDOR_CMD_NEED_RUNNING: interface/wdev must be up & running 5259 * (must be combined with %_WDEV or %_NETDEV) 5260 */ 5261 enum wiphy_vendor_command_flags { 5262 WIPHY_VENDOR_CMD_NEED_WDEV = BIT(0), 5263 WIPHY_VENDOR_CMD_NEED_NETDEV = BIT(1), 5264 WIPHY_VENDOR_CMD_NEED_RUNNING = BIT(2), 5265 }; 5266 5267 /** 5268 * enum wiphy_opmode_flag - Station's ht/vht operation mode information flags 5269 * 5270 * @STA_OPMODE_MAX_BW_CHANGED: Max Bandwidth changed 5271 * @STA_OPMODE_SMPS_MODE_CHANGED: SMPS mode changed 5272 * @STA_OPMODE_N_SS_CHANGED: max N_SS (number of spatial streams) changed 5273 * 5274 */ 5275 enum wiphy_opmode_flag { 5276 STA_OPMODE_MAX_BW_CHANGED = BIT(0), 5277 STA_OPMODE_SMPS_MODE_CHANGED = BIT(1), 5278 STA_OPMODE_N_SS_CHANGED = BIT(2), 5279 }; 5280 5281 /** 5282 * struct sta_opmode_info - Station's ht/vht operation mode information 5283 * @changed: contains value from &enum wiphy_opmode_flag 5284 * @smps_mode: New SMPS mode value from &enum nl80211_smps_mode of a station 5285 * @bw: new max bandwidth value from &enum nl80211_chan_width of a station 5286 * @rx_nss: new rx_nss value of a station 5287 */ 5288 5289 struct sta_opmode_info { 5290 u32 changed; 5291 enum nl80211_smps_mode smps_mode; 5292 enum nl80211_chan_width bw; 5293 u8 rx_nss; 5294 }; 5295 5296 #define VENDOR_CMD_RAW_DATA ((const struct nla_policy *)(long)(-ENODATA)) 5297 5298 /** 5299 * struct wiphy_vendor_command - vendor command definition 5300 * @info: vendor command identifying information, as used in nl80211 5301 * @flags: flags, see &enum wiphy_vendor_command_flags 5302 * @doit: callback for the operation, note that wdev is %NULL if the 5303 * flags didn't ask for a wdev and non-%NULL otherwise; the data 5304 * pointer may be %NULL if userspace provided no data at all 5305 * @dumpit: dump callback, for transferring bigger/multiple items. The 5306 * @storage points to cb->args[5], ie. is preserved over the multiple 5307 * dumpit calls. 5308 * @policy: policy pointer for attributes within %NL80211_ATTR_VENDOR_DATA. 5309 * Set this to %VENDOR_CMD_RAW_DATA if no policy can be given and the 5310 * attribute is just raw data (e.g. a firmware command). 5311 * @maxattr: highest attribute number in policy 5312 * It's recommended to not have the same sub command with both @doit and 5313 * @dumpit, so that userspace can assume certain ones are get and others 5314 * are used with dump requests. 5315 */ 5316 struct wiphy_vendor_command { 5317 struct nl80211_vendor_cmd_info info; 5318 u32 flags; 5319 int (*doit)(struct wiphy *wiphy, struct wireless_dev *wdev, 5320 const void *data, int data_len); 5321 int (*dumpit)(struct wiphy *wiphy, struct wireless_dev *wdev, 5322 struct sk_buff *skb, const void *data, int data_len, 5323 unsigned long *storage); 5324 const struct nla_policy *policy; 5325 unsigned int maxattr; 5326 }; 5327 5328 /** 5329 * struct wiphy_iftype_ext_capab - extended capabilities per interface type 5330 * @iftype: interface type 5331 * @extended_capabilities: extended capabilities supported by the driver, 5332 * additional capabilities might be supported by userspace; these are the 5333 * 802.11 extended capabilities ("Extended Capabilities element") and are 5334 * in the same format as in the information element. See IEEE Std 5335 * 802.11-2012 8.4.2.29 for the defined fields. 5336 * @extended_capabilities_mask: mask of the valid values 5337 * @extended_capabilities_len: length of the extended capabilities 5338 * @eml_capabilities: EML capabilities (for MLO) 5339 * @mld_capa_and_ops: MLD capabilities and operations (for MLO) 5340 */ 5341 struct wiphy_iftype_ext_capab { 5342 enum nl80211_iftype iftype; 5343 const u8 *extended_capabilities; 5344 const u8 *extended_capabilities_mask; 5345 u8 extended_capabilities_len; 5346 u16 eml_capabilities; 5347 u16 mld_capa_and_ops; 5348 }; 5349 5350 /** 5351 * cfg80211_get_iftype_ext_capa - lookup interface type extended capability 5352 * @wiphy: the wiphy to look up from 5353 * @type: the interface type to look up 5354 * 5355 * Return: The extended capability for the given interface @type, may be %NULL 5356 */ 5357 const struct wiphy_iftype_ext_capab * 5358 cfg80211_get_iftype_ext_capa(struct wiphy *wiphy, enum nl80211_iftype type); 5359 5360 /** 5361 * struct cfg80211_pmsr_capabilities - cfg80211 peer measurement capabilities 5362 * @max_peers: maximum number of peers in a single measurement 5363 * @report_ap_tsf: can report assoc AP's TSF for radio resource measurement 5364 * @randomize_mac_addr: can randomize MAC address for measurement 5365 * @ftm: FTM measurement data 5366 * @ftm.supported: FTM measurement is supported 5367 * @ftm.asap: ASAP-mode is supported 5368 * @ftm.non_asap: non-ASAP-mode is supported 5369 * @ftm.request_lci: can request LCI data 5370 * @ftm.request_civicloc: can request civic location data 5371 * @ftm.preambles: bitmap of preambles supported (&enum nl80211_preamble) 5372 * @ftm.bandwidths: bitmap of bandwidths supported (&enum nl80211_chan_width) 5373 * @ftm.max_bursts_exponent: maximum burst exponent supported 5374 * (set to -1 if not limited; note that setting this will necessarily 5375 * forbid using the value 15 to let the responder pick) 5376 * @ftm.max_ftms_per_burst: maximum FTMs per burst supported (set to 0 if 5377 * not limited) 5378 * @ftm.trigger_based: trigger based ranging measurement is supported 5379 * @ftm.non_trigger_based: non trigger based ranging measurement is supported 5380 */ 5381 struct cfg80211_pmsr_capabilities { 5382 unsigned int max_peers; 5383 u8 report_ap_tsf:1, 5384 randomize_mac_addr:1; 5385 5386 struct { 5387 u32 preambles; 5388 u32 bandwidths; 5389 s8 max_bursts_exponent; 5390 u8 max_ftms_per_burst; 5391 u8 supported:1, 5392 asap:1, 5393 non_asap:1, 5394 request_lci:1, 5395 request_civicloc:1, 5396 trigger_based:1, 5397 non_trigger_based:1; 5398 } ftm; 5399 }; 5400 5401 /** 5402 * struct wiphy_iftype_akm_suites - This structure encapsulates supported akm 5403 * suites for interface types defined in @iftypes_mask. Each type in the 5404 * @iftypes_mask must be unique across all instances of iftype_akm_suites. 5405 * 5406 * @iftypes_mask: bitmask of interfaces types 5407 * @akm_suites: points to an array of supported akm suites 5408 * @n_akm_suites: number of supported AKM suites 5409 */ 5410 struct wiphy_iftype_akm_suites { 5411 u16 iftypes_mask; 5412 const u32 *akm_suites; 5413 int n_akm_suites; 5414 }; 5415 5416 /** 5417 * struct wiphy_radio_freq_range - wiphy frequency range 5418 * @start_freq: start range edge frequency (kHz) 5419 * @end_freq: end range edge frequency (kHz) 5420 */ 5421 struct wiphy_radio_freq_range { 5422 u32 start_freq; 5423 u32 end_freq; 5424 }; 5425 5426 5427 /** 5428 * struct wiphy_radio - physical radio of a wiphy 5429 * This structure describes a physical radio belonging to a wiphy. 5430 * It is used to describe concurrent-channel capabilities. Only one channel 5431 * can be active on the radio described by struct wiphy_radio. 5432 * 5433 * @freq_range: frequency range that the radio can operate on. 5434 * @n_freq_range: number of elements in @freq_range 5435 * 5436 * @iface_combinations: Valid interface combinations array, should not 5437 * list single interface types. 5438 * @n_iface_combinations: number of entries in @iface_combinations array. 5439 */ 5440 struct wiphy_radio { 5441 const struct wiphy_radio_freq_range *freq_range; 5442 int n_freq_range; 5443 5444 const struct ieee80211_iface_combination *iface_combinations; 5445 int n_iface_combinations; 5446 }; 5447 5448 #define CFG80211_HW_TIMESTAMP_ALL_PEERS 0xffff 5449 5450 /** 5451 * struct wiphy - wireless hardware description 5452 * @mtx: mutex for the data (structures) of this device 5453 * @reg_notifier: the driver's regulatory notification callback, 5454 * note that if your driver uses wiphy_apply_custom_regulatory() 5455 * the reg_notifier's request can be passed as NULL 5456 * @regd: the driver's regulatory domain, if one was requested via 5457 * the regulatory_hint() API. This can be used by the driver 5458 * on the reg_notifier() if it chooses to ignore future 5459 * regulatory domain changes caused by other drivers. 5460 * @signal_type: signal type reported in &struct cfg80211_bss. 5461 * @cipher_suites: supported cipher suites 5462 * @n_cipher_suites: number of supported cipher suites 5463 * @akm_suites: supported AKM suites. These are the default AKMs supported if 5464 * the supported AKMs not advertized for a specific interface type in 5465 * iftype_akm_suites. 5466 * @n_akm_suites: number of supported AKM suites 5467 * @iftype_akm_suites: array of supported akm suites info per interface type. 5468 * Note that the bits in @iftypes_mask inside this structure cannot 5469 * overlap (i.e. only one occurrence of each type is allowed across all 5470 * instances of iftype_akm_suites). 5471 * @num_iftype_akm_suites: number of interface types for which supported akm 5472 * suites are specified separately. 5473 * @retry_short: Retry limit for short frames (dot11ShortRetryLimit) 5474 * @retry_long: Retry limit for long frames (dot11LongRetryLimit) 5475 * @frag_threshold: Fragmentation threshold (dot11FragmentationThreshold); 5476 * -1 = fragmentation disabled, only odd values >= 256 used 5477 * @rts_threshold: RTS threshold (dot11RTSThreshold); -1 = RTS/CTS disabled 5478 * @_net: the network namespace this wiphy currently lives in 5479 * @perm_addr: permanent MAC address of this device 5480 * @addr_mask: If the device supports multiple MAC addresses by masking, 5481 * set this to a mask with variable bits set to 1, e.g. if the last 5482 * four bits are variable then set it to 00-00-00-00-00-0f. The actual 5483 * variable bits shall be determined by the interfaces added, with 5484 * interfaces not matching the mask being rejected to be brought up. 5485 * @n_addresses: number of addresses in @addresses. 5486 * @addresses: If the device has more than one address, set this pointer 5487 * to a list of addresses (6 bytes each). The first one will be used 5488 * by default for perm_addr. In this case, the mask should be set to 5489 * all-zeroes. In this case it is assumed that the device can handle 5490 * the same number of arbitrary MAC addresses. 5491 * @registered: protects ->resume and ->suspend sysfs callbacks against 5492 * unregister hardware 5493 * @debugfsdir: debugfs directory used for this wiphy (ieee80211/<wiphyname>). 5494 * It will be renamed automatically on wiphy renames 5495 * @dev: (virtual) struct device for this wiphy. The item in 5496 * /sys/class/ieee80211/ points to this. You need use set_wiphy_dev() 5497 * (see below). 5498 * @wext: wireless extension handlers 5499 * @priv: driver private data (sized according to wiphy_new() parameter) 5500 * @interface_modes: bitmask of interfaces types valid for this wiphy, 5501 * must be set by driver 5502 * @iface_combinations: Valid interface combinations array, should not 5503 * list single interface types. 5504 * @n_iface_combinations: number of entries in @iface_combinations array. 5505 * @software_iftypes: bitmask of software interface types, these are not 5506 * subject to any restrictions since they are purely managed in SW. 5507 * @flags: wiphy flags, see &enum wiphy_flags 5508 * @regulatory_flags: wiphy regulatory flags, see 5509 * &enum ieee80211_regulatory_flags 5510 * @features: features advertised to nl80211, see &enum nl80211_feature_flags. 5511 * @ext_features: extended features advertised to nl80211, see 5512 * &enum nl80211_ext_feature_index. 5513 * @bss_priv_size: each BSS struct has private data allocated with it, 5514 * this variable determines its size 5515 * @max_scan_ssids: maximum number of SSIDs the device can scan for in 5516 * any given scan 5517 * @max_sched_scan_reqs: maximum number of scheduled scan requests that 5518 * the device can run concurrently. 5519 * @max_sched_scan_ssids: maximum number of SSIDs the device can scan 5520 * for in any given scheduled scan 5521 * @max_match_sets: maximum number of match sets the device can handle 5522 * when performing a scheduled scan, 0 if filtering is not 5523 * supported. 5524 * @max_scan_ie_len: maximum length of user-controlled IEs device can 5525 * add to probe request frames transmitted during a scan, must not 5526 * include fixed IEs like supported rates 5527 * @max_sched_scan_ie_len: same as max_scan_ie_len, but for scheduled 5528 * scans 5529 * @max_sched_scan_plans: maximum number of scan plans (scan interval and number 5530 * of iterations) for scheduled scan supported by the device. 5531 * @max_sched_scan_plan_interval: maximum interval (in seconds) for a 5532 * single scan plan supported by the device. 5533 * @max_sched_scan_plan_iterations: maximum number of iterations for a single 5534 * scan plan supported by the device. 5535 * @coverage_class: current coverage class 5536 * @fw_version: firmware version for ethtool reporting 5537 * @hw_version: hardware version for ethtool reporting 5538 * @max_num_pmkids: maximum number of PMKIDs supported by device 5539 * @privid: a pointer that drivers can use to identify if an arbitrary 5540 * wiphy is theirs, e.g. in global notifiers 5541 * @bands: information about bands/channels supported by this device 5542 * 5543 * @mgmt_stypes: bitmasks of frame subtypes that can be subscribed to or 5544 * transmitted through nl80211, points to an array indexed by interface 5545 * type 5546 * 5547 * @available_antennas_tx: bitmap of antennas which are available to be 5548 * configured as TX antennas. Antenna configuration commands will be 5549 * rejected unless this or @available_antennas_rx is set. 5550 * 5551 * @available_antennas_rx: bitmap of antennas which are available to be 5552 * configured as RX antennas. Antenna configuration commands will be 5553 * rejected unless this or @available_antennas_tx is set. 5554 * 5555 * @probe_resp_offload: 5556 * Bitmap of supported protocols for probe response offloading. 5557 * See &enum nl80211_probe_resp_offload_support_attr. Only valid 5558 * when the wiphy flag @WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD is set. 5559 * 5560 * @max_remain_on_channel_duration: Maximum time a remain-on-channel operation 5561 * may request, if implemented. 5562 * 5563 * @wowlan: WoWLAN support information 5564 * @wowlan_config: current WoWLAN configuration; this should usually not be 5565 * used since access to it is necessarily racy, use the parameter passed 5566 * to the suspend() operation instead. 5567 * 5568 * @ap_sme_capa: AP SME capabilities, flags from &enum nl80211_ap_sme_features. 5569 * @ht_capa_mod_mask: Specify what ht_cap values can be over-ridden. 5570 * If null, then none can be over-ridden. 5571 * @vht_capa_mod_mask: Specify what VHT capabilities can be over-ridden. 5572 * If null, then none can be over-ridden. 5573 * 5574 * @wdev_list: the list of associated (virtual) interfaces; this list must 5575 * not be modified by the driver, but can be read with RTNL/RCU protection. 5576 * 5577 * @max_acl_mac_addrs: Maximum number of MAC addresses that the device 5578 * supports for ACL. 5579 * 5580 * @extended_capabilities: extended capabilities supported by the driver, 5581 * additional capabilities might be supported by userspace; these are 5582 * the 802.11 extended capabilities ("Extended Capabilities element") 5583 * and are in the same format as in the information element. See 5584 * 802.11-2012 8.4.2.29 for the defined fields. These are the default 5585 * extended capabilities to be used if the capabilities are not specified 5586 * for a specific interface type in iftype_ext_capab. 5587 * @extended_capabilities_mask: mask of the valid values 5588 * @extended_capabilities_len: length of the extended capabilities 5589 * @iftype_ext_capab: array of extended capabilities per interface type 5590 * @num_iftype_ext_capab: number of interface types for which extended 5591 * capabilities are specified separately. 5592 * @coalesce: packet coalescing support information 5593 * 5594 * @vendor_commands: array of vendor commands supported by the hardware 5595 * @n_vendor_commands: number of vendor commands 5596 * @vendor_events: array of vendor events supported by the hardware 5597 * @n_vendor_events: number of vendor events 5598 * 5599 * @max_ap_assoc_sta: maximum number of associated stations supported in AP mode 5600 * (including P2P GO) or 0 to indicate no such limit is advertised. The 5601 * driver is allowed to advertise a theoretical limit that it can reach in 5602 * some cases, but may not always reach. 5603 * 5604 * @max_num_csa_counters: Number of supported csa_counters in beacons 5605 * and probe responses. This value should be set if the driver 5606 * wishes to limit the number of csa counters. Default (0) means 5607 * infinite. 5608 * @bss_select_support: bitmask indicating the BSS selection criteria supported 5609 * by the driver in the .connect() callback. The bit position maps to the 5610 * attribute indices defined in &enum nl80211_bss_select_attr. 5611 * 5612 * @nan_supported_bands: bands supported by the device in NAN mode, a 5613 * bitmap of &enum nl80211_band values. For instance, for 5614 * NL80211_BAND_2GHZ, bit 0 would be set 5615 * (i.e. BIT(NL80211_BAND_2GHZ)). 5616 * 5617 * @txq_limit: configuration of internal TX queue frame limit 5618 * @txq_memory_limit: configuration internal TX queue memory limit 5619 * @txq_quantum: configuration of internal TX queue scheduler quantum 5620 * 5621 * @tx_queue_len: allow setting transmit queue len for drivers not using 5622 * wake_tx_queue 5623 * 5624 * @support_mbssid: can HW support association with nontransmitted AP 5625 * @support_only_he_mbssid: don't parse MBSSID elements if it is not 5626 * HE AP, in order to avoid compatibility issues. 5627 * @support_mbssid must be set for this to have any effect. 5628 * 5629 * @pmsr_capa: peer measurement capabilities 5630 * 5631 * @tid_config_support: describes the per-TID config support that the 5632 * device has 5633 * @tid_config_support.vif: bitmap of attributes (configurations) 5634 * supported by the driver for each vif 5635 * @tid_config_support.peer: bitmap of attributes (configurations) 5636 * supported by the driver for each peer 5637 * @tid_config_support.max_retry: maximum supported retry count for 5638 * long/short retry configuration 5639 * 5640 * @max_data_retry_count: maximum supported per TID retry count for 5641 * configuration through the %NL80211_TID_CONFIG_ATTR_RETRY_SHORT and 5642 * %NL80211_TID_CONFIG_ATTR_RETRY_LONG attributes 5643 * @sar_capa: SAR control capabilities 5644 * @rfkill: a pointer to the rfkill structure 5645 * 5646 * @mbssid_max_interfaces: maximum number of interfaces supported by the driver 5647 * in a multiple BSSID set. This field must be set to a non-zero value 5648 * by the driver to advertise MBSSID support. 5649 * @ema_max_profile_periodicity: maximum profile periodicity supported by 5650 * the driver. Setting this field to a non-zero value indicates that the 5651 * driver supports enhanced multi-BSSID advertisements (EMA AP). 5652 * @max_num_akm_suites: maximum number of AKM suites allowed for 5653 * configuration through %NL80211_CMD_CONNECT, %NL80211_CMD_ASSOCIATE and 5654 * %NL80211_CMD_START_AP. Set to NL80211_MAX_NR_AKM_SUITES if not set by 5655 * driver. If set by driver minimum allowed value is 5656 * NL80211_MAX_NR_AKM_SUITES in order to avoid compatibility issues with 5657 * legacy userspace and maximum allowed value is 5658 * CFG80211_MAX_NUM_AKM_SUITES. 5659 * 5660 * @hw_timestamp_max_peers: maximum number of peers that the driver supports 5661 * enabling HW timestamping for concurrently. Setting this field to a 5662 * non-zero value indicates that the driver supports HW timestamping. 5663 * A value of %CFG80211_HW_TIMESTAMP_ALL_PEERS indicates the driver 5664 * supports enabling HW timestamping for all peers (i.e. no need to 5665 * specify a mac address). 5666 * 5667 * @radio: radios belonging to this wiphy 5668 * @n_radio: number of radios 5669 */ 5670 struct wiphy { 5671 struct mutex mtx; 5672 5673 /* assign these fields before you register the wiphy */ 5674 5675 u8 perm_addr[ETH_ALEN]; 5676 u8 addr_mask[ETH_ALEN]; 5677 5678 struct mac_address *addresses; 5679 5680 const struct ieee80211_txrx_stypes *mgmt_stypes; 5681 5682 const struct ieee80211_iface_combination *iface_combinations; 5683 int n_iface_combinations; 5684 u16 software_iftypes; 5685 5686 u16 n_addresses; 5687 5688 /* Supported interface modes, OR together BIT(NL80211_IFTYPE_...) */ 5689 u16 interface_modes; 5690 5691 u16 max_acl_mac_addrs; 5692 5693 u32 flags, regulatory_flags, features; 5694 u8 ext_features[DIV_ROUND_UP(NUM_NL80211_EXT_FEATURES, 8)]; 5695 5696 u32 ap_sme_capa; 5697 5698 enum cfg80211_signal_type signal_type; 5699 5700 int bss_priv_size; 5701 u8 max_scan_ssids; 5702 u8 max_sched_scan_reqs; 5703 u8 max_sched_scan_ssids; 5704 u8 max_match_sets; 5705 u16 max_scan_ie_len; 5706 u16 max_sched_scan_ie_len; 5707 u32 max_sched_scan_plans; 5708 u32 max_sched_scan_plan_interval; 5709 u32 max_sched_scan_plan_iterations; 5710 5711 int n_cipher_suites; 5712 const u32 *cipher_suites; 5713 5714 int n_akm_suites; 5715 const u32 *akm_suites; 5716 5717 const struct wiphy_iftype_akm_suites *iftype_akm_suites; 5718 unsigned int num_iftype_akm_suites; 5719 5720 u8 retry_short; 5721 u8 retry_long; 5722 u32 frag_threshold; 5723 u32 rts_threshold; 5724 u8 coverage_class; 5725 5726 char fw_version[ETHTOOL_FWVERS_LEN]; 5727 u32 hw_version; 5728 5729 #ifdef CONFIG_PM 5730 const struct wiphy_wowlan_support *wowlan; 5731 struct cfg80211_wowlan *wowlan_config; 5732 #endif 5733 5734 u16 max_remain_on_channel_duration; 5735 5736 u8 max_num_pmkids; 5737 5738 u32 available_antennas_tx; 5739 u32 available_antennas_rx; 5740 5741 u32 probe_resp_offload; 5742 5743 const u8 *extended_capabilities, *extended_capabilities_mask; 5744 u8 extended_capabilities_len; 5745 5746 const struct wiphy_iftype_ext_capab *iftype_ext_capab; 5747 unsigned int num_iftype_ext_capab; 5748 5749 const void *privid; 5750 5751 struct ieee80211_supported_band *bands[NUM_NL80211_BANDS]; 5752 5753 void (*reg_notifier)(struct wiphy *wiphy, 5754 struct regulatory_request *request); 5755 5756 /* fields below are read-only, assigned by cfg80211 */ 5757 5758 const struct ieee80211_regdomain __rcu *regd; 5759 5760 struct device dev; 5761 5762 bool registered; 5763 5764 struct dentry *debugfsdir; 5765 5766 const struct ieee80211_ht_cap *ht_capa_mod_mask; 5767 const struct ieee80211_vht_cap *vht_capa_mod_mask; 5768 5769 struct list_head wdev_list; 5770 5771 possible_net_t _net; 5772 5773 #ifdef CONFIG_CFG80211_WEXT 5774 const struct iw_handler_def *wext; 5775 #endif 5776 5777 const struct wiphy_coalesce_support *coalesce; 5778 5779 const struct wiphy_vendor_command *vendor_commands; 5780 const struct nl80211_vendor_cmd_info *vendor_events; 5781 int n_vendor_commands, n_vendor_events; 5782 5783 u16 max_ap_assoc_sta; 5784 5785 u8 max_num_csa_counters; 5786 5787 u32 bss_select_support; 5788 5789 u8 nan_supported_bands; 5790 5791 u32 txq_limit; 5792 u32 txq_memory_limit; 5793 u32 txq_quantum; 5794 5795 unsigned long tx_queue_len; 5796 5797 u8 support_mbssid:1, 5798 support_only_he_mbssid:1; 5799 5800 const struct cfg80211_pmsr_capabilities *pmsr_capa; 5801 5802 struct { 5803 u64 peer, vif; 5804 u8 max_retry; 5805 } tid_config_support; 5806 5807 u8 max_data_retry_count; 5808 5809 const struct cfg80211_sar_capa *sar_capa; 5810 5811 struct rfkill *rfkill; 5812 5813 u8 mbssid_max_interfaces; 5814 u8 ema_max_profile_periodicity; 5815 u16 max_num_akm_suites; 5816 5817 u16 hw_timestamp_max_peers; 5818 5819 int n_radio; 5820 const struct wiphy_radio *radio; 5821 5822 char priv[] __aligned(NETDEV_ALIGN); 5823 }; 5824 5825 static inline struct net *wiphy_net(struct wiphy *wiphy) 5826 { 5827 return read_pnet(&wiphy->_net); 5828 } 5829 5830 static inline void wiphy_net_set(struct wiphy *wiphy, struct net *net) 5831 { 5832 write_pnet(&wiphy->_net, net); 5833 } 5834 5835 /** 5836 * wiphy_priv - return priv from wiphy 5837 * 5838 * @wiphy: the wiphy whose priv pointer to return 5839 * Return: The priv of @wiphy. 5840 */ 5841 static inline void *wiphy_priv(struct wiphy *wiphy) 5842 { 5843 BUG_ON(!wiphy); 5844 return &wiphy->priv; 5845 } 5846 5847 /** 5848 * priv_to_wiphy - return the wiphy containing the priv 5849 * 5850 * @priv: a pointer previously returned by wiphy_priv 5851 * Return: The wiphy of @priv. 5852 */ 5853 static inline struct wiphy *priv_to_wiphy(void *priv) 5854 { 5855 BUG_ON(!priv); 5856 return container_of(priv, struct wiphy, priv); 5857 } 5858 5859 /** 5860 * set_wiphy_dev - set device pointer for wiphy 5861 * 5862 * @wiphy: The wiphy whose device to bind 5863 * @dev: The device to parent it to 5864 */ 5865 static inline void set_wiphy_dev(struct wiphy *wiphy, struct device *dev) 5866 { 5867 wiphy->dev.parent = dev; 5868 } 5869 5870 /** 5871 * wiphy_dev - get wiphy dev pointer 5872 * 5873 * @wiphy: The wiphy whose device struct to look up 5874 * Return: The dev of @wiphy. 5875 */ 5876 static inline struct device *wiphy_dev(struct wiphy *wiphy) 5877 { 5878 return wiphy->dev.parent; 5879 } 5880 5881 /** 5882 * wiphy_name - get wiphy name 5883 * 5884 * @wiphy: The wiphy whose name to return 5885 * Return: The name of @wiphy. 5886 */ 5887 static inline const char *wiphy_name(const struct wiphy *wiphy) 5888 { 5889 return dev_name(&wiphy->dev); 5890 } 5891 5892 /** 5893 * wiphy_new_nm - create a new wiphy for use with cfg80211 5894 * 5895 * @ops: The configuration operations for this device 5896 * @sizeof_priv: The size of the private area to allocate 5897 * @requested_name: Request a particular name. 5898 * NULL is valid value, and means use the default phy%d naming. 5899 * 5900 * Create a new wiphy and associate the given operations with it. 5901 * @sizeof_priv bytes are allocated for private use. 5902 * 5903 * Return: A pointer to the new wiphy. This pointer must be 5904 * assigned to each netdev's ieee80211_ptr for proper operation. 5905 */ 5906 struct wiphy *wiphy_new_nm(const struct cfg80211_ops *ops, int sizeof_priv, 5907 const char *requested_name); 5908 5909 /** 5910 * wiphy_new - create a new wiphy for use with cfg80211 5911 * 5912 * @ops: The configuration operations for this device 5913 * @sizeof_priv: The size of the private area to allocate 5914 * 5915 * Create a new wiphy and associate the given operations with it. 5916 * @sizeof_priv bytes are allocated for private use. 5917 * 5918 * Return: A pointer to the new wiphy. This pointer must be 5919 * assigned to each netdev's ieee80211_ptr for proper operation. 5920 */ 5921 static inline struct wiphy *wiphy_new(const struct cfg80211_ops *ops, 5922 int sizeof_priv) 5923 { 5924 return wiphy_new_nm(ops, sizeof_priv, NULL); 5925 } 5926 5927 /** 5928 * wiphy_register - register a wiphy with cfg80211 5929 * 5930 * @wiphy: The wiphy to register. 5931 * 5932 * Return: A non-negative wiphy index or a negative error code. 5933 */ 5934 int wiphy_register(struct wiphy *wiphy); 5935 5936 /* this is a define for better error reporting (file/line) */ 5937 #define lockdep_assert_wiphy(wiphy) lockdep_assert_held(&(wiphy)->mtx) 5938 5939 /** 5940 * rcu_dereference_wiphy - rcu_dereference with debug checking 5941 * @wiphy: the wiphy to check the locking on 5942 * @p: The pointer to read, prior to dereferencing 5943 * 5944 * Do an rcu_dereference(p), but check caller either holds rcu_read_lock() 5945 * or RTNL. Note: Please prefer wiphy_dereference() or rcu_dereference(). 5946 */ 5947 #define rcu_dereference_wiphy(wiphy, p) \ 5948 rcu_dereference_check(p, lockdep_is_held(&wiphy->mtx)) 5949 5950 /** 5951 * wiphy_dereference - fetch RCU pointer when updates are prevented by wiphy mtx 5952 * @wiphy: the wiphy to check the locking on 5953 * @p: The pointer to read, prior to dereferencing 5954 * 5955 * Return the value of the specified RCU-protected pointer, but omit the 5956 * READ_ONCE(), because caller holds the wiphy mutex used for updates. 5957 */ 5958 #define wiphy_dereference(wiphy, p) \ 5959 rcu_dereference_protected(p, lockdep_is_held(&wiphy->mtx)) 5960 5961 /** 5962 * get_wiphy_regdom - get custom regdomain for the given wiphy 5963 * @wiphy: the wiphy to get the regdomain from 5964 * 5965 * Context: Requires any of RTNL, wiphy mutex or RCU protection. 5966 * 5967 * Return: pointer to the regulatory domain associated with the wiphy 5968 */ 5969 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy); 5970 5971 /** 5972 * wiphy_unregister - deregister a wiphy from cfg80211 5973 * 5974 * @wiphy: The wiphy to unregister. 5975 * 5976 * After this call, no more requests can be made with this priv 5977 * pointer, but the call may sleep to wait for an outstanding 5978 * request that is being handled. 5979 */ 5980 void wiphy_unregister(struct wiphy *wiphy); 5981 5982 /** 5983 * wiphy_free - free wiphy 5984 * 5985 * @wiphy: The wiphy to free 5986 */ 5987 void wiphy_free(struct wiphy *wiphy); 5988 5989 /* internal structs */ 5990 struct cfg80211_conn; 5991 struct cfg80211_internal_bss; 5992 struct cfg80211_cached_keys; 5993 struct cfg80211_cqm_config; 5994 5995 /** 5996 * wiphy_lock - lock the wiphy 5997 * @wiphy: the wiphy to lock 5998 * 5999 * This is needed around registering and unregistering netdevs that 6000 * aren't created through cfg80211 calls, since that requires locking 6001 * in cfg80211 when the notifiers is called, but that cannot 6002 * differentiate which way it's called. 6003 * 6004 * It can also be used by drivers for their own purposes. 6005 * 6006 * When cfg80211 ops are called, the wiphy is already locked. 6007 * 6008 * Note that this makes sure that no workers that have been queued 6009 * with wiphy_queue_work() are running. 6010 */ 6011 static inline void wiphy_lock(struct wiphy *wiphy) 6012 __acquires(&wiphy->mtx) 6013 { 6014 mutex_lock(&wiphy->mtx); 6015 __acquire(&wiphy->mtx); 6016 } 6017 6018 /** 6019 * wiphy_unlock - unlock the wiphy again 6020 * @wiphy: the wiphy to unlock 6021 */ 6022 static inline void wiphy_unlock(struct wiphy *wiphy) 6023 __releases(&wiphy->mtx) 6024 { 6025 __release(&wiphy->mtx); 6026 mutex_unlock(&wiphy->mtx); 6027 } 6028 6029 struct wiphy_work; 6030 typedef void (*wiphy_work_func_t)(struct wiphy *, struct wiphy_work *); 6031 6032 struct wiphy_work { 6033 struct list_head entry; 6034 wiphy_work_func_t func; 6035 }; 6036 6037 static inline void wiphy_work_init(struct wiphy_work *work, 6038 wiphy_work_func_t func) 6039 { 6040 INIT_LIST_HEAD(&work->entry); 6041 work->func = func; 6042 } 6043 6044 /** 6045 * wiphy_work_queue - queue work for the wiphy 6046 * @wiphy: the wiphy to queue for 6047 * @work: the work item 6048 * 6049 * This is useful for work that must be done asynchronously, and work 6050 * queued here has the special property that the wiphy mutex will be 6051 * held as if wiphy_lock() was called, and that it cannot be running 6052 * after wiphy_lock() was called. Therefore, wiphy_cancel_work() can 6053 * use just cancel_work() instead of cancel_work_sync(), it requires 6054 * being in a section protected by wiphy_lock(). 6055 */ 6056 void wiphy_work_queue(struct wiphy *wiphy, struct wiphy_work *work); 6057 6058 /** 6059 * wiphy_work_cancel - cancel previously queued work 6060 * @wiphy: the wiphy, for debug purposes 6061 * @work: the work to cancel 6062 * 6063 * Cancel the work *without* waiting for it, this assumes being 6064 * called under the wiphy mutex acquired by wiphy_lock(). 6065 */ 6066 void wiphy_work_cancel(struct wiphy *wiphy, struct wiphy_work *work); 6067 6068 /** 6069 * wiphy_work_flush - flush previously queued work 6070 * @wiphy: the wiphy, for debug purposes 6071 * @work: the work to flush, this can be %NULL to flush all work 6072 * 6073 * Flush the work (i.e. run it if pending). This must be called 6074 * under the wiphy mutex acquired by wiphy_lock(). 6075 */ 6076 void wiphy_work_flush(struct wiphy *wiphy, struct wiphy_work *work); 6077 6078 struct wiphy_delayed_work { 6079 struct wiphy_work work; 6080 struct wiphy *wiphy; 6081 struct timer_list timer; 6082 }; 6083 6084 void wiphy_delayed_work_timer(struct timer_list *t); 6085 6086 static inline void wiphy_delayed_work_init(struct wiphy_delayed_work *dwork, 6087 wiphy_work_func_t func) 6088 { 6089 timer_setup(&dwork->timer, wiphy_delayed_work_timer, 0); 6090 wiphy_work_init(&dwork->work, func); 6091 } 6092 6093 /** 6094 * wiphy_delayed_work_queue - queue delayed work for the wiphy 6095 * @wiphy: the wiphy to queue for 6096 * @dwork: the delayable worker 6097 * @delay: number of jiffies to wait before queueing 6098 * 6099 * This is useful for work that must be done asynchronously, and work 6100 * queued here has the special property that the wiphy mutex will be 6101 * held as if wiphy_lock() was called, and that it cannot be running 6102 * after wiphy_lock() was called. Therefore, wiphy_cancel_work() can 6103 * use just cancel_work() instead of cancel_work_sync(), it requires 6104 * being in a section protected by wiphy_lock(). 6105 */ 6106 void wiphy_delayed_work_queue(struct wiphy *wiphy, 6107 struct wiphy_delayed_work *dwork, 6108 unsigned long delay); 6109 6110 /** 6111 * wiphy_delayed_work_cancel - cancel previously queued delayed work 6112 * @wiphy: the wiphy, for debug purposes 6113 * @dwork: the delayed work to cancel 6114 * 6115 * Cancel the work *without* waiting for it, this assumes being 6116 * called under the wiphy mutex acquired by wiphy_lock(). 6117 */ 6118 void wiphy_delayed_work_cancel(struct wiphy *wiphy, 6119 struct wiphy_delayed_work *dwork); 6120 6121 /** 6122 * wiphy_delayed_work_flush - flush previously queued delayed work 6123 * @wiphy: the wiphy, for debug purposes 6124 * @dwork: the delayed work to flush 6125 * 6126 * Flush the work (i.e. run it if pending). This must be called 6127 * under the wiphy mutex acquired by wiphy_lock(). 6128 */ 6129 void wiphy_delayed_work_flush(struct wiphy *wiphy, 6130 struct wiphy_delayed_work *dwork); 6131 6132 /** 6133 * wiphy_delayed_work_pending - Find out whether a wiphy delayable 6134 * work item is currently pending. 6135 * 6136 * @wiphy: the wiphy, for debug purposes 6137 * @dwork: the delayed work in question 6138 * 6139 * Return: true if timer is pending, false otherwise 6140 * 6141 * How wiphy_delayed_work_queue() works is by setting a timer which 6142 * when it expires calls wiphy_work_queue() to queue the wiphy work. 6143 * Because wiphy_delayed_work_queue() uses mod_timer(), if it is 6144 * called twice and the second call happens before the first call 6145 * deadline, the work will rescheduled for the second deadline and 6146 * won't run before that. 6147 * 6148 * wiphy_delayed_work_pending() can be used to detect if calling 6149 * wiphy_work_delayed_work_queue() would start a new work schedule 6150 * or delayed a previous one. As seen below it cannot be used to 6151 * detect precisely if the work has finished to execute nor if it 6152 * is currently executing. 6153 * 6154 * CPU0 CPU1 6155 * wiphy_delayed_work_queue(wk) 6156 * mod_timer(wk->timer) 6157 * wiphy_delayed_work_pending(wk) -> true 6158 * 6159 * [...] 6160 * expire_timers(wk->timer) 6161 * detach_timer(wk->timer) 6162 * wiphy_delayed_work_pending(wk) -> false 6163 * wk->timer->function() | 6164 * wiphy_work_queue(wk) | delayed work pending 6165 * list_add_tail() | returns false but 6166 * queue_work(cfg80211_wiphy_work) | wk->func() has not 6167 * | been run yet 6168 * [...] | 6169 * cfg80211_wiphy_work() | 6170 * wk->func() V 6171 * 6172 */ 6173 bool wiphy_delayed_work_pending(struct wiphy *wiphy, 6174 struct wiphy_delayed_work *dwork); 6175 6176 /** 6177 * enum ieee80211_ap_reg_power - regulatory power for an Access Point 6178 * 6179 * @IEEE80211_REG_UNSET_AP: Access Point has no regulatory power mode 6180 * @IEEE80211_REG_LPI_AP: Indoor Access Point 6181 * @IEEE80211_REG_SP_AP: Standard power Access Point 6182 * @IEEE80211_REG_VLP_AP: Very low power Access Point 6183 */ 6184 enum ieee80211_ap_reg_power { 6185 IEEE80211_REG_UNSET_AP, 6186 IEEE80211_REG_LPI_AP, 6187 IEEE80211_REG_SP_AP, 6188 IEEE80211_REG_VLP_AP, 6189 }; 6190 6191 /** 6192 * struct wireless_dev - wireless device state 6193 * 6194 * For netdevs, this structure must be allocated by the driver 6195 * that uses the ieee80211_ptr field in struct net_device (this 6196 * is intentional so it can be allocated along with the netdev.) 6197 * It need not be registered then as netdev registration will 6198 * be intercepted by cfg80211 to see the new wireless device, 6199 * however, drivers must lock the wiphy before registering or 6200 * unregistering netdevs if they pre-create any netdevs (in ops 6201 * called from cfg80211, the wiphy is already locked.) 6202 * 6203 * For non-netdev uses, it must also be allocated by the driver 6204 * in response to the cfg80211 callbacks that require it, as 6205 * there's no netdev registration in that case it may not be 6206 * allocated outside of callback operations that return it. 6207 * 6208 * @wiphy: pointer to hardware description 6209 * @iftype: interface type 6210 * @registered: is this wdev already registered with cfg80211 6211 * @registering: indicates we're doing registration under wiphy lock 6212 * for the notifier 6213 * @list: (private) Used to collect the interfaces 6214 * @netdev: (private) Used to reference back to the netdev, may be %NULL 6215 * @identifier: (private) Identifier used in nl80211 to identify this 6216 * wireless device if it has no netdev 6217 * @u: union containing data specific to @iftype 6218 * @connected: indicates if connected or not (STA mode) 6219 * @wext: (private) Used by the internal wireless extensions compat code 6220 * @wext.ibss: (private) IBSS data part of wext handling 6221 * @wext.connect: (private) connection handling data 6222 * @wext.keys: (private) (WEP) key data 6223 * @wext.ie: (private) extra elements for association 6224 * @wext.ie_len: (private) length of extra elements 6225 * @wext.bssid: (private) selected network BSSID 6226 * @wext.ssid: (private) selected network SSID 6227 * @wext.default_key: (private) selected default key index 6228 * @wext.default_mgmt_key: (private) selected default management key index 6229 * @wext.prev_bssid: (private) previous BSSID for reassociation 6230 * @wext.prev_bssid_valid: (private) previous BSSID validity 6231 * @use_4addr: indicates 4addr mode is used on this interface, must be 6232 * set by driver (if supported) on add_interface BEFORE registering the 6233 * netdev and may otherwise be used by driver read-only, will be update 6234 * by cfg80211 on change_interface 6235 * @mgmt_registrations: list of registrations for management frames 6236 * @mgmt_registrations_need_update: mgmt registrations were updated, 6237 * need to propagate the update to the driver 6238 * @address: The address for this device, valid only if @netdev is %NULL 6239 * @is_running: true if this is a non-netdev device that has been started, e.g. 6240 * the P2P Device. 6241 * @ps: powersave mode is enabled 6242 * @ps_timeout: dynamic powersave timeout 6243 * @ap_unexpected_nlportid: (private) netlink port ID of application 6244 * registered for unexpected class 3 frames (AP mode) 6245 * @conn: (private) cfg80211 software SME connection state machine data 6246 * @connect_keys: (private) keys to set after connection is established 6247 * @conn_bss_type: connecting/connected BSS type 6248 * @conn_owner_nlportid: (private) connection owner socket port ID 6249 * @disconnect_wk: (private) auto-disconnect work 6250 * @disconnect_bssid: (private) the BSSID to use for auto-disconnect 6251 * @event_list: (private) list for internal event processing 6252 * @event_lock: (private) lock for event list 6253 * @owner_nlportid: (private) owner socket port ID 6254 * @nl_owner_dead: (private) owner socket went away 6255 * @cqm_rssi_work: (private) CQM RSSI reporting work 6256 * @cqm_config: (private) nl80211 RSSI monitor state 6257 * @pmsr_list: (private) peer measurement requests 6258 * @pmsr_lock: (private) peer measurements requests/results lock 6259 * @pmsr_free_wk: (private) peer measurements cleanup work 6260 * @unprot_beacon_reported: (private) timestamp of last 6261 * unprotected beacon report 6262 * @links: array of %IEEE80211_MLD_MAX_NUM_LINKS elements containing @addr 6263 * @ap and @client for each link 6264 * @links.cac_started: true if DFS channel availability check has been 6265 * started 6266 * @links.cac_start_time: timestamp (jiffies) when the dfs state was 6267 * entered. 6268 * @links.cac_time_ms: CAC time in ms 6269 * @valid_links: bitmap describing what elements of @links are valid 6270 */ 6271 struct wireless_dev { 6272 struct wiphy *wiphy; 6273 enum nl80211_iftype iftype; 6274 6275 /* the remainder of this struct should be private to cfg80211 */ 6276 struct list_head list; 6277 struct net_device *netdev; 6278 6279 u32 identifier; 6280 6281 struct list_head mgmt_registrations; 6282 u8 mgmt_registrations_need_update:1; 6283 6284 bool use_4addr, is_running, registered, registering; 6285 6286 u8 address[ETH_ALEN] __aligned(sizeof(u16)); 6287 6288 /* currently used for IBSS and SME - might be rearranged later */ 6289 struct cfg80211_conn *conn; 6290 struct cfg80211_cached_keys *connect_keys; 6291 enum ieee80211_bss_type conn_bss_type; 6292 u32 conn_owner_nlportid; 6293 6294 struct work_struct disconnect_wk; 6295 u8 disconnect_bssid[ETH_ALEN]; 6296 6297 struct list_head event_list; 6298 spinlock_t event_lock; 6299 6300 u8 connected:1; 6301 6302 bool ps; 6303 int ps_timeout; 6304 6305 u32 ap_unexpected_nlportid; 6306 6307 u32 owner_nlportid; 6308 bool nl_owner_dead; 6309 6310 #ifdef CONFIG_CFG80211_WEXT 6311 /* wext data */ 6312 struct { 6313 struct cfg80211_ibss_params ibss; 6314 struct cfg80211_connect_params connect; 6315 struct cfg80211_cached_keys *keys; 6316 const u8 *ie; 6317 size_t ie_len; 6318 u8 bssid[ETH_ALEN]; 6319 u8 prev_bssid[ETH_ALEN]; 6320 u8 ssid[IEEE80211_MAX_SSID_LEN]; 6321 s8 default_key, default_mgmt_key; 6322 bool prev_bssid_valid; 6323 } wext; 6324 #endif 6325 6326 struct wiphy_work cqm_rssi_work; 6327 struct cfg80211_cqm_config __rcu *cqm_config; 6328 6329 struct list_head pmsr_list; 6330 spinlock_t pmsr_lock; 6331 struct work_struct pmsr_free_wk; 6332 6333 unsigned long unprot_beacon_reported; 6334 6335 union { 6336 struct { 6337 u8 connected_addr[ETH_ALEN] __aligned(2); 6338 u8 ssid[IEEE80211_MAX_SSID_LEN]; 6339 u8 ssid_len; 6340 } client; 6341 struct { 6342 int beacon_interval; 6343 struct cfg80211_chan_def preset_chandef; 6344 struct cfg80211_chan_def chandef; 6345 u8 id[IEEE80211_MAX_MESH_ID_LEN]; 6346 u8 id_len, id_up_len; 6347 } mesh; 6348 struct { 6349 struct cfg80211_chan_def preset_chandef; 6350 u8 ssid[IEEE80211_MAX_SSID_LEN]; 6351 u8 ssid_len; 6352 } ap; 6353 struct { 6354 struct cfg80211_internal_bss *current_bss; 6355 struct cfg80211_chan_def chandef; 6356 int beacon_interval; 6357 u8 ssid[IEEE80211_MAX_SSID_LEN]; 6358 u8 ssid_len; 6359 } ibss; 6360 struct { 6361 struct cfg80211_chan_def chandef; 6362 } ocb; 6363 } u; 6364 6365 struct { 6366 u8 addr[ETH_ALEN] __aligned(2); 6367 union { 6368 struct { 6369 unsigned int beacon_interval; 6370 struct cfg80211_chan_def chandef; 6371 } ap; 6372 struct { 6373 struct cfg80211_internal_bss *current_bss; 6374 } client; 6375 }; 6376 6377 bool cac_started; 6378 unsigned long cac_start_time; 6379 unsigned int cac_time_ms; 6380 } links[IEEE80211_MLD_MAX_NUM_LINKS]; 6381 u16 valid_links; 6382 }; 6383 6384 static inline const u8 *wdev_address(struct wireless_dev *wdev) 6385 { 6386 if (wdev->netdev) 6387 return wdev->netdev->dev_addr; 6388 return wdev->address; 6389 } 6390 6391 static inline bool wdev_running(struct wireless_dev *wdev) 6392 { 6393 if (wdev->netdev) 6394 return netif_running(wdev->netdev); 6395 return wdev->is_running; 6396 } 6397 6398 /** 6399 * wdev_priv - return wiphy priv from wireless_dev 6400 * 6401 * @wdev: The wireless device whose wiphy's priv pointer to return 6402 * Return: The wiphy priv of @wdev. 6403 */ 6404 static inline void *wdev_priv(struct wireless_dev *wdev) 6405 { 6406 BUG_ON(!wdev); 6407 return wiphy_priv(wdev->wiphy); 6408 } 6409 6410 /** 6411 * wdev_chandef - return chandef pointer from wireless_dev 6412 * @wdev: the wdev 6413 * @link_id: the link ID for MLO 6414 * 6415 * Return: The chandef depending on the mode, or %NULL. 6416 */ 6417 struct cfg80211_chan_def *wdev_chandef(struct wireless_dev *wdev, 6418 unsigned int link_id); 6419 6420 static inline void WARN_INVALID_LINK_ID(struct wireless_dev *wdev, 6421 unsigned int link_id) 6422 { 6423 WARN_ON(link_id && !wdev->valid_links); 6424 WARN_ON(wdev->valid_links && 6425 !(wdev->valid_links & BIT(link_id))); 6426 } 6427 6428 #define for_each_valid_link(link_info, link_id) \ 6429 for (link_id = 0; \ 6430 link_id < ((link_info)->valid_links ? \ 6431 ARRAY_SIZE((link_info)->links) : 1); \ 6432 link_id++) \ 6433 if (!(link_info)->valid_links || \ 6434 ((link_info)->valid_links & BIT(link_id))) 6435 6436 /** 6437 * DOC: Utility functions 6438 * 6439 * cfg80211 offers a number of utility functions that can be useful. 6440 */ 6441 6442 /** 6443 * ieee80211_channel_equal - compare two struct ieee80211_channel 6444 * 6445 * @a: 1st struct ieee80211_channel 6446 * @b: 2nd struct ieee80211_channel 6447 * Return: true if center frequency of @a == @b 6448 */ 6449 static inline bool 6450 ieee80211_channel_equal(struct ieee80211_channel *a, 6451 struct ieee80211_channel *b) 6452 { 6453 return (a->center_freq == b->center_freq && 6454 a->freq_offset == b->freq_offset); 6455 } 6456 6457 /** 6458 * ieee80211_channel_to_khz - convert ieee80211_channel to frequency in KHz 6459 * @chan: struct ieee80211_channel to convert 6460 * Return: The corresponding frequency (in KHz) 6461 */ 6462 static inline u32 6463 ieee80211_channel_to_khz(const struct ieee80211_channel *chan) 6464 { 6465 return MHZ_TO_KHZ(chan->center_freq) + chan->freq_offset; 6466 } 6467 6468 /** 6469 * ieee80211_s1g_channel_width - get allowed channel width from @chan 6470 * 6471 * Only allowed for band NL80211_BAND_S1GHZ 6472 * @chan: channel 6473 * Return: The allowed channel width for this center_freq 6474 */ 6475 enum nl80211_chan_width 6476 ieee80211_s1g_channel_width(const struct ieee80211_channel *chan); 6477 6478 /** 6479 * ieee80211_channel_to_freq_khz - convert channel number to frequency 6480 * @chan: channel number 6481 * @band: band, necessary due to channel number overlap 6482 * Return: The corresponding frequency (in KHz), or 0 if the conversion failed. 6483 */ 6484 u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band); 6485 6486 /** 6487 * ieee80211_channel_to_frequency - convert channel number to frequency 6488 * @chan: channel number 6489 * @band: band, necessary due to channel number overlap 6490 * Return: The corresponding frequency (in MHz), or 0 if the conversion failed. 6491 */ 6492 static inline int 6493 ieee80211_channel_to_frequency(int chan, enum nl80211_band band) 6494 { 6495 return KHZ_TO_MHZ(ieee80211_channel_to_freq_khz(chan, band)); 6496 } 6497 6498 /** 6499 * ieee80211_freq_khz_to_channel - convert frequency to channel number 6500 * @freq: center frequency in KHz 6501 * Return: The corresponding channel, or 0 if the conversion failed. 6502 */ 6503 int ieee80211_freq_khz_to_channel(u32 freq); 6504 6505 /** 6506 * ieee80211_frequency_to_channel - convert frequency to channel number 6507 * @freq: center frequency in MHz 6508 * Return: The corresponding channel, or 0 if the conversion failed. 6509 */ 6510 static inline int 6511 ieee80211_frequency_to_channel(int freq) 6512 { 6513 return ieee80211_freq_khz_to_channel(MHZ_TO_KHZ(freq)); 6514 } 6515 6516 /** 6517 * ieee80211_get_channel_khz - get channel struct from wiphy for specified 6518 * frequency 6519 * @wiphy: the struct wiphy to get the channel for 6520 * @freq: the center frequency (in KHz) of the channel 6521 * Return: The channel struct from @wiphy at @freq. 6522 */ 6523 struct ieee80211_channel * 6524 ieee80211_get_channel_khz(struct wiphy *wiphy, u32 freq); 6525 6526 /** 6527 * ieee80211_get_channel - get channel struct from wiphy for specified frequency 6528 * 6529 * @wiphy: the struct wiphy to get the channel for 6530 * @freq: the center frequency (in MHz) of the channel 6531 * Return: The channel struct from @wiphy at @freq. 6532 */ 6533 static inline struct ieee80211_channel * 6534 ieee80211_get_channel(struct wiphy *wiphy, int freq) 6535 { 6536 return ieee80211_get_channel_khz(wiphy, MHZ_TO_KHZ(freq)); 6537 } 6538 6539 /** 6540 * cfg80211_channel_is_psc - Check if the channel is a 6 GHz PSC 6541 * @chan: control channel to check 6542 * 6543 * The Preferred Scanning Channels (PSC) are defined in 6544 * Draft IEEE P802.11ax/D5.0, 26.17.2.3.3 6545 * 6546 * Return: %true if channel is a PSC, %false otherwise 6547 */ 6548 static inline bool cfg80211_channel_is_psc(struct ieee80211_channel *chan) 6549 { 6550 if (chan->band != NL80211_BAND_6GHZ) 6551 return false; 6552 6553 return ieee80211_frequency_to_channel(chan->center_freq) % 16 == 5; 6554 } 6555 6556 /** 6557 * cfg80211_radio_chandef_valid - Check if the radio supports the chandef 6558 * 6559 * @radio: wiphy radio 6560 * @chandef: chandef for current channel 6561 * 6562 * Return: whether or not the given chandef is valid for the given radio 6563 */ 6564 bool cfg80211_radio_chandef_valid(const struct wiphy_radio *radio, 6565 const struct cfg80211_chan_def *chandef); 6566 6567 /** 6568 * ieee80211_get_response_rate - get basic rate for a given rate 6569 * 6570 * @sband: the band to look for rates in 6571 * @basic_rates: bitmap of basic rates 6572 * @bitrate: the bitrate for which to find the basic rate 6573 * 6574 * Return: The basic rate corresponding to a given bitrate, that 6575 * is the next lower bitrate contained in the basic rate map, 6576 * which is, for this function, given as a bitmap of indices of 6577 * rates in the band's bitrate table. 6578 */ 6579 const struct ieee80211_rate * 6580 ieee80211_get_response_rate(struct ieee80211_supported_band *sband, 6581 u32 basic_rates, int bitrate); 6582 6583 /** 6584 * ieee80211_mandatory_rates - get mandatory rates for a given band 6585 * @sband: the band to look for rates in 6586 * 6587 * Return: a bitmap of the mandatory rates for the given band, bits 6588 * are set according to the rate position in the bitrates array. 6589 */ 6590 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband); 6591 6592 /* 6593 * Radiotap parsing functions -- for controlled injection support 6594 * 6595 * Implemented in net/wireless/radiotap.c 6596 * Documentation in Documentation/networking/radiotap-headers.rst 6597 */ 6598 6599 struct radiotap_align_size { 6600 uint8_t align:4, size:4; 6601 }; 6602 6603 struct ieee80211_radiotap_namespace { 6604 const struct radiotap_align_size *align_size; 6605 int n_bits; 6606 uint32_t oui; 6607 uint8_t subns; 6608 }; 6609 6610 struct ieee80211_radiotap_vendor_namespaces { 6611 const struct ieee80211_radiotap_namespace *ns; 6612 int n_ns; 6613 }; 6614 6615 /** 6616 * struct ieee80211_radiotap_iterator - tracks walk thru present radiotap args 6617 * @this_arg_index: index of current arg, valid after each successful call 6618 * to ieee80211_radiotap_iterator_next() 6619 * @this_arg: pointer to current radiotap arg; it is valid after each 6620 * call to ieee80211_radiotap_iterator_next() but also after 6621 * ieee80211_radiotap_iterator_init() where it will point to 6622 * the beginning of the actual data portion 6623 * @this_arg_size: length of the current arg, for convenience 6624 * @current_namespace: pointer to the current namespace definition 6625 * (or internally %NULL if the current namespace is unknown) 6626 * @is_radiotap_ns: indicates whether the current namespace is the default 6627 * radiotap namespace or not 6628 * 6629 * @_rtheader: pointer to the radiotap header we are walking through 6630 * @_max_length: length of radiotap header in cpu byte ordering 6631 * @_arg_index: next argument index 6632 * @_arg: next argument pointer 6633 * @_next_bitmap: internal pointer to next present u32 6634 * @_bitmap_shifter: internal shifter for curr u32 bitmap, b0 set == arg present 6635 * @_vns: vendor namespace definitions 6636 * @_next_ns_data: beginning of the next namespace's data 6637 * @_reset_on_ext: internal; reset the arg index to 0 when going to the 6638 * next bitmap word 6639 * 6640 * Describes the radiotap parser state. Fields prefixed with an underscore 6641 * must not be used by users of the parser, only by the parser internally. 6642 */ 6643 6644 struct ieee80211_radiotap_iterator { 6645 struct ieee80211_radiotap_header *_rtheader; 6646 const struct ieee80211_radiotap_vendor_namespaces *_vns; 6647 const struct ieee80211_radiotap_namespace *current_namespace; 6648 6649 unsigned char *_arg, *_next_ns_data; 6650 __le32 *_next_bitmap; 6651 6652 unsigned char *this_arg; 6653 int this_arg_index; 6654 int this_arg_size; 6655 6656 int is_radiotap_ns; 6657 6658 int _max_length; 6659 int _arg_index; 6660 uint32_t _bitmap_shifter; 6661 int _reset_on_ext; 6662 }; 6663 6664 int 6665 ieee80211_radiotap_iterator_init(struct ieee80211_radiotap_iterator *iterator, 6666 struct ieee80211_radiotap_header *radiotap_header, 6667 int max_length, 6668 const struct ieee80211_radiotap_vendor_namespaces *vns); 6669 6670 int 6671 ieee80211_radiotap_iterator_next(struct ieee80211_radiotap_iterator *iterator); 6672 6673 6674 extern const unsigned char rfc1042_header[6]; 6675 extern const unsigned char bridge_tunnel_header[6]; 6676 6677 /** 6678 * ieee80211_get_hdrlen_from_skb - get header length from data 6679 * 6680 * @skb: the frame 6681 * 6682 * Given an skb with a raw 802.11 header at the data pointer this function 6683 * returns the 802.11 header length. 6684 * 6685 * Return: The 802.11 header length in bytes (not including encryption 6686 * headers). Or 0 if the data in the sk_buff is too short to contain a valid 6687 * 802.11 header. 6688 */ 6689 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb); 6690 6691 /** 6692 * ieee80211_hdrlen - get header length in bytes from frame control 6693 * @fc: frame control field in little-endian format 6694 * Return: The header length in bytes. 6695 */ 6696 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc); 6697 6698 /** 6699 * ieee80211_get_mesh_hdrlen - get mesh extension header length 6700 * @meshhdr: the mesh extension header, only the flags field 6701 * (first byte) will be accessed 6702 * Return: The length of the extension header, which is always at 6703 * least 6 bytes and at most 18 if address 5 and 6 are present. 6704 */ 6705 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr); 6706 6707 /** 6708 * DOC: Data path helpers 6709 * 6710 * In addition to generic utilities, cfg80211 also offers 6711 * functions that help implement the data path for devices 6712 * that do not do the 802.11/802.3 conversion on the device. 6713 */ 6714 6715 /** 6716 * ieee80211_data_to_8023_exthdr - convert an 802.11 data frame to 802.3 6717 * @skb: the 802.11 data frame 6718 * @ehdr: pointer to a &struct ethhdr that will get the header, instead 6719 * of it being pushed into the SKB 6720 * @addr: the device MAC address 6721 * @iftype: the virtual interface type 6722 * @data_offset: offset of payload after the 802.11 header 6723 * @is_amsdu: true if the 802.11 header is A-MSDU 6724 * Return: 0 on success. Non-zero on error. 6725 */ 6726 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr, 6727 const u8 *addr, enum nl80211_iftype iftype, 6728 u8 data_offset, bool is_amsdu); 6729 6730 /** 6731 * ieee80211_data_to_8023 - convert an 802.11 data frame to 802.3 6732 * @skb: the 802.11 data frame 6733 * @addr: the device MAC address 6734 * @iftype: the virtual interface type 6735 * Return: 0 on success. Non-zero on error. 6736 */ 6737 static inline int ieee80211_data_to_8023(struct sk_buff *skb, const u8 *addr, 6738 enum nl80211_iftype iftype) 6739 { 6740 return ieee80211_data_to_8023_exthdr(skb, NULL, addr, iftype, 0, false); 6741 } 6742 6743 /** 6744 * ieee80211_is_valid_amsdu - check if subframe lengths of an A-MSDU are valid 6745 * 6746 * This is used to detect non-standard A-MSDU frames, e.g. the ones generated 6747 * by ath10k and ath11k, where the subframe length includes the length of the 6748 * mesh control field. 6749 * 6750 * @skb: The input A-MSDU frame without any headers. 6751 * @mesh_hdr: the type of mesh header to test 6752 * 0: non-mesh A-MSDU length field 6753 * 1: big-endian mesh A-MSDU length field 6754 * 2: little-endian mesh A-MSDU length field 6755 * Returns: true if subframe header lengths are valid for the @mesh_hdr mode 6756 */ 6757 bool ieee80211_is_valid_amsdu(struct sk_buff *skb, u8 mesh_hdr); 6758 6759 /** 6760 * ieee80211_amsdu_to_8023s - decode an IEEE 802.11n A-MSDU frame 6761 * 6762 * Decode an IEEE 802.11 A-MSDU and convert it to a list of 802.3 frames. 6763 * The @list will be empty if the decode fails. The @skb must be fully 6764 * header-less before being passed in here; it is freed in this function. 6765 * 6766 * @skb: The input A-MSDU frame without any headers. 6767 * @list: The output list of 802.3 frames. It must be allocated and 6768 * initialized by the caller. 6769 * @addr: The device MAC address. 6770 * @iftype: The device interface type. 6771 * @extra_headroom: The hardware extra headroom for SKBs in the @list. 6772 * @check_da: DA to check in the inner ethernet header, or NULL 6773 * @check_sa: SA to check in the inner ethernet header, or NULL 6774 * @mesh_control: see mesh_hdr in ieee80211_is_valid_amsdu 6775 */ 6776 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list, 6777 const u8 *addr, enum nl80211_iftype iftype, 6778 const unsigned int extra_headroom, 6779 const u8 *check_da, const u8 *check_sa, 6780 u8 mesh_control); 6781 6782 /** 6783 * ieee80211_get_8023_tunnel_proto - get RFC1042 or bridge tunnel encap protocol 6784 * 6785 * Check for RFC1042 or bridge tunnel header and fetch the encapsulated 6786 * protocol. 6787 * 6788 * @hdr: pointer to the MSDU payload 6789 * @proto: destination pointer to store the protocol 6790 * Return: true if encapsulation was found 6791 */ 6792 bool ieee80211_get_8023_tunnel_proto(const void *hdr, __be16 *proto); 6793 6794 /** 6795 * ieee80211_strip_8023_mesh_hdr - strip mesh header from converted 802.3 frames 6796 * 6797 * Strip the mesh header, which was left in by ieee80211_data_to_8023 as part 6798 * of the MSDU data. Also move any source/destination addresses from the mesh 6799 * header to the ethernet header (if present). 6800 * 6801 * @skb: The 802.3 frame with embedded mesh header 6802 * 6803 * Return: 0 on success. Non-zero on error. 6804 */ 6805 int ieee80211_strip_8023_mesh_hdr(struct sk_buff *skb); 6806 6807 /** 6808 * cfg80211_classify8021d - determine the 802.1p/1d tag for a data frame 6809 * @skb: the data frame 6810 * @qos_map: Interworking QoS mapping or %NULL if not in use 6811 * Return: The 802.1p/1d tag. 6812 */ 6813 unsigned int cfg80211_classify8021d(struct sk_buff *skb, 6814 struct cfg80211_qos_map *qos_map); 6815 6816 /** 6817 * cfg80211_find_elem_match - match information element and byte array in data 6818 * 6819 * @eid: element ID 6820 * @ies: data consisting of IEs 6821 * @len: length of data 6822 * @match: byte array to match 6823 * @match_len: number of bytes in the match array 6824 * @match_offset: offset in the IE data where the byte array should match. 6825 * Note the difference to cfg80211_find_ie_match() which considers 6826 * the offset to start from the element ID byte, but here we take 6827 * the data portion instead. 6828 * 6829 * Return: %NULL if the element ID could not be found or if 6830 * the element is invalid (claims to be longer than the given 6831 * data) or if the byte array doesn't match; otherwise return the 6832 * requested element struct. 6833 * 6834 * Note: There are no checks on the element length other than 6835 * having to fit into the given data and being large enough for the 6836 * byte array to match. 6837 */ 6838 const struct element * 6839 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len, 6840 const u8 *match, unsigned int match_len, 6841 unsigned int match_offset); 6842 6843 /** 6844 * cfg80211_find_ie_match - match information element and byte array in data 6845 * 6846 * @eid: element ID 6847 * @ies: data consisting of IEs 6848 * @len: length of data 6849 * @match: byte array to match 6850 * @match_len: number of bytes in the match array 6851 * @match_offset: offset in the IE where the byte array should match. 6852 * If match_len is zero, this must also be set to zero. 6853 * Otherwise this must be set to 2 or more, because the first 6854 * byte is the element id, which is already compared to eid, and 6855 * the second byte is the IE length. 6856 * 6857 * Return: %NULL if the element ID could not be found or if 6858 * the element is invalid (claims to be longer than the given 6859 * data) or if the byte array doesn't match, or a pointer to the first 6860 * byte of the requested element, that is the byte containing the 6861 * element ID. 6862 * 6863 * Note: There are no checks on the element length other than 6864 * having to fit into the given data and being large enough for the 6865 * byte array to match. 6866 */ 6867 static inline const u8 * 6868 cfg80211_find_ie_match(u8 eid, const u8 *ies, unsigned int len, 6869 const u8 *match, unsigned int match_len, 6870 unsigned int match_offset) 6871 { 6872 /* match_offset can't be smaller than 2, unless match_len is 6873 * zero, in which case match_offset must be zero as well. 6874 */ 6875 if (WARN_ON((match_len && match_offset < 2) || 6876 (!match_len && match_offset))) 6877 return NULL; 6878 6879 return (const void *)cfg80211_find_elem_match(eid, ies, len, 6880 match, match_len, 6881 match_offset ? 6882 match_offset - 2 : 0); 6883 } 6884 6885 /** 6886 * cfg80211_find_elem - find information element in data 6887 * 6888 * @eid: element ID 6889 * @ies: data consisting of IEs 6890 * @len: length of data 6891 * 6892 * Return: %NULL if the element ID could not be found or if 6893 * the element is invalid (claims to be longer than the given 6894 * data) or if the byte array doesn't match; otherwise return the 6895 * requested element struct. 6896 * 6897 * Note: There are no checks on the element length other than 6898 * having to fit into the given data. 6899 */ 6900 static inline const struct element * 6901 cfg80211_find_elem(u8 eid, const u8 *ies, int len) 6902 { 6903 return cfg80211_find_elem_match(eid, ies, len, NULL, 0, 0); 6904 } 6905 6906 /** 6907 * cfg80211_find_ie - find information element in data 6908 * 6909 * @eid: element ID 6910 * @ies: data consisting of IEs 6911 * @len: length of data 6912 * 6913 * Return: %NULL if the element ID could not be found or if 6914 * the element is invalid (claims to be longer than the given 6915 * data), or a pointer to the first byte of the requested 6916 * element, that is the byte containing the element ID. 6917 * 6918 * Note: There are no checks on the element length other than 6919 * having to fit into the given data. 6920 */ 6921 static inline const u8 *cfg80211_find_ie(u8 eid, const u8 *ies, int len) 6922 { 6923 return cfg80211_find_ie_match(eid, ies, len, NULL, 0, 0); 6924 } 6925 6926 /** 6927 * cfg80211_find_ext_elem - find information element with EID Extension in data 6928 * 6929 * @ext_eid: element ID Extension 6930 * @ies: data consisting of IEs 6931 * @len: length of data 6932 * 6933 * Return: %NULL if the extended element could not be found or if 6934 * the element is invalid (claims to be longer than the given 6935 * data) or if the byte array doesn't match; otherwise return the 6936 * requested element struct. 6937 * 6938 * Note: There are no checks on the element length other than 6939 * having to fit into the given data. 6940 */ 6941 static inline const struct element * 6942 cfg80211_find_ext_elem(u8 ext_eid, const u8 *ies, int len) 6943 { 6944 return cfg80211_find_elem_match(WLAN_EID_EXTENSION, ies, len, 6945 &ext_eid, 1, 0); 6946 } 6947 6948 /** 6949 * cfg80211_find_ext_ie - find information element with EID Extension in data 6950 * 6951 * @ext_eid: element ID Extension 6952 * @ies: data consisting of IEs 6953 * @len: length of data 6954 * 6955 * Return: %NULL if the extended element ID could not be found or if 6956 * the element is invalid (claims to be longer than the given 6957 * data), or a pointer to the first byte of the requested 6958 * element, that is the byte containing the element ID. 6959 * 6960 * Note: There are no checks on the element length other than 6961 * having to fit into the given data. 6962 */ 6963 static inline const u8 *cfg80211_find_ext_ie(u8 ext_eid, const u8 *ies, int len) 6964 { 6965 return cfg80211_find_ie_match(WLAN_EID_EXTENSION, ies, len, 6966 &ext_eid, 1, 2); 6967 } 6968 6969 /** 6970 * cfg80211_find_vendor_elem - find vendor specific information element in data 6971 * 6972 * @oui: vendor OUI 6973 * @oui_type: vendor-specific OUI type (must be < 0xff), negative means any 6974 * @ies: data consisting of IEs 6975 * @len: length of data 6976 * 6977 * Return: %NULL if the vendor specific element ID could not be found or if the 6978 * element is invalid (claims to be longer than the given data); otherwise 6979 * return the element structure for the requested element. 6980 * 6981 * Note: There are no checks on the element length other than having to fit into 6982 * the given data. 6983 */ 6984 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type, 6985 const u8 *ies, 6986 unsigned int len); 6987 6988 /** 6989 * cfg80211_find_vendor_ie - find vendor specific information element in data 6990 * 6991 * @oui: vendor OUI 6992 * @oui_type: vendor-specific OUI type (must be < 0xff), negative means any 6993 * @ies: data consisting of IEs 6994 * @len: length of data 6995 * 6996 * Return: %NULL if the vendor specific element ID could not be found or if the 6997 * element is invalid (claims to be longer than the given data), or a pointer to 6998 * the first byte of the requested element, that is the byte containing the 6999 * element ID. 7000 * 7001 * Note: There are no checks on the element length other than having to fit into 7002 * the given data. 7003 */ 7004 static inline const u8 * 7005 cfg80211_find_vendor_ie(unsigned int oui, int oui_type, 7006 const u8 *ies, unsigned int len) 7007 { 7008 return (const void *)cfg80211_find_vendor_elem(oui, oui_type, ies, len); 7009 } 7010 7011 /** 7012 * enum cfg80211_rnr_iter_ret - reduced neighbor report iteration state 7013 * @RNR_ITER_CONTINUE: continue iterating with the next entry 7014 * @RNR_ITER_BREAK: break iteration and return success 7015 * @RNR_ITER_ERROR: break iteration and return error 7016 */ 7017 enum cfg80211_rnr_iter_ret { 7018 RNR_ITER_CONTINUE, 7019 RNR_ITER_BREAK, 7020 RNR_ITER_ERROR, 7021 }; 7022 7023 /** 7024 * cfg80211_iter_rnr - iterate reduced neighbor report entries 7025 * @elems: the frame elements to iterate RNR elements and then 7026 * their entries in 7027 * @elems_len: length of the elements 7028 * @iter: iteration function, see also &enum cfg80211_rnr_iter_ret 7029 * for the return value 7030 * @iter_data: additional data passed to the iteration function 7031 * Return: %true on success (after successfully iterating all entries 7032 * or if the iteration function returned %RNR_ITER_BREAK), 7033 * %false on error (iteration function returned %RNR_ITER_ERROR 7034 * or elements were malformed.) 7035 */ 7036 bool cfg80211_iter_rnr(const u8 *elems, size_t elems_len, 7037 enum cfg80211_rnr_iter_ret 7038 (*iter)(void *data, u8 type, 7039 const struct ieee80211_neighbor_ap_info *info, 7040 const u8 *tbtt_info, u8 tbtt_info_len), 7041 void *iter_data); 7042 7043 /** 7044 * cfg80211_defragment_element - Defrag the given element data into a buffer 7045 * 7046 * @elem: the element to defragment 7047 * @ies: elements where @elem is contained 7048 * @ieslen: length of @ies 7049 * @data: buffer to store element data, or %NULL to just determine size 7050 * @data_len: length of @data, or 0 7051 * @frag_id: the element ID of fragments 7052 * 7053 * Return: length of @data, or -EINVAL on error 7054 * 7055 * Copy out all data from an element that may be fragmented into @data, while 7056 * skipping all headers. 7057 * 7058 * The function uses memmove() internally. It is acceptable to defragment an 7059 * element in-place. 7060 */ 7061 ssize_t cfg80211_defragment_element(const struct element *elem, const u8 *ies, 7062 size_t ieslen, u8 *data, size_t data_len, 7063 u8 frag_id); 7064 7065 /** 7066 * cfg80211_send_layer2_update - send layer 2 update frame 7067 * 7068 * @dev: network device 7069 * @addr: STA MAC address 7070 * 7071 * Wireless drivers can use this function to update forwarding tables in bridge 7072 * devices upon STA association. 7073 */ 7074 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr); 7075 7076 /** 7077 * DOC: Regulatory enforcement infrastructure 7078 * 7079 * TODO 7080 */ 7081 7082 /** 7083 * regulatory_hint - driver hint to the wireless core a regulatory domain 7084 * @wiphy: the wireless device giving the hint (used only for reporting 7085 * conflicts) 7086 * @alpha2: the ISO/IEC 3166 alpha2 the driver claims its regulatory domain 7087 * should be in. If @rd is set this should be NULL. Note that if you 7088 * set this to NULL you should still set rd->alpha2 to some accepted 7089 * alpha2. 7090 * 7091 * Wireless drivers can use this function to hint to the wireless core 7092 * what it believes should be the current regulatory domain by 7093 * giving it an ISO/IEC 3166 alpha2 country code it knows its regulatory 7094 * domain should be in or by providing a completely build regulatory domain. 7095 * If the driver provides an ISO/IEC 3166 alpha2 userspace will be queried 7096 * for a regulatory domain structure for the respective country. 7097 * 7098 * The wiphy must have been registered to cfg80211 prior to this call. 7099 * For cfg80211 drivers this means you must first use wiphy_register(), 7100 * for mac80211 drivers you must first use ieee80211_register_hw(). 7101 * 7102 * Drivers should check the return value, its possible you can get 7103 * an -ENOMEM. 7104 * 7105 * Return: 0 on success. -ENOMEM. 7106 */ 7107 int regulatory_hint(struct wiphy *wiphy, const char *alpha2); 7108 7109 /** 7110 * regulatory_set_wiphy_regd - set regdom info for self managed drivers 7111 * @wiphy: the wireless device we want to process the regulatory domain on 7112 * @rd: the regulatory domain information to use for this wiphy 7113 * 7114 * Set the regulatory domain information for self-managed wiphys, only they 7115 * may use this function. See %REGULATORY_WIPHY_SELF_MANAGED for more 7116 * information. 7117 * 7118 * Return: 0 on success. -EINVAL, -EPERM 7119 */ 7120 int regulatory_set_wiphy_regd(struct wiphy *wiphy, 7121 struct ieee80211_regdomain *rd); 7122 7123 /** 7124 * regulatory_set_wiphy_regd_sync - set regdom for self-managed drivers 7125 * @wiphy: the wireless device we want to process the regulatory domain on 7126 * @rd: the regulatory domain information to use for this wiphy 7127 * 7128 * This functions requires the RTNL and the wiphy mutex to be held and 7129 * applies the new regdomain synchronously to this wiphy. For more details 7130 * see regulatory_set_wiphy_regd(). 7131 * 7132 * Return: 0 on success. -EINVAL, -EPERM 7133 */ 7134 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy, 7135 struct ieee80211_regdomain *rd); 7136 7137 /** 7138 * wiphy_apply_custom_regulatory - apply a custom driver regulatory domain 7139 * @wiphy: the wireless device we want to process the regulatory domain on 7140 * @regd: the custom regulatory domain to use for this wiphy 7141 * 7142 * Drivers can sometimes have custom regulatory domains which do not apply 7143 * to a specific country. Drivers can use this to apply such custom regulatory 7144 * domains. This routine must be called prior to wiphy registration. The 7145 * custom regulatory domain will be trusted completely and as such previous 7146 * default channel settings will be disregarded. If no rule is found for a 7147 * channel on the regulatory domain the channel will be disabled. 7148 * Drivers using this for a wiphy should also set the wiphy flag 7149 * REGULATORY_CUSTOM_REG or cfg80211 will set it for the wiphy 7150 * that called this helper. 7151 */ 7152 void wiphy_apply_custom_regulatory(struct wiphy *wiphy, 7153 const struct ieee80211_regdomain *regd); 7154 7155 /** 7156 * freq_reg_info - get regulatory information for the given frequency 7157 * @wiphy: the wiphy for which we want to process this rule for 7158 * @center_freq: Frequency in KHz for which we want regulatory information for 7159 * 7160 * Use this function to get the regulatory rule for a specific frequency on 7161 * a given wireless device. If the device has a specific regulatory domain 7162 * it wants to follow we respect that unless a country IE has been received 7163 * and processed already. 7164 * 7165 * Return: A valid pointer, or, when an error occurs, for example if no rule 7166 * can be found, the return value is encoded using ERR_PTR(). Use IS_ERR() to 7167 * check and PTR_ERR() to obtain the numeric return value. The numeric return 7168 * value will be -ERANGE if we determine the given center_freq does not even 7169 * have a regulatory rule for a frequency range in the center_freq's band. 7170 * See freq_in_rule_band() for our current definition of a band -- this is 7171 * purely subjective and right now it's 802.11 specific. 7172 */ 7173 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy, 7174 u32 center_freq); 7175 7176 /** 7177 * reg_initiator_name - map regulatory request initiator enum to name 7178 * @initiator: the regulatory request initiator 7179 * 7180 * You can use this to map the regulatory request initiator enum to a 7181 * proper string representation. 7182 * 7183 * Return: pointer to string representation of the initiator 7184 */ 7185 const char *reg_initiator_name(enum nl80211_reg_initiator initiator); 7186 7187 /** 7188 * regulatory_pre_cac_allowed - check if pre-CAC allowed in the current regdom 7189 * @wiphy: wiphy for which pre-CAC capability is checked. 7190 * 7191 * Pre-CAC is allowed only in some regdomains (notable ETSI). 7192 * 7193 * Return: %true if allowed, %false otherwise 7194 */ 7195 bool regulatory_pre_cac_allowed(struct wiphy *wiphy); 7196 7197 /** 7198 * DOC: Internal regulatory db functions 7199 * 7200 */ 7201 7202 /** 7203 * reg_query_regdb_wmm - Query internal regulatory db for wmm rule 7204 * Regulatory self-managed driver can use it to proactively 7205 * 7206 * @alpha2: the ISO/IEC 3166 alpha2 wmm rule to be queried. 7207 * @freq: the frequency (in MHz) to be queried. 7208 * @rule: pointer to store the wmm rule from the regulatory db. 7209 * 7210 * Self-managed wireless drivers can use this function to query 7211 * the internal regulatory database to check whether the given 7212 * ISO/IEC 3166 alpha2 country and freq have wmm rule limitations. 7213 * 7214 * Drivers should check the return value, its possible you can get 7215 * an -ENODATA. 7216 * 7217 * Return: 0 on success. -ENODATA. 7218 */ 7219 int reg_query_regdb_wmm(char *alpha2, int freq, 7220 struct ieee80211_reg_rule *rule); 7221 7222 /* 7223 * callbacks for asynchronous cfg80211 methods, notification 7224 * functions and BSS handling helpers 7225 */ 7226 7227 /** 7228 * cfg80211_scan_done - notify that scan finished 7229 * 7230 * @request: the corresponding scan request 7231 * @info: information about the completed scan 7232 */ 7233 void cfg80211_scan_done(struct cfg80211_scan_request *request, 7234 struct cfg80211_scan_info *info); 7235 7236 /** 7237 * cfg80211_sched_scan_results - notify that new scan results are available 7238 * 7239 * @wiphy: the wiphy which got scheduled scan results 7240 * @reqid: identifier for the related scheduled scan request 7241 */ 7242 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid); 7243 7244 /** 7245 * cfg80211_sched_scan_stopped - notify that the scheduled scan has stopped 7246 * 7247 * @wiphy: the wiphy on which the scheduled scan stopped 7248 * @reqid: identifier for the related scheduled scan request 7249 * 7250 * The driver can call this function to inform cfg80211 that the 7251 * scheduled scan had to be stopped, for whatever reason. The driver 7252 * is then called back via the sched_scan_stop operation when done. 7253 */ 7254 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid); 7255 7256 /** 7257 * cfg80211_sched_scan_stopped_locked - notify that the scheduled scan has stopped 7258 * 7259 * @wiphy: the wiphy on which the scheduled scan stopped 7260 * @reqid: identifier for the related scheduled scan request 7261 * 7262 * The driver can call this function to inform cfg80211 that the 7263 * scheduled scan had to be stopped, for whatever reason. The driver 7264 * is then called back via the sched_scan_stop operation when done. 7265 * This function should be called with the wiphy mutex held. 7266 */ 7267 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid); 7268 7269 /** 7270 * cfg80211_inform_bss_frame_data - inform cfg80211 of a received BSS frame 7271 * @wiphy: the wiphy reporting the BSS 7272 * @data: the BSS metadata 7273 * @mgmt: the management frame (probe response or beacon) 7274 * @len: length of the management frame 7275 * @gfp: context flags 7276 * 7277 * This informs cfg80211 that BSS information was found and 7278 * the BSS should be updated/added. 7279 * 7280 * Return: A referenced struct, must be released with cfg80211_put_bss()! 7281 * Or %NULL on error. 7282 */ 7283 struct cfg80211_bss * __must_check 7284 cfg80211_inform_bss_frame_data(struct wiphy *wiphy, 7285 struct cfg80211_inform_bss *data, 7286 struct ieee80211_mgmt *mgmt, size_t len, 7287 gfp_t gfp); 7288 7289 static inline struct cfg80211_bss * __must_check 7290 cfg80211_inform_bss_frame(struct wiphy *wiphy, 7291 struct ieee80211_channel *rx_channel, 7292 struct ieee80211_mgmt *mgmt, size_t len, 7293 s32 signal, gfp_t gfp) 7294 { 7295 struct cfg80211_inform_bss data = { 7296 .chan = rx_channel, 7297 .signal = signal, 7298 }; 7299 7300 return cfg80211_inform_bss_frame_data(wiphy, &data, mgmt, len, gfp); 7301 } 7302 7303 /** 7304 * cfg80211_gen_new_bssid - generate a nontransmitted BSSID for multi-BSSID 7305 * @bssid: transmitter BSSID 7306 * @max_bssid: max BSSID indicator, taken from Multiple BSSID element 7307 * @mbssid_index: BSSID index, taken from Multiple BSSID index element 7308 * @new_bssid: calculated nontransmitted BSSID 7309 */ 7310 static inline void cfg80211_gen_new_bssid(const u8 *bssid, u8 max_bssid, 7311 u8 mbssid_index, u8 *new_bssid) 7312 { 7313 u64 bssid_u64 = ether_addr_to_u64(bssid); 7314 u64 mask = GENMASK_ULL(max_bssid - 1, 0); 7315 u64 new_bssid_u64; 7316 7317 new_bssid_u64 = bssid_u64 & ~mask; 7318 7319 new_bssid_u64 |= ((bssid_u64 & mask) + mbssid_index) & mask; 7320 7321 u64_to_ether_addr(new_bssid_u64, new_bssid); 7322 } 7323 7324 /** 7325 * cfg80211_is_element_inherited - returns if element ID should be inherited 7326 * @element: element to check 7327 * @non_inherit_element: non inheritance element 7328 * 7329 * Return: %true if should be inherited, %false otherwise 7330 */ 7331 bool cfg80211_is_element_inherited(const struct element *element, 7332 const struct element *non_inherit_element); 7333 7334 /** 7335 * cfg80211_merge_profile - merges a MBSSID profile if it is split between IEs 7336 * @ie: ies 7337 * @ielen: length of IEs 7338 * @mbssid_elem: current MBSSID element 7339 * @sub_elem: current MBSSID subelement (profile) 7340 * @merged_ie: location of the merged profile 7341 * @max_copy_len: max merged profile length 7342 * 7343 * Return: the number of bytes merged 7344 */ 7345 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen, 7346 const struct element *mbssid_elem, 7347 const struct element *sub_elem, 7348 u8 *merged_ie, size_t max_copy_len); 7349 7350 /** 7351 * enum cfg80211_bss_frame_type - frame type that the BSS data came from 7352 * @CFG80211_BSS_FTYPE_UNKNOWN: driver doesn't know whether the data is 7353 * from a beacon or probe response 7354 * @CFG80211_BSS_FTYPE_BEACON: data comes from a beacon 7355 * @CFG80211_BSS_FTYPE_PRESP: data comes from a probe response 7356 * @CFG80211_BSS_FTYPE_S1G_BEACON: data comes from an S1G beacon 7357 */ 7358 enum cfg80211_bss_frame_type { 7359 CFG80211_BSS_FTYPE_UNKNOWN, 7360 CFG80211_BSS_FTYPE_BEACON, 7361 CFG80211_BSS_FTYPE_PRESP, 7362 CFG80211_BSS_FTYPE_S1G_BEACON, 7363 }; 7364 7365 /** 7366 * cfg80211_get_ies_channel_number - returns the channel number from ies 7367 * @ie: IEs 7368 * @ielen: length of IEs 7369 * @band: enum nl80211_band of the channel 7370 * 7371 * Return: the channel number, or -1 if none could be determined. 7372 */ 7373 int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen, 7374 enum nl80211_band band); 7375 7376 /** 7377 * cfg80211_ssid_eq - compare two SSIDs 7378 * @a: first SSID 7379 * @b: second SSID 7380 * 7381 * Return: %true if SSIDs are equal, %false otherwise. 7382 */ 7383 static inline bool 7384 cfg80211_ssid_eq(struct cfg80211_ssid *a, struct cfg80211_ssid *b) 7385 { 7386 if (WARN_ON(!a || !b)) 7387 return false; 7388 if (a->ssid_len != b->ssid_len) 7389 return false; 7390 return memcmp(a->ssid, b->ssid, a->ssid_len) ? false : true; 7391 } 7392 7393 /** 7394 * cfg80211_inform_bss_data - inform cfg80211 of a new BSS 7395 * 7396 * @wiphy: the wiphy reporting the BSS 7397 * @data: the BSS metadata 7398 * @ftype: frame type (if known) 7399 * @bssid: the BSSID of the BSS 7400 * @tsf: the TSF sent by the peer in the beacon/probe response (or 0) 7401 * @capability: the capability field sent by the peer 7402 * @beacon_interval: the beacon interval announced by the peer 7403 * @ie: additional IEs sent by the peer 7404 * @ielen: length of the additional IEs 7405 * @gfp: context flags 7406 * 7407 * This informs cfg80211 that BSS information was found and 7408 * the BSS should be updated/added. 7409 * 7410 * Return: A referenced struct, must be released with cfg80211_put_bss()! 7411 * Or %NULL on error. 7412 */ 7413 struct cfg80211_bss * __must_check 7414 cfg80211_inform_bss_data(struct wiphy *wiphy, 7415 struct cfg80211_inform_bss *data, 7416 enum cfg80211_bss_frame_type ftype, 7417 const u8 *bssid, u64 tsf, u16 capability, 7418 u16 beacon_interval, const u8 *ie, size_t ielen, 7419 gfp_t gfp); 7420 7421 static inline struct cfg80211_bss * __must_check 7422 cfg80211_inform_bss(struct wiphy *wiphy, 7423 struct ieee80211_channel *rx_channel, 7424 enum cfg80211_bss_frame_type ftype, 7425 const u8 *bssid, u64 tsf, u16 capability, 7426 u16 beacon_interval, const u8 *ie, size_t ielen, 7427 s32 signal, gfp_t gfp) 7428 { 7429 struct cfg80211_inform_bss data = { 7430 .chan = rx_channel, 7431 .signal = signal, 7432 }; 7433 7434 return cfg80211_inform_bss_data(wiphy, &data, ftype, bssid, tsf, 7435 capability, beacon_interval, ie, ielen, 7436 gfp); 7437 } 7438 7439 /** 7440 * __cfg80211_get_bss - get a BSS reference 7441 * @wiphy: the wiphy this BSS struct belongs to 7442 * @channel: the channel to search on (or %NULL) 7443 * @bssid: the desired BSSID (or %NULL) 7444 * @ssid: the desired SSID (or %NULL) 7445 * @ssid_len: length of the SSID (or 0) 7446 * @bss_type: type of BSS, see &enum ieee80211_bss_type 7447 * @privacy: privacy filter, see &enum ieee80211_privacy 7448 * @use_for: indicates which use is intended 7449 * 7450 * Return: Reference-counted BSS on success. %NULL on error. 7451 */ 7452 struct cfg80211_bss *__cfg80211_get_bss(struct wiphy *wiphy, 7453 struct ieee80211_channel *channel, 7454 const u8 *bssid, 7455 const u8 *ssid, size_t ssid_len, 7456 enum ieee80211_bss_type bss_type, 7457 enum ieee80211_privacy privacy, 7458 u32 use_for); 7459 7460 /** 7461 * cfg80211_get_bss - get a BSS reference 7462 * @wiphy: the wiphy this BSS struct belongs to 7463 * @channel: the channel to search on (or %NULL) 7464 * @bssid: the desired BSSID (or %NULL) 7465 * @ssid: the desired SSID (or %NULL) 7466 * @ssid_len: length of the SSID (or 0) 7467 * @bss_type: type of BSS, see &enum ieee80211_bss_type 7468 * @privacy: privacy filter, see &enum ieee80211_privacy 7469 * 7470 * This version implies regular usage, %NL80211_BSS_USE_FOR_NORMAL. 7471 * 7472 * Return: Reference-counted BSS on success. %NULL on error. 7473 */ 7474 static inline struct cfg80211_bss * 7475 cfg80211_get_bss(struct wiphy *wiphy, struct ieee80211_channel *channel, 7476 const u8 *bssid, const u8 *ssid, size_t ssid_len, 7477 enum ieee80211_bss_type bss_type, 7478 enum ieee80211_privacy privacy) 7479 { 7480 return __cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, 7481 bss_type, privacy, 7482 NL80211_BSS_USE_FOR_NORMAL); 7483 } 7484 7485 static inline struct cfg80211_bss * 7486 cfg80211_get_ibss(struct wiphy *wiphy, 7487 struct ieee80211_channel *channel, 7488 const u8 *ssid, size_t ssid_len) 7489 { 7490 return cfg80211_get_bss(wiphy, channel, NULL, ssid, ssid_len, 7491 IEEE80211_BSS_TYPE_IBSS, 7492 IEEE80211_PRIVACY_ANY); 7493 } 7494 7495 /** 7496 * cfg80211_ref_bss - reference BSS struct 7497 * @wiphy: the wiphy this BSS struct belongs to 7498 * @bss: the BSS struct to reference 7499 * 7500 * Increments the refcount of the given BSS struct. 7501 */ 7502 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *bss); 7503 7504 /** 7505 * cfg80211_put_bss - unref BSS struct 7506 * @wiphy: the wiphy this BSS struct belongs to 7507 * @bss: the BSS struct 7508 * 7509 * Decrements the refcount of the given BSS struct. 7510 */ 7511 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *bss); 7512 7513 /** 7514 * cfg80211_unlink_bss - unlink BSS from internal data structures 7515 * @wiphy: the wiphy 7516 * @bss: the bss to remove 7517 * 7518 * This function removes the given BSS from the internal data structures 7519 * thereby making it no longer show up in scan results etc. Use this 7520 * function when you detect a BSS is gone. Normally BSSes will also time 7521 * out, so it is not necessary to use this function at all. 7522 */ 7523 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *bss); 7524 7525 /** 7526 * cfg80211_bss_iter - iterate all BSS entries 7527 * 7528 * This function iterates over the BSS entries associated with the given wiphy 7529 * and calls the callback for the iterated BSS. The iterator function is not 7530 * allowed to call functions that might modify the internal state of the BSS DB. 7531 * 7532 * @wiphy: the wiphy 7533 * @chandef: if given, the iterator function will be called only if the channel 7534 * of the currently iterated BSS is a subset of the given channel. 7535 * @iter: the iterator function to call 7536 * @iter_data: an argument to the iterator function 7537 */ 7538 void cfg80211_bss_iter(struct wiphy *wiphy, 7539 struct cfg80211_chan_def *chandef, 7540 void (*iter)(struct wiphy *wiphy, 7541 struct cfg80211_bss *bss, 7542 void *data), 7543 void *iter_data); 7544 7545 /** 7546 * cfg80211_rx_mlme_mgmt - notification of processed MLME management frame 7547 * @dev: network device 7548 * @buf: authentication frame (header + body) 7549 * @len: length of the frame data 7550 * 7551 * This function is called whenever an authentication, disassociation or 7552 * deauthentication frame has been received and processed in station mode. 7553 * After being asked to authenticate via cfg80211_ops::auth() the driver must 7554 * call either this function or cfg80211_auth_timeout(). 7555 * After being asked to associate via cfg80211_ops::assoc() the driver must 7556 * call either this function or cfg80211_auth_timeout(). 7557 * While connected, the driver must calls this for received and processed 7558 * disassociation and deauthentication frames. If the frame couldn't be used 7559 * because it was unprotected, the driver must call the function 7560 * cfg80211_rx_unprot_mlme_mgmt() instead. 7561 * 7562 * This function may sleep. The caller must hold the corresponding wdev's mutex. 7563 */ 7564 void cfg80211_rx_mlme_mgmt(struct net_device *dev, const u8 *buf, size_t len); 7565 7566 /** 7567 * cfg80211_auth_timeout - notification of timed out authentication 7568 * @dev: network device 7569 * @addr: The MAC address of the device with which the authentication timed out 7570 * 7571 * This function may sleep. The caller must hold the corresponding wdev's 7572 * mutex. 7573 */ 7574 void cfg80211_auth_timeout(struct net_device *dev, const u8 *addr); 7575 7576 /** 7577 * struct cfg80211_rx_assoc_resp_data - association response data 7578 * @buf: (Re)Association Response frame (header + body) 7579 * @len: length of the frame data 7580 * @uapsd_queues: bitmap of queues configured for uapsd. Same format 7581 * as the AC bitmap in the QoS info field 7582 * @req_ies: information elements from the (Re)Association Request frame 7583 * @req_ies_len: length of req_ies data 7584 * @ap_mld_addr: AP MLD address (in case of MLO) 7585 * @links: per-link information indexed by link ID, use links[0] for 7586 * non-MLO connections 7587 * @links.bss: the BSS that association was requested with, ownership of the 7588 * pointer moves to cfg80211 in the call to cfg80211_rx_assoc_resp() 7589 * @links.status: Set this (along with a BSS pointer) for links that 7590 * were rejected by the AP. 7591 */ 7592 struct cfg80211_rx_assoc_resp_data { 7593 const u8 *buf; 7594 size_t len; 7595 const u8 *req_ies; 7596 size_t req_ies_len; 7597 int uapsd_queues; 7598 const u8 *ap_mld_addr; 7599 struct { 7600 u8 addr[ETH_ALEN] __aligned(2); 7601 struct cfg80211_bss *bss; 7602 u16 status; 7603 } links[IEEE80211_MLD_MAX_NUM_LINKS]; 7604 }; 7605 7606 /** 7607 * cfg80211_rx_assoc_resp - notification of processed association response 7608 * @dev: network device 7609 * @data: association response data, &struct cfg80211_rx_assoc_resp_data 7610 * 7611 * After being asked to associate via cfg80211_ops::assoc() the driver must 7612 * call either this function or cfg80211_auth_timeout(). 7613 * 7614 * This function may sleep. The caller must hold the corresponding wdev's mutex. 7615 */ 7616 void cfg80211_rx_assoc_resp(struct net_device *dev, 7617 const struct cfg80211_rx_assoc_resp_data *data); 7618 7619 /** 7620 * struct cfg80211_assoc_failure - association failure data 7621 * @ap_mld_addr: AP MLD address, or %NULL 7622 * @bss: list of BSSes, must use entry 0 for non-MLO connections 7623 * (@ap_mld_addr is %NULL) 7624 * @timeout: indicates the association failed due to timeout, otherwise 7625 * the association was abandoned for a reason reported through some 7626 * other API (e.g. deauth RX) 7627 */ 7628 struct cfg80211_assoc_failure { 7629 const u8 *ap_mld_addr; 7630 struct cfg80211_bss *bss[IEEE80211_MLD_MAX_NUM_LINKS]; 7631 bool timeout; 7632 }; 7633 7634 /** 7635 * cfg80211_assoc_failure - notification of association failure 7636 * @dev: network device 7637 * @data: data describing the association failure 7638 * 7639 * This function may sleep. The caller must hold the corresponding wdev's mutex. 7640 */ 7641 void cfg80211_assoc_failure(struct net_device *dev, 7642 struct cfg80211_assoc_failure *data); 7643 7644 /** 7645 * cfg80211_tx_mlme_mgmt - notification of transmitted deauth/disassoc frame 7646 * @dev: network device 7647 * @buf: 802.11 frame (header + body) 7648 * @len: length of the frame data 7649 * @reconnect: immediate reconnect is desired (include the nl80211 attribute) 7650 * 7651 * This function is called whenever deauthentication has been processed in 7652 * station mode. This includes both received deauthentication frames and 7653 * locally generated ones. This function may sleep. The caller must hold the 7654 * corresponding wdev's mutex. 7655 */ 7656 void cfg80211_tx_mlme_mgmt(struct net_device *dev, const u8 *buf, size_t len, 7657 bool reconnect); 7658 7659 /** 7660 * cfg80211_rx_unprot_mlme_mgmt - notification of unprotected mlme mgmt frame 7661 * @dev: network device 7662 * @buf: received management frame (header + body) 7663 * @len: length of the frame data 7664 * 7665 * This function is called whenever a received deauthentication or dissassoc 7666 * frame has been dropped in station mode because of MFP being used but the 7667 * frame was not protected. This is also used to notify reception of a Beacon 7668 * frame that was dropped because it did not include a valid MME MIC while 7669 * beacon protection was enabled (BIGTK configured in station mode). 7670 * 7671 * This function may sleep. 7672 */ 7673 void cfg80211_rx_unprot_mlme_mgmt(struct net_device *dev, 7674 const u8 *buf, size_t len); 7675 7676 /** 7677 * cfg80211_michael_mic_failure - notification of Michael MIC failure (TKIP) 7678 * @dev: network device 7679 * @addr: The source MAC address of the frame 7680 * @key_type: The key type that the received frame used 7681 * @key_id: Key identifier (0..3). Can be -1 if missing. 7682 * @tsc: The TSC value of the frame that generated the MIC failure (6 octets) 7683 * @gfp: allocation flags 7684 * 7685 * This function is called whenever the local MAC detects a MIC failure in a 7686 * received frame. This matches with MLME-MICHAELMICFAILURE.indication() 7687 * primitive. 7688 */ 7689 void cfg80211_michael_mic_failure(struct net_device *dev, const u8 *addr, 7690 enum nl80211_key_type key_type, int key_id, 7691 const u8 *tsc, gfp_t gfp); 7692 7693 /** 7694 * cfg80211_ibss_joined - notify cfg80211 that device joined an IBSS 7695 * 7696 * @dev: network device 7697 * @bssid: the BSSID of the IBSS joined 7698 * @channel: the channel of the IBSS joined 7699 * @gfp: allocation flags 7700 * 7701 * This function notifies cfg80211 that the device joined an IBSS or 7702 * switched to a different BSSID. Before this function can be called, 7703 * either a beacon has to have been received from the IBSS, or one of 7704 * the cfg80211_inform_bss{,_frame} functions must have been called 7705 * with the locally generated beacon -- this guarantees that there is 7706 * always a scan result for this IBSS. cfg80211 will handle the rest. 7707 */ 7708 void cfg80211_ibss_joined(struct net_device *dev, const u8 *bssid, 7709 struct ieee80211_channel *channel, gfp_t gfp); 7710 7711 /** 7712 * cfg80211_notify_new_peer_candidate - notify cfg80211 of a new mesh peer 7713 * candidate 7714 * 7715 * @dev: network device 7716 * @macaddr: the MAC address of the new candidate 7717 * @ie: information elements advertised by the peer candidate 7718 * @ie_len: length of the information elements buffer 7719 * @sig_dbm: signal level in dBm 7720 * @gfp: allocation flags 7721 * 7722 * This function notifies cfg80211 that the mesh peer candidate has been 7723 * detected, most likely via a beacon or, less likely, via a probe response. 7724 * cfg80211 then sends a notification to userspace. 7725 */ 7726 void cfg80211_notify_new_peer_candidate(struct net_device *dev, 7727 const u8 *macaddr, const u8 *ie, u8 ie_len, 7728 int sig_dbm, gfp_t gfp); 7729 7730 /** 7731 * DOC: RFkill integration 7732 * 7733 * RFkill integration in cfg80211 is almost invisible to drivers, 7734 * as cfg80211 automatically registers an rfkill instance for each 7735 * wireless device it knows about. Soft kill is also translated 7736 * into disconnecting and turning all interfaces off. Drivers are 7737 * expected to turn off the device when all interfaces are down. 7738 * 7739 * However, devices may have a hard RFkill line, in which case they 7740 * also need to interact with the rfkill subsystem, via cfg80211. 7741 * They can do this with a few helper functions documented here. 7742 */ 7743 7744 /** 7745 * wiphy_rfkill_set_hw_state_reason - notify cfg80211 about hw block state 7746 * @wiphy: the wiphy 7747 * @blocked: block status 7748 * @reason: one of reasons in &enum rfkill_hard_block_reasons 7749 */ 7750 void wiphy_rfkill_set_hw_state_reason(struct wiphy *wiphy, bool blocked, 7751 enum rfkill_hard_block_reasons reason); 7752 7753 static inline void wiphy_rfkill_set_hw_state(struct wiphy *wiphy, bool blocked) 7754 { 7755 wiphy_rfkill_set_hw_state_reason(wiphy, blocked, 7756 RFKILL_HARD_BLOCK_SIGNAL); 7757 } 7758 7759 /** 7760 * wiphy_rfkill_start_polling - start polling rfkill 7761 * @wiphy: the wiphy 7762 */ 7763 void wiphy_rfkill_start_polling(struct wiphy *wiphy); 7764 7765 /** 7766 * wiphy_rfkill_stop_polling - stop polling rfkill 7767 * @wiphy: the wiphy 7768 */ 7769 static inline void wiphy_rfkill_stop_polling(struct wiphy *wiphy) 7770 { 7771 rfkill_pause_polling(wiphy->rfkill); 7772 } 7773 7774 /** 7775 * DOC: Vendor commands 7776 * 7777 * Occasionally, there are special protocol or firmware features that 7778 * can't be implemented very openly. For this and similar cases, the 7779 * vendor command functionality allows implementing the features with 7780 * (typically closed-source) userspace and firmware, using nl80211 as 7781 * the configuration mechanism. 7782 * 7783 * A driver supporting vendor commands must register them as an array 7784 * in struct wiphy, with handlers for each one. Each command has an 7785 * OUI and sub command ID to identify it. 7786 * 7787 * Note that this feature should not be (ab)used to implement protocol 7788 * features that could openly be shared across drivers. In particular, 7789 * it must never be required to use vendor commands to implement any 7790 * "normal" functionality that higher-level userspace like connection 7791 * managers etc. need. 7792 */ 7793 7794 struct sk_buff *__cfg80211_alloc_reply_skb(struct wiphy *wiphy, 7795 enum nl80211_commands cmd, 7796 enum nl80211_attrs attr, 7797 int approxlen); 7798 7799 struct sk_buff *__cfg80211_alloc_event_skb(struct wiphy *wiphy, 7800 struct wireless_dev *wdev, 7801 enum nl80211_commands cmd, 7802 enum nl80211_attrs attr, 7803 unsigned int portid, 7804 int vendor_event_idx, 7805 int approxlen, gfp_t gfp); 7806 7807 void __cfg80211_send_event_skb(struct sk_buff *skb, gfp_t gfp); 7808 7809 /** 7810 * cfg80211_vendor_cmd_alloc_reply_skb - allocate vendor command reply 7811 * @wiphy: the wiphy 7812 * @approxlen: an upper bound of the length of the data that will 7813 * be put into the skb 7814 * 7815 * This function allocates and pre-fills an skb for a reply to 7816 * a vendor command. Since it is intended for a reply, calling 7817 * it outside of a vendor command's doit() operation is invalid. 7818 * 7819 * The returned skb is pre-filled with some identifying data in 7820 * a way that any data that is put into the skb (with skb_put(), 7821 * nla_put() or similar) will end up being within the 7822 * %NL80211_ATTR_VENDOR_DATA attribute, so all that needs to be done 7823 * with the skb is adding data for the corresponding userspace tool 7824 * which can then read that data out of the vendor data attribute. 7825 * You must not modify the skb in any other way. 7826 * 7827 * When done, call cfg80211_vendor_cmd_reply() with the skb and return 7828 * its error code as the result of the doit() operation. 7829 * 7830 * Return: An allocated and pre-filled skb. %NULL if any errors happen. 7831 */ 7832 static inline struct sk_buff * 7833 cfg80211_vendor_cmd_alloc_reply_skb(struct wiphy *wiphy, int approxlen) 7834 { 7835 return __cfg80211_alloc_reply_skb(wiphy, NL80211_CMD_VENDOR, 7836 NL80211_ATTR_VENDOR_DATA, approxlen); 7837 } 7838 7839 /** 7840 * cfg80211_vendor_cmd_reply - send the reply skb 7841 * @skb: The skb, must have been allocated with 7842 * cfg80211_vendor_cmd_alloc_reply_skb() 7843 * 7844 * Since calling this function will usually be the last thing 7845 * before returning from the vendor command doit() you should 7846 * return the error code. Note that this function consumes the 7847 * skb regardless of the return value. 7848 * 7849 * Return: An error code or 0 on success. 7850 */ 7851 int cfg80211_vendor_cmd_reply(struct sk_buff *skb); 7852 7853 /** 7854 * cfg80211_vendor_cmd_get_sender - get the current sender netlink ID 7855 * @wiphy: the wiphy 7856 * 7857 * Return: the current netlink port ID in a vendor command handler. 7858 * 7859 * Context: May only be called from a vendor command handler 7860 */ 7861 unsigned int cfg80211_vendor_cmd_get_sender(struct wiphy *wiphy); 7862 7863 /** 7864 * cfg80211_vendor_event_alloc - allocate vendor-specific event skb 7865 * @wiphy: the wiphy 7866 * @wdev: the wireless device 7867 * @event_idx: index of the vendor event in the wiphy's vendor_events 7868 * @approxlen: an upper bound of the length of the data that will 7869 * be put into the skb 7870 * @gfp: allocation flags 7871 * 7872 * This function allocates and pre-fills an skb for an event on the 7873 * vendor-specific multicast group. 7874 * 7875 * If wdev != NULL, both the ifindex and identifier of the specified 7876 * wireless device are added to the event message before the vendor data 7877 * attribute. 7878 * 7879 * When done filling the skb, call cfg80211_vendor_event() with the 7880 * skb to send the event. 7881 * 7882 * Return: An allocated and pre-filled skb. %NULL if any errors happen. 7883 */ 7884 static inline struct sk_buff * 7885 cfg80211_vendor_event_alloc(struct wiphy *wiphy, struct wireless_dev *wdev, 7886 int approxlen, int event_idx, gfp_t gfp) 7887 { 7888 return __cfg80211_alloc_event_skb(wiphy, wdev, NL80211_CMD_VENDOR, 7889 NL80211_ATTR_VENDOR_DATA, 7890 0, event_idx, approxlen, gfp); 7891 } 7892 7893 /** 7894 * cfg80211_vendor_event_alloc_ucast - alloc unicast vendor-specific event skb 7895 * @wiphy: the wiphy 7896 * @wdev: the wireless device 7897 * @event_idx: index of the vendor event in the wiphy's vendor_events 7898 * @portid: port ID of the receiver 7899 * @approxlen: an upper bound of the length of the data that will 7900 * be put into the skb 7901 * @gfp: allocation flags 7902 * 7903 * This function allocates and pre-fills an skb for an event to send to 7904 * a specific (userland) socket. This socket would previously have been 7905 * obtained by cfg80211_vendor_cmd_get_sender(), and the caller MUST take 7906 * care to register a netlink notifier to see when the socket closes. 7907 * 7908 * If wdev != NULL, both the ifindex and identifier of the specified 7909 * wireless device are added to the event message before the vendor data 7910 * attribute. 7911 * 7912 * When done filling the skb, call cfg80211_vendor_event() with the 7913 * skb to send the event. 7914 * 7915 * Return: An allocated and pre-filled skb. %NULL if any errors happen. 7916 */ 7917 static inline struct sk_buff * 7918 cfg80211_vendor_event_alloc_ucast(struct wiphy *wiphy, 7919 struct wireless_dev *wdev, 7920 unsigned int portid, int approxlen, 7921 int event_idx, gfp_t gfp) 7922 { 7923 return __cfg80211_alloc_event_skb(wiphy, wdev, NL80211_CMD_VENDOR, 7924 NL80211_ATTR_VENDOR_DATA, 7925 portid, event_idx, approxlen, gfp); 7926 } 7927 7928 /** 7929 * cfg80211_vendor_event - send the event 7930 * @skb: The skb, must have been allocated with cfg80211_vendor_event_alloc() 7931 * @gfp: allocation flags 7932 * 7933 * This function sends the given @skb, which must have been allocated 7934 * by cfg80211_vendor_event_alloc(), as an event. It always consumes it. 7935 */ 7936 static inline void cfg80211_vendor_event(struct sk_buff *skb, gfp_t gfp) 7937 { 7938 __cfg80211_send_event_skb(skb, gfp); 7939 } 7940 7941 #ifdef CONFIG_NL80211_TESTMODE 7942 /** 7943 * DOC: Test mode 7944 * 7945 * Test mode is a set of utility functions to allow drivers to 7946 * interact with driver-specific tools to aid, for instance, 7947 * factory programming. 7948 * 7949 * This chapter describes how drivers interact with it. For more 7950 * information see the nl80211 book's chapter on it. 7951 */ 7952 7953 /** 7954 * cfg80211_testmode_alloc_reply_skb - allocate testmode reply 7955 * @wiphy: the wiphy 7956 * @approxlen: an upper bound of the length of the data that will 7957 * be put into the skb 7958 * 7959 * This function allocates and pre-fills an skb for a reply to 7960 * the testmode command. Since it is intended for a reply, calling 7961 * it outside of the @testmode_cmd operation is invalid. 7962 * 7963 * The returned skb is pre-filled with the wiphy index and set up in 7964 * a way that any data that is put into the skb (with skb_put(), 7965 * nla_put() or similar) will end up being within the 7966 * %NL80211_ATTR_TESTDATA attribute, so all that needs to be done 7967 * with the skb is adding data for the corresponding userspace tool 7968 * which can then read that data out of the testdata attribute. You 7969 * must not modify the skb in any other way. 7970 * 7971 * When done, call cfg80211_testmode_reply() with the skb and return 7972 * its error code as the result of the @testmode_cmd operation. 7973 * 7974 * Return: An allocated and pre-filled skb. %NULL if any errors happen. 7975 */ 7976 static inline struct sk_buff * 7977 cfg80211_testmode_alloc_reply_skb(struct wiphy *wiphy, int approxlen) 7978 { 7979 return __cfg80211_alloc_reply_skb(wiphy, NL80211_CMD_TESTMODE, 7980 NL80211_ATTR_TESTDATA, approxlen); 7981 } 7982 7983 /** 7984 * cfg80211_testmode_reply - send the reply skb 7985 * @skb: The skb, must have been allocated with 7986 * cfg80211_testmode_alloc_reply_skb() 7987 * 7988 * Since calling this function will usually be the last thing 7989 * before returning from the @testmode_cmd you should return 7990 * the error code. Note that this function consumes the skb 7991 * regardless of the return value. 7992 * 7993 * Return: An error code or 0 on success. 7994 */ 7995 static inline int cfg80211_testmode_reply(struct sk_buff *skb) 7996 { 7997 return cfg80211_vendor_cmd_reply(skb); 7998 } 7999 8000 /** 8001 * cfg80211_testmode_alloc_event_skb - allocate testmode event 8002 * @wiphy: the wiphy 8003 * @approxlen: an upper bound of the length of the data that will 8004 * be put into the skb 8005 * @gfp: allocation flags 8006 * 8007 * This function allocates and pre-fills an skb for an event on the 8008 * testmode multicast group. 8009 * 8010 * The returned skb is set up in the same way as with 8011 * cfg80211_testmode_alloc_reply_skb() but prepared for an event. As 8012 * there, you should simply add data to it that will then end up in the 8013 * %NL80211_ATTR_TESTDATA attribute. Again, you must not modify the skb 8014 * in any other way. 8015 * 8016 * When done filling the skb, call cfg80211_testmode_event() with the 8017 * skb to send the event. 8018 * 8019 * Return: An allocated and pre-filled skb. %NULL if any errors happen. 8020 */ 8021 static inline struct sk_buff * 8022 cfg80211_testmode_alloc_event_skb(struct wiphy *wiphy, int approxlen, gfp_t gfp) 8023 { 8024 return __cfg80211_alloc_event_skb(wiphy, NULL, NL80211_CMD_TESTMODE, 8025 NL80211_ATTR_TESTDATA, 0, -1, 8026 approxlen, gfp); 8027 } 8028 8029 /** 8030 * cfg80211_testmode_event - send the event 8031 * @skb: The skb, must have been allocated with 8032 * cfg80211_testmode_alloc_event_skb() 8033 * @gfp: allocation flags 8034 * 8035 * This function sends the given @skb, which must have been allocated 8036 * by cfg80211_testmode_alloc_event_skb(), as an event. It always 8037 * consumes it. 8038 */ 8039 static inline void cfg80211_testmode_event(struct sk_buff *skb, gfp_t gfp) 8040 { 8041 __cfg80211_send_event_skb(skb, gfp); 8042 } 8043 8044 #define CFG80211_TESTMODE_CMD(cmd) .testmode_cmd = (cmd), 8045 #define CFG80211_TESTMODE_DUMP(cmd) .testmode_dump = (cmd), 8046 #else 8047 #define CFG80211_TESTMODE_CMD(cmd) 8048 #define CFG80211_TESTMODE_DUMP(cmd) 8049 #endif 8050 8051 /** 8052 * struct cfg80211_fils_resp_params - FILS connection response params 8053 * @kek: KEK derived from a successful FILS connection (may be %NULL) 8054 * @kek_len: Length of @fils_kek in octets 8055 * @update_erp_next_seq_num: Boolean value to specify whether the value in 8056 * @erp_next_seq_num is valid. 8057 * @erp_next_seq_num: The next sequence number to use in ERP message in 8058 * FILS Authentication. This value should be specified irrespective of the 8059 * status for a FILS connection. 8060 * @pmk: A new PMK if derived from a successful FILS connection (may be %NULL). 8061 * @pmk_len: Length of @pmk in octets 8062 * @pmkid: A new PMKID if derived from a successful FILS connection or the PMKID 8063 * used for this FILS connection (may be %NULL). 8064 */ 8065 struct cfg80211_fils_resp_params { 8066 const u8 *kek; 8067 size_t kek_len; 8068 bool update_erp_next_seq_num; 8069 u16 erp_next_seq_num; 8070 const u8 *pmk; 8071 size_t pmk_len; 8072 const u8 *pmkid; 8073 }; 8074 8075 /** 8076 * struct cfg80211_connect_resp_params - Connection response params 8077 * @status: Status code, %WLAN_STATUS_SUCCESS for successful connection, use 8078 * %WLAN_STATUS_UNSPECIFIED_FAILURE if your device cannot give you 8079 * the real status code for failures. If this call is used to report a 8080 * failure due to a timeout (e.g., not receiving an Authentication frame 8081 * from the AP) instead of an explicit rejection by the AP, -1 is used to 8082 * indicate that this is a failure, but without a status code. 8083 * @timeout_reason is used to report the reason for the timeout in that 8084 * case. 8085 * @req_ie: Association request IEs (may be %NULL) 8086 * @req_ie_len: Association request IEs length 8087 * @resp_ie: Association response IEs (may be %NULL) 8088 * @resp_ie_len: Association response IEs length 8089 * @fils: FILS connection response parameters. 8090 * @timeout_reason: Reason for connection timeout. This is used when the 8091 * connection fails due to a timeout instead of an explicit rejection from 8092 * the AP. %NL80211_TIMEOUT_UNSPECIFIED is used when the timeout reason is 8093 * not known. This value is used only if @status < 0 to indicate that the 8094 * failure is due to a timeout and not due to explicit rejection by the AP. 8095 * This value is ignored in other cases (@status >= 0). 8096 * @valid_links: For MLO connection, BIT mask of the valid link ids. Otherwise 8097 * zero. 8098 * @ap_mld_addr: For MLO connection, MLD address of the AP. Otherwise %NULL. 8099 * @links : For MLO connection, contains link info for the valid links indicated 8100 * using @valid_links. For non-MLO connection, links[0] contains the 8101 * connected AP info. 8102 * @links.addr: For MLO connection, MAC address of the STA link. Otherwise 8103 * %NULL. 8104 * @links.bssid: For MLO connection, MAC address of the AP link. For non-MLO 8105 * connection, links[0].bssid points to the BSSID of the AP (may be %NULL). 8106 * @links.bss: For MLO connection, entry of bss to which STA link is connected. 8107 * For non-MLO connection, links[0].bss points to entry of bss to which STA 8108 * is connected. It can be obtained through cfg80211_get_bss() (may be 8109 * %NULL). It is recommended to store the bss from the connect_request and 8110 * hold a reference to it and return through this param to avoid a warning 8111 * if the bss is expired during the connection, esp. for those drivers 8112 * implementing connect op. Only one parameter among @bssid and @bss needs 8113 * to be specified. 8114 * @links.status: per-link status code, to report a status code that's not 8115 * %WLAN_STATUS_SUCCESS for a given link, it must also be in the 8116 * @valid_links bitmap and may have a BSS pointer (which is then released) 8117 */ 8118 struct cfg80211_connect_resp_params { 8119 int status; 8120 const u8 *req_ie; 8121 size_t req_ie_len; 8122 const u8 *resp_ie; 8123 size_t resp_ie_len; 8124 struct cfg80211_fils_resp_params fils; 8125 enum nl80211_timeout_reason timeout_reason; 8126 8127 const u8 *ap_mld_addr; 8128 u16 valid_links; 8129 struct { 8130 const u8 *addr; 8131 const u8 *bssid; 8132 struct cfg80211_bss *bss; 8133 u16 status; 8134 } links[IEEE80211_MLD_MAX_NUM_LINKS]; 8135 }; 8136 8137 /** 8138 * cfg80211_connect_done - notify cfg80211 of connection result 8139 * 8140 * @dev: network device 8141 * @params: connection response parameters 8142 * @gfp: allocation flags 8143 * 8144 * It should be called by the underlying driver once execution of the connection 8145 * request from connect() has been completed. This is similar to 8146 * cfg80211_connect_bss(), but takes a structure pointer for connection response 8147 * parameters. Only one of the functions among cfg80211_connect_bss(), 8148 * cfg80211_connect_result(), cfg80211_connect_timeout(), 8149 * and cfg80211_connect_done() should be called. 8150 */ 8151 void cfg80211_connect_done(struct net_device *dev, 8152 struct cfg80211_connect_resp_params *params, 8153 gfp_t gfp); 8154 8155 /** 8156 * cfg80211_connect_bss - notify cfg80211 of connection result 8157 * 8158 * @dev: network device 8159 * @bssid: the BSSID of the AP 8160 * @bss: Entry of bss to which STA got connected to, can be obtained through 8161 * cfg80211_get_bss() (may be %NULL). But it is recommended to store the 8162 * bss from the connect_request and hold a reference to it and return 8163 * through this param to avoid a warning if the bss is expired during the 8164 * connection, esp. for those drivers implementing connect op. 8165 * Only one parameter among @bssid and @bss needs to be specified. 8166 * @req_ie: association request IEs (maybe be %NULL) 8167 * @req_ie_len: association request IEs length 8168 * @resp_ie: association response IEs (may be %NULL) 8169 * @resp_ie_len: assoc response IEs length 8170 * @status: status code, %WLAN_STATUS_SUCCESS for successful connection, use 8171 * %WLAN_STATUS_UNSPECIFIED_FAILURE if your device cannot give you 8172 * the real status code for failures. If this call is used to report a 8173 * failure due to a timeout (e.g., not receiving an Authentication frame 8174 * from the AP) instead of an explicit rejection by the AP, -1 is used to 8175 * indicate that this is a failure, but without a status code. 8176 * @timeout_reason is used to report the reason for the timeout in that 8177 * case. 8178 * @gfp: allocation flags 8179 * @timeout_reason: reason for connection timeout. This is used when the 8180 * connection fails due to a timeout instead of an explicit rejection from 8181 * the AP. %NL80211_TIMEOUT_UNSPECIFIED is used when the timeout reason is 8182 * not known. This value is used only if @status < 0 to indicate that the 8183 * failure is due to a timeout and not due to explicit rejection by the AP. 8184 * This value is ignored in other cases (@status >= 0). 8185 * 8186 * It should be called by the underlying driver once execution of the connection 8187 * request from connect() has been completed. This is similar to 8188 * cfg80211_connect_result(), but with the option of identifying the exact bss 8189 * entry for the connection. Only one of the functions among 8190 * cfg80211_connect_bss(), cfg80211_connect_result(), 8191 * cfg80211_connect_timeout(), and cfg80211_connect_done() should be called. 8192 */ 8193 static inline void 8194 cfg80211_connect_bss(struct net_device *dev, const u8 *bssid, 8195 struct cfg80211_bss *bss, const u8 *req_ie, 8196 size_t req_ie_len, const u8 *resp_ie, 8197 size_t resp_ie_len, int status, gfp_t gfp, 8198 enum nl80211_timeout_reason timeout_reason) 8199 { 8200 struct cfg80211_connect_resp_params params; 8201 8202 memset(¶ms, 0, sizeof(params)); 8203 params.status = status; 8204 params.links[0].bssid = bssid; 8205 params.links[0].bss = bss; 8206 params.req_ie = req_ie; 8207 params.req_ie_len = req_ie_len; 8208 params.resp_ie = resp_ie; 8209 params.resp_ie_len = resp_ie_len; 8210 params.timeout_reason = timeout_reason; 8211 8212 cfg80211_connect_done(dev, ¶ms, gfp); 8213 } 8214 8215 /** 8216 * cfg80211_connect_result - notify cfg80211 of connection result 8217 * 8218 * @dev: network device 8219 * @bssid: the BSSID of the AP 8220 * @req_ie: association request IEs (maybe be %NULL) 8221 * @req_ie_len: association request IEs length 8222 * @resp_ie: association response IEs (may be %NULL) 8223 * @resp_ie_len: assoc response IEs length 8224 * @status: status code, %WLAN_STATUS_SUCCESS for successful connection, use 8225 * %WLAN_STATUS_UNSPECIFIED_FAILURE if your device cannot give you 8226 * the real status code for failures. 8227 * @gfp: allocation flags 8228 * 8229 * It should be called by the underlying driver once execution of the connection 8230 * request from connect() has been completed. This is similar to 8231 * cfg80211_connect_bss() which allows the exact bss entry to be specified. Only 8232 * one of the functions among cfg80211_connect_bss(), cfg80211_connect_result(), 8233 * cfg80211_connect_timeout(), and cfg80211_connect_done() should be called. 8234 */ 8235 static inline void 8236 cfg80211_connect_result(struct net_device *dev, const u8 *bssid, 8237 const u8 *req_ie, size_t req_ie_len, 8238 const u8 *resp_ie, size_t resp_ie_len, 8239 u16 status, gfp_t gfp) 8240 { 8241 cfg80211_connect_bss(dev, bssid, NULL, req_ie, req_ie_len, resp_ie, 8242 resp_ie_len, status, gfp, 8243 NL80211_TIMEOUT_UNSPECIFIED); 8244 } 8245 8246 /** 8247 * cfg80211_connect_timeout - notify cfg80211 of connection timeout 8248 * 8249 * @dev: network device 8250 * @bssid: the BSSID of the AP 8251 * @req_ie: association request IEs (maybe be %NULL) 8252 * @req_ie_len: association request IEs length 8253 * @gfp: allocation flags 8254 * @timeout_reason: reason for connection timeout. 8255 * 8256 * It should be called by the underlying driver whenever connect() has failed 8257 * in a sequence where no explicit authentication/association rejection was 8258 * received from the AP. This could happen, e.g., due to not being able to send 8259 * out the Authentication or Association Request frame or timing out while 8260 * waiting for the response. Only one of the functions among 8261 * cfg80211_connect_bss(), cfg80211_connect_result(), 8262 * cfg80211_connect_timeout(), and cfg80211_connect_done() should be called. 8263 */ 8264 static inline void 8265 cfg80211_connect_timeout(struct net_device *dev, const u8 *bssid, 8266 const u8 *req_ie, size_t req_ie_len, gfp_t gfp, 8267 enum nl80211_timeout_reason timeout_reason) 8268 { 8269 cfg80211_connect_bss(dev, bssid, NULL, req_ie, req_ie_len, NULL, 0, -1, 8270 gfp, timeout_reason); 8271 } 8272 8273 /** 8274 * struct cfg80211_roam_info - driver initiated roaming information 8275 * 8276 * @req_ie: association request IEs (maybe be %NULL) 8277 * @req_ie_len: association request IEs length 8278 * @resp_ie: association response IEs (may be %NULL) 8279 * @resp_ie_len: assoc response IEs length 8280 * @fils: FILS related roaming information. 8281 * @valid_links: For MLO roaming, BIT mask of the new valid links is set. 8282 * Otherwise zero. 8283 * @ap_mld_addr: For MLO roaming, MLD address of the new AP. Otherwise %NULL. 8284 * @links : For MLO roaming, contains new link info for the valid links set in 8285 * @valid_links. For non-MLO roaming, links[0] contains the new AP info. 8286 * @links.addr: For MLO roaming, MAC address of the STA link. Otherwise %NULL. 8287 * @links.bssid: For MLO roaming, MAC address of the new AP link. For non-MLO 8288 * roaming, links[0].bssid points to the BSSID of the new AP. May be 8289 * %NULL if %links.bss is set. 8290 * @links.channel: the channel of the new AP. 8291 * @links.bss: For MLO roaming, entry of new bss to which STA link got 8292 * roamed. For non-MLO roaming, links[0].bss points to entry of bss to 8293 * which STA got roamed (may be %NULL if %links.bssid is set) 8294 */ 8295 struct cfg80211_roam_info { 8296 const u8 *req_ie; 8297 size_t req_ie_len; 8298 const u8 *resp_ie; 8299 size_t resp_ie_len; 8300 struct cfg80211_fils_resp_params fils; 8301 8302 const u8 *ap_mld_addr; 8303 u16 valid_links; 8304 struct { 8305 const u8 *addr; 8306 const u8 *bssid; 8307 struct ieee80211_channel *channel; 8308 struct cfg80211_bss *bss; 8309 } links[IEEE80211_MLD_MAX_NUM_LINKS]; 8310 }; 8311 8312 /** 8313 * cfg80211_roamed - notify cfg80211 of roaming 8314 * 8315 * @dev: network device 8316 * @info: information about the new BSS. struct &cfg80211_roam_info. 8317 * @gfp: allocation flags 8318 * 8319 * This function may be called with the driver passing either the BSSID of the 8320 * new AP or passing the bss entry to avoid a race in timeout of the bss entry. 8321 * It should be called by the underlying driver whenever it roamed from one AP 8322 * to another while connected. Drivers which have roaming implemented in 8323 * firmware should pass the bss entry to avoid a race in bss entry timeout where 8324 * the bss entry of the new AP is seen in the driver, but gets timed out by the 8325 * time it is accessed in __cfg80211_roamed() due to delay in scheduling 8326 * rdev->event_work. In case of any failures, the reference is released 8327 * either in cfg80211_roamed() or in __cfg80211_romed(), Otherwise, it will be 8328 * released while disconnecting from the current bss. 8329 */ 8330 void cfg80211_roamed(struct net_device *dev, struct cfg80211_roam_info *info, 8331 gfp_t gfp); 8332 8333 /** 8334 * cfg80211_port_authorized - notify cfg80211 of successful security association 8335 * 8336 * @dev: network device 8337 * @peer_addr: BSSID of the AP/P2P GO in case of STA/GC or STA/GC MAC address 8338 * in case of AP/P2P GO 8339 * @td_bitmap: transition disable policy 8340 * @td_bitmap_len: Length of transition disable policy 8341 * @gfp: allocation flags 8342 * 8343 * This function should be called by a driver that supports 4 way handshake 8344 * offload after a security association was successfully established (i.e., 8345 * the 4 way handshake was completed successfully). The call to this function 8346 * should be preceded with a call to cfg80211_connect_result(), 8347 * cfg80211_connect_done(), cfg80211_connect_bss() or cfg80211_roamed() to 8348 * indicate the 802.11 association. 8349 * This function can also be called by AP/P2P GO driver that supports 8350 * authentication offload. In this case the peer_mac passed is that of 8351 * associated STA/GC. 8352 */ 8353 void cfg80211_port_authorized(struct net_device *dev, const u8 *peer_addr, 8354 const u8* td_bitmap, u8 td_bitmap_len, gfp_t gfp); 8355 8356 /** 8357 * cfg80211_disconnected - notify cfg80211 that connection was dropped 8358 * 8359 * @dev: network device 8360 * @ie: information elements of the deauth/disassoc frame (may be %NULL) 8361 * @ie_len: length of IEs 8362 * @reason: reason code for the disconnection, set it to 0 if unknown 8363 * @locally_generated: disconnection was requested locally 8364 * @gfp: allocation flags 8365 * 8366 * After it calls this function, the driver should enter an idle state 8367 * and not try to connect to any AP any more. 8368 */ 8369 void cfg80211_disconnected(struct net_device *dev, u16 reason, 8370 const u8 *ie, size_t ie_len, 8371 bool locally_generated, gfp_t gfp); 8372 8373 /** 8374 * cfg80211_ready_on_channel - notification of remain_on_channel start 8375 * @wdev: wireless device 8376 * @cookie: the request cookie 8377 * @chan: The current channel (from remain_on_channel request) 8378 * @duration: Duration in milliseconds that the driver intents to remain on the 8379 * channel 8380 * @gfp: allocation flags 8381 */ 8382 void cfg80211_ready_on_channel(struct wireless_dev *wdev, u64 cookie, 8383 struct ieee80211_channel *chan, 8384 unsigned int duration, gfp_t gfp); 8385 8386 /** 8387 * cfg80211_remain_on_channel_expired - remain_on_channel duration expired 8388 * @wdev: wireless device 8389 * @cookie: the request cookie 8390 * @chan: The current channel (from remain_on_channel request) 8391 * @gfp: allocation flags 8392 */ 8393 void cfg80211_remain_on_channel_expired(struct wireless_dev *wdev, u64 cookie, 8394 struct ieee80211_channel *chan, 8395 gfp_t gfp); 8396 8397 /** 8398 * cfg80211_tx_mgmt_expired - tx_mgmt duration expired 8399 * @wdev: wireless device 8400 * @cookie: the requested cookie 8401 * @chan: The current channel (from tx_mgmt request) 8402 * @gfp: allocation flags 8403 */ 8404 void cfg80211_tx_mgmt_expired(struct wireless_dev *wdev, u64 cookie, 8405 struct ieee80211_channel *chan, gfp_t gfp); 8406 8407 /** 8408 * cfg80211_sinfo_alloc_tid_stats - allocate per-tid statistics. 8409 * 8410 * @sinfo: the station information 8411 * @gfp: allocation flags 8412 * 8413 * Return: 0 on success. Non-zero on error. 8414 */ 8415 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp); 8416 8417 /** 8418 * cfg80211_sinfo_release_content - release contents of station info 8419 * @sinfo: the station information 8420 * 8421 * Releases any potentially allocated sub-information of the station 8422 * information, but not the struct itself (since it's typically on 8423 * the stack.) 8424 */ 8425 static inline void cfg80211_sinfo_release_content(struct station_info *sinfo) 8426 { 8427 kfree(sinfo->pertid); 8428 } 8429 8430 /** 8431 * cfg80211_new_sta - notify userspace about station 8432 * 8433 * @dev: the netdev 8434 * @mac_addr: the station's address 8435 * @sinfo: the station information 8436 * @gfp: allocation flags 8437 */ 8438 void cfg80211_new_sta(struct net_device *dev, const u8 *mac_addr, 8439 struct station_info *sinfo, gfp_t gfp); 8440 8441 /** 8442 * cfg80211_del_sta_sinfo - notify userspace about deletion of a station 8443 * @dev: the netdev 8444 * @mac_addr: the station's address. For MLD station, MLD address is used. 8445 * @sinfo: the station information/statistics 8446 * @gfp: allocation flags 8447 */ 8448 void cfg80211_del_sta_sinfo(struct net_device *dev, const u8 *mac_addr, 8449 struct station_info *sinfo, gfp_t gfp); 8450 8451 /** 8452 * cfg80211_del_sta - notify userspace about deletion of a station 8453 * 8454 * @dev: the netdev 8455 * @mac_addr: the station's address. For MLD station, MLD address is used. 8456 * @gfp: allocation flags 8457 */ 8458 static inline void cfg80211_del_sta(struct net_device *dev, 8459 const u8 *mac_addr, gfp_t gfp) 8460 { 8461 cfg80211_del_sta_sinfo(dev, mac_addr, NULL, gfp); 8462 } 8463 8464 /** 8465 * cfg80211_conn_failed - connection request failed notification 8466 * 8467 * @dev: the netdev 8468 * @mac_addr: the station's address 8469 * @reason: the reason for connection failure 8470 * @gfp: allocation flags 8471 * 8472 * Whenever a station tries to connect to an AP and if the station 8473 * could not connect to the AP as the AP has rejected the connection 8474 * for some reasons, this function is called. 8475 * 8476 * The reason for connection failure can be any of the value from 8477 * nl80211_connect_failed_reason enum 8478 */ 8479 void cfg80211_conn_failed(struct net_device *dev, const u8 *mac_addr, 8480 enum nl80211_connect_failed_reason reason, 8481 gfp_t gfp); 8482 8483 /** 8484 * struct cfg80211_rx_info - received management frame info 8485 * 8486 * @freq: Frequency on which the frame was received in kHz 8487 * @sig_dbm: signal strength in dBm, or 0 if unknown 8488 * @have_link_id: indicates the frame was received on a link of 8489 * an MLD, i.e. the @link_id field is valid 8490 * @link_id: the ID of the link the frame was received on 8491 * @buf: Management frame (header + body) 8492 * @len: length of the frame data 8493 * @flags: flags, as defined in &enum nl80211_rxmgmt_flags 8494 * @rx_tstamp: Hardware timestamp of frame RX in nanoseconds 8495 * @ack_tstamp: Hardware timestamp of ack TX in nanoseconds 8496 */ 8497 struct cfg80211_rx_info { 8498 int freq; 8499 int sig_dbm; 8500 bool have_link_id; 8501 u8 link_id; 8502 const u8 *buf; 8503 size_t len; 8504 u32 flags; 8505 u64 rx_tstamp; 8506 u64 ack_tstamp; 8507 }; 8508 8509 /** 8510 * cfg80211_rx_mgmt_ext - management frame notification with extended info 8511 * @wdev: wireless device receiving the frame 8512 * @info: RX info as defined in struct cfg80211_rx_info 8513 * 8514 * This function is called whenever an Action frame is received for a station 8515 * mode interface, but is not processed in kernel. 8516 * 8517 * Return: %true if a user space application has registered for this frame. 8518 * For action frames, that makes it responsible for rejecting unrecognized 8519 * action frames; %false otherwise, in which case for action frames the 8520 * driver is responsible for rejecting the frame. 8521 */ 8522 bool cfg80211_rx_mgmt_ext(struct wireless_dev *wdev, 8523 struct cfg80211_rx_info *info); 8524 8525 /** 8526 * cfg80211_rx_mgmt_khz - notification of received, unprocessed management frame 8527 * @wdev: wireless device receiving the frame 8528 * @freq: Frequency on which the frame was received in KHz 8529 * @sig_dbm: signal strength in dBm, or 0 if unknown 8530 * @buf: Management frame (header + body) 8531 * @len: length of the frame data 8532 * @flags: flags, as defined in enum nl80211_rxmgmt_flags 8533 * 8534 * This function is called whenever an Action frame is received for a station 8535 * mode interface, but is not processed in kernel. 8536 * 8537 * Return: %true if a user space application has registered for this frame. 8538 * For action frames, that makes it responsible for rejecting unrecognized 8539 * action frames; %false otherwise, in which case for action frames the 8540 * driver is responsible for rejecting the frame. 8541 */ 8542 static inline bool cfg80211_rx_mgmt_khz(struct wireless_dev *wdev, int freq, 8543 int sig_dbm, const u8 *buf, size_t len, 8544 u32 flags) 8545 { 8546 struct cfg80211_rx_info info = { 8547 .freq = freq, 8548 .sig_dbm = sig_dbm, 8549 .buf = buf, 8550 .len = len, 8551 .flags = flags 8552 }; 8553 8554 return cfg80211_rx_mgmt_ext(wdev, &info); 8555 } 8556 8557 /** 8558 * cfg80211_rx_mgmt - notification of received, unprocessed management frame 8559 * @wdev: wireless device receiving the frame 8560 * @freq: Frequency on which the frame was received in MHz 8561 * @sig_dbm: signal strength in dBm, or 0 if unknown 8562 * @buf: Management frame (header + body) 8563 * @len: length of the frame data 8564 * @flags: flags, as defined in enum nl80211_rxmgmt_flags 8565 * 8566 * This function is called whenever an Action frame is received for a station 8567 * mode interface, but is not processed in kernel. 8568 * 8569 * Return: %true if a user space application has registered for this frame. 8570 * For action frames, that makes it responsible for rejecting unrecognized 8571 * action frames; %false otherwise, in which case for action frames the 8572 * driver is responsible for rejecting the frame. 8573 */ 8574 static inline bool cfg80211_rx_mgmt(struct wireless_dev *wdev, int freq, 8575 int sig_dbm, const u8 *buf, size_t len, 8576 u32 flags) 8577 { 8578 struct cfg80211_rx_info info = { 8579 .freq = MHZ_TO_KHZ(freq), 8580 .sig_dbm = sig_dbm, 8581 .buf = buf, 8582 .len = len, 8583 .flags = flags 8584 }; 8585 8586 return cfg80211_rx_mgmt_ext(wdev, &info); 8587 } 8588 8589 /** 8590 * struct cfg80211_tx_status - TX status for management frame information 8591 * 8592 * @cookie: Cookie returned by cfg80211_ops::mgmt_tx() 8593 * @tx_tstamp: hardware TX timestamp in nanoseconds 8594 * @ack_tstamp: hardware ack RX timestamp in nanoseconds 8595 * @buf: Management frame (header + body) 8596 * @len: length of the frame data 8597 * @ack: Whether frame was acknowledged 8598 */ 8599 struct cfg80211_tx_status { 8600 u64 cookie; 8601 u64 tx_tstamp; 8602 u64 ack_tstamp; 8603 const u8 *buf; 8604 size_t len; 8605 bool ack; 8606 }; 8607 8608 /** 8609 * cfg80211_mgmt_tx_status_ext - TX status notification with extended info 8610 * @wdev: wireless device receiving the frame 8611 * @status: TX status data 8612 * @gfp: context flags 8613 * 8614 * This function is called whenever a management frame was requested to be 8615 * transmitted with cfg80211_ops::mgmt_tx() to report the TX status of the 8616 * transmission attempt with extended info. 8617 */ 8618 void cfg80211_mgmt_tx_status_ext(struct wireless_dev *wdev, 8619 struct cfg80211_tx_status *status, gfp_t gfp); 8620 8621 /** 8622 * cfg80211_mgmt_tx_status - notification of TX status for management frame 8623 * @wdev: wireless device receiving the frame 8624 * @cookie: Cookie returned by cfg80211_ops::mgmt_tx() 8625 * @buf: Management frame (header + body) 8626 * @len: length of the frame data 8627 * @ack: Whether frame was acknowledged 8628 * @gfp: context flags 8629 * 8630 * This function is called whenever a management frame was requested to be 8631 * transmitted with cfg80211_ops::mgmt_tx() to report the TX status of the 8632 * transmission attempt. 8633 */ 8634 static inline void cfg80211_mgmt_tx_status(struct wireless_dev *wdev, 8635 u64 cookie, const u8 *buf, 8636 size_t len, bool ack, gfp_t gfp) 8637 { 8638 struct cfg80211_tx_status status = { 8639 .cookie = cookie, 8640 .buf = buf, 8641 .len = len, 8642 .ack = ack 8643 }; 8644 8645 cfg80211_mgmt_tx_status_ext(wdev, &status, gfp); 8646 } 8647 8648 /** 8649 * cfg80211_control_port_tx_status - notification of TX status for control 8650 * port frames 8651 * @wdev: wireless device receiving the frame 8652 * @cookie: Cookie returned by cfg80211_ops::tx_control_port() 8653 * @buf: Data frame (header + body) 8654 * @len: length of the frame data 8655 * @ack: Whether frame was acknowledged 8656 * @gfp: context flags 8657 * 8658 * This function is called whenever a control port frame was requested to be 8659 * transmitted with cfg80211_ops::tx_control_port() to report the TX status of 8660 * the transmission attempt. 8661 */ 8662 void cfg80211_control_port_tx_status(struct wireless_dev *wdev, u64 cookie, 8663 const u8 *buf, size_t len, bool ack, 8664 gfp_t gfp); 8665 8666 /** 8667 * cfg80211_rx_control_port - notification about a received control port frame 8668 * @dev: The device the frame matched to 8669 * @skb: The skbuf with the control port frame. It is assumed that the skbuf 8670 * is 802.3 formatted (with 802.3 header). The skb can be non-linear. 8671 * This function does not take ownership of the skb, so the caller is 8672 * responsible for any cleanup. The caller must also ensure that 8673 * skb->protocol is set appropriately. 8674 * @unencrypted: Whether the frame was received unencrypted 8675 * @link_id: the link the frame was received on, -1 if not applicable or unknown 8676 * 8677 * This function is used to inform userspace about a received control port 8678 * frame. It should only be used if userspace indicated it wants to receive 8679 * control port frames over nl80211. 8680 * 8681 * The frame is the data portion of the 802.3 or 802.11 data frame with all 8682 * network layer headers removed (e.g. the raw EAPoL frame). 8683 * 8684 * Return: %true if the frame was passed to userspace 8685 */ 8686 bool cfg80211_rx_control_port(struct net_device *dev, struct sk_buff *skb, 8687 bool unencrypted, int link_id); 8688 8689 /** 8690 * cfg80211_cqm_rssi_notify - connection quality monitoring rssi event 8691 * @dev: network device 8692 * @rssi_event: the triggered RSSI event 8693 * @rssi_level: new RSSI level value or 0 if not available 8694 * @gfp: context flags 8695 * 8696 * This function is called when a configured connection quality monitoring 8697 * rssi threshold reached event occurs. 8698 */ 8699 void cfg80211_cqm_rssi_notify(struct net_device *dev, 8700 enum nl80211_cqm_rssi_threshold_event rssi_event, 8701 s32 rssi_level, gfp_t gfp); 8702 8703 /** 8704 * cfg80211_cqm_pktloss_notify - notify userspace about packetloss to peer 8705 * @dev: network device 8706 * @peer: peer's MAC address 8707 * @num_packets: how many packets were lost -- should be a fixed threshold 8708 * but probably no less than maybe 50, or maybe a throughput dependent 8709 * threshold (to account for temporary interference) 8710 * @gfp: context flags 8711 */ 8712 void cfg80211_cqm_pktloss_notify(struct net_device *dev, 8713 const u8 *peer, u32 num_packets, gfp_t gfp); 8714 8715 /** 8716 * cfg80211_cqm_txe_notify - TX error rate event 8717 * @dev: network device 8718 * @peer: peer's MAC address 8719 * @num_packets: how many packets were lost 8720 * @rate: % of packets which failed transmission 8721 * @intvl: interval (in s) over which the TX failure threshold was breached. 8722 * @gfp: context flags 8723 * 8724 * Notify userspace when configured % TX failures over number of packets in a 8725 * given interval is exceeded. 8726 */ 8727 void cfg80211_cqm_txe_notify(struct net_device *dev, const u8 *peer, 8728 u32 num_packets, u32 rate, u32 intvl, gfp_t gfp); 8729 8730 /** 8731 * cfg80211_cqm_beacon_loss_notify - beacon loss event 8732 * @dev: network device 8733 * @gfp: context flags 8734 * 8735 * Notify userspace about beacon loss from the connected AP. 8736 */ 8737 void cfg80211_cqm_beacon_loss_notify(struct net_device *dev, gfp_t gfp); 8738 8739 /** 8740 * __cfg80211_radar_event - radar detection event 8741 * @wiphy: the wiphy 8742 * @chandef: chandef for the current channel 8743 * @offchan: the radar has been detected on the offchannel chain 8744 * @gfp: context flags 8745 * 8746 * This function is called when a radar is detected on the current chanenl. 8747 */ 8748 void __cfg80211_radar_event(struct wiphy *wiphy, 8749 struct cfg80211_chan_def *chandef, 8750 bool offchan, gfp_t gfp); 8751 8752 static inline void 8753 cfg80211_radar_event(struct wiphy *wiphy, 8754 struct cfg80211_chan_def *chandef, 8755 gfp_t gfp) 8756 { 8757 __cfg80211_radar_event(wiphy, chandef, false, gfp); 8758 } 8759 8760 static inline void 8761 cfg80211_background_radar_event(struct wiphy *wiphy, 8762 struct cfg80211_chan_def *chandef, 8763 gfp_t gfp) 8764 { 8765 __cfg80211_radar_event(wiphy, chandef, true, gfp); 8766 } 8767 8768 /** 8769 * cfg80211_sta_opmode_change_notify - STA's ht/vht operation mode change event 8770 * @dev: network device 8771 * @mac: MAC address of a station which opmode got modified 8772 * @sta_opmode: station's current opmode value 8773 * @gfp: context flags 8774 * 8775 * Driver should call this function when station's opmode modified via action 8776 * frame. 8777 */ 8778 void cfg80211_sta_opmode_change_notify(struct net_device *dev, const u8 *mac, 8779 struct sta_opmode_info *sta_opmode, 8780 gfp_t gfp); 8781 8782 /** 8783 * cfg80211_cac_event - Channel availability check (CAC) event 8784 * @netdev: network device 8785 * @chandef: chandef for the current channel 8786 * @event: type of event 8787 * @gfp: context flags 8788 * @link_id: valid link_id for MLO operation or 0 otherwise. 8789 * 8790 * This function is called when a Channel availability check (CAC) is finished 8791 * or aborted. This must be called to notify the completion of a CAC process, 8792 * also by full-MAC drivers. 8793 */ 8794 void cfg80211_cac_event(struct net_device *netdev, 8795 const struct cfg80211_chan_def *chandef, 8796 enum nl80211_radar_event event, gfp_t gfp, 8797 unsigned int link_id); 8798 8799 /** 8800 * cfg80211_background_cac_abort - Channel Availability Check offchan abort event 8801 * @wiphy: the wiphy 8802 * 8803 * This function is called by the driver when a Channel Availability Check 8804 * (CAC) is aborted by a offchannel dedicated chain. 8805 */ 8806 void cfg80211_background_cac_abort(struct wiphy *wiphy); 8807 8808 /** 8809 * cfg80211_gtk_rekey_notify - notify userspace about driver rekeying 8810 * @dev: network device 8811 * @bssid: BSSID of AP (to avoid races) 8812 * @replay_ctr: new replay counter 8813 * @gfp: allocation flags 8814 */ 8815 void cfg80211_gtk_rekey_notify(struct net_device *dev, const u8 *bssid, 8816 const u8 *replay_ctr, gfp_t gfp); 8817 8818 /** 8819 * cfg80211_pmksa_candidate_notify - notify about PMKSA caching candidate 8820 * @dev: network device 8821 * @index: candidate index (the smaller the index, the higher the priority) 8822 * @bssid: BSSID of AP 8823 * @preauth: Whether AP advertises support for RSN pre-authentication 8824 * @gfp: allocation flags 8825 */ 8826 void cfg80211_pmksa_candidate_notify(struct net_device *dev, int index, 8827 const u8 *bssid, bool preauth, gfp_t gfp); 8828 8829 /** 8830 * cfg80211_rx_spurious_frame - inform userspace about a spurious frame 8831 * @dev: The device the frame matched to 8832 * @addr: the transmitter address 8833 * @gfp: context flags 8834 * 8835 * This function is used in AP mode (only!) to inform userspace that 8836 * a spurious class 3 frame was received, to be able to deauth the 8837 * sender. 8838 * Return: %true if the frame was passed to userspace (or this failed 8839 * for a reason other than not having a subscription.) 8840 */ 8841 bool cfg80211_rx_spurious_frame(struct net_device *dev, 8842 const u8 *addr, gfp_t gfp); 8843 8844 /** 8845 * cfg80211_rx_unexpected_4addr_frame - inform about unexpected WDS frame 8846 * @dev: The device the frame matched to 8847 * @addr: the transmitter address 8848 * @gfp: context flags 8849 * 8850 * This function is used in AP mode (only!) to inform userspace that 8851 * an associated station sent a 4addr frame but that wasn't expected. 8852 * It is allowed and desirable to send this event only once for each 8853 * station to avoid event flooding. 8854 * Return: %true if the frame was passed to userspace (or this failed 8855 * for a reason other than not having a subscription.) 8856 */ 8857 bool cfg80211_rx_unexpected_4addr_frame(struct net_device *dev, 8858 const u8 *addr, gfp_t gfp); 8859 8860 /** 8861 * cfg80211_probe_status - notify userspace about probe status 8862 * @dev: the device the probe was sent on 8863 * @addr: the address of the peer 8864 * @cookie: the cookie filled in @probe_client previously 8865 * @acked: indicates whether probe was acked or not 8866 * @ack_signal: signal strength (in dBm) of the ACK frame. 8867 * @is_valid_ack_signal: indicates the ack_signal is valid or not. 8868 * @gfp: allocation flags 8869 */ 8870 void cfg80211_probe_status(struct net_device *dev, const u8 *addr, 8871 u64 cookie, bool acked, s32 ack_signal, 8872 bool is_valid_ack_signal, gfp_t gfp); 8873 8874 /** 8875 * cfg80211_report_obss_beacon_khz - report beacon from other APs 8876 * @wiphy: The wiphy that received the beacon 8877 * @frame: the frame 8878 * @len: length of the frame 8879 * @freq: frequency the frame was received on in KHz 8880 * @sig_dbm: signal strength in dBm, or 0 if unknown 8881 * 8882 * Use this function to report to userspace when a beacon was 8883 * received. It is not useful to call this when there is no 8884 * netdev that is in AP/GO mode. 8885 */ 8886 void cfg80211_report_obss_beacon_khz(struct wiphy *wiphy, const u8 *frame, 8887 size_t len, int freq, int sig_dbm); 8888 8889 /** 8890 * cfg80211_report_obss_beacon - report beacon from other APs 8891 * @wiphy: The wiphy that received the beacon 8892 * @frame: the frame 8893 * @len: length of the frame 8894 * @freq: frequency the frame was received on 8895 * @sig_dbm: signal strength in dBm, or 0 if unknown 8896 * 8897 * Use this function to report to userspace when a beacon was 8898 * received. It is not useful to call this when there is no 8899 * netdev that is in AP/GO mode. 8900 */ 8901 static inline void cfg80211_report_obss_beacon(struct wiphy *wiphy, 8902 const u8 *frame, size_t len, 8903 int freq, int sig_dbm) 8904 { 8905 cfg80211_report_obss_beacon_khz(wiphy, frame, len, MHZ_TO_KHZ(freq), 8906 sig_dbm); 8907 } 8908 8909 /** 8910 * struct cfg80211_beaconing_check_config - beacon check configuration 8911 * @iftype: the interface type to check for 8912 * @relax: allow IR-relaxation conditions to apply (e.g. another 8913 * interface connected already on the same channel) 8914 * NOTE: If this is set, wiphy mutex must be held. 8915 * @reg_power: &enum ieee80211_ap_reg_power value indicating the 8916 * advertised/used 6 GHz regulatory power setting 8917 */ 8918 struct cfg80211_beaconing_check_config { 8919 enum nl80211_iftype iftype; 8920 enum ieee80211_ap_reg_power reg_power; 8921 bool relax; 8922 }; 8923 8924 /** 8925 * cfg80211_reg_check_beaconing - check if beaconing is allowed 8926 * @wiphy: the wiphy 8927 * @chandef: the channel definition 8928 * @cfg: additional parameters for the checking 8929 * 8930 * Return: %true if there is no secondary channel or the secondary channel(s) 8931 * can be used for beaconing (i.e. is not a radar channel etc.) 8932 */ 8933 bool cfg80211_reg_check_beaconing(struct wiphy *wiphy, 8934 struct cfg80211_chan_def *chandef, 8935 struct cfg80211_beaconing_check_config *cfg); 8936 8937 /** 8938 * cfg80211_reg_can_beacon - check if beaconing is allowed 8939 * @wiphy: the wiphy 8940 * @chandef: the channel definition 8941 * @iftype: interface type 8942 * 8943 * Return: %true if there is no secondary channel or the secondary channel(s) 8944 * can be used for beaconing (i.e. is not a radar channel etc.) 8945 */ 8946 static inline bool 8947 cfg80211_reg_can_beacon(struct wiphy *wiphy, 8948 struct cfg80211_chan_def *chandef, 8949 enum nl80211_iftype iftype) 8950 { 8951 struct cfg80211_beaconing_check_config config = { 8952 .iftype = iftype, 8953 }; 8954 8955 return cfg80211_reg_check_beaconing(wiphy, chandef, &config); 8956 } 8957 8958 /** 8959 * cfg80211_reg_can_beacon_relax - check if beaconing is allowed with relaxation 8960 * @wiphy: the wiphy 8961 * @chandef: the channel definition 8962 * @iftype: interface type 8963 * 8964 * Return: %true if there is no secondary channel or the secondary channel(s) 8965 * can be used for beaconing (i.e. is not a radar channel etc.). This version 8966 * also checks if IR-relaxation conditions apply, to allow beaconing under 8967 * more permissive conditions. 8968 * 8969 * Context: Requires the wiphy mutex to be held. 8970 */ 8971 static inline bool 8972 cfg80211_reg_can_beacon_relax(struct wiphy *wiphy, 8973 struct cfg80211_chan_def *chandef, 8974 enum nl80211_iftype iftype) 8975 { 8976 struct cfg80211_beaconing_check_config config = { 8977 .iftype = iftype, 8978 .relax = true, 8979 }; 8980 8981 return cfg80211_reg_check_beaconing(wiphy, chandef, &config); 8982 } 8983 8984 /** 8985 * cfg80211_ch_switch_notify - update wdev channel and notify userspace 8986 * @dev: the device which switched channels 8987 * @chandef: the new channel definition 8988 * @link_id: the link ID for MLO, must be 0 for non-MLO 8989 * 8990 * Caller must hold wiphy mutex, therefore must only be called from sleepable 8991 * driver context! 8992 */ 8993 void cfg80211_ch_switch_notify(struct net_device *dev, 8994 struct cfg80211_chan_def *chandef, 8995 unsigned int link_id); 8996 8997 /** 8998 * cfg80211_ch_switch_started_notify - notify channel switch start 8999 * @dev: the device on which the channel switch started 9000 * @chandef: the future channel definition 9001 * @link_id: the link ID for MLO, must be 0 for non-MLO 9002 * @count: the number of TBTTs until the channel switch happens 9003 * @quiet: whether or not immediate quiet was requested by the AP 9004 * 9005 * Inform the userspace about the channel switch that has just 9006 * started, so that it can take appropriate actions (eg. starting 9007 * channel switch on other vifs), if necessary. 9008 */ 9009 void cfg80211_ch_switch_started_notify(struct net_device *dev, 9010 struct cfg80211_chan_def *chandef, 9011 unsigned int link_id, u8 count, 9012 bool quiet); 9013 9014 /** 9015 * ieee80211_operating_class_to_band - convert operating class to band 9016 * 9017 * @operating_class: the operating class to convert 9018 * @band: band pointer to fill 9019 * 9020 * Return: %true if the conversion was successful, %false otherwise. 9021 */ 9022 bool ieee80211_operating_class_to_band(u8 operating_class, 9023 enum nl80211_band *band); 9024 9025 /** 9026 * ieee80211_operating_class_to_chandef - convert operating class to chandef 9027 * 9028 * @operating_class: the operating class to convert 9029 * @chan: the ieee80211_channel to convert 9030 * @chandef: a pointer to the resulting chandef 9031 * 9032 * Return: %true if the conversion was successful, %false otherwise. 9033 */ 9034 bool ieee80211_operating_class_to_chandef(u8 operating_class, 9035 struct ieee80211_channel *chan, 9036 struct cfg80211_chan_def *chandef); 9037 9038 /** 9039 * ieee80211_chandef_to_operating_class - convert chandef to operation class 9040 * 9041 * @chandef: the chandef to convert 9042 * @op_class: a pointer to the resulting operating class 9043 * 9044 * Return: %true if the conversion was successful, %false otherwise. 9045 */ 9046 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef, 9047 u8 *op_class); 9048 9049 /** 9050 * ieee80211_chandef_to_khz - convert chandef to frequency in KHz 9051 * 9052 * @chandef: the chandef to convert 9053 * 9054 * Return: the center frequency of chandef (1st segment) in KHz. 9055 */ 9056 static inline u32 9057 ieee80211_chandef_to_khz(const struct cfg80211_chan_def *chandef) 9058 { 9059 return MHZ_TO_KHZ(chandef->center_freq1) + chandef->freq1_offset; 9060 } 9061 9062 /** 9063 * cfg80211_tdls_oper_request - request userspace to perform TDLS operation 9064 * @dev: the device on which the operation is requested 9065 * @peer: the MAC address of the peer device 9066 * @oper: the requested TDLS operation (NL80211_TDLS_SETUP or 9067 * NL80211_TDLS_TEARDOWN) 9068 * @reason_code: the reason code for teardown request 9069 * @gfp: allocation flags 9070 * 9071 * This function is used to request userspace to perform TDLS operation that 9072 * requires knowledge of keys, i.e., link setup or teardown when the AP 9073 * connection uses encryption. This is optional mechanism for the driver to use 9074 * if it can automatically determine when a TDLS link could be useful (e.g., 9075 * based on traffic and signal strength for a peer). 9076 */ 9077 void cfg80211_tdls_oper_request(struct net_device *dev, const u8 *peer, 9078 enum nl80211_tdls_operation oper, 9079 u16 reason_code, gfp_t gfp); 9080 9081 /** 9082 * cfg80211_calculate_bitrate - calculate actual bitrate (in 100Kbps units) 9083 * @rate: given rate_info to calculate bitrate from 9084 * 9085 * Return: calculated bitrate 9086 */ 9087 u32 cfg80211_calculate_bitrate(struct rate_info *rate); 9088 9089 /** 9090 * cfg80211_unregister_wdev - remove the given wdev 9091 * @wdev: struct wireless_dev to remove 9092 * 9093 * This function removes the device so it can no longer be used. It is necessary 9094 * to call this function even when cfg80211 requests the removal of the device 9095 * by calling the del_virtual_intf() callback. The function must also be called 9096 * when the driver wishes to unregister the wdev, e.g. when the hardware device 9097 * is unbound from the driver. 9098 * 9099 * Context: Requires the RTNL and wiphy mutex to be held. 9100 */ 9101 void cfg80211_unregister_wdev(struct wireless_dev *wdev); 9102 9103 /** 9104 * cfg80211_register_netdevice - register the given netdev 9105 * @dev: the netdev to register 9106 * 9107 * Note: In contexts coming from cfg80211 callbacks, you must call this rather 9108 * than register_netdevice(), unregister_netdev() is impossible as the RTNL is 9109 * held. Otherwise, both register_netdevice() and register_netdev() are usable 9110 * instead as well. 9111 * 9112 * Context: Requires the RTNL and wiphy mutex to be held. 9113 * 9114 * Return: 0 on success. Non-zero on error. 9115 */ 9116 int cfg80211_register_netdevice(struct net_device *dev); 9117 9118 /** 9119 * cfg80211_unregister_netdevice - unregister the given netdev 9120 * @dev: the netdev to register 9121 * 9122 * Note: In contexts coming from cfg80211 callbacks, you must call this rather 9123 * than unregister_netdevice(), unregister_netdev() is impossible as the RTNL 9124 * is held. Otherwise, both unregister_netdevice() and unregister_netdev() are 9125 * usable instead as well. 9126 * 9127 * Context: Requires the RTNL and wiphy mutex to be held. 9128 */ 9129 static inline void cfg80211_unregister_netdevice(struct net_device *dev) 9130 { 9131 #if IS_ENABLED(CONFIG_CFG80211) 9132 cfg80211_unregister_wdev(dev->ieee80211_ptr); 9133 #endif 9134 } 9135 9136 /** 9137 * struct cfg80211_ft_event_params - FT Information Elements 9138 * @ies: FT IEs 9139 * @ies_len: length of the FT IE in bytes 9140 * @target_ap: target AP's MAC address 9141 * @ric_ies: RIC IE 9142 * @ric_ies_len: length of the RIC IE in bytes 9143 */ 9144 struct cfg80211_ft_event_params { 9145 const u8 *ies; 9146 size_t ies_len; 9147 const u8 *target_ap; 9148 const u8 *ric_ies; 9149 size_t ric_ies_len; 9150 }; 9151 9152 /** 9153 * cfg80211_ft_event - notify userspace about FT IE and RIC IE 9154 * @netdev: network device 9155 * @ft_event: IE information 9156 */ 9157 void cfg80211_ft_event(struct net_device *netdev, 9158 struct cfg80211_ft_event_params *ft_event); 9159 9160 /** 9161 * cfg80211_get_p2p_attr - find and copy a P2P attribute from IE buffer 9162 * @ies: the input IE buffer 9163 * @len: the input length 9164 * @attr: the attribute ID to find 9165 * @buf: output buffer, can be %NULL if the data isn't needed, e.g. 9166 * if the function is only called to get the needed buffer size 9167 * @bufsize: size of the output buffer 9168 * 9169 * The function finds a given P2P attribute in the (vendor) IEs and 9170 * copies its contents to the given buffer. 9171 * 9172 * Return: A negative error code (-%EILSEQ or -%ENOENT) if the data is 9173 * malformed or the attribute can't be found (respectively), or the 9174 * length of the found attribute (which can be zero). 9175 */ 9176 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len, 9177 enum ieee80211_p2p_attr_id attr, 9178 u8 *buf, unsigned int bufsize); 9179 9180 /** 9181 * ieee80211_ie_split_ric - split an IE buffer according to ordering (with RIC) 9182 * @ies: the IE buffer 9183 * @ielen: the length of the IE buffer 9184 * @ids: an array with element IDs that are allowed before 9185 * the split. A WLAN_EID_EXTENSION value means that the next 9186 * EID in the list is a sub-element of the EXTENSION IE. 9187 * @n_ids: the size of the element ID array 9188 * @after_ric: array IE types that come after the RIC element 9189 * @n_after_ric: size of the @after_ric array 9190 * @offset: offset where to start splitting in the buffer 9191 * 9192 * This function splits an IE buffer by updating the @offset 9193 * variable to point to the location where the buffer should be 9194 * split. 9195 * 9196 * It assumes that the given IE buffer is well-formed, this 9197 * has to be guaranteed by the caller! 9198 * 9199 * It also assumes that the IEs in the buffer are ordered 9200 * correctly, if not the result of using this function will not 9201 * be ordered correctly either, i.e. it does no reordering. 9202 * 9203 * Return: The offset where the next part of the buffer starts, which 9204 * may be @ielen if the entire (remainder) of the buffer should be 9205 * used. 9206 */ 9207 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen, 9208 const u8 *ids, int n_ids, 9209 const u8 *after_ric, int n_after_ric, 9210 size_t offset); 9211 9212 /** 9213 * ieee80211_ie_split - split an IE buffer according to ordering 9214 * @ies: the IE buffer 9215 * @ielen: the length of the IE buffer 9216 * @ids: an array with element IDs that are allowed before 9217 * the split. A WLAN_EID_EXTENSION value means that the next 9218 * EID in the list is a sub-element of the EXTENSION IE. 9219 * @n_ids: the size of the element ID array 9220 * @offset: offset where to start splitting in the buffer 9221 * 9222 * This function splits an IE buffer by updating the @offset 9223 * variable to point to the location where the buffer should be 9224 * split. 9225 * 9226 * It assumes that the given IE buffer is well-formed, this 9227 * has to be guaranteed by the caller! 9228 * 9229 * It also assumes that the IEs in the buffer are ordered 9230 * correctly, if not the result of using this function will not 9231 * be ordered correctly either, i.e. it does no reordering. 9232 * 9233 * Return: The offset where the next part of the buffer starts, which 9234 * may be @ielen if the entire (remainder) of the buffer should be 9235 * used. 9236 */ 9237 static inline size_t ieee80211_ie_split(const u8 *ies, size_t ielen, 9238 const u8 *ids, int n_ids, size_t offset) 9239 { 9240 return ieee80211_ie_split_ric(ies, ielen, ids, n_ids, NULL, 0, offset); 9241 } 9242 9243 /** 9244 * ieee80211_fragment_element - fragment the last element in skb 9245 * @skb: The skbuf that the element was added to 9246 * @len_pos: Pointer to length of the element to fragment 9247 * @frag_id: The element ID to use for fragments 9248 * 9249 * This function fragments all data after @len_pos, adding fragmentation 9250 * elements with the given ID as appropriate. The SKB will grow in size 9251 * accordingly. 9252 */ 9253 void ieee80211_fragment_element(struct sk_buff *skb, u8 *len_pos, u8 frag_id); 9254 9255 /** 9256 * cfg80211_report_wowlan_wakeup - report wakeup from WoWLAN 9257 * @wdev: the wireless device reporting the wakeup 9258 * @wakeup: the wakeup report 9259 * @gfp: allocation flags 9260 * 9261 * This function reports that the given device woke up. If it 9262 * caused the wakeup, report the reason(s), otherwise you may 9263 * pass %NULL as the @wakeup parameter to advertise that something 9264 * else caused the wakeup. 9265 */ 9266 void cfg80211_report_wowlan_wakeup(struct wireless_dev *wdev, 9267 struct cfg80211_wowlan_wakeup *wakeup, 9268 gfp_t gfp); 9269 9270 /** 9271 * cfg80211_crit_proto_stopped() - indicate critical protocol stopped by driver. 9272 * 9273 * @wdev: the wireless device for which critical protocol is stopped. 9274 * @gfp: allocation flags 9275 * 9276 * This function can be called by the driver to indicate it has reverted 9277 * operation back to normal. One reason could be that the duration given 9278 * by .crit_proto_start() has expired. 9279 */ 9280 void cfg80211_crit_proto_stopped(struct wireless_dev *wdev, gfp_t gfp); 9281 9282 /** 9283 * ieee80211_get_num_supported_channels - get number of channels device has 9284 * @wiphy: the wiphy 9285 * 9286 * Return: the number of channels supported by the device. 9287 */ 9288 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy); 9289 9290 /** 9291 * cfg80211_check_combinations - check interface combinations 9292 * 9293 * @wiphy: the wiphy 9294 * @params: the interface combinations parameter 9295 * 9296 * This function can be called by the driver to check whether a 9297 * combination of interfaces and their types are allowed according to 9298 * the interface combinations. 9299 * 9300 * Return: 0 if combinations are allowed. Non-zero on error. 9301 */ 9302 int cfg80211_check_combinations(struct wiphy *wiphy, 9303 struct iface_combination_params *params); 9304 9305 /** 9306 * cfg80211_iter_combinations - iterate over matching combinations 9307 * 9308 * @wiphy: the wiphy 9309 * @params: the interface combinations parameter 9310 * @iter: function to call for each matching combination 9311 * @data: pointer to pass to iter function 9312 * 9313 * This function can be called by the driver to check what possible 9314 * combinations it fits in at a given moment, e.g. for channel switching 9315 * purposes. 9316 * 9317 * Return: 0 on success. Non-zero on error. 9318 */ 9319 int cfg80211_iter_combinations(struct wiphy *wiphy, 9320 struct iface_combination_params *params, 9321 void (*iter)(const struct ieee80211_iface_combination *c, 9322 void *data), 9323 void *data); 9324 9325 /** 9326 * cfg80211_stop_iface - trigger interface disconnection 9327 * 9328 * @wiphy: the wiphy 9329 * @wdev: wireless device 9330 * @gfp: context flags 9331 * 9332 * Trigger interface to be stopped as if AP was stopped, IBSS/mesh left, STA 9333 * disconnected. 9334 * 9335 * Note: This doesn't need any locks and is asynchronous. 9336 */ 9337 void cfg80211_stop_iface(struct wiphy *wiphy, struct wireless_dev *wdev, 9338 gfp_t gfp); 9339 9340 /** 9341 * cfg80211_shutdown_all_interfaces - shut down all interfaces for a wiphy 9342 * @wiphy: the wiphy to shut down 9343 * 9344 * This function shuts down all interfaces belonging to this wiphy by 9345 * calling dev_close() (and treating non-netdev interfaces as needed). 9346 * It shouldn't really be used unless there are some fatal device errors 9347 * that really can't be recovered in any other way. 9348 * 9349 * Callers must hold the RTNL and be able to deal with callbacks into 9350 * the driver while the function is running. 9351 */ 9352 void cfg80211_shutdown_all_interfaces(struct wiphy *wiphy); 9353 9354 /** 9355 * wiphy_ext_feature_set - set the extended feature flag 9356 * 9357 * @wiphy: the wiphy to modify. 9358 * @ftidx: extended feature bit index. 9359 * 9360 * The extended features are flagged in multiple bytes (see 9361 * &struct wiphy.@ext_features) 9362 */ 9363 static inline void wiphy_ext_feature_set(struct wiphy *wiphy, 9364 enum nl80211_ext_feature_index ftidx) 9365 { 9366 u8 *ft_byte; 9367 9368 ft_byte = &wiphy->ext_features[ftidx / 8]; 9369 *ft_byte |= BIT(ftidx % 8); 9370 } 9371 9372 /** 9373 * wiphy_ext_feature_isset - check the extended feature flag 9374 * 9375 * @wiphy: the wiphy to modify. 9376 * @ftidx: extended feature bit index. 9377 * 9378 * The extended features are flagged in multiple bytes (see 9379 * &struct wiphy.@ext_features) 9380 * 9381 * Return: %true if extended feature flag is set, %false otherwise 9382 */ 9383 static inline bool 9384 wiphy_ext_feature_isset(struct wiphy *wiphy, 9385 enum nl80211_ext_feature_index ftidx) 9386 { 9387 u8 ft_byte; 9388 9389 ft_byte = wiphy->ext_features[ftidx / 8]; 9390 return (ft_byte & BIT(ftidx % 8)) != 0; 9391 } 9392 9393 /** 9394 * cfg80211_free_nan_func - free NAN function 9395 * @f: NAN function that should be freed 9396 * 9397 * Frees all the NAN function and all it's allocated members. 9398 */ 9399 void cfg80211_free_nan_func(struct cfg80211_nan_func *f); 9400 9401 /** 9402 * struct cfg80211_nan_match_params - NAN match parameters 9403 * @type: the type of the function that triggered a match. If it is 9404 * %NL80211_NAN_FUNC_SUBSCRIBE it means that we replied to a subscriber. 9405 * If it is %NL80211_NAN_FUNC_PUBLISH, it means that we got a discovery 9406 * result. 9407 * If it is %NL80211_NAN_FUNC_FOLLOW_UP, we received a follow up. 9408 * @inst_id: the local instance id 9409 * @peer_inst_id: the instance id of the peer's function 9410 * @addr: the MAC address of the peer 9411 * @info_len: the length of the &info 9412 * @info: the Service Specific Info from the peer (if any) 9413 * @cookie: unique identifier of the corresponding function 9414 */ 9415 struct cfg80211_nan_match_params { 9416 enum nl80211_nan_function_type type; 9417 u8 inst_id; 9418 u8 peer_inst_id; 9419 const u8 *addr; 9420 u8 info_len; 9421 const u8 *info; 9422 u64 cookie; 9423 }; 9424 9425 /** 9426 * cfg80211_nan_match - report a match for a NAN function. 9427 * @wdev: the wireless device reporting the match 9428 * @match: match notification parameters 9429 * @gfp: allocation flags 9430 * 9431 * This function reports that the a NAN function had a match. This 9432 * can be a subscribe that had a match or a solicited publish that 9433 * was sent. It can also be a follow up that was received. 9434 */ 9435 void cfg80211_nan_match(struct wireless_dev *wdev, 9436 struct cfg80211_nan_match_params *match, gfp_t gfp); 9437 9438 /** 9439 * cfg80211_nan_func_terminated - notify about NAN function termination. 9440 * 9441 * @wdev: the wireless device reporting the match 9442 * @inst_id: the local instance id 9443 * @reason: termination reason (one of the NL80211_NAN_FUNC_TERM_REASON_*) 9444 * @cookie: unique NAN function identifier 9445 * @gfp: allocation flags 9446 * 9447 * This function reports that the a NAN function is terminated. 9448 */ 9449 void cfg80211_nan_func_terminated(struct wireless_dev *wdev, 9450 u8 inst_id, 9451 enum nl80211_nan_func_term_reason reason, 9452 u64 cookie, gfp_t gfp); 9453 9454 /* ethtool helper */ 9455 void cfg80211_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info); 9456 9457 /** 9458 * cfg80211_external_auth_request - userspace request for authentication 9459 * @netdev: network device 9460 * @params: External authentication parameters 9461 * @gfp: allocation flags 9462 * Returns: 0 on success, < 0 on error 9463 */ 9464 int cfg80211_external_auth_request(struct net_device *netdev, 9465 struct cfg80211_external_auth_params *params, 9466 gfp_t gfp); 9467 9468 /** 9469 * cfg80211_pmsr_report - report peer measurement result data 9470 * @wdev: the wireless device reporting the measurement 9471 * @req: the original measurement request 9472 * @result: the result data 9473 * @gfp: allocation flags 9474 */ 9475 void cfg80211_pmsr_report(struct wireless_dev *wdev, 9476 struct cfg80211_pmsr_request *req, 9477 struct cfg80211_pmsr_result *result, 9478 gfp_t gfp); 9479 9480 /** 9481 * cfg80211_pmsr_complete - report peer measurement completed 9482 * @wdev: the wireless device reporting the measurement 9483 * @req: the original measurement request 9484 * @gfp: allocation flags 9485 * 9486 * Report that the entire measurement completed, after this 9487 * the request pointer will no longer be valid. 9488 */ 9489 void cfg80211_pmsr_complete(struct wireless_dev *wdev, 9490 struct cfg80211_pmsr_request *req, 9491 gfp_t gfp); 9492 9493 /** 9494 * cfg80211_iftype_allowed - check whether the interface can be allowed 9495 * @wiphy: the wiphy 9496 * @iftype: interface type 9497 * @is_4addr: use_4addr flag, must be '0' when check_swif is '1' 9498 * @check_swif: check iftype against software interfaces 9499 * 9500 * Check whether the interface is allowed to operate; additionally, this API 9501 * can be used to check iftype against the software interfaces when 9502 * check_swif is '1'. 9503 * 9504 * Return: %true if allowed, %false otherwise 9505 */ 9506 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype, 9507 bool is_4addr, u8 check_swif); 9508 9509 9510 /** 9511 * cfg80211_assoc_comeback - notification of association that was 9512 * temporarily rejected with a comeback 9513 * @netdev: network device 9514 * @ap_addr: AP (MLD) address that rejected the association 9515 * @timeout: timeout interval value TUs. 9516 * 9517 * this function may sleep. the caller must hold the corresponding wdev's mutex. 9518 */ 9519 void cfg80211_assoc_comeback(struct net_device *netdev, 9520 const u8 *ap_addr, u32 timeout); 9521 9522 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 9523 9524 /* wiphy_printk helpers, similar to dev_printk */ 9525 9526 #define wiphy_printk(level, wiphy, format, args...) \ 9527 dev_printk(level, &(wiphy)->dev, format, ##args) 9528 #define wiphy_emerg(wiphy, format, args...) \ 9529 dev_emerg(&(wiphy)->dev, format, ##args) 9530 #define wiphy_alert(wiphy, format, args...) \ 9531 dev_alert(&(wiphy)->dev, format, ##args) 9532 #define wiphy_crit(wiphy, format, args...) \ 9533 dev_crit(&(wiphy)->dev, format, ##args) 9534 #define wiphy_err(wiphy, format, args...) \ 9535 dev_err(&(wiphy)->dev, format, ##args) 9536 #define wiphy_warn(wiphy, format, args...) \ 9537 dev_warn(&(wiphy)->dev, format, ##args) 9538 #define wiphy_notice(wiphy, format, args...) \ 9539 dev_notice(&(wiphy)->dev, format, ##args) 9540 #define wiphy_info(wiphy, format, args...) \ 9541 dev_info(&(wiphy)->dev, format, ##args) 9542 #define wiphy_info_once(wiphy, format, args...) \ 9543 dev_info_once(&(wiphy)->dev, format, ##args) 9544 9545 #define wiphy_err_ratelimited(wiphy, format, args...) \ 9546 dev_err_ratelimited(&(wiphy)->dev, format, ##args) 9547 #define wiphy_warn_ratelimited(wiphy, format, args...) \ 9548 dev_warn_ratelimited(&(wiphy)->dev, format, ##args) 9549 9550 #define wiphy_debug(wiphy, format, args...) \ 9551 wiphy_printk(KERN_DEBUG, wiphy, format, ##args) 9552 9553 #define wiphy_dbg(wiphy, format, args...) \ 9554 dev_dbg(&(wiphy)->dev, format, ##args) 9555 9556 #if defined(VERBOSE_DEBUG) 9557 #define wiphy_vdbg wiphy_dbg 9558 #else 9559 #define wiphy_vdbg(wiphy, format, args...) \ 9560 ({ \ 9561 if (0) \ 9562 wiphy_printk(KERN_DEBUG, wiphy, format, ##args); \ 9563 0; \ 9564 }) 9565 #endif 9566 9567 /* 9568 * wiphy_WARN() acts like wiphy_printk(), but with the key difference 9569 * of using a WARN/WARN_ON to get the message out, including the 9570 * file/line information and a backtrace. 9571 */ 9572 #define wiphy_WARN(wiphy, format, args...) \ 9573 WARN(1, "wiphy: %s\n" format, wiphy_name(wiphy), ##args); 9574 9575 /** 9576 * cfg80211_update_owe_info_event - Notify the peer's OWE info to user space 9577 * @netdev: network device 9578 * @owe_info: peer's owe info 9579 * @gfp: allocation flags 9580 */ 9581 void cfg80211_update_owe_info_event(struct net_device *netdev, 9582 struct cfg80211_update_owe_info *owe_info, 9583 gfp_t gfp); 9584 9585 /** 9586 * cfg80211_bss_flush - resets all the scan entries 9587 * @wiphy: the wiphy 9588 */ 9589 void cfg80211_bss_flush(struct wiphy *wiphy); 9590 9591 /** 9592 * cfg80211_bss_color_notify - notify about bss color event 9593 * @dev: network device 9594 * @cmd: the actual event we want to notify 9595 * @count: the number of TBTTs until the color change happens 9596 * @color_bitmap: representations of the colors that the local BSS is aware of 9597 * @link_id: valid link_id in case of MLO or 0 for non-MLO. 9598 * 9599 * Return: 0 on success. Non-zero on error. 9600 */ 9601 int cfg80211_bss_color_notify(struct net_device *dev, 9602 enum nl80211_commands cmd, u8 count, 9603 u64 color_bitmap, u8 link_id); 9604 9605 /** 9606 * cfg80211_obss_color_collision_notify - notify about bss color collision 9607 * @dev: network device 9608 * @color_bitmap: representations of the colors that the local BSS is aware of 9609 * @link_id: valid link_id in case of MLO or 0 for non-MLO. 9610 * 9611 * Return: 0 on success. Non-zero on error. 9612 */ 9613 static inline int cfg80211_obss_color_collision_notify(struct net_device *dev, 9614 u64 color_bitmap, 9615 u8 link_id) 9616 { 9617 return cfg80211_bss_color_notify(dev, NL80211_CMD_OBSS_COLOR_COLLISION, 9618 0, color_bitmap, link_id); 9619 } 9620 9621 /** 9622 * cfg80211_color_change_started_notify - notify color change start 9623 * @dev: the device on which the color is switched 9624 * @count: the number of TBTTs until the color change happens 9625 * @link_id: valid link_id in case of MLO or 0 for non-MLO. 9626 * 9627 * Inform the userspace about the color change that has started. 9628 * 9629 * Return: 0 on success. Non-zero on error. 9630 */ 9631 static inline int cfg80211_color_change_started_notify(struct net_device *dev, 9632 u8 count, u8 link_id) 9633 { 9634 return cfg80211_bss_color_notify(dev, NL80211_CMD_COLOR_CHANGE_STARTED, 9635 count, 0, link_id); 9636 } 9637 9638 /** 9639 * cfg80211_color_change_aborted_notify - notify color change abort 9640 * @dev: the device on which the color is switched 9641 * @link_id: valid link_id in case of MLO or 0 for non-MLO. 9642 * 9643 * Inform the userspace about the color change that has aborted. 9644 * 9645 * Return: 0 on success. Non-zero on error. 9646 */ 9647 static inline int cfg80211_color_change_aborted_notify(struct net_device *dev, 9648 u8 link_id) 9649 { 9650 return cfg80211_bss_color_notify(dev, NL80211_CMD_COLOR_CHANGE_ABORTED, 9651 0, 0, link_id); 9652 } 9653 9654 /** 9655 * cfg80211_color_change_notify - notify color change completion 9656 * @dev: the device on which the color was switched 9657 * @link_id: valid link_id in case of MLO or 0 for non-MLO. 9658 * 9659 * Inform the userspace about the color change that has completed. 9660 * 9661 * Return: 0 on success. Non-zero on error. 9662 */ 9663 static inline int cfg80211_color_change_notify(struct net_device *dev, 9664 u8 link_id) 9665 { 9666 return cfg80211_bss_color_notify(dev, 9667 NL80211_CMD_COLOR_CHANGE_COMPLETED, 9668 0, 0, link_id); 9669 } 9670 9671 /** 9672 * cfg80211_links_removed - Notify about removed STA MLD setup links. 9673 * @dev: network device. 9674 * @link_mask: BIT mask of removed STA MLD setup link IDs. 9675 * 9676 * Inform cfg80211 and the userspace about removed STA MLD setup links due to 9677 * AP MLD removing the corresponding affiliated APs with Multi-Link 9678 * reconfiguration. Note that it's not valid to remove all links, in this 9679 * case disconnect instead. 9680 * Also note that the wdev mutex must be held. 9681 */ 9682 void cfg80211_links_removed(struct net_device *dev, u16 link_mask); 9683 9684 /** 9685 * cfg80211_schedule_channels_check - schedule regulatory check if needed 9686 * @wdev: the wireless device to check 9687 * 9688 * In case the device supports NO_IR or DFS relaxations, schedule regulatory 9689 * channels check, as previous concurrent operation conditions may not 9690 * hold anymore. 9691 */ 9692 void cfg80211_schedule_channels_check(struct wireless_dev *wdev); 9693 9694 #ifdef CONFIG_CFG80211_DEBUGFS 9695 /** 9696 * wiphy_locked_debugfs_read - do a locked read in debugfs 9697 * @wiphy: the wiphy to use 9698 * @file: the file being read 9699 * @buf: the buffer to fill and then read from 9700 * @bufsize: size of the buffer 9701 * @userbuf: the user buffer to copy to 9702 * @count: read count 9703 * @ppos: read position 9704 * @handler: the read handler to call (under wiphy lock) 9705 * @data: additional data to pass to the read handler 9706 * 9707 * Return: the number of characters read, or a negative errno 9708 */ 9709 ssize_t wiphy_locked_debugfs_read(struct wiphy *wiphy, struct file *file, 9710 char *buf, size_t bufsize, 9711 char __user *userbuf, size_t count, 9712 loff_t *ppos, 9713 ssize_t (*handler)(struct wiphy *wiphy, 9714 struct file *file, 9715 char *buf, 9716 size_t bufsize, 9717 void *data), 9718 void *data); 9719 9720 /** 9721 * wiphy_locked_debugfs_write - do a locked write in debugfs 9722 * @wiphy: the wiphy to use 9723 * @file: the file being written to 9724 * @buf: the buffer to copy the user data to 9725 * @bufsize: size of the buffer 9726 * @userbuf: the user buffer to copy from 9727 * @count: read count 9728 * @handler: the write handler to call (under wiphy lock) 9729 * @data: additional data to pass to the write handler 9730 * 9731 * Return: the number of characters written, or a negative errno 9732 */ 9733 ssize_t wiphy_locked_debugfs_write(struct wiphy *wiphy, struct file *file, 9734 char *buf, size_t bufsize, 9735 const char __user *userbuf, size_t count, 9736 ssize_t (*handler)(struct wiphy *wiphy, 9737 struct file *file, 9738 char *buf, 9739 size_t count, 9740 void *data), 9741 void *data); 9742 #endif 9743 9744 #endif /* __NET_CFG80211_H */ 9745