xref: /linux/include/net/cfg80211.h (revision 04eeb606a8383b306f4bc6991da8231b5f3924b0)
1 #ifndef __NET_CFG80211_H
2 #define __NET_CFG80211_H
3 /*
4  * 802.11 device and configuration interface
5  *
6  * Copyright 2006-2010	Johannes Berg <johannes@sipsolutions.net>
7  * Copyright 2013-2014 Intel Mobile Communications GmbH
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #include <linux/netdevice.h>
15 #include <linux/debugfs.h>
16 #include <linux/list.h>
17 #include <linux/bug.h>
18 #include <linux/netlink.h>
19 #include <linux/skbuff.h>
20 #include <linux/nl80211.h>
21 #include <linux/if_ether.h>
22 #include <linux/ieee80211.h>
23 #include <linux/net.h>
24 #include <net/regulatory.h>
25 
26 /**
27  * DOC: Introduction
28  *
29  * cfg80211 is the configuration API for 802.11 devices in Linux. It bridges
30  * userspace and drivers, and offers some utility functionality associated
31  * with 802.11. cfg80211 must, directly or indirectly via mac80211, be used
32  * by all modern wireless drivers in Linux, so that they offer a consistent
33  * API through nl80211. For backward compatibility, cfg80211 also offers
34  * wireless extensions to userspace, but hides them from drivers completely.
35  *
36  * Additionally, cfg80211 contains code to help enforce regulatory spectrum
37  * use restrictions.
38  */
39 
40 
41 /**
42  * DOC: Device registration
43  *
44  * In order for a driver to use cfg80211, it must register the hardware device
45  * with cfg80211. This happens through a number of hardware capability structs
46  * described below.
47  *
48  * The fundamental structure for each device is the 'wiphy', of which each
49  * instance describes a physical wireless device connected to the system. Each
50  * such wiphy can have zero, one, or many virtual interfaces associated with
51  * it, which need to be identified as such by pointing the network interface's
52  * @ieee80211_ptr pointer to a &struct wireless_dev which further describes
53  * the wireless part of the interface, normally this struct is embedded in the
54  * network interface's private data area. Drivers can optionally allow creating
55  * or destroying virtual interfaces on the fly, but without at least one or the
56  * ability to create some the wireless device isn't useful.
57  *
58  * Each wiphy structure contains device capability information, and also has
59  * a pointer to the various operations the driver offers. The definitions and
60  * structures here describe these capabilities in detail.
61  */
62 
63 struct wiphy;
64 
65 /*
66  * wireless hardware capability structures
67  */
68 
69 /**
70  * enum ieee80211_band - supported frequency bands
71  *
72  * The bands are assigned this way because the supported
73  * bitrates differ in these bands.
74  *
75  * @IEEE80211_BAND_2GHZ: 2.4GHz ISM band
76  * @IEEE80211_BAND_5GHZ: around 5GHz band (4.9-5.7)
77  * @IEEE80211_BAND_60GHZ: around 60 GHz band (58.32 - 64.80 GHz)
78  * @IEEE80211_NUM_BANDS: number of defined bands
79  */
80 enum ieee80211_band {
81 	IEEE80211_BAND_2GHZ = NL80211_BAND_2GHZ,
82 	IEEE80211_BAND_5GHZ = NL80211_BAND_5GHZ,
83 	IEEE80211_BAND_60GHZ = NL80211_BAND_60GHZ,
84 
85 	/* keep last */
86 	IEEE80211_NUM_BANDS
87 };
88 
89 /**
90  * enum ieee80211_channel_flags - channel flags
91  *
92  * Channel flags set by the regulatory control code.
93  *
94  * @IEEE80211_CHAN_DISABLED: This channel is disabled.
95  * @IEEE80211_CHAN_NO_IR: do not initiate radiation, this includes
96  * 	sending probe requests or beaconing.
97  * @IEEE80211_CHAN_RADAR: Radar detection is required on this channel.
98  * @IEEE80211_CHAN_NO_HT40PLUS: extension channel above this channel
99  * 	is not permitted.
100  * @IEEE80211_CHAN_NO_HT40MINUS: extension channel below this channel
101  * 	is not permitted.
102  * @IEEE80211_CHAN_NO_OFDM: OFDM is not allowed on this channel.
103  * @IEEE80211_CHAN_NO_80MHZ: If the driver supports 80 MHz on the band,
104  *	this flag indicates that an 80 MHz channel cannot use this
105  *	channel as the control or any of the secondary channels.
106  *	This may be due to the driver or due to regulatory bandwidth
107  *	restrictions.
108  * @IEEE80211_CHAN_NO_160MHZ: If the driver supports 160 MHz on the band,
109  *	this flag indicates that an 160 MHz channel cannot use this
110  *	channel as the control or any of the secondary channels.
111  *	This may be due to the driver or due to regulatory bandwidth
112  *	restrictions.
113  * @IEEE80211_CHAN_INDOOR_ONLY: see %NL80211_FREQUENCY_ATTR_INDOOR_ONLY
114  * @IEEE80211_CHAN_GO_CONCURRENT: see %NL80211_FREQUENCY_ATTR_GO_CONCURRENT
115  * @IEEE80211_CHAN_NO_20MHZ: 20 MHz bandwidth is not permitted
116  *	on this channel.
117  * @IEEE80211_CHAN_NO_10MHZ: 10 MHz bandwidth is not permitted
118  *	on this channel.
119  *
120  */
121 enum ieee80211_channel_flags {
122 	IEEE80211_CHAN_DISABLED		= 1<<0,
123 	IEEE80211_CHAN_NO_IR		= 1<<1,
124 	/* hole at 1<<2 */
125 	IEEE80211_CHAN_RADAR		= 1<<3,
126 	IEEE80211_CHAN_NO_HT40PLUS	= 1<<4,
127 	IEEE80211_CHAN_NO_HT40MINUS	= 1<<5,
128 	IEEE80211_CHAN_NO_OFDM		= 1<<6,
129 	IEEE80211_CHAN_NO_80MHZ		= 1<<7,
130 	IEEE80211_CHAN_NO_160MHZ	= 1<<8,
131 	IEEE80211_CHAN_INDOOR_ONLY	= 1<<9,
132 	IEEE80211_CHAN_GO_CONCURRENT	= 1<<10,
133 	IEEE80211_CHAN_NO_20MHZ		= 1<<11,
134 	IEEE80211_CHAN_NO_10MHZ		= 1<<12,
135 };
136 
137 #define IEEE80211_CHAN_NO_HT40 \
138 	(IEEE80211_CHAN_NO_HT40PLUS | IEEE80211_CHAN_NO_HT40MINUS)
139 
140 #define IEEE80211_DFS_MIN_CAC_TIME_MS		60000
141 #define IEEE80211_DFS_MIN_NOP_TIME_MS		(30 * 60 * 1000)
142 
143 /**
144  * struct ieee80211_channel - channel definition
145  *
146  * This structure describes a single channel for use
147  * with cfg80211.
148  *
149  * @center_freq: center frequency in MHz
150  * @hw_value: hardware-specific value for the channel
151  * @flags: channel flags from &enum ieee80211_channel_flags.
152  * @orig_flags: channel flags at registration time, used by regulatory
153  *	code to support devices with additional restrictions
154  * @band: band this channel belongs to.
155  * @max_antenna_gain: maximum antenna gain in dBi
156  * @max_power: maximum transmission power (in dBm)
157  * @max_reg_power: maximum regulatory transmission power (in dBm)
158  * @beacon_found: helper to regulatory code to indicate when a beacon
159  *	has been found on this channel. Use regulatory_hint_found_beacon()
160  *	to enable this, this is useful only on 5 GHz band.
161  * @orig_mag: internal use
162  * @orig_mpwr: internal use
163  * @dfs_state: current state of this channel. Only relevant if radar is required
164  *	on this channel.
165  * @dfs_state_entered: timestamp (jiffies) when the dfs state was entered.
166  * @dfs_cac_ms: DFS CAC time in milliseconds, this is valid for DFS channels.
167  */
168 struct ieee80211_channel {
169 	enum ieee80211_band band;
170 	u16 center_freq;
171 	u16 hw_value;
172 	u32 flags;
173 	int max_antenna_gain;
174 	int max_power;
175 	int max_reg_power;
176 	bool beacon_found;
177 	u32 orig_flags;
178 	int orig_mag, orig_mpwr;
179 	enum nl80211_dfs_state dfs_state;
180 	unsigned long dfs_state_entered;
181 	unsigned int dfs_cac_ms;
182 };
183 
184 /**
185  * enum ieee80211_rate_flags - rate flags
186  *
187  * Hardware/specification flags for rates. These are structured
188  * in a way that allows using the same bitrate structure for
189  * different bands/PHY modes.
190  *
191  * @IEEE80211_RATE_SHORT_PREAMBLE: Hardware can send with short
192  *	preamble on this bitrate; only relevant in 2.4GHz band and
193  *	with CCK rates.
194  * @IEEE80211_RATE_MANDATORY_A: This bitrate is a mandatory rate
195  *	when used with 802.11a (on the 5 GHz band); filled by the
196  *	core code when registering the wiphy.
197  * @IEEE80211_RATE_MANDATORY_B: This bitrate is a mandatory rate
198  *	when used with 802.11b (on the 2.4 GHz band); filled by the
199  *	core code when registering the wiphy.
200  * @IEEE80211_RATE_MANDATORY_G: This bitrate is a mandatory rate
201  *	when used with 802.11g (on the 2.4 GHz band); filled by the
202  *	core code when registering the wiphy.
203  * @IEEE80211_RATE_ERP_G: This is an ERP rate in 802.11g mode.
204  * @IEEE80211_RATE_SUPPORTS_5MHZ: Rate can be used in 5 MHz mode
205  * @IEEE80211_RATE_SUPPORTS_10MHZ: Rate can be used in 10 MHz mode
206  */
207 enum ieee80211_rate_flags {
208 	IEEE80211_RATE_SHORT_PREAMBLE	= 1<<0,
209 	IEEE80211_RATE_MANDATORY_A	= 1<<1,
210 	IEEE80211_RATE_MANDATORY_B	= 1<<2,
211 	IEEE80211_RATE_MANDATORY_G	= 1<<3,
212 	IEEE80211_RATE_ERP_G		= 1<<4,
213 	IEEE80211_RATE_SUPPORTS_5MHZ	= 1<<5,
214 	IEEE80211_RATE_SUPPORTS_10MHZ	= 1<<6,
215 };
216 
217 /**
218  * struct ieee80211_rate - bitrate definition
219  *
220  * This structure describes a bitrate that an 802.11 PHY can
221  * operate with. The two values @hw_value and @hw_value_short
222  * are only for driver use when pointers to this structure are
223  * passed around.
224  *
225  * @flags: rate-specific flags
226  * @bitrate: bitrate in units of 100 Kbps
227  * @hw_value: driver/hardware value for this rate
228  * @hw_value_short: driver/hardware value for this rate when
229  *	short preamble is used
230  */
231 struct ieee80211_rate {
232 	u32 flags;
233 	u16 bitrate;
234 	u16 hw_value, hw_value_short;
235 };
236 
237 /**
238  * struct ieee80211_sta_ht_cap - STA's HT capabilities
239  *
240  * This structure describes most essential parameters needed
241  * to describe 802.11n HT capabilities for an STA.
242  *
243  * @ht_supported: is HT supported by the STA
244  * @cap: HT capabilities map as described in 802.11n spec
245  * @ampdu_factor: Maximum A-MPDU length factor
246  * @ampdu_density: Minimum A-MPDU spacing
247  * @mcs: Supported MCS rates
248  */
249 struct ieee80211_sta_ht_cap {
250 	u16 cap; /* use IEEE80211_HT_CAP_ */
251 	bool ht_supported;
252 	u8 ampdu_factor;
253 	u8 ampdu_density;
254 	struct ieee80211_mcs_info mcs;
255 };
256 
257 /**
258  * struct ieee80211_sta_vht_cap - STA's VHT capabilities
259  *
260  * This structure describes most essential parameters needed
261  * to describe 802.11ac VHT capabilities for an STA.
262  *
263  * @vht_supported: is VHT supported by the STA
264  * @cap: VHT capabilities map as described in 802.11ac spec
265  * @vht_mcs: Supported VHT MCS rates
266  */
267 struct ieee80211_sta_vht_cap {
268 	bool vht_supported;
269 	u32 cap; /* use IEEE80211_VHT_CAP_ */
270 	struct ieee80211_vht_mcs_info vht_mcs;
271 };
272 
273 /**
274  * struct ieee80211_supported_band - frequency band definition
275  *
276  * This structure describes a frequency band a wiphy
277  * is able to operate in.
278  *
279  * @channels: Array of channels the hardware can operate in
280  *	in this band.
281  * @band: the band this structure represents
282  * @n_channels: Number of channels in @channels
283  * @bitrates: Array of bitrates the hardware can operate with
284  *	in this band. Must be sorted to give a valid "supported
285  *	rates" IE, i.e. CCK rates first, then OFDM.
286  * @n_bitrates: Number of bitrates in @bitrates
287  * @ht_cap: HT capabilities in this band
288  * @vht_cap: VHT capabilities in this band
289  */
290 struct ieee80211_supported_band {
291 	struct ieee80211_channel *channels;
292 	struct ieee80211_rate *bitrates;
293 	enum ieee80211_band band;
294 	int n_channels;
295 	int n_bitrates;
296 	struct ieee80211_sta_ht_cap ht_cap;
297 	struct ieee80211_sta_vht_cap vht_cap;
298 };
299 
300 /*
301  * Wireless hardware/device configuration structures and methods
302  */
303 
304 /**
305  * DOC: Actions and configuration
306  *
307  * Each wireless device and each virtual interface offer a set of configuration
308  * operations and other actions that are invoked by userspace. Each of these
309  * actions is described in the operations structure, and the parameters these
310  * operations use are described separately.
311  *
312  * Additionally, some operations are asynchronous and expect to get status
313  * information via some functions that drivers need to call.
314  *
315  * Scanning and BSS list handling with its associated functionality is described
316  * in a separate chapter.
317  */
318 
319 /**
320  * struct vif_params - describes virtual interface parameters
321  * @use_4addr: use 4-address frames
322  * @macaddr: address to use for this virtual interface. This will only
323  * 	be used for non-netdevice interfaces. If this parameter is set
324  * 	to zero address the driver may determine the address as needed.
325  */
326 struct vif_params {
327        int use_4addr;
328        u8 macaddr[ETH_ALEN];
329 };
330 
331 /**
332  * struct key_params - key information
333  *
334  * Information about a key
335  *
336  * @key: key material
337  * @key_len: length of key material
338  * @cipher: cipher suite selector
339  * @seq: sequence counter (IV/PN) for TKIP and CCMP keys, only used
340  *	with the get_key() callback, must be in little endian,
341  *	length given by @seq_len.
342  * @seq_len: length of @seq.
343  */
344 struct key_params {
345 	const u8 *key;
346 	const u8 *seq;
347 	int key_len;
348 	int seq_len;
349 	u32 cipher;
350 };
351 
352 /**
353  * struct cfg80211_chan_def - channel definition
354  * @chan: the (control) channel
355  * @width: channel width
356  * @center_freq1: center frequency of first segment
357  * @center_freq2: center frequency of second segment
358  *	(only with 80+80 MHz)
359  */
360 struct cfg80211_chan_def {
361 	struct ieee80211_channel *chan;
362 	enum nl80211_chan_width width;
363 	u32 center_freq1;
364 	u32 center_freq2;
365 };
366 
367 /**
368  * cfg80211_get_chandef_type - return old channel type from chandef
369  * @chandef: the channel definition
370  *
371  * Return: The old channel type (NOHT, HT20, HT40+/-) from a given
372  * chandef, which must have a bandwidth allowing this conversion.
373  */
374 static inline enum nl80211_channel_type
375 cfg80211_get_chandef_type(const struct cfg80211_chan_def *chandef)
376 {
377 	switch (chandef->width) {
378 	case NL80211_CHAN_WIDTH_20_NOHT:
379 		return NL80211_CHAN_NO_HT;
380 	case NL80211_CHAN_WIDTH_20:
381 		return NL80211_CHAN_HT20;
382 	case NL80211_CHAN_WIDTH_40:
383 		if (chandef->center_freq1 > chandef->chan->center_freq)
384 			return NL80211_CHAN_HT40PLUS;
385 		return NL80211_CHAN_HT40MINUS;
386 	default:
387 		WARN_ON(1);
388 		return NL80211_CHAN_NO_HT;
389 	}
390 }
391 
392 /**
393  * cfg80211_chandef_create - create channel definition using channel type
394  * @chandef: the channel definition struct to fill
395  * @channel: the control channel
396  * @chantype: the channel type
397  *
398  * Given a channel type, create a channel definition.
399  */
400 void cfg80211_chandef_create(struct cfg80211_chan_def *chandef,
401 			     struct ieee80211_channel *channel,
402 			     enum nl80211_channel_type chantype);
403 
404 /**
405  * cfg80211_chandef_identical - check if two channel definitions are identical
406  * @chandef1: first channel definition
407  * @chandef2: second channel definition
408  *
409  * Return: %true if the channels defined by the channel definitions are
410  * identical, %false otherwise.
411  */
412 static inline bool
413 cfg80211_chandef_identical(const struct cfg80211_chan_def *chandef1,
414 			   const struct cfg80211_chan_def *chandef2)
415 {
416 	return (chandef1->chan == chandef2->chan &&
417 		chandef1->width == chandef2->width &&
418 		chandef1->center_freq1 == chandef2->center_freq1 &&
419 		chandef1->center_freq2 == chandef2->center_freq2);
420 }
421 
422 /**
423  * cfg80211_chandef_compatible - check if two channel definitions are compatible
424  * @chandef1: first channel definition
425  * @chandef2: second channel definition
426  *
427  * Return: %NULL if the given channel definitions are incompatible,
428  * chandef1 or chandef2 otherwise.
429  */
430 const struct cfg80211_chan_def *
431 cfg80211_chandef_compatible(const struct cfg80211_chan_def *chandef1,
432 			    const struct cfg80211_chan_def *chandef2);
433 
434 /**
435  * cfg80211_chandef_valid - check if a channel definition is valid
436  * @chandef: the channel definition to check
437  * Return: %true if the channel definition is valid. %false otherwise.
438  */
439 bool cfg80211_chandef_valid(const struct cfg80211_chan_def *chandef);
440 
441 /**
442  * cfg80211_chandef_usable - check if secondary channels can be used
443  * @wiphy: the wiphy to validate against
444  * @chandef: the channel definition to check
445  * @prohibited_flags: the regulatory channel flags that must not be set
446  * Return: %true if secondary channels are usable. %false otherwise.
447  */
448 bool cfg80211_chandef_usable(struct wiphy *wiphy,
449 			     const struct cfg80211_chan_def *chandef,
450 			     u32 prohibited_flags);
451 
452 /**
453  * cfg80211_chandef_dfs_required - checks if radar detection is required
454  * @wiphy: the wiphy to validate against
455  * @chandef: the channel definition to check
456  * @iftype: the interface type as specified in &enum nl80211_iftype
457  * Returns:
458  *	1 if radar detection is required, 0 if it is not, < 0 on error
459  */
460 int cfg80211_chandef_dfs_required(struct wiphy *wiphy,
461 				  const struct cfg80211_chan_def *chandef,
462 				  enum nl80211_iftype iftype);
463 
464 /**
465  * ieee80211_chandef_rate_flags - returns rate flags for a channel
466  *
467  * In some channel types, not all rates may be used - for example CCK
468  * rates may not be used in 5/10 MHz channels.
469  *
470  * @chandef: channel definition for the channel
471  *
472  * Returns: rate flags which apply for this channel
473  */
474 static inline enum ieee80211_rate_flags
475 ieee80211_chandef_rate_flags(struct cfg80211_chan_def *chandef)
476 {
477 	switch (chandef->width) {
478 	case NL80211_CHAN_WIDTH_5:
479 		return IEEE80211_RATE_SUPPORTS_5MHZ;
480 	case NL80211_CHAN_WIDTH_10:
481 		return IEEE80211_RATE_SUPPORTS_10MHZ;
482 	default:
483 		break;
484 	}
485 	return 0;
486 }
487 
488 /**
489  * ieee80211_chandef_max_power - maximum transmission power for the chandef
490  *
491  * In some regulations, the transmit power may depend on the configured channel
492  * bandwidth which may be defined as dBm/MHz. This function returns the actual
493  * max_power for non-standard (20 MHz) channels.
494  *
495  * @chandef: channel definition for the channel
496  *
497  * Returns: maximum allowed transmission power in dBm for the chandef
498  */
499 static inline int
500 ieee80211_chandef_max_power(struct cfg80211_chan_def *chandef)
501 {
502 	switch (chandef->width) {
503 	case NL80211_CHAN_WIDTH_5:
504 		return min(chandef->chan->max_reg_power - 6,
505 			   chandef->chan->max_power);
506 	case NL80211_CHAN_WIDTH_10:
507 		return min(chandef->chan->max_reg_power - 3,
508 			   chandef->chan->max_power);
509 	default:
510 		break;
511 	}
512 	return chandef->chan->max_power;
513 }
514 
515 /**
516  * enum survey_info_flags - survey information flags
517  *
518  * @SURVEY_INFO_NOISE_DBM: noise (in dBm) was filled in
519  * @SURVEY_INFO_IN_USE: channel is currently being used
520  * @SURVEY_INFO_CHANNEL_TIME: channel active time (in ms) was filled in
521  * @SURVEY_INFO_CHANNEL_TIME_BUSY: channel busy time was filled in
522  * @SURVEY_INFO_CHANNEL_TIME_EXT_BUSY: extension channel busy time was filled in
523  * @SURVEY_INFO_CHANNEL_TIME_RX: channel receive time was filled in
524  * @SURVEY_INFO_CHANNEL_TIME_TX: channel transmit time was filled in
525  *
526  * Used by the driver to indicate which info in &struct survey_info
527  * it has filled in during the get_survey().
528  */
529 enum survey_info_flags {
530 	SURVEY_INFO_NOISE_DBM = 1<<0,
531 	SURVEY_INFO_IN_USE = 1<<1,
532 	SURVEY_INFO_CHANNEL_TIME = 1<<2,
533 	SURVEY_INFO_CHANNEL_TIME_BUSY = 1<<3,
534 	SURVEY_INFO_CHANNEL_TIME_EXT_BUSY = 1<<4,
535 	SURVEY_INFO_CHANNEL_TIME_RX = 1<<5,
536 	SURVEY_INFO_CHANNEL_TIME_TX = 1<<6,
537 };
538 
539 /**
540  * struct survey_info - channel survey response
541  *
542  * @channel: the channel this survey record reports, mandatory
543  * @filled: bitflag of flags from &enum survey_info_flags
544  * @noise: channel noise in dBm. This and all following fields are
545  *	optional
546  * @channel_time: amount of time in ms the radio spent on the channel
547  * @channel_time_busy: amount of time the primary channel was sensed busy
548  * @channel_time_ext_busy: amount of time the extension channel was sensed busy
549  * @channel_time_rx: amount of time the radio spent receiving data
550  * @channel_time_tx: amount of time the radio spent transmitting data
551  *
552  * Used by dump_survey() to report back per-channel survey information.
553  *
554  * This structure can later be expanded with things like
555  * channel duty cycle etc.
556  */
557 struct survey_info {
558 	struct ieee80211_channel *channel;
559 	u64 channel_time;
560 	u64 channel_time_busy;
561 	u64 channel_time_ext_busy;
562 	u64 channel_time_rx;
563 	u64 channel_time_tx;
564 	u32 filled;
565 	s8 noise;
566 };
567 
568 /**
569  * struct cfg80211_crypto_settings - Crypto settings
570  * @wpa_versions: indicates which, if any, WPA versions are enabled
571  *	(from enum nl80211_wpa_versions)
572  * @cipher_group: group key cipher suite (or 0 if unset)
573  * @n_ciphers_pairwise: number of AP supported unicast ciphers
574  * @ciphers_pairwise: unicast key cipher suites
575  * @n_akm_suites: number of AKM suites
576  * @akm_suites: AKM suites
577  * @control_port: Whether user space controls IEEE 802.1X port, i.e.,
578  *	sets/clears %NL80211_STA_FLAG_AUTHORIZED. If true, the driver is
579  *	required to assume that the port is unauthorized until authorized by
580  *	user space. Otherwise, port is marked authorized by default.
581  * @control_port_ethertype: the control port protocol that should be
582  *	allowed through even on unauthorized ports
583  * @control_port_no_encrypt: TRUE to prevent encryption of control port
584  *	protocol frames.
585  */
586 struct cfg80211_crypto_settings {
587 	u32 wpa_versions;
588 	u32 cipher_group;
589 	int n_ciphers_pairwise;
590 	u32 ciphers_pairwise[NL80211_MAX_NR_CIPHER_SUITES];
591 	int n_akm_suites;
592 	u32 akm_suites[NL80211_MAX_NR_AKM_SUITES];
593 	bool control_port;
594 	__be16 control_port_ethertype;
595 	bool control_port_no_encrypt;
596 };
597 
598 /**
599  * struct cfg80211_beacon_data - beacon data
600  * @head: head portion of beacon (before TIM IE)
601  *	or %NULL if not changed
602  * @tail: tail portion of beacon (after TIM IE)
603  *	or %NULL if not changed
604  * @head_len: length of @head
605  * @tail_len: length of @tail
606  * @beacon_ies: extra information element(s) to add into Beacon frames or %NULL
607  * @beacon_ies_len: length of beacon_ies in octets
608  * @proberesp_ies: extra information element(s) to add into Probe Response
609  *	frames or %NULL
610  * @proberesp_ies_len: length of proberesp_ies in octets
611  * @assocresp_ies: extra information element(s) to add into (Re)Association
612  *	Response frames or %NULL
613  * @assocresp_ies_len: length of assocresp_ies in octets
614  * @probe_resp_len: length of probe response template (@probe_resp)
615  * @probe_resp: probe response template (AP mode only)
616  */
617 struct cfg80211_beacon_data {
618 	const u8 *head, *tail;
619 	const u8 *beacon_ies;
620 	const u8 *proberesp_ies;
621 	const u8 *assocresp_ies;
622 	const u8 *probe_resp;
623 
624 	size_t head_len, tail_len;
625 	size_t beacon_ies_len;
626 	size_t proberesp_ies_len;
627 	size_t assocresp_ies_len;
628 	size_t probe_resp_len;
629 };
630 
631 struct mac_address {
632 	u8 addr[ETH_ALEN];
633 };
634 
635 /**
636  * struct cfg80211_acl_data - Access control list data
637  *
638  * @acl_policy: ACL policy to be applied on the station's
639  *	entry specified by mac_addr
640  * @n_acl_entries: Number of MAC address entries passed
641  * @mac_addrs: List of MAC addresses of stations to be used for ACL
642  */
643 struct cfg80211_acl_data {
644 	enum nl80211_acl_policy acl_policy;
645 	int n_acl_entries;
646 
647 	/* Keep it last */
648 	struct mac_address mac_addrs[];
649 };
650 
651 /**
652  * struct cfg80211_ap_settings - AP configuration
653  *
654  * Used to configure an AP interface.
655  *
656  * @chandef: defines the channel to use
657  * @beacon: beacon data
658  * @beacon_interval: beacon interval
659  * @dtim_period: DTIM period
660  * @ssid: SSID to be used in the BSS (note: may be %NULL if not provided from
661  *	user space)
662  * @ssid_len: length of @ssid
663  * @hidden_ssid: whether to hide the SSID in Beacon/Probe Response frames
664  * @crypto: crypto settings
665  * @privacy: the BSS uses privacy
666  * @auth_type: Authentication type (algorithm)
667  * @smps_mode: SMPS mode
668  * @inactivity_timeout: time in seconds to determine station's inactivity.
669  * @p2p_ctwindow: P2P CT Window
670  * @p2p_opp_ps: P2P opportunistic PS
671  * @acl: ACL configuration used by the drivers which has support for
672  *	MAC address based access control
673  */
674 struct cfg80211_ap_settings {
675 	struct cfg80211_chan_def chandef;
676 
677 	struct cfg80211_beacon_data beacon;
678 
679 	int beacon_interval, dtim_period;
680 	const u8 *ssid;
681 	size_t ssid_len;
682 	enum nl80211_hidden_ssid hidden_ssid;
683 	struct cfg80211_crypto_settings crypto;
684 	bool privacy;
685 	enum nl80211_auth_type auth_type;
686 	enum nl80211_smps_mode smps_mode;
687 	int inactivity_timeout;
688 	u8 p2p_ctwindow;
689 	bool p2p_opp_ps;
690 	const struct cfg80211_acl_data *acl;
691 };
692 
693 /**
694  * struct cfg80211_csa_settings - channel switch settings
695  *
696  * Used for channel switch
697  *
698  * @chandef: defines the channel to use after the switch
699  * @beacon_csa: beacon data while performing the switch
700  * @counter_offsets_beacon: offsets of the counters within the beacon (tail)
701  * @counter_offsets_presp: offsets of the counters within the probe response
702  * @n_counter_offsets_beacon: number of csa counters the beacon (tail)
703  * @n_counter_offsets_presp: number of csa counters in the probe response
704  * @beacon_after: beacon data to be used on the new channel
705  * @radar_required: whether radar detection is required on the new channel
706  * @block_tx: whether transmissions should be blocked while changing
707  * @count: number of beacons until switch
708  */
709 struct cfg80211_csa_settings {
710 	struct cfg80211_chan_def chandef;
711 	struct cfg80211_beacon_data beacon_csa;
712 	const u16 *counter_offsets_beacon;
713 	const u16 *counter_offsets_presp;
714 	unsigned int n_counter_offsets_beacon;
715 	unsigned int n_counter_offsets_presp;
716 	struct cfg80211_beacon_data beacon_after;
717 	bool radar_required;
718 	bool block_tx;
719 	u8 count;
720 };
721 
722 /**
723  * enum station_parameters_apply_mask - station parameter values to apply
724  * @STATION_PARAM_APPLY_UAPSD: apply new uAPSD parameters (uapsd_queues, max_sp)
725  * @STATION_PARAM_APPLY_CAPABILITY: apply new capability
726  * @STATION_PARAM_APPLY_PLINK_STATE: apply new plink state
727  *
728  * Not all station parameters have in-band "no change" signalling,
729  * for those that don't these flags will are used.
730  */
731 enum station_parameters_apply_mask {
732 	STATION_PARAM_APPLY_UAPSD = BIT(0),
733 	STATION_PARAM_APPLY_CAPABILITY = BIT(1),
734 	STATION_PARAM_APPLY_PLINK_STATE = BIT(2),
735 };
736 
737 /**
738  * struct station_parameters - station parameters
739  *
740  * Used to change and create a new station.
741  *
742  * @vlan: vlan interface station should belong to
743  * @supported_rates: supported rates in IEEE 802.11 format
744  *	(or NULL for no change)
745  * @supported_rates_len: number of supported rates
746  * @sta_flags_mask: station flags that changed
747  *	(bitmask of BIT(NL80211_STA_FLAG_...))
748  * @sta_flags_set: station flags values
749  *	(bitmask of BIT(NL80211_STA_FLAG_...))
750  * @listen_interval: listen interval or -1 for no change
751  * @aid: AID or zero for no change
752  * @plink_action: plink action to take
753  * @plink_state: set the peer link state for a station
754  * @ht_capa: HT capabilities of station
755  * @vht_capa: VHT capabilities of station
756  * @uapsd_queues: bitmap of queues configured for uapsd. same format
757  *	as the AC bitmap in the QoS info field
758  * @max_sp: max Service Period. same format as the MAX_SP in the
759  *	QoS info field (but already shifted down)
760  * @sta_modify_mask: bitmap indicating which parameters changed
761  *	(for those that don't have a natural "no change" value),
762  *	see &enum station_parameters_apply_mask
763  * @local_pm: local link-specific mesh power save mode (no change when set
764  *	to unknown)
765  * @capability: station capability
766  * @ext_capab: extended capabilities of the station
767  * @ext_capab_len: number of extended capabilities
768  * @supported_channels: supported channels in IEEE 802.11 format
769  * @supported_channels_len: number of supported channels
770  * @supported_oper_classes: supported oper classes in IEEE 802.11 format
771  * @supported_oper_classes_len: number of supported operating classes
772  * @opmode_notif: operating mode field from Operating Mode Notification
773  * @opmode_notif_used: information if operating mode field is used
774  */
775 struct station_parameters {
776 	const u8 *supported_rates;
777 	struct net_device *vlan;
778 	u32 sta_flags_mask, sta_flags_set;
779 	u32 sta_modify_mask;
780 	int listen_interval;
781 	u16 aid;
782 	u8 supported_rates_len;
783 	u8 plink_action;
784 	u8 plink_state;
785 	const struct ieee80211_ht_cap *ht_capa;
786 	const struct ieee80211_vht_cap *vht_capa;
787 	u8 uapsd_queues;
788 	u8 max_sp;
789 	enum nl80211_mesh_power_mode local_pm;
790 	u16 capability;
791 	const u8 *ext_capab;
792 	u8 ext_capab_len;
793 	const u8 *supported_channels;
794 	u8 supported_channels_len;
795 	const u8 *supported_oper_classes;
796 	u8 supported_oper_classes_len;
797 	u8 opmode_notif;
798 	bool opmode_notif_used;
799 };
800 
801 /**
802  * enum cfg80211_station_type - the type of station being modified
803  * @CFG80211_STA_AP_CLIENT: client of an AP interface
804  * @CFG80211_STA_AP_MLME_CLIENT: client of an AP interface that has
805  *	the AP MLME in the device
806  * @CFG80211_STA_AP_STA: AP station on managed interface
807  * @CFG80211_STA_IBSS: IBSS station
808  * @CFG80211_STA_TDLS_PEER_SETUP: TDLS peer on managed interface (dummy entry
809  *	while TDLS setup is in progress, it moves out of this state when
810  *	being marked authorized; use this only if TDLS with external setup is
811  *	supported/used)
812  * @CFG80211_STA_TDLS_PEER_ACTIVE: TDLS peer on managed interface (active
813  *	entry that is operating, has been marked authorized by userspace)
814  * @CFG80211_STA_MESH_PEER_KERNEL: peer on mesh interface (kernel managed)
815  * @CFG80211_STA_MESH_PEER_USER: peer on mesh interface (user managed)
816  */
817 enum cfg80211_station_type {
818 	CFG80211_STA_AP_CLIENT,
819 	CFG80211_STA_AP_MLME_CLIENT,
820 	CFG80211_STA_AP_STA,
821 	CFG80211_STA_IBSS,
822 	CFG80211_STA_TDLS_PEER_SETUP,
823 	CFG80211_STA_TDLS_PEER_ACTIVE,
824 	CFG80211_STA_MESH_PEER_KERNEL,
825 	CFG80211_STA_MESH_PEER_USER,
826 };
827 
828 /**
829  * cfg80211_check_station_change - validate parameter changes
830  * @wiphy: the wiphy this operates on
831  * @params: the new parameters for a station
832  * @statype: the type of station being modified
833  *
834  * Utility function for the @change_station driver method. Call this function
835  * with the appropriate station type looking up the station (and checking that
836  * it exists). It will verify whether the station change is acceptable, and if
837  * not will return an error code. Note that it may modify the parameters for
838  * backward compatibility reasons, so don't use them before calling this.
839  */
840 int cfg80211_check_station_change(struct wiphy *wiphy,
841 				  struct station_parameters *params,
842 				  enum cfg80211_station_type statype);
843 
844 /**
845  * enum station_info_flags - station information flags
846  *
847  * Used by the driver to indicate which info in &struct station_info
848  * it has filled in during get_station() or dump_station().
849  *
850  * @STATION_INFO_INACTIVE_TIME: @inactive_time filled
851  * @STATION_INFO_RX_BYTES: @rx_bytes filled
852  * @STATION_INFO_TX_BYTES: @tx_bytes filled
853  * @STATION_INFO_RX_BYTES64: @rx_bytes filled with 64-bit value
854  * @STATION_INFO_TX_BYTES64: @tx_bytes filled with 64-bit value
855  * @STATION_INFO_LLID: @llid filled
856  * @STATION_INFO_PLID: @plid filled
857  * @STATION_INFO_PLINK_STATE: @plink_state filled
858  * @STATION_INFO_SIGNAL: @signal filled
859  * @STATION_INFO_TX_BITRATE: @txrate fields are filled
860  *	(tx_bitrate, tx_bitrate_flags and tx_bitrate_mcs)
861  * @STATION_INFO_RX_PACKETS: @rx_packets filled with 32-bit value
862  * @STATION_INFO_TX_PACKETS: @tx_packets filled with 32-bit value
863  * @STATION_INFO_TX_RETRIES: @tx_retries filled
864  * @STATION_INFO_TX_FAILED: @tx_failed filled
865  * @STATION_INFO_RX_DROP_MISC: @rx_dropped_misc filled
866  * @STATION_INFO_SIGNAL_AVG: @signal_avg filled
867  * @STATION_INFO_RX_BITRATE: @rxrate fields are filled
868  * @STATION_INFO_BSS_PARAM: @bss_param filled
869  * @STATION_INFO_CONNECTED_TIME: @connected_time filled
870  * @STATION_INFO_ASSOC_REQ_IES: @assoc_req_ies filled
871  * @STATION_INFO_STA_FLAGS: @sta_flags filled
872  * @STATION_INFO_BEACON_LOSS_COUNT: @beacon_loss_count filled
873  * @STATION_INFO_T_OFFSET: @t_offset filled
874  * @STATION_INFO_LOCAL_PM: @local_pm filled
875  * @STATION_INFO_PEER_PM: @peer_pm filled
876  * @STATION_INFO_NONPEER_PM: @nonpeer_pm filled
877  * @STATION_INFO_CHAIN_SIGNAL: @chain_signal filled
878  * @STATION_INFO_CHAIN_SIGNAL_AVG: @chain_signal_avg filled
879  * @STATION_INFO_EXPECTED_THROUGHPUT: @expected_throughput filled
880  */
881 enum station_info_flags {
882 	STATION_INFO_INACTIVE_TIME		= BIT(0),
883 	STATION_INFO_RX_BYTES			= BIT(1),
884 	STATION_INFO_TX_BYTES			= BIT(2),
885 	STATION_INFO_LLID			= BIT(3),
886 	STATION_INFO_PLID			= BIT(4),
887 	STATION_INFO_PLINK_STATE		= BIT(5),
888 	STATION_INFO_SIGNAL			= BIT(6),
889 	STATION_INFO_TX_BITRATE			= BIT(7),
890 	STATION_INFO_RX_PACKETS			= BIT(8),
891 	STATION_INFO_TX_PACKETS			= BIT(9),
892 	STATION_INFO_TX_RETRIES			= BIT(10),
893 	STATION_INFO_TX_FAILED			= BIT(11),
894 	STATION_INFO_RX_DROP_MISC		= BIT(12),
895 	STATION_INFO_SIGNAL_AVG			= BIT(13),
896 	STATION_INFO_RX_BITRATE			= BIT(14),
897 	STATION_INFO_BSS_PARAM			= BIT(15),
898 	STATION_INFO_CONNECTED_TIME		= BIT(16),
899 	STATION_INFO_ASSOC_REQ_IES		= BIT(17),
900 	STATION_INFO_STA_FLAGS			= BIT(18),
901 	STATION_INFO_BEACON_LOSS_COUNT		= BIT(19),
902 	STATION_INFO_T_OFFSET			= BIT(20),
903 	STATION_INFO_LOCAL_PM			= BIT(21),
904 	STATION_INFO_PEER_PM			= BIT(22),
905 	STATION_INFO_NONPEER_PM			= BIT(23),
906 	STATION_INFO_RX_BYTES64			= BIT(24),
907 	STATION_INFO_TX_BYTES64			= BIT(25),
908 	STATION_INFO_CHAIN_SIGNAL		= BIT(26),
909 	STATION_INFO_CHAIN_SIGNAL_AVG		= BIT(27),
910 	STATION_INFO_EXPECTED_THROUGHPUT	= BIT(28),
911 };
912 
913 /**
914  * enum station_info_rate_flags - bitrate info flags
915  *
916  * Used by the driver to indicate the specific rate transmission
917  * type for 802.11n transmissions.
918  *
919  * @RATE_INFO_FLAGS_MCS: mcs field filled with HT MCS
920  * @RATE_INFO_FLAGS_VHT_MCS: mcs field filled with VHT MCS
921  * @RATE_INFO_FLAGS_40_MHZ_WIDTH: 40 MHz width transmission
922  * @RATE_INFO_FLAGS_80_MHZ_WIDTH: 80 MHz width transmission
923  * @RATE_INFO_FLAGS_80P80_MHZ_WIDTH: 80+80 MHz width transmission
924  * @RATE_INFO_FLAGS_160_MHZ_WIDTH: 160 MHz width transmission
925  * @RATE_INFO_FLAGS_SHORT_GI: 400ns guard interval
926  * @RATE_INFO_FLAGS_60G: 60GHz MCS
927  */
928 enum rate_info_flags {
929 	RATE_INFO_FLAGS_MCS			= BIT(0),
930 	RATE_INFO_FLAGS_VHT_MCS			= BIT(1),
931 	RATE_INFO_FLAGS_40_MHZ_WIDTH		= BIT(2),
932 	RATE_INFO_FLAGS_80_MHZ_WIDTH		= BIT(3),
933 	RATE_INFO_FLAGS_80P80_MHZ_WIDTH		= BIT(4),
934 	RATE_INFO_FLAGS_160_MHZ_WIDTH		= BIT(5),
935 	RATE_INFO_FLAGS_SHORT_GI		= BIT(6),
936 	RATE_INFO_FLAGS_60G			= BIT(7),
937 };
938 
939 /**
940  * struct rate_info - bitrate information
941  *
942  * Information about a receiving or transmitting bitrate
943  *
944  * @flags: bitflag of flags from &enum rate_info_flags
945  * @mcs: mcs index if struct describes a 802.11n bitrate
946  * @legacy: bitrate in 100kbit/s for 802.11abg
947  * @nss: number of streams (VHT only)
948  */
949 struct rate_info {
950 	u8 flags;
951 	u8 mcs;
952 	u16 legacy;
953 	u8 nss;
954 };
955 
956 /**
957  * enum station_info_rate_flags - bitrate info flags
958  *
959  * Used by the driver to indicate the specific rate transmission
960  * type for 802.11n transmissions.
961  *
962  * @BSS_PARAM_FLAGS_CTS_PROT: whether CTS protection is enabled
963  * @BSS_PARAM_FLAGS_SHORT_PREAMBLE: whether short preamble is enabled
964  * @BSS_PARAM_FLAGS_SHORT_SLOT_TIME: whether short slot time is enabled
965  */
966 enum bss_param_flags {
967 	BSS_PARAM_FLAGS_CTS_PROT	= 1<<0,
968 	BSS_PARAM_FLAGS_SHORT_PREAMBLE	= 1<<1,
969 	BSS_PARAM_FLAGS_SHORT_SLOT_TIME	= 1<<2,
970 };
971 
972 /**
973  * struct sta_bss_parameters - BSS parameters for the attached station
974  *
975  * Information about the currently associated BSS
976  *
977  * @flags: bitflag of flags from &enum bss_param_flags
978  * @dtim_period: DTIM period for the BSS
979  * @beacon_interval: beacon interval
980  */
981 struct sta_bss_parameters {
982 	u8 flags;
983 	u8 dtim_period;
984 	u16 beacon_interval;
985 };
986 
987 #define IEEE80211_MAX_CHAINS	4
988 
989 /**
990  * struct station_info - station information
991  *
992  * Station information filled by driver for get_station() and dump_station.
993  *
994  * @filled: bitflag of flags from &enum station_info_flags
995  * @connected_time: time(in secs) since a station is last connected
996  * @inactive_time: time since last station activity (tx/rx) in milliseconds
997  * @rx_bytes: bytes received from this station
998  * @tx_bytes: bytes transmitted to this station
999  * @llid: mesh local link id
1000  * @plid: mesh peer link id
1001  * @plink_state: mesh peer link state
1002  * @signal: The signal strength, type depends on the wiphy's signal_type.
1003  *	For CFG80211_SIGNAL_TYPE_MBM, value is expressed in _dBm_.
1004  * @signal_avg: Average signal strength, type depends on the wiphy's signal_type.
1005  *	For CFG80211_SIGNAL_TYPE_MBM, value is expressed in _dBm_.
1006  * @chains: bitmask for filled values in @chain_signal, @chain_signal_avg
1007  * @chain_signal: per-chain signal strength of last received packet in dBm
1008  * @chain_signal_avg: per-chain signal strength average in dBm
1009  * @txrate: current unicast bitrate from this station
1010  * @rxrate: current unicast bitrate to this station
1011  * @rx_packets: packets received from this station
1012  * @tx_packets: packets transmitted to this station
1013  * @tx_retries: cumulative retry counts
1014  * @tx_failed: number of failed transmissions (retries exceeded, no ACK)
1015  * @rx_dropped_misc:  Dropped for un-specified reason.
1016  * @bss_param: current BSS parameters
1017  * @generation: generation number for nl80211 dumps.
1018  *	This number should increase every time the list of stations
1019  *	changes, i.e. when a station is added or removed, so that
1020  *	userspace can tell whether it got a consistent snapshot.
1021  * @assoc_req_ies: IEs from (Re)Association Request.
1022  *	This is used only when in AP mode with drivers that do not use
1023  *	user space MLME/SME implementation. The information is provided for
1024  *	the cfg80211_new_sta() calls to notify user space of the IEs.
1025  * @assoc_req_ies_len: Length of assoc_req_ies buffer in octets.
1026  * @sta_flags: station flags mask & values
1027  * @beacon_loss_count: Number of times beacon loss event has triggered.
1028  * @t_offset: Time offset of the station relative to this host.
1029  * @local_pm: local mesh STA power save mode
1030  * @peer_pm: peer mesh STA power save mode
1031  * @nonpeer_pm: non-peer mesh STA power save mode
1032  * @expected_throughput: expected throughput in kbps (including 802.11 headers)
1033  *	towards this station.
1034  */
1035 struct station_info {
1036 	u32 filled;
1037 	u32 connected_time;
1038 	u32 inactive_time;
1039 	u64 rx_bytes;
1040 	u64 tx_bytes;
1041 	u16 llid;
1042 	u16 plid;
1043 	u8 plink_state;
1044 	s8 signal;
1045 	s8 signal_avg;
1046 
1047 	u8 chains;
1048 	s8 chain_signal[IEEE80211_MAX_CHAINS];
1049 	s8 chain_signal_avg[IEEE80211_MAX_CHAINS];
1050 
1051 	struct rate_info txrate;
1052 	struct rate_info rxrate;
1053 	u32 rx_packets;
1054 	u32 tx_packets;
1055 	u32 tx_retries;
1056 	u32 tx_failed;
1057 	u32 rx_dropped_misc;
1058 	struct sta_bss_parameters bss_param;
1059 	struct nl80211_sta_flag_update sta_flags;
1060 
1061 	int generation;
1062 
1063 	const u8 *assoc_req_ies;
1064 	size_t assoc_req_ies_len;
1065 
1066 	u32 beacon_loss_count;
1067 	s64 t_offset;
1068 	enum nl80211_mesh_power_mode local_pm;
1069 	enum nl80211_mesh_power_mode peer_pm;
1070 	enum nl80211_mesh_power_mode nonpeer_pm;
1071 
1072 	u32 expected_throughput;
1073 
1074 	/*
1075 	 * Note: Add a new enum station_info_flags value for each new field and
1076 	 * use it to check which fields are initialized.
1077 	 */
1078 };
1079 
1080 /**
1081  * cfg80211_get_station - retrieve information about a given station
1082  * @dev: the device where the station is supposed to be connected to
1083  * @mac_addr: the mac address of the station of interest
1084  * @sinfo: pointer to the structure to fill with the information
1085  *
1086  * Returns 0 on success and sinfo is filled with the available information
1087  * otherwise returns a negative error code and the content of sinfo has to be
1088  * considered undefined.
1089  */
1090 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1091 			 struct station_info *sinfo);
1092 
1093 /**
1094  * enum monitor_flags - monitor flags
1095  *
1096  * Monitor interface configuration flags. Note that these must be the bits
1097  * according to the nl80211 flags.
1098  *
1099  * @MONITOR_FLAG_FCSFAIL: pass frames with bad FCS
1100  * @MONITOR_FLAG_PLCPFAIL: pass frames with bad PLCP
1101  * @MONITOR_FLAG_CONTROL: pass control frames
1102  * @MONITOR_FLAG_OTHER_BSS: disable BSSID filtering
1103  * @MONITOR_FLAG_COOK_FRAMES: report frames after processing
1104  * @MONITOR_FLAG_ACTIVE: active monitor, ACKs frames on its MAC address
1105  */
1106 enum monitor_flags {
1107 	MONITOR_FLAG_FCSFAIL		= 1<<NL80211_MNTR_FLAG_FCSFAIL,
1108 	MONITOR_FLAG_PLCPFAIL		= 1<<NL80211_MNTR_FLAG_PLCPFAIL,
1109 	MONITOR_FLAG_CONTROL		= 1<<NL80211_MNTR_FLAG_CONTROL,
1110 	MONITOR_FLAG_OTHER_BSS		= 1<<NL80211_MNTR_FLAG_OTHER_BSS,
1111 	MONITOR_FLAG_COOK_FRAMES	= 1<<NL80211_MNTR_FLAG_COOK_FRAMES,
1112 	MONITOR_FLAG_ACTIVE		= 1<<NL80211_MNTR_FLAG_ACTIVE,
1113 };
1114 
1115 /**
1116  * enum mpath_info_flags -  mesh path information flags
1117  *
1118  * Used by the driver to indicate which info in &struct mpath_info it has filled
1119  * in during get_station() or dump_station().
1120  *
1121  * @MPATH_INFO_FRAME_QLEN: @frame_qlen filled
1122  * @MPATH_INFO_SN: @sn filled
1123  * @MPATH_INFO_METRIC: @metric filled
1124  * @MPATH_INFO_EXPTIME: @exptime filled
1125  * @MPATH_INFO_DISCOVERY_TIMEOUT: @discovery_timeout filled
1126  * @MPATH_INFO_DISCOVERY_RETRIES: @discovery_retries filled
1127  * @MPATH_INFO_FLAGS: @flags filled
1128  */
1129 enum mpath_info_flags {
1130 	MPATH_INFO_FRAME_QLEN		= BIT(0),
1131 	MPATH_INFO_SN			= BIT(1),
1132 	MPATH_INFO_METRIC		= BIT(2),
1133 	MPATH_INFO_EXPTIME		= BIT(3),
1134 	MPATH_INFO_DISCOVERY_TIMEOUT	= BIT(4),
1135 	MPATH_INFO_DISCOVERY_RETRIES	= BIT(5),
1136 	MPATH_INFO_FLAGS		= BIT(6),
1137 };
1138 
1139 /**
1140  * struct mpath_info - mesh path information
1141  *
1142  * Mesh path information filled by driver for get_mpath() and dump_mpath().
1143  *
1144  * @filled: bitfield of flags from &enum mpath_info_flags
1145  * @frame_qlen: number of queued frames for this destination
1146  * @sn: target sequence number
1147  * @metric: metric (cost) of this mesh path
1148  * @exptime: expiration time for the mesh path from now, in msecs
1149  * @flags: mesh path flags
1150  * @discovery_timeout: total mesh path discovery timeout, in msecs
1151  * @discovery_retries: mesh path discovery retries
1152  * @generation: generation number for nl80211 dumps.
1153  *	This number should increase every time the list of mesh paths
1154  *	changes, i.e. when a station is added or removed, so that
1155  *	userspace can tell whether it got a consistent snapshot.
1156  */
1157 struct mpath_info {
1158 	u32 filled;
1159 	u32 frame_qlen;
1160 	u32 sn;
1161 	u32 metric;
1162 	u32 exptime;
1163 	u32 discovery_timeout;
1164 	u8 discovery_retries;
1165 	u8 flags;
1166 
1167 	int generation;
1168 };
1169 
1170 /**
1171  * struct bss_parameters - BSS parameters
1172  *
1173  * Used to change BSS parameters (mainly for AP mode).
1174  *
1175  * @use_cts_prot: Whether to use CTS protection
1176  *	(0 = no, 1 = yes, -1 = do not change)
1177  * @use_short_preamble: Whether the use of short preambles is allowed
1178  *	(0 = no, 1 = yes, -1 = do not change)
1179  * @use_short_slot_time: Whether the use of short slot time is allowed
1180  *	(0 = no, 1 = yes, -1 = do not change)
1181  * @basic_rates: basic rates in IEEE 802.11 format
1182  *	(or NULL for no change)
1183  * @basic_rates_len: number of basic rates
1184  * @ap_isolate: do not forward packets between connected stations
1185  * @ht_opmode: HT Operation mode
1186  * 	(u16 = opmode, -1 = do not change)
1187  * @p2p_ctwindow: P2P CT Window (-1 = no change)
1188  * @p2p_opp_ps: P2P opportunistic PS (-1 = no change)
1189  */
1190 struct bss_parameters {
1191 	int use_cts_prot;
1192 	int use_short_preamble;
1193 	int use_short_slot_time;
1194 	const u8 *basic_rates;
1195 	u8 basic_rates_len;
1196 	int ap_isolate;
1197 	int ht_opmode;
1198 	s8 p2p_ctwindow, p2p_opp_ps;
1199 };
1200 
1201 /**
1202  * struct mesh_config - 802.11s mesh configuration
1203  *
1204  * These parameters can be changed while the mesh is active.
1205  *
1206  * @dot11MeshRetryTimeout: the initial retry timeout in millisecond units used
1207  *	by the Mesh Peering Open message
1208  * @dot11MeshConfirmTimeout: the initial retry timeout in millisecond units
1209  *	used by the Mesh Peering Open message
1210  * @dot11MeshHoldingTimeout: the confirm timeout in millisecond units used by
1211  *	the mesh peering management to close a mesh peering
1212  * @dot11MeshMaxPeerLinks: the maximum number of peer links allowed on this
1213  *	mesh interface
1214  * @dot11MeshMaxRetries: the maximum number of peer link open retries that can
1215  *	be sent to establish a new peer link instance in a mesh
1216  * @dot11MeshTTL: the value of TTL field set at a source mesh STA
1217  * @element_ttl: the value of TTL field set at a mesh STA for path selection
1218  *	elements
1219  * @auto_open_plinks: whether we should automatically open peer links when we
1220  *	detect compatible mesh peers
1221  * @dot11MeshNbrOffsetMaxNeighbor: the maximum number of neighbors to
1222  *	synchronize to for 11s default synchronization method
1223  * @dot11MeshHWMPmaxPREQretries: the number of action frames containing a PREQ
1224  *	that an originator mesh STA can send to a particular path target
1225  * @path_refresh_time: how frequently to refresh mesh paths in milliseconds
1226  * @min_discovery_timeout: the minimum length of time to wait until giving up on
1227  *	a path discovery in milliseconds
1228  * @dot11MeshHWMPactivePathTimeout: the time (in TUs) for which mesh STAs
1229  *	receiving a PREQ shall consider the forwarding information from the
1230  *	root to be valid. (TU = time unit)
1231  * @dot11MeshHWMPpreqMinInterval: the minimum interval of time (in TUs) during
1232  *	which a mesh STA can send only one action frame containing a PREQ
1233  *	element
1234  * @dot11MeshHWMPperrMinInterval: the minimum interval of time (in TUs) during
1235  *	which a mesh STA can send only one Action frame containing a PERR
1236  *	element
1237  * @dot11MeshHWMPnetDiameterTraversalTime: the interval of time (in TUs) that
1238  *	it takes for an HWMP information element to propagate across the mesh
1239  * @dot11MeshHWMPRootMode: the configuration of a mesh STA as root mesh STA
1240  * @dot11MeshHWMPRannInterval: the interval of time (in TUs) between root
1241  *	announcements are transmitted
1242  * @dot11MeshGateAnnouncementProtocol: whether to advertise that this mesh
1243  *	station has access to a broader network beyond the MBSS. (This is
1244  *	missnamed in draft 12.0: dot11MeshGateAnnouncementProtocol set to true
1245  *	only means that the station will announce others it's a mesh gate, but
1246  *	not necessarily using the gate announcement protocol. Still keeping the
1247  *	same nomenclature to be in sync with the spec)
1248  * @dot11MeshForwarding: whether the Mesh STA is forwarding or non-forwarding
1249  *	entity (default is TRUE - forwarding entity)
1250  * @rssi_threshold: the threshold for average signal strength of candidate
1251  *	station to establish a peer link
1252  * @ht_opmode: mesh HT protection mode
1253  *
1254  * @dot11MeshHWMPactivePathToRootTimeout: The time (in TUs) for which mesh STAs
1255  *	receiving a proactive PREQ shall consider the forwarding information to
1256  *	the root mesh STA to be valid.
1257  *
1258  * @dot11MeshHWMProotInterval: The interval of time (in TUs) between proactive
1259  *	PREQs are transmitted.
1260  * @dot11MeshHWMPconfirmationInterval: The minimum interval of time (in TUs)
1261  *	during which a mesh STA can send only one Action frame containing
1262  *	a PREQ element for root path confirmation.
1263  * @power_mode: The default mesh power save mode which will be the initial
1264  *	setting for new peer links.
1265  * @dot11MeshAwakeWindowDuration: The duration in TUs the STA will remain awake
1266  *	after transmitting its beacon.
1267  * @plink_timeout: If no tx activity is seen from a STA we've established
1268  *	peering with for longer than this time (in seconds), then remove it
1269  *	from the STA's list of peers.  Default is 30 minutes.
1270  */
1271 struct mesh_config {
1272 	u16 dot11MeshRetryTimeout;
1273 	u16 dot11MeshConfirmTimeout;
1274 	u16 dot11MeshHoldingTimeout;
1275 	u16 dot11MeshMaxPeerLinks;
1276 	u8 dot11MeshMaxRetries;
1277 	u8 dot11MeshTTL;
1278 	u8 element_ttl;
1279 	bool auto_open_plinks;
1280 	u32 dot11MeshNbrOffsetMaxNeighbor;
1281 	u8 dot11MeshHWMPmaxPREQretries;
1282 	u32 path_refresh_time;
1283 	u16 min_discovery_timeout;
1284 	u32 dot11MeshHWMPactivePathTimeout;
1285 	u16 dot11MeshHWMPpreqMinInterval;
1286 	u16 dot11MeshHWMPperrMinInterval;
1287 	u16 dot11MeshHWMPnetDiameterTraversalTime;
1288 	u8 dot11MeshHWMPRootMode;
1289 	u16 dot11MeshHWMPRannInterval;
1290 	bool dot11MeshGateAnnouncementProtocol;
1291 	bool dot11MeshForwarding;
1292 	s32 rssi_threshold;
1293 	u16 ht_opmode;
1294 	u32 dot11MeshHWMPactivePathToRootTimeout;
1295 	u16 dot11MeshHWMProotInterval;
1296 	u16 dot11MeshHWMPconfirmationInterval;
1297 	enum nl80211_mesh_power_mode power_mode;
1298 	u16 dot11MeshAwakeWindowDuration;
1299 	u32 plink_timeout;
1300 };
1301 
1302 /**
1303  * struct mesh_setup - 802.11s mesh setup configuration
1304  * @chandef: defines the channel to use
1305  * @mesh_id: the mesh ID
1306  * @mesh_id_len: length of the mesh ID, at least 1 and at most 32 bytes
1307  * @sync_method: which synchronization method to use
1308  * @path_sel_proto: which path selection protocol to use
1309  * @path_metric: which metric to use
1310  * @auth_id: which authentication method this mesh is using
1311  * @ie: vendor information elements (optional)
1312  * @ie_len: length of vendor information elements
1313  * @is_authenticated: this mesh requires authentication
1314  * @is_secure: this mesh uses security
1315  * @user_mpm: userspace handles all MPM functions
1316  * @dtim_period: DTIM period to use
1317  * @beacon_interval: beacon interval to use
1318  * @mcast_rate: multicat rate for Mesh Node [6Mbps is the default for 802.11a]
1319  * @basic_rates: basic rates to use when creating the mesh
1320  *
1321  * These parameters are fixed when the mesh is created.
1322  */
1323 struct mesh_setup {
1324 	struct cfg80211_chan_def chandef;
1325 	const u8 *mesh_id;
1326 	u8 mesh_id_len;
1327 	u8 sync_method;
1328 	u8 path_sel_proto;
1329 	u8 path_metric;
1330 	u8 auth_id;
1331 	const u8 *ie;
1332 	u8 ie_len;
1333 	bool is_authenticated;
1334 	bool is_secure;
1335 	bool user_mpm;
1336 	u8 dtim_period;
1337 	u16 beacon_interval;
1338 	int mcast_rate[IEEE80211_NUM_BANDS];
1339 	u32 basic_rates;
1340 };
1341 
1342 /**
1343  * struct ieee80211_txq_params - TX queue parameters
1344  * @ac: AC identifier
1345  * @txop: Maximum burst time in units of 32 usecs, 0 meaning disabled
1346  * @cwmin: Minimum contention window [a value of the form 2^n-1 in the range
1347  *	1..32767]
1348  * @cwmax: Maximum contention window [a value of the form 2^n-1 in the range
1349  *	1..32767]
1350  * @aifs: Arbitration interframe space [0..255]
1351  */
1352 struct ieee80211_txq_params {
1353 	enum nl80211_ac ac;
1354 	u16 txop;
1355 	u16 cwmin;
1356 	u16 cwmax;
1357 	u8 aifs;
1358 };
1359 
1360 /**
1361  * DOC: Scanning and BSS list handling
1362  *
1363  * The scanning process itself is fairly simple, but cfg80211 offers quite
1364  * a bit of helper functionality. To start a scan, the scan operation will
1365  * be invoked with a scan definition. This scan definition contains the
1366  * channels to scan, and the SSIDs to send probe requests for (including the
1367  * wildcard, if desired). A passive scan is indicated by having no SSIDs to
1368  * probe. Additionally, a scan request may contain extra information elements
1369  * that should be added to the probe request. The IEs are guaranteed to be
1370  * well-formed, and will not exceed the maximum length the driver advertised
1371  * in the wiphy structure.
1372  *
1373  * When scanning finds a BSS, cfg80211 needs to be notified of that, because
1374  * it is responsible for maintaining the BSS list; the driver should not
1375  * maintain a list itself. For this notification, various functions exist.
1376  *
1377  * Since drivers do not maintain a BSS list, there are also a number of
1378  * functions to search for a BSS and obtain information about it from the
1379  * BSS structure cfg80211 maintains. The BSS list is also made available
1380  * to userspace.
1381  */
1382 
1383 /**
1384  * struct cfg80211_ssid - SSID description
1385  * @ssid: the SSID
1386  * @ssid_len: length of the ssid
1387  */
1388 struct cfg80211_ssid {
1389 	u8 ssid[IEEE80211_MAX_SSID_LEN];
1390 	u8 ssid_len;
1391 };
1392 
1393 /**
1394  * struct cfg80211_scan_request - scan request description
1395  *
1396  * @ssids: SSIDs to scan for (active scan only)
1397  * @n_ssids: number of SSIDs
1398  * @channels: channels to scan on.
1399  * @n_channels: total number of channels to scan
1400  * @scan_width: channel width for scanning
1401  * @ie: optional information element(s) to add into Probe Request or %NULL
1402  * @ie_len: length of ie in octets
1403  * @flags: bit field of flags controlling operation
1404  * @rates: bitmap of rates to advertise for each band
1405  * @wiphy: the wiphy this was for
1406  * @scan_start: time (in jiffies) when the scan started
1407  * @wdev: the wireless device to scan for
1408  * @aborted: (internal) scan request was notified as aborted
1409  * @notified: (internal) scan request was notified as done or aborted
1410  * @no_cck: used to send probe requests at non CCK rate in 2GHz band
1411  */
1412 struct cfg80211_scan_request {
1413 	struct cfg80211_ssid *ssids;
1414 	int n_ssids;
1415 	u32 n_channels;
1416 	enum nl80211_bss_scan_width scan_width;
1417 	const u8 *ie;
1418 	size_t ie_len;
1419 	u32 flags;
1420 
1421 	u32 rates[IEEE80211_NUM_BANDS];
1422 
1423 	struct wireless_dev *wdev;
1424 
1425 	/* internal */
1426 	struct wiphy *wiphy;
1427 	unsigned long scan_start;
1428 	bool aborted, notified;
1429 	bool no_cck;
1430 
1431 	/* keep last */
1432 	struct ieee80211_channel *channels[0];
1433 };
1434 
1435 /**
1436  * struct cfg80211_match_set - sets of attributes to match
1437  *
1438  * @ssid: SSID to be matched; may be zero-length for no match (RSSI only)
1439  * @rssi_thold: don't report scan results below this threshold (in s32 dBm)
1440  */
1441 struct cfg80211_match_set {
1442 	struct cfg80211_ssid ssid;
1443 	s32 rssi_thold;
1444 };
1445 
1446 /**
1447  * struct cfg80211_sched_scan_request - scheduled scan request description
1448  *
1449  * @ssids: SSIDs to scan for (passed in the probe_reqs in active scans)
1450  * @n_ssids: number of SSIDs
1451  * @n_channels: total number of channels to scan
1452  * @scan_width: channel width for scanning
1453  * @interval: interval between each scheduled scan cycle
1454  * @ie: optional information element(s) to add into Probe Request or %NULL
1455  * @ie_len: length of ie in octets
1456  * @flags: bit field of flags controlling operation
1457  * @match_sets: sets of parameters to be matched for a scan result
1458  * 	entry to be considered valid and to be passed to the host
1459  * 	(others are filtered out).
1460  *	If ommited, all results are passed.
1461  * @n_match_sets: number of match sets
1462  * @wiphy: the wiphy this was for
1463  * @dev: the interface
1464  * @scan_start: start time of the scheduled scan
1465  * @channels: channels to scan
1466  * @min_rssi_thold: for drivers only supporting a single threshold, this
1467  *	contains the minimum over all matchsets
1468  */
1469 struct cfg80211_sched_scan_request {
1470 	struct cfg80211_ssid *ssids;
1471 	int n_ssids;
1472 	u32 n_channels;
1473 	enum nl80211_bss_scan_width scan_width;
1474 	u32 interval;
1475 	const u8 *ie;
1476 	size_t ie_len;
1477 	u32 flags;
1478 	struct cfg80211_match_set *match_sets;
1479 	int n_match_sets;
1480 	s32 min_rssi_thold;
1481 
1482 	/* internal */
1483 	struct wiphy *wiphy;
1484 	struct net_device *dev;
1485 	unsigned long scan_start;
1486 
1487 	/* keep last */
1488 	struct ieee80211_channel *channels[0];
1489 };
1490 
1491 /**
1492  * enum cfg80211_signal_type - signal type
1493  *
1494  * @CFG80211_SIGNAL_TYPE_NONE: no signal strength information available
1495  * @CFG80211_SIGNAL_TYPE_MBM: signal strength in mBm (100*dBm)
1496  * @CFG80211_SIGNAL_TYPE_UNSPEC: signal strength, increasing from 0 through 100
1497  */
1498 enum cfg80211_signal_type {
1499 	CFG80211_SIGNAL_TYPE_NONE,
1500 	CFG80211_SIGNAL_TYPE_MBM,
1501 	CFG80211_SIGNAL_TYPE_UNSPEC,
1502 };
1503 
1504 /**
1505  * struct cfg80211_bss_ie_data - BSS entry IE data
1506  * @tsf: TSF contained in the frame that carried these IEs
1507  * @rcu_head: internal use, for freeing
1508  * @len: length of the IEs
1509  * @from_beacon: these IEs are known to come from a beacon
1510  * @data: IE data
1511  */
1512 struct cfg80211_bss_ies {
1513 	u64 tsf;
1514 	struct rcu_head rcu_head;
1515 	int len;
1516 	bool from_beacon;
1517 	u8 data[];
1518 };
1519 
1520 /**
1521  * struct cfg80211_bss - BSS description
1522  *
1523  * This structure describes a BSS (which may also be a mesh network)
1524  * for use in scan results and similar.
1525  *
1526  * @channel: channel this BSS is on
1527  * @scan_width: width of the control channel
1528  * @bssid: BSSID of the BSS
1529  * @beacon_interval: the beacon interval as from the frame
1530  * @capability: the capability field in host byte order
1531  * @ies: the information elements (Note that there is no guarantee that these
1532  *	are well-formed!); this is a pointer to either the beacon_ies or
1533  *	proberesp_ies depending on whether Probe Response frame has been
1534  *	received. It is always non-%NULL.
1535  * @beacon_ies: the information elements from the last Beacon frame
1536  *	(implementation note: if @hidden_beacon_bss is set this struct doesn't
1537  *	own the beacon_ies, but they're just pointers to the ones from the
1538  *	@hidden_beacon_bss struct)
1539  * @proberesp_ies: the information elements from the last Probe Response frame
1540  * @hidden_beacon_bss: in case this BSS struct represents a probe response from
1541  *	a BSS that hides the SSID in its beacon, this points to the BSS struct
1542  *	that holds the beacon data. @beacon_ies is still valid, of course, and
1543  *	points to the same data as hidden_beacon_bss->beacon_ies in that case.
1544  * @signal: signal strength value (type depends on the wiphy's signal_type)
1545  * @priv: private area for driver use, has at least wiphy->bss_priv_size bytes
1546  */
1547 struct cfg80211_bss {
1548 	struct ieee80211_channel *channel;
1549 	enum nl80211_bss_scan_width scan_width;
1550 
1551 	const struct cfg80211_bss_ies __rcu *ies;
1552 	const struct cfg80211_bss_ies __rcu *beacon_ies;
1553 	const struct cfg80211_bss_ies __rcu *proberesp_ies;
1554 
1555 	struct cfg80211_bss *hidden_beacon_bss;
1556 
1557 	s32 signal;
1558 
1559 	u16 beacon_interval;
1560 	u16 capability;
1561 
1562 	u8 bssid[ETH_ALEN];
1563 
1564 	u8 priv[0] __aligned(sizeof(void *));
1565 };
1566 
1567 /**
1568  * ieee80211_bss_get_ie - find IE with given ID
1569  * @bss: the bss to search
1570  * @ie: the IE ID
1571  *
1572  * Note that the return value is an RCU-protected pointer, so
1573  * rcu_read_lock() must be held when calling this function.
1574  * Return: %NULL if not found.
1575  */
1576 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie);
1577 
1578 
1579 /**
1580  * struct cfg80211_auth_request - Authentication request data
1581  *
1582  * This structure provides information needed to complete IEEE 802.11
1583  * authentication.
1584  *
1585  * @bss: The BSS to authenticate with, the callee must obtain a reference
1586  *	to it if it needs to keep it.
1587  * @auth_type: Authentication type (algorithm)
1588  * @ie: Extra IEs to add to Authentication frame or %NULL
1589  * @ie_len: Length of ie buffer in octets
1590  * @key_len: length of WEP key for shared key authentication
1591  * @key_idx: index of WEP key for shared key authentication
1592  * @key: WEP key for shared key authentication
1593  * @sae_data: Non-IE data to use with SAE or %NULL. This starts with
1594  *	Authentication transaction sequence number field.
1595  * @sae_data_len: Length of sae_data buffer in octets
1596  */
1597 struct cfg80211_auth_request {
1598 	struct cfg80211_bss *bss;
1599 	const u8 *ie;
1600 	size_t ie_len;
1601 	enum nl80211_auth_type auth_type;
1602 	const u8 *key;
1603 	u8 key_len, key_idx;
1604 	const u8 *sae_data;
1605 	size_t sae_data_len;
1606 };
1607 
1608 /**
1609  * enum cfg80211_assoc_req_flags - Over-ride default behaviour in association.
1610  *
1611  * @ASSOC_REQ_DISABLE_HT:  Disable HT (802.11n)
1612  * @ASSOC_REQ_DISABLE_VHT:  Disable VHT
1613  * @ASSOC_REQ_USE_RRM: Declare RRM capability in this association
1614  */
1615 enum cfg80211_assoc_req_flags {
1616 	ASSOC_REQ_DISABLE_HT		= BIT(0),
1617 	ASSOC_REQ_DISABLE_VHT		= BIT(1),
1618 	ASSOC_REQ_USE_RRM		= BIT(2),
1619 };
1620 
1621 /**
1622  * struct cfg80211_assoc_request - (Re)Association request data
1623  *
1624  * This structure provides information needed to complete IEEE 802.11
1625  * (re)association.
1626  * @bss: The BSS to associate with. If the call is successful the driver is
1627  *	given a reference that it must give back to cfg80211_send_rx_assoc()
1628  *	or to cfg80211_assoc_timeout(). To ensure proper refcounting, new
1629  *	association requests while already associating must be rejected.
1630  * @ie: Extra IEs to add to (Re)Association Request frame or %NULL
1631  * @ie_len: Length of ie buffer in octets
1632  * @use_mfp: Use management frame protection (IEEE 802.11w) in this association
1633  * @crypto: crypto settings
1634  * @prev_bssid: previous BSSID, if not %NULL use reassociate frame
1635  * @flags:  See &enum cfg80211_assoc_req_flags
1636  * @ht_capa:  HT Capabilities over-rides.  Values set in ht_capa_mask
1637  *	will be used in ht_capa.  Un-supported values will be ignored.
1638  * @ht_capa_mask:  The bits of ht_capa which are to be used.
1639  * @vht_capa: VHT capability override
1640  * @vht_capa_mask: VHT capability mask indicating which fields to use
1641  */
1642 struct cfg80211_assoc_request {
1643 	struct cfg80211_bss *bss;
1644 	const u8 *ie, *prev_bssid;
1645 	size_t ie_len;
1646 	struct cfg80211_crypto_settings crypto;
1647 	bool use_mfp;
1648 	u32 flags;
1649 	struct ieee80211_ht_cap ht_capa;
1650 	struct ieee80211_ht_cap ht_capa_mask;
1651 	struct ieee80211_vht_cap vht_capa, vht_capa_mask;
1652 };
1653 
1654 /**
1655  * struct cfg80211_deauth_request - Deauthentication request data
1656  *
1657  * This structure provides information needed to complete IEEE 802.11
1658  * deauthentication.
1659  *
1660  * @bssid: the BSSID of the BSS to deauthenticate from
1661  * @ie: Extra IEs to add to Deauthentication frame or %NULL
1662  * @ie_len: Length of ie buffer in octets
1663  * @reason_code: The reason code for the deauthentication
1664  * @local_state_change: if set, change local state only and
1665  *	do not set a deauth frame
1666  */
1667 struct cfg80211_deauth_request {
1668 	const u8 *bssid;
1669 	const u8 *ie;
1670 	size_t ie_len;
1671 	u16 reason_code;
1672 	bool local_state_change;
1673 };
1674 
1675 /**
1676  * struct cfg80211_disassoc_request - Disassociation request data
1677  *
1678  * This structure provides information needed to complete IEEE 802.11
1679  * disassocation.
1680  *
1681  * @bss: the BSS to disassociate from
1682  * @ie: Extra IEs to add to Disassociation frame or %NULL
1683  * @ie_len: Length of ie buffer in octets
1684  * @reason_code: The reason code for the disassociation
1685  * @local_state_change: This is a request for a local state only, i.e., no
1686  *	Disassociation frame is to be transmitted.
1687  */
1688 struct cfg80211_disassoc_request {
1689 	struct cfg80211_bss *bss;
1690 	const u8 *ie;
1691 	size_t ie_len;
1692 	u16 reason_code;
1693 	bool local_state_change;
1694 };
1695 
1696 /**
1697  * struct cfg80211_ibss_params - IBSS parameters
1698  *
1699  * This structure defines the IBSS parameters for the join_ibss()
1700  * method.
1701  *
1702  * @ssid: The SSID, will always be non-null.
1703  * @ssid_len: The length of the SSID, will always be non-zero.
1704  * @bssid: Fixed BSSID requested, maybe be %NULL, if set do not
1705  *	search for IBSSs with a different BSSID.
1706  * @chandef: defines the channel to use if no other IBSS to join can be found
1707  * @channel_fixed: The channel should be fixed -- do not search for
1708  *	IBSSs to join on other channels.
1709  * @ie: information element(s) to include in the beacon
1710  * @ie_len: length of that
1711  * @beacon_interval: beacon interval to use
1712  * @privacy: this is a protected network, keys will be configured
1713  *	after joining
1714  * @control_port: whether user space controls IEEE 802.1X port, i.e.,
1715  *	sets/clears %NL80211_STA_FLAG_AUTHORIZED. If true, the driver is
1716  *	required to assume that the port is unauthorized until authorized by
1717  *	user space. Otherwise, port is marked authorized by default.
1718  * @userspace_handles_dfs: whether user space controls DFS operation, i.e.
1719  *	changes the channel when a radar is detected. This is required
1720  *	to operate on DFS channels.
1721  * @basic_rates: bitmap of basic rates to use when creating the IBSS
1722  * @mcast_rate: per-band multicast rate index + 1 (0: disabled)
1723  * @ht_capa:  HT Capabilities over-rides.  Values set in ht_capa_mask
1724  *	will be used in ht_capa.  Un-supported values will be ignored.
1725  * @ht_capa_mask:  The bits of ht_capa which are to be used.
1726  */
1727 struct cfg80211_ibss_params {
1728 	const u8 *ssid;
1729 	const u8 *bssid;
1730 	struct cfg80211_chan_def chandef;
1731 	const u8 *ie;
1732 	u8 ssid_len, ie_len;
1733 	u16 beacon_interval;
1734 	u32 basic_rates;
1735 	bool channel_fixed;
1736 	bool privacy;
1737 	bool control_port;
1738 	bool userspace_handles_dfs;
1739 	int mcast_rate[IEEE80211_NUM_BANDS];
1740 	struct ieee80211_ht_cap ht_capa;
1741 	struct ieee80211_ht_cap ht_capa_mask;
1742 };
1743 
1744 /**
1745  * struct cfg80211_connect_params - Connection parameters
1746  *
1747  * This structure provides information needed to complete IEEE 802.11
1748  * authentication and association.
1749  *
1750  * @channel: The channel to use or %NULL if not specified (auto-select based
1751  *	on scan results)
1752  * @channel_hint: The channel of the recommended BSS for initial connection or
1753  *	%NULL if not specified
1754  * @bssid: The AP BSSID or %NULL if not specified (auto-select based on scan
1755  *	results)
1756  * @bssid_hint: The recommended AP BSSID for initial connection to the BSS or
1757  *	%NULL if not specified. Unlike the @bssid parameter, the driver is
1758  *	allowed to ignore this @bssid_hint if it has knowledge of a better BSS
1759  *	to use.
1760  * @ssid: SSID
1761  * @ssid_len: Length of ssid in octets
1762  * @auth_type: Authentication type (algorithm)
1763  * @ie: IEs for association request
1764  * @ie_len: Length of assoc_ie in octets
1765  * @privacy: indicates whether privacy-enabled APs should be used
1766  * @mfp: indicate whether management frame protection is used
1767  * @crypto: crypto settings
1768  * @key_len: length of WEP key for shared key authentication
1769  * @key_idx: index of WEP key for shared key authentication
1770  * @key: WEP key for shared key authentication
1771  * @flags:  See &enum cfg80211_assoc_req_flags
1772  * @bg_scan_period:  Background scan period in seconds
1773  *	or -1 to indicate that default value is to be used.
1774  * @ht_capa:  HT Capabilities over-rides.  Values set in ht_capa_mask
1775  *	will be used in ht_capa.  Un-supported values will be ignored.
1776  * @ht_capa_mask:  The bits of ht_capa which are to be used.
1777  * @vht_capa:  VHT Capability overrides
1778  * @vht_capa_mask: The bits of vht_capa which are to be used.
1779  */
1780 struct cfg80211_connect_params {
1781 	struct ieee80211_channel *channel;
1782 	struct ieee80211_channel *channel_hint;
1783 	const u8 *bssid;
1784 	const u8 *bssid_hint;
1785 	const u8 *ssid;
1786 	size_t ssid_len;
1787 	enum nl80211_auth_type auth_type;
1788 	const u8 *ie;
1789 	size_t ie_len;
1790 	bool privacy;
1791 	enum nl80211_mfp mfp;
1792 	struct cfg80211_crypto_settings crypto;
1793 	const u8 *key;
1794 	u8 key_len, key_idx;
1795 	u32 flags;
1796 	int bg_scan_period;
1797 	struct ieee80211_ht_cap ht_capa;
1798 	struct ieee80211_ht_cap ht_capa_mask;
1799 	struct ieee80211_vht_cap vht_capa;
1800 	struct ieee80211_vht_cap vht_capa_mask;
1801 };
1802 
1803 /**
1804  * enum wiphy_params_flags - set_wiphy_params bitfield values
1805  * @WIPHY_PARAM_RETRY_SHORT: wiphy->retry_short has changed
1806  * @WIPHY_PARAM_RETRY_LONG: wiphy->retry_long has changed
1807  * @WIPHY_PARAM_FRAG_THRESHOLD: wiphy->frag_threshold has changed
1808  * @WIPHY_PARAM_RTS_THRESHOLD: wiphy->rts_threshold has changed
1809  * @WIPHY_PARAM_COVERAGE_CLASS: coverage class changed
1810  * @WIPHY_PARAM_DYN_ACK: dynack has been enabled
1811  */
1812 enum wiphy_params_flags {
1813 	WIPHY_PARAM_RETRY_SHORT		= 1 << 0,
1814 	WIPHY_PARAM_RETRY_LONG		= 1 << 1,
1815 	WIPHY_PARAM_FRAG_THRESHOLD	= 1 << 2,
1816 	WIPHY_PARAM_RTS_THRESHOLD	= 1 << 3,
1817 	WIPHY_PARAM_COVERAGE_CLASS	= 1 << 4,
1818 	WIPHY_PARAM_DYN_ACK		= 1 << 5,
1819 };
1820 
1821 /*
1822  * cfg80211_bitrate_mask - masks for bitrate control
1823  */
1824 struct cfg80211_bitrate_mask {
1825 	struct {
1826 		u32 legacy;
1827 		u8 ht_mcs[IEEE80211_HT_MCS_MASK_LEN];
1828 		u16 vht_mcs[NL80211_VHT_NSS_MAX];
1829 		enum nl80211_txrate_gi gi;
1830 	} control[IEEE80211_NUM_BANDS];
1831 };
1832 /**
1833  * struct cfg80211_pmksa - PMK Security Association
1834  *
1835  * This structure is passed to the set/del_pmksa() method for PMKSA
1836  * caching.
1837  *
1838  * @bssid: The AP's BSSID.
1839  * @pmkid: The PMK material itself.
1840  */
1841 struct cfg80211_pmksa {
1842 	const u8 *bssid;
1843 	const u8 *pmkid;
1844 };
1845 
1846 /**
1847  * struct cfg80211_pkt_pattern - packet pattern
1848  * @mask: bitmask where to match pattern and where to ignore bytes,
1849  *	one bit per byte, in same format as nl80211
1850  * @pattern: bytes to match where bitmask is 1
1851  * @pattern_len: length of pattern (in bytes)
1852  * @pkt_offset: packet offset (in bytes)
1853  *
1854  * Internal note: @mask and @pattern are allocated in one chunk of
1855  * memory, free @mask only!
1856  */
1857 struct cfg80211_pkt_pattern {
1858 	const u8 *mask, *pattern;
1859 	int pattern_len;
1860 	int pkt_offset;
1861 };
1862 
1863 /**
1864  * struct cfg80211_wowlan_tcp - TCP connection parameters
1865  *
1866  * @sock: (internal) socket for source port allocation
1867  * @src: source IP address
1868  * @dst: destination IP address
1869  * @dst_mac: destination MAC address
1870  * @src_port: source port
1871  * @dst_port: destination port
1872  * @payload_len: data payload length
1873  * @payload: data payload buffer
1874  * @payload_seq: payload sequence stamping configuration
1875  * @data_interval: interval at which to send data packets
1876  * @wake_len: wakeup payload match length
1877  * @wake_data: wakeup payload match data
1878  * @wake_mask: wakeup payload match mask
1879  * @tokens_size: length of the tokens buffer
1880  * @payload_tok: payload token usage configuration
1881  */
1882 struct cfg80211_wowlan_tcp {
1883 	struct socket *sock;
1884 	__be32 src, dst;
1885 	u16 src_port, dst_port;
1886 	u8 dst_mac[ETH_ALEN];
1887 	int payload_len;
1888 	const u8 *payload;
1889 	struct nl80211_wowlan_tcp_data_seq payload_seq;
1890 	u32 data_interval;
1891 	u32 wake_len;
1892 	const u8 *wake_data, *wake_mask;
1893 	u32 tokens_size;
1894 	/* must be last, variable member */
1895 	struct nl80211_wowlan_tcp_data_token payload_tok;
1896 };
1897 
1898 /**
1899  * struct cfg80211_wowlan - Wake on Wireless-LAN support info
1900  *
1901  * This structure defines the enabled WoWLAN triggers for the device.
1902  * @any: wake up on any activity -- special trigger if device continues
1903  *	operating as normal during suspend
1904  * @disconnect: wake up if getting disconnected
1905  * @magic_pkt: wake up on receiving magic packet
1906  * @patterns: wake up on receiving packet matching a pattern
1907  * @n_patterns: number of patterns
1908  * @gtk_rekey_failure: wake up on GTK rekey failure
1909  * @eap_identity_req: wake up on EAP identity request packet
1910  * @four_way_handshake: wake up on 4-way handshake
1911  * @rfkill_release: wake up when rfkill is released
1912  * @tcp: TCP connection establishment/wakeup parameters, see nl80211.h.
1913  *	NULL if not configured.
1914  */
1915 struct cfg80211_wowlan {
1916 	bool any, disconnect, magic_pkt, gtk_rekey_failure,
1917 	     eap_identity_req, four_way_handshake,
1918 	     rfkill_release;
1919 	struct cfg80211_pkt_pattern *patterns;
1920 	struct cfg80211_wowlan_tcp *tcp;
1921 	int n_patterns;
1922 };
1923 
1924 /**
1925  * struct cfg80211_coalesce_rules - Coalesce rule parameters
1926  *
1927  * This structure defines coalesce rule for the device.
1928  * @delay: maximum coalescing delay in msecs.
1929  * @condition: condition for packet coalescence.
1930  *	see &enum nl80211_coalesce_condition.
1931  * @patterns: array of packet patterns
1932  * @n_patterns: number of patterns
1933  */
1934 struct cfg80211_coalesce_rules {
1935 	int delay;
1936 	enum nl80211_coalesce_condition condition;
1937 	struct cfg80211_pkt_pattern *patterns;
1938 	int n_patterns;
1939 };
1940 
1941 /**
1942  * struct cfg80211_coalesce - Packet coalescing settings
1943  *
1944  * This structure defines coalescing settings.
1945  * @rules: array of coalesce rules
1946  * @n_rules: number of rules
1947  */
1948 struct cfg80211_coalesce {
1949 	struct cfg80211_coalesce_rules *rules;
1950 	int n_rules;
1951 };
1952 
1953 /**
1954  * struct cfg80211_wowlan_wakeup - wakeup report
1955  * @disconnect: woke up by getting disconnected
1956  * @magic_pkt: woke up by receiving magic packet
1957  * @gtk_rekey_failure: woke up by GTK rekey failure
1958  * @eap_identity_req: woke up by EAP identity request packet
1959  * @four_way_handshake: woke up by 4-way handshake
1960  * @rfkill_release: woke up by rfkill being released
1961  * @pattern_idx: pattern that caused wakeup, -1 if not due to pattern
1962  * @packet_present_len: copied wakeup packet data
1963  * @packet_len: original wakeup packet length
1964  * @packet: The packet causing the wakeup, if any.
1965  * @packet_80211:  For pattern match, magic packet and other data
1966  *	frame triggers an 802.3 frame should be reported, for
1967  *	disconnect due to deauth 802.11 frame. This indicates which
1968  *	it is.
1969  * @tcp_match: TCP wakeup packet received
1970  * @tcp_connlost: TCP connection lost or failed to establish
1971  * @tcp_nomoretokens: TCP data ran out of tokens
1972  */
1973 struct cfg80211_wowlan_wakeup {
1974 	bool disconnect, magic_pkt, gtk_rekey_failure,
1975 	     eap_identity_req, four_way_handshake,
1976 	     rfkill_release, packet_80211,
1977 	     tcp_match, tcp_connlost, tcp_nomoretokens;
1978 	s32 pattern_idx;
1979 	u32 packet_present_len, packet_len;
1980 	const void *packet;
1981 };
1982 
1983 /**
1984  * struct cfg80211_gtk_rekey_data - rekey data
1985  * @kek: key encryption key (NL80211_KEK_LEN bytes)
1986  * @kck: key confirmation key (NL80211_KCK_LEN bytes)
1987  * @replay_ctr: replay counter (NL80211_REPLAY_CTR_LEN bytes)
1988  */
1989 struct cfg80211_gtk_rekey_data {
1990 	const u8 *kek, *kck, *replay_ctr;
1991 };
1992 
1993 /**
1994  * struct cfg80211_update_ft_ies_params - FT IE Information
1995  *
1996  * This structure provides information needed to update the fast transition IE
1997  *
1998  * @md: The Mobility Domain ID, 2 Octet value
1999  * @ie: Fast Transition IEs
2000  * @ie_len: Length of ft_ie in octets
2001  */
2002 struct cfg80211_update_ft_ies_params {
2003 	u16 md;
2004 	const u8 *ie;
2005 	size_t ie_len;
2006 };
2007 
2008 /**
2009  * struct cfg80211_mgmt_tx_params - mgmt tx parameters
2010  *
2011  * This structure provides information needed to transmit a mgmt frame
2012  *
2013  * @chan: channel to use
2014  * @offchan: indicates wether off channel operation is required
2015  * @wait: duration for ROC
2016  * @buf: buffer to transmit
2017  * @len: buffer length
2018  * @no_cck: don't use cck rates for this frame
2019  * @dont_wait_for_ack: tells the low level not to wait for an ack
2020  * @n_csa_offsets: length of csa_offsets array
2021  * @csa_offsets: array of all the csa offsets in the frame
2022  */
2023 struct cfg80211_mgmt_tx_params {
2024 	struct ieee80211_channel *chan;
2025 	bool offchan;
2026 	unsigned int wait;
2027 	const u8 *buf;
2028 	size_t len;
2029 	bool no_cck;
2030 	bool dont_wait_for_ack;
2031 	int n_csa_offsets;
2032 	const u16 *csa_offsets;
2033 };
2034 
2035 /**
2036  * struct cfg80211_dscp_exception - DSCP exception
2037  *
2038  * @dscp: DSCP value that does not adhere to the user priority range definition
2039  * @up: user priority value to which the corresponding DSCP value belongs
2040  */
2041 struct cfg80211_dscp_exception {
2042 	u8 dscp;
2043 	u8 up;
2044 };
2045 
2046 /**
2047  * struct cfg80211_dscp_range - DSCP range definition for user priority
2048  *
2049  * @low: lowest DSCP value of this user priority range, inclusive
2050  * @high: highest DSCP value of this user priority range, inclusive
2051  */
2052 struct cfg80211_dscp_range {
2053 	u8 low;
2054 	u8 high;
2055 };
2056 
2057 /* QoS Map Set element length defined in IEEE Std 802.11-2012, 8.4.2.97 */
2058 #define IEEE80211_QOS_MAP_MAX_EX	21
2059 #define IEEE80211_QOS_MAP_LEN_MIN	16
2060 #define IEEE80211_QOS_MAP_LEN_MAX \
2061 	(IEEE80211_QOS_MAP_LEN_MIN + 2 * IEEE80211_QOS_MAP_MAX_EX)
2062 
2063 /**
2064  * struct cfg80211_qos_map - QoS Map Information
2065  *
2066  * This struct defines the Interworking QoS map setting for DSCP values
2067  *
2068  * @num_des: number of DSCP exceptions (0..21)
2069  * @dscp_exception: optionally up to maximum of 21 DSCP exceptions from
2070  *	the user priority DSCP range definition
2071  * @up: DSCP range definition for a particular user priority
2072  */
2073 struct cfg80211_qos_map {
2074 	u8 num_des;
2075 	struct cfg80211_dscp_exception dscp_exception[IEEE80211_QOS_MAP_MAX_EX];
2076 	struct cfg80211_dscp_range up[8];
2077 };
2078 
2079 /**
2080  * struct cfg80211_ops - backend description for wireless configuration
2081  *
2082  * This struct is registered by fullmac card drivers and/or wireless stacks
2083  * in order to handle configuration requests on their interfaces.
2084  *
2085  * All callbacks except where otherwise noted should return 0
2086  * on success or a negative error code.
2087  *
2088  * All operations are currently invoked under rtnl for consistency with the
2089  * wireless extensions but this is subject to reevaluation as soon as this
2090  * code is used more widely and we have a first user without wext.
2091  *
2092  * @suspend: wiphy device needs to be suspended. The variable @wow will
2093  *	be %NULL or contain the enabled Wake-on-Wireless triggers that are
2094  *	configured for the device.
2095  * @resume: wiphy device needs to be resumed
2096  * @set_wakeup: Called when WoWLAN is enabled/disabled, use this callback
2097  *	to call device_set_wakeup_enable() to enable/disable wakeup from
2098  *	the device.
2099  *
2100  * @add_virtual_intf: create a new virtual interface with the given name,
2101  *	must set the struct wireless_dev's iftype. Beware: You must create
2102  *	the new netdev in the wiphy's network namespace! Returns the struct
2103  *	wireless_dev, or an ERR_PTR. For P2P device wdevs, the driver must
2104  *	also set the address member in the wdev.
2105  *
2106  * @del_virtual_intf: remove the virtual interface
2107  *
2108  * @change_virtual_intf: change type/configuration of virtual interface,
2109  *	keep the struct wireless_dev's iftype updated.
2110  *
2111  * @add_key: add a key with the given parameters. @mac_addr will be %NULL
2112  *	when adding a group key.
2113  *
2114  * @get_key: get information about the key with the given parameters.
2115  *	@mac_addr will be %NULL when requesting information for a group
2116  *	key. All pointers given to the @callback function need not be valid
2117  *	after it returns. This function should return an error if it is
2118  *	not possible to retrieve the key, -ENOENT if it doesn't exist.
2119  *
2120  * @del_key: remove a key given the @mac_addr (%NULL for a group key)
2121  *	and @key_index, return -ENOENT if the key doesn't exist.
2122  *
2123  * @set_default_key: set the default key on an interface
2124  *
2125  * @set_default_mgmt_key: set the default management frame key on an interface
2126  *
2127  * @set_rekey_data: give the data necessary for GTK rekeying to the driver
2128  *
2129  * @start_ap: Start acting in AP mode defined by the parameters.
2130  * @change_beacon: Change the beacon parameters for an access point mode
2131  *	interface. This should reject the call when AP mode wasn't started.
2132  * @stop_ap: Stop being an AP, including stopping beaconing.
2133  *
2134  * @add_station: Add a new station.
2135  * @del_station: Remove a station; @mac may be NULL to remove all stations.
2136  * @change_station: Modify a given station. Note that flags changes are not much
2137  *	validated in cfg80211, in particular the auth/assoc/authorized flags
2138  *	might come to the driver in invalid combinations -- make sure to check
2139  *	them, also against the existing state! Drivers must call
2140  *	cfg80211_check_station_change() to validate the information.
2141  * @get_station: get station information for the station identified by @mac
2142  * @dump_station: dump station callback -- resume dump at index @idx
2143  *
2144  * @add_mpath: add a fixed mesh path
2145  * @del_mpath: delete a given mesh path
2146  * @change_mpath: change a given mesh path
2147  * @get_mpath: get a mesh path for the given parameters
2148  * @dump_mpath: dump mesh path callback -- resume dump at index @idx
2149  * @join_mesh: join the mesh network with the specified parameters
2150  *	(invoked with the wireless_dev mutex held)
2151  * @leave_mesh: leave the current mesh network
2152  *	(invoked with the wireless_dev mutex held)
2153  *
2154  * @get_mesh_config: Get the current mesh configuration
2155  *
2156  * @update_mesh_config: Update mesh parameters on a running mesh.
2157  *	The mask is a bitfield which tells us which parameters to
2158  *	set, and which to leave alone.
2159  *
2160  * @change_bss: Modify parameters for a given BSS.
2161  *
2162  * @set_txq_params: Set TX queue parameters
2163  *
2164  * @libertas_set_mesh_channel: Only for backward compatibility for libertas,
2165  *	as it doesn't implement join_mesh and needs to set the channel to
2166  *	join the mesh instead.
2167  *
2168  * @set_monitor_channel: Set the monitor mode channel for the device. If other
2169  *	interfaces are active this callback should reject the configuration.
2170  *	If no interfaces are active or the device is down, the channel should
2171  *	be stored for when a monitor interface becomes active.
2172  *
2173  * @scan: Request to do a scan. If returning zero, the scan request is given
2174  *	the driver, and will be valid until passed to cfg80211_scan_done().
2175  *	For scan results, call cfg80211_inform_bss(); you can call this outside
2176  *	the scan/scan_done bracket too.
2177  *
2178  * @auth: Request to authenticate with the specified peer
2179  *	(invoked with the wireless_dev mutex held)
2180  * @assoc: Request to (re)associate with the specified peer
2181  *	(invoked with the wireless_dev mutex held)
2182  * @deauth: Request to deauthenticate from the specified peer
2183  *	(invoked with the wireless_dev mutex held)
2184  * @disassoc: Request to disassociate from the specified peer
2185  *	(invoked with the wireless_dev mutex held)
2186  *
2187  * @connect: Connect to the ESS with the specified parameters. When connected,
2188  *	call cfg80211_connect_result() with status code %WLAN_STATUS_SUCCESS.
2189  *	If the connection fails for some reason, call cfg80211_connect_result()
2190  *	with the status from the AP.
2191  *	(invoked with the wireless_dev mutex held)
2192  * @disconnect: Disconnect from the BSS/ESS.
2193  *	(invoked with the wireless_dev mutex held)
2194  *
2195  * @join_ibss: Join the specified IBSS (or create if necessary). Once done, call
2196  *	cfg80211_ibss_joined(), also call that function when changing BSSID due
2197  *	to a merge.
2198  *	(invoked with the wireless_dev mutex held)
2199  * @leave_ibss: Leave the IBSS.
2200  *	(invoked with the wireless_dev mutex held)
2201  *
2202  * @set_mcast_rate: Set the specified multicast rate (only if vif is in ADHOC or
2203  *	MESH mode)
2204  *
2205  * @set_wiphy_params: Notify that wiphy parameters have changed;
2206  *	@changed bitfield (see &enum wiphy_params_flags) describes which values
2207  *	have changed. The actual parameter values are available in
2208  *	struct wiphy. If returning an error, no value should be changed.
2209  *
2210  * @set_tx_power: set the transmit power according to the parameters,
2211  *	the power passed is in mBm, to get dBm use MBM_TO_DBM(). The
2212  *	wdev may be %NULL if power was set for the wiphy, and will
2213  *	always be %NULL unless the driver supports per-vif TX power
2214  *	(as advertised by the nl80211 feature flag.)
2215  * @get_tx_power: store the current TX power into the dbm variable;
2216  *	return 0 if successful
2217  *
2218  * @set_wds_peer: set the WDS peer for a WDS interface
2219  *
2220  * @rfkill_poll: polls the hw rfkill line, use cfg80211 reporting
2221  *	functions to adjust rfkill hw state
2222  *
2223  * @dump_survey: get site survey information.
2224  *
2225  * @remain_on_channel: Request the driver to remain awake on the specified
2226  *	channel for the specified duration to complete an off-channel
2227  *	operation (e.g., public action frame exchange). When the driver is
2228  *	ready on the requested channel, it must indicate this with an event
2229  *	notification by calling cfg80211_ready_on_channel().
2230  * @cancel_remain_on_channel: Cancel an on-going remain-on-channel operation.
2231  *	This allows the operation to be terminated prior to timeout based on
2232  *	the duration value.
2233  * @mgmt_tx: Transmit a management frame.
2234  * @mgmt_tx_cancel_wait: Cancel the wait time from transmitting a management
2235  *	frame on another channel
2236  *
2237  * @testmode_cmd: run a test mode command; @wdev may be %NULL
2238  * @testmode_dump: Implement a test mode dump. The cb->args[2] and up may be
2239  *	used by the function, but 0 and 1 must not be touched. Additionally,
2240  *	return error codes other than -ENOBUFS and -ENOENT will terminate the
2241  *	dump and return to userspace with an error, so be careful. If any data
2242  *	was passed in from userspace then the data/len arguments will be present
2243  *	and point to the data contained in %NL80211_ATTR_TESTDATA.
2244  *
2245  * @set_bitrate_mask: set the bitrate mask configuration
2246  *
2247  * @set_pmksa: Cache a PMKID for a BSSID. This is mostly useful for fullmac
2248  *	devices running firmwares capable of generating the (re) association
2249  *	RSN IE. It allows for faster roaming between WPA2 BSSIDs.
2250  * @del_pmksa: Delete a cached PMKID.
2251  * @flush_pmksa: Flush all cached PMKIDs.
2252  * @set_power_mgmt: Configure WLAN power management. A timeout value of -1
2253  *	allows the driver to adjust the dynamic ps timeout value.
2254  * @set_cqm_rssi_config: Configure connection quality monitor RSSI threshold.
2255  * @set_cqm_txe_config: Configure connection quality monitor TX error
2256  *	thresholds.
2257  * @sched_scan_start: Tell the driver to start a scheduled scan.
2258  * @sched_scan_stop: Tell the driver to stop an ongoing scheduled scan. This
2259  *	call must stop the scheduled scan and be ready for starting a new one
2260  *	before it returns, i.e. @sched_scan_start may be called immediately
2261  *	after that again and should not fail in that case. The driver should
2262  *	not call cfg80211_sched_scan_stopped() for a requested stop (when this
2263  *	method returns 0.)
2264  *
2265  * @mgmt_frame_register: Notify driver that a management frame type was
2266  *	registered. Note that this callback may not sleep, and cannot run
2267  *	concurrently with itself.
2268  *
2269  * @set_antenna: Set antenna configuration (tx_ant, rx_ant) on the device.
2270  *	Parameters are bitmaps of allowed antennas to use for TX/RX. Drivers may
2271  *	reject TX/RX mask combinations they cannot support by returning -EINVAL
2272  *	(also see nl80211.h @NL80211_ATTR_WIPHY_ANTENNA_TX).
2273  *
2274  * @get_antenna: Get current antenna configuration from device (tx_ant, rx_ant).
2275  *
2276  * @tdls_mgmt: Transmit a TDLS management frame.
2277  * @tdls_oper: Perform a high-level TDLS operation (e.g. TDLS link setup).
2278  *
2279  * @probe_client: probe an associated client, must return a cookie that it
2280  *	later passes to cfg80211_probe_status().
2281  *
2282  * @set_noack_map: Set the NoAck Map for the TIDs.
2283  *
2284  * @get_channel: Get the current operating channel for the virtual interface.
2285  *	For monitor interfaces, it should return %NULL unless there's a single
2286  *	current monitoring channel.
2287  *
2288  * @start_p2p_device: Start the given P2P device.
2289  * @stop_p2p_device: Stop the given P2P device.
2290  *
2291  * @set_mac_acl: Sets MAC address control list in AP and P2P GO mode.
2292  *	Parameters include ACL policy, an array of MAC address of stations
2293  *	and the number of MAC addresses. If there is already a list in driver
2294  *	this new list replaces the existing one. Driver has to clear its ACL
2295  *	when number of MAC addresses entries is passed as 0. Drivers which
2296  *	advertise the support for MAC based ACL have to implement this callback.
2297  *
2298  * @start_radar_detection: Start radar detection in the driver.
2299  *
2300  * @update_ft_ies: Provide updated Fast BSS Transition information to the
2301  *	driver. If the SME is in the driver/firmware, this information can be
2302  *	used in building Authentication and Reassociation Request frames.
2303  *
2304  * @crit_proto_start: Indicates a critical protocol needs more link reliability
2305  *	for a given duration (milliseconds). The protocol is provided so the
2306  *	driver can take the most appropriate actions.
2307  * @crit_proto_stop: Indicates critical protocol no longer needs increased link
2308  *	reliability. This operation can not fail.
2309  * @set_coalesce: Set coalesce parameters.
2310  *
2311  * @channel_switch: initiate channel-switch procedure (with CSA). Driver is
2312  *	responsible for veryfing if the switch is possible. Since this is
2313  *	inherently tricky driver may decide to disconnect an interface later
2314  *	with cfg80211_stop_iface(). This doesn't mean driver can accept
2315  *	everything. It should do it's best to verify requests and reject them
2316  *	as soon as possible.
2317  *
2318  * @set_qos_map: Set QoS mapping information to the driver
2319  *
2320  * @set_ap_chanwidth: Set the AP (including P2P GO) mode channel width for the
2321  *	given interface This is used e.g. for dynamic HT 20/40 MHz channel width
2322  *	changes during the lifetime of the BSS.
2323  *
2324  * @add_tx_ts: validate (if admitted_time is 0) or add a TX TS to the device
2325  *	with the given parameters; action frame exchange has been handled by
2326  *	userspace so this just has to modify the TX path to take the TS into
2327  *	account.
2328  *	If the admitted time is 0 just validate the parameters to make sure
2329  *	the session can be created at all; it is valid to just always return
2330  *	success for that but that may result in inefficient behaviour (handshake
2331  *	with the peer followed by immediate teardown when the addition is later
2332  *	rejected)
2333  * @del_tx_ts: remove an existing TX TS
2334  */
2335 struct cfg80211_ops {
2336 	int	(*suspend)(struct wiphy *wiphy, struct cfg80211_wowlan *wow);
2337 	int	(*resume)(struct wiphy *wiphy);
2338 	void	(*set_wakeup)(struct wiphy *wiphy, bool enabled);
2339 
2340 	struct wireless_dev * (*add_virtual_intf)(struct wiphy *wiphy,
2341 						  const char *name,
2342 						  enum nl80211_iftype type,
2343 						  u32 *flags,
2344 						  struct vif_params *params);
2345 	int	(*del_virtual_intf)(struct wiphy *wiphy,
2346 				    struct wireless_dev *wdev);
2347 	int	(*change_virtual_intf)(struct wiphy *wiphy,
2348 				       struct net_device *dev,
2349 				       enum nl80211_iftype type, u32 *flags,
2350 				       struct vif_params *params);
2351 
2352 	int	(*add_key)(struct wiphy *wiphy, struct net_device *netdev,
2353 			   u8 key_index, bool pairwise, const u8 *mac_addr,
2354 			   struct key_params *params);
2355 	int	(*get_key)(struct wiphy *wiphy, struct net_device *netdev,
2356 			   u8 key_index, bool pairwise, const u8 *mac_addr,
2357 			   void *cookie,
2358 			   void (*callback)(void *cookie, struct key_params*));
2359 	int	(*del_key)(struct wiphy *wiphy, struct net_device *netdev,
2360 			   u8 key_index, bool pairwise, const u8 *mac_addr);
2361 	int	(*set_default_key)(struct wiphy *wiphy,
2362 				   struct net_device *netdev,
2363 				   u8 key_index, bool unicast, bool multicast);
2364 	int	(*set_default_mgmt_key)(struct wiphy *wiphy,
2365 					struct net_device *netdev,
2366 					u8 key_index);
2367 
2368 	int	(*start_ap)(struct wiphy *wiphy, struct net_device *dev,
2369 			    struct cfg80211_ap_settings *settings);
2370 	int	(*change_beacon)(struct wiphy *wiphy, struct net_device *dev,
2371 				 struct cfg80211_beacon_data *info);
2372 	int	(*stop_ap)(struct wiphy *wiphy, struct net_device *dev);
2373 
2374 
2375 	int	(*add_station)(struct wiphy *wiphy, struct net_device *dev,
2376 			       const u8 *mac,
2377 			       struct station_parameters *params);
2378 	int	(*del_station)(struct wiphy *wiphy, struct net_device *dev,
2379 			       const u8 *mac);
2380 	int	(*change_station)(struct wiphy *wiphy, struct net_device *dev,
2381 				  const u8 *mac,
2382 				  struct station_parameters *params);
2383 	int	(*get_station)(struct wiphy *wiphy, struct net_device *dev,
2384 			       const u8 *mac, struct station_info *sinfo);
2385 	int	(*dump_station)(struct wiphy *wiphy, struct net_device *dev,
2386 				int idx, u8 *mac, struct station_info *sinfo);
2387 
2388 	int	(*add_mpath)(struct wiphy *wiphy, struct net_device *dev,
2389 			       const u8 *dst, const u8 *next_hop);
2390 	int	(*del_mpath)(struct wiphy *wiphy, struct net_device *dev,
2391 			       const u8 *dst);
2392 	int	(*change_mpath)(struct wiphy *wiphy, struct net_device *dev,
2393 				  const u8 *dst, const u8 *next_hop);
2394 	int	(*get_mpath)(struct wiphy *wiphy, struct net_device *dev,
2395 			     u8 *dst, u8 *next_hop, struct mpath_info *pinfo);
2396 	int	(*dump_mpath)(struct wiphy *wiphy, struct net_device *dev,
2397 			      int idx, u8 *dst, u8 *next_hop,
2398 			      struct mpath_info *pinfo);
2399 	int	(*get_mesh_config)(struct wiphy *wiphy,
2400 				struct net_device *dev,
2401 				struct mesh_config *conf);
2402 	int	(*update_mesh_config)(struct wiphy *wiphy,
2403 				      struct net_device *dev, u32 mask,
2404 				      const struct mesh_config *nconf);
2405 	int	(*join_mesh)(struct wiphy *wiphy, struct net_device *dev,
2406 			     const struct mesh_config *conf,
2407 			     const struct mesh_setup *setup);
2408 	int	(*leave_mesh)(struct wiphy *wiphy, struct net_device *dev);
2409 
2410 	int	(*change_bss)(struct wiphy *wiphy, struct net_device *dev,
2411 			      struct bss_parameters *params);
2412 
2413 	int	(*set_txq_params)(struct wiphy *wiphy, struct net_device *dev,
2414 				  struct ieee80211_txq_params *params);
2415 
2416 	int	(*libertas_set_mesh_channel)(struct wiphy *wiphy,
2417 					     struct net_device *dev,
2418 					     struct ieee80211_channel *chan);
2419 
2420 	int	(*set_monitor_channel)(struct wiphy *wiphy,
2421 				       struct cfg80211_chan_def *chandef);
2422 
2423 	int	(*scan)(struct wiphy *wiphy,
2424 			struct cfg80211_scan_request *request);
2425 
2426 	int	(*auth)(struct wiphy *wiphy, struct net_device *dev,
2427 			struct cfg80211_auth_request *req);
2428 	int	(*assoc)(struct wiphy *wiphy, struct net_device *dev,
2429 			 struct cfg80211_assoc_request *req);
2430 	int	(*deauth)(struct wiphy *wiphy, struct net_device *dev,
2431 			  struct cfg80211_deauth_request *req);
2432 	int	(*disassoc)(struct wiphy *wiphy, struct net_device *dev,
2433 			    struct cfg80211_disassoc_request *req);
2434 
2435 	int	(*connect)(struct wiphy *wiphy, struct net_device *dev,
2436 			   struct cfg80211_connect_params *sme);
2437 	int	(*disconnect)(struct wiphy *wiphy, struct net_device *dev,
2438 			      u16 reason_code);
2439 
2440 	int	(*join_ibss)(struct wiphy *wiphy, struct net_device *dev,
2441 			     struct cfg80211_ibss_params *params);
2442 	int	(*leave_ibss)(struct wiphy *wiphy, struct net_device *dev);
2443 
2444 	int	(*set_mcast_rate)(struct wiphy *wiphy, struct net_device *dev,
2445 				  int rate[IEEE80211_NUM_BANDS]);
2446 
2447 	int	(*set_wiphy_params)(struct wiphy *wiphy, u32 changed);
2448 
2449 	int	(*set_tx_power)(struct wiphy *wiphy, struct wireless_dev *wdev,
2450 				enum nl80211_tx_power_setting type, int mbm);
2451 	int	(*get_tx_power)(struct wiphy *wiphy, struct wireless_dev *wdev,
2452 				int *dbm);
2453 
2454 	int	(*set_wds_peer)(struct wiphy *wiphy, struct net_device *dev,
2455 				const u8 *addr);
2456 
2457 	void	(*rfkill_poll)(struct wiphy *wiphy);
2458 
2459 #ifdef CONFIG_NL80211_TESTMODE
2460 	int	(*testmode_cmd)(struct wiphy *wiphy, struct wireless_dev *wdev,
2461 				void *data, int len);
2462 	int	(*testmode_dump)(struct wiphy *wiphy, struct sk_buff *skb,
2463 				 struct netlink_callback *cb,
2464 				 void *data, int len);
2465 #endif
2466 
2467 	int	(*set_bitrate_mask)(struct wiphy *wiphy,
2468 				    struct net_device *dev,
2469 				    const u8 *peer,
2470 				    const struct cfg80211_bitrate_mask *mask);
2471 
2472 	int	(*dump_survey)(struct wiphy *wiphy, struct net_device *netdev,
2473 			int idx, struct survey_info *info);
2474 
2475 	int	(*set_pmksa)(struct wiphy *wiphy, struct net_device *netdev,
2476 			     struct cfg80211_pmksa *pmksa);
2477 	int	(*del_pmksa)(struct wiphy *wiphy, struct net_device *netdev,
2478 			     struct cfg80211_pmksa *pmksa);
2479 	int	(*flush_pmksa)(struct wiphy *wiphy, struct net_device *netdev);
2480 
2481 	int	(*remain_on_channel)(struct wiphy *wiphy,
2482 				     struct wireless_dev *wdev,
2483 				     struct ieee80211_channel *chan,
2484 				     unsigned int duration,
2485 				     u64 *cookie);
2486 	int	(*cancel_remain_on_channel)(struct wiphy *wiphy,
2487 					    struct wireless_dev *wdev,
2488 					    u64 cookie);
2489 
2490 	int	(*mgmt_tx)(struct wiphy *wiphy, struct wireless_dev *wdev,
2491 			   struct cfg80211_mgmt_tx_params *params,
2492 			   u64 *cookie);
2493 	int	(*mgmt_tx_cancel_wait)(struct wiphy *wiphy,
2494 				       struct wireless_dev *wdev,
2495 				       u64 cookie);
2496 
2497 	int	(*set_power_mgmt)(struct wiphy *wiphy, struct net_device *dev,
2498 				  bool enabled, int timeout);
2499 
2500 	int	(*set_cqm_rssi_config)(struct wiphy *wiphy,
2501 				       struct net_device *dev,
2502 				       s32 rssi_thold, u32 rssi_hyst);
2503 
2504 	int	(*set_cqm_txe_config)(struct wiphy *wiphy,
2505 				      struct net_device *dev,
2506 				      u32 rate, u32 pkts, u32 intvl);
2507 
2508 	void	(*mgmt_frame_register)(struct wiphy *wiphy,
2509 				       struct wireless_dev *wdev,
2510 				       u16 frame_type, bool reg);
2511 
2512 	int	(*set_antenna)(struct wiphy *wiphy, u32 tx_ant, u32 rx_ant);
2513 	int	(*get_antenna)(struct wiphy *wiphy, u32 *tx_ant, u32 *rx_ant);
2514 
2515 	int	(*sched_scan_start)(struct wiphy *wiphy,
2516 				struct net_device *dev,
2517 				struct cfg80211_sched_scan_request *request);
2518 	int	(*sched_scan_stop)(struct wiphy *wiphy, struct net_device *dev);
2519 
2520 	int	(*set_rekey_data)(struct wiphy *wiphy, struct net_device *dev,
2521 				  struct cfg80211_gtk_rekey_data *data);
2522 
2523 	int	(*tdls_mgmt)(struct wiphy *wiphy, struct net_device *dev,
2524 			     const u8 *peer, u8 action_code,  u8 dialog_token,
2525 			     u16 status_code, u32 peer_capability,
2526 			     bool initiator, const u8 *buf, size_t len);
2527 	int	(*tdls_oper)(struct wiphy *wiphy, struct net_device *dev,
2528 			     const u8 *peer, enum nl80211_tdls_operation oper);
2529 
2530 	int	(*probe_client)(struct wiphy *wiphy, struct net_device *dev,
2531 				const u8 *peer, u64 *cookie);
2532 
2533 	int	(*set_noack_map)(struct wiphy *wiphy,
2534 				  struct net_device *dev,
2535 				  u16 noack_map);
2536 
2537 	int	(*get_channel)(struct wiphy *wiphy,
2538 			       struct wireless_dev *wdev,
2539 			       struct cfg80211_chan_def *chandef);
2540 
2541 	int	(*start_p2p_device)(struct wiphy *wiphy,
2542 				    struct wireless_dev *wdev);
2543 	void	(*stop_p2p_device)(struct wiphy *wiphy,
2544 				   struct wireless_dev *wdev);
2545 
2546 	int	(*set_mac_acl)(struct wiphy *wiphy, struct net_device *dev,
2547 			       const struct cfg80211_acl_data *params);
2548 
2549 	int	(*start_radar_detection)(struct wiphy *wiphy,
2550 					 struct net_device *dev,
2551 					 struct cfg80211_chan_def *chandef,
2552 					 u32 cac_time_ms);
2553 	int	(*update_ft_ies)(struct wiphy *wiphy, struct net_device *dev,
2554 				 struct cfg80211_update_ft_ies_params *ftie);
2555 	int	(*crit_proto_start)(struct wiphy *wiphy,
2556 				    struct wireless_dev *wdev,
2557 				    enum nl80211_crit_proto_id protocol,
2558 				    u16 duration);
2559 	void	(*crit_proto_stop)(struct wiphy *wiphy,
2560 				   struct wireless_dev *wdev);
2561 	int	(*set_coalesce)(struct wiphy *wiphy,
2562 				struct cfg80211_coalesce *coalesce);
2563 
2564 	int	(*channel_switch)(struct wiphy *wiphy,
2565 				  struct net_device *dev,
2566 				  struct cfg80211_csa_settings *params);
2567 
2568 	int     (*set_qos_map)(struct wiphy *wiphy,
2569 			       struct net_device *dev,
2570 			       struct cfg80211_qos_map *qos_map);
2571 
2572 	int	(*set_ap_chanwidth)(struct wiphy *wiphy, struct net_device *dev,
2573 				    struct cfg80211_chan_def *chandef);
2574 
2575 	int	(*add_tx_ts)(struct wiphy *wiphy, struct net_device *dev,
2576 			     u8 tsid, const u8 *peer, u8 user_prio,
2577 			     u16 admitted_time);
2578 	int	(*del_tx_ts)(struct wiphy *wiphy, struct net_device *dev,
2579 			     u8 tsid, const u8 *peer);
2580 };
2581 
2582 /*
2583  * wireless hardware and networking interfaces structures
2584  * and registration/helper functions
2585  */
2586 
2587 /**
2588  * enum wiphy_flags - wiphy capability flags
2589  *
2590  * @WIPHY_FLAG_NETNS_OK: if not set, do not allow changing the netns of this
2591  *	wiphy at all
2592  * @WIPHY_FLAG_PS_ON_BY_DEFAULT: if set to true, powersave will be enabled
2593  *	by default -- this flag will be set depending on the kernel's default
2594  *	on wiphy_new(), but can be changed by the driver if it has a good
2595  *	reason to override the default
2596  * @WIPHY_FLAG_4ADDR_AP: supports 4addr mode even on AP (with a single station
2597  *	on a VLAN interface)
2598  * @WIPHY_FLAG_4ADDR_STATION: supports 4addr mode even as a station
2599  * @WIPHY_FLAG_CONTROL_PORT_PROTOCOL: This device supports setting the
2600  *	control port protocol ethertype. The device also honours the
2601  *	control_port_no_encrypt flag.
2602  * @WIPHY_FLAG_IBSS_RSN: The device supports IBSS RSN.
2603  * @WIPHY_FLAG_MESH_AUTH: The device supports mesh authentication by routing
2604  *	auth frames to userspace. See @NL80211_MESH_SETUP_USERSPACE_AUTH.
2605  * @WIPHY_FLAG_SUPPORTS_SCHED_SCAN: The device supports scheduled scans.
2606  * @WIPHY_FLAG_SUPPORTS_FW_ROAM: The device supports roaming feature in the
2607  *	firmware.
2608  * @WIPHY_FLAG_AP_UAPSD: The device supports uapsd on AP.
2609  * @WIPHY_FLAG_SUPPORTS_TDLS: The device supports TDLS (802.11z) operation.
2610  * @WIPHY_FLAG_TDLS_EXTERNAL_SETUP: The device does not handle TDLS (802.11z)
2611  *	link setup/discovery operations internally. Setup, discovery and
2612  *	teardown packets should be sent through the @NL80211_CMD_TDLS_MGMT
2613  *	command. When this flag is not set, @NL80211_CMD_TDLS_OPER should be
2614  *	used for asking the driver/firmware to perform a TDLS operation.
2615  * @WIPHY_FLAG_HAVE_AP_SME: device integrates AP SME
2616  * @WIPHY_FLAG_REPORTS_OBSS: the device will report beacons from other BSSes
2617  *	when there are virtual interfaces in AP mode by calling
2618  *	cfg80211_report_obss_beacon().
2619  * @WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD: When operating as an AP, the device
2620  *	responds to probe-requests in hardware.
2621  * @WIPHY_FLAG_OFFCHAN_TX: Device supports direct off-channel TX.
2622  * @WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL: Device supports remain-on-channel call.
2623  * @WIPHY_FLAG_SUPPORTS_5_10_MHZ: Device supports 5 MHz and 10 MHz channels.
2624  * @WIPHY_FLAG_HAS_CHANNEL_SWITCH: Device supports channel switch in
2625  *	beaconing mode (AP, IBSS, Mesh, ...).
2626  * @WIPHY_FLAG_SUPPORTS_WMM_ADMISSION: the device supports setting up WMM
2627  *	TSPEC sessions (TID aka TSID 0-7) with the NL80211_CMD_ADD_TX_TS
2628  *	command. Standard IEEE 802.11 TSPEC setup is not yet supported, it
2629  *	needs to be able to handle Block-Ack agreements and other things.
2630  */
2631 enum wiphy_flags {
2632 	WIPHY_FLAG_SUPPORTS_WMM_ADMISSION	= BIT(0),
2633 	/* use hole at 1 */
2634 	/* use hole at 2 */
2635 	WIPHY_FLAG_NETNS_OK			= BIT(3),
2636 	WIPHY_FLAG_PS_ON_BY_DEFAULT		= BIT(4),
2637 	WIPHY_FLAG_4ADDR_AP			= BIT(5),
2638 	WIPHY_FLAG_4ADDR_STATION		= BIT(6),
2639 	WIPHY_FLAG_CONTROL_PORT_PROTOCOL	= BIT(7),
2640 	WIPHY_FLAG_IBSS_RSN			= BIT(8),
2641 	WIPHY_FLAG_MESH_AUTH			= BIT(10),
2642 	WIPHY_FLAG_SUPPORTS_SCHED_SCAN		= BIT(11),
2643 	/* use hole at 12 */
2644 	WIPHY_FLAG_SUPPORTS_FW_ROAM		= BIT(13),
2645 	WIPHY_FLAG_AP_UAPSD			= BIT(14),
2646 	WIPHY_FLAG_SUPPORTS_TDLS		= BIT(15),
2647 	WIPHY_FLAG_TDLS_EXTERNAL_SETUP		= BIT(16),
2648 	WIPHY_FLAG_HAVE_AP_SME			= BIT(17),
2649 	WIPHY_FLAG_REPORTS_OBSS			= BIT(18),
2650 	WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD	= BIT(19),
2651 	WIPHY_FLAG_OFFCHAN_TX			= BIT(20),
2652 	WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL	= BIT(21),
2653 	WIPHY_FLAG_SUPPORTS_5_10_MHZ		= BIT(22),
2654 	WIPHY_FLAG_HAS_CHANNEL_SWITCH		= BIT(23),
2655 };
2656 
2657 /**
2658  * struct ieee80211_iface_limit - limit on certain interface types
2659  * @max: maximum number of interfaces of these types
2660  * @types: interface types (bits)
2661  */
2662 struct ieee80211_iface_limit {
2663 	u16 max;
2664 	u16 types;
2665 };
2666 
2667 /**
2668  * struct ieee80211_iface_combination - possible interface combination
2669  * @limits: limits for the given interface types
2670  * @n_limits: number of limitations
2671  * @num_different_channels: can use up to this many different channels
2672  * @max_interfaces: maximum number of interfaces in total allowed in this
2673  *	group
2674  * @beacon_int_infra_match: In this combination, the beacon intervals
2675  *	between infrastructure and AP types must match. This is required
2676  *	only in special cases.
2677  * @radar_detect_widths: bitmap of channel widths supported for radar detection
2678  * @radar_detect_regions: bitmap of regions supported for radar detection
2679  *
2680  * With this structure the driver can describe which interface
2681  * combinations it supports concurrently.
2682  *
2683  * Examples:
2684  *
2685  * 1. Allow #STA <= 1, #AP <= 1, matching BI, channels = 1, 2 total:
2686  *
2687  *  struct ieee80211_iface_limit limits1[] = {
2688  *	{ .max = 1, .types = BIT(NL80211_IFTYPE_STATION), },
2689  *	{ .max = 1, .types = BIT(NL80211_IFTYPE_AP}, },
2690  *  };
2691  *  struct ieee80211_iface_combination combination1 = {
2692  *	.limits = limits1,
2693  *	.n_limits = ARRAY_SIZE(limits1),
2694  *	.max_interfaces = 2,
2695  *	.beacon_int_infra_match = true,
2696  *  };
2697  *
2698  *
2699  * 2. Allow #{AP, P2P-GO} <= 8, channels = 1, 8 total:
2700  *
2701  *  struct ieee80211_iface_limit limits2[] = {
2702  *	{ .max = 8, .types = BIT(NL80211_IFTYPE_AP) |
2703  *			     BIT(NL80211_IFTYPE_P2P_GO), },
2704  *  };
2705  *  struct ieee80211_iface_combination combination2 = {
2706  *	.limits = limits2,
2707  *	.n_limits = ARRAY_SIZE(limits2),
2708  *	.max_interfaces = 8,
2709  *	.num_different_channels = 1,
2710  *  };
2711  *
2712  *
2713  * 3. Allow #STA <= 1, #{P2P-client,P2P-GO} <= 3 on two channels, 4 total.
2714  *
2715  * This allows for an infrastructure connection and three P2P connections.
2716  *
2717  *  struct ieee80211_iface_limit limits3[] = {
2718  *	{ .max = 1, .types = BIT(NL80211_IFTYPE_STATION), },
2719  *	{ .max = 3, .types = BIT(NL80211_IFTYPE_P2P_GO) |
2720  *			     BIT(NL80211_IFTYPE_P2P_CLIENT), },
2721  *  };
2722  *  struct ieee80211_iface_combination combination3 = {
2723  *	.limits = limits3,
2724  *	.n_limits = ARRAY_SIZE(limits3),
2725  *	.max_interfaces = 4,
2726  *	.num_different_channels = 2,
2727  *  };
2728  */
2729 struct ieee80211_iface_combination {
2730 	const struct ieee80211_iface_limit *limits;
2731 	u32 num_different_channels;
2732 	u16 max_interfaces;
2733 	u8 n_limits;
2734 	bool beacon_int_infra_match;
2735 	u8 radar_detect_widths;
2736 	u8 radar_detect_regions;
2737 };
2738 
2739 struct ieee80211_txrx_stypes {
2740 	u16 tx, rx;
2741 };
2742 
2743 /**
2744  * enum wiphy_wowlan_support_flags - WoWLAN support flags
2745  * @WIPHY_WOWLAN_ANY: supports wakeup for the special "any"
2746  *	trigger that keeps the device operating as-is and
2747  *	wakes up the host on any activity, for example a
2748  *	received packet that passed filtering; note that the
2749  *	packet should be preserved in that case
2750  * @WIPHY_WOWLAN_MAGIC_PKT: supports wakeup on magic packet
2751  *	(see nl80211.h)
2752  * @WIPHY_WOWLAN_DISCONNECT: supports wakeup on disconnect
2753  * @WIPHY_WOWLAN_SUPPORTS_GTK_REKEY: supports GTK rekeying while asleep
2754  * @WIPHY_WOWLAN_GTK_REKEY_FAILURE: supports wakeup on GTK rekey failure
2755  * @WIPHY_WOWLAN_EAP_IDENTITY_REQ: supports wakeup on EAP identity request
2756  * @WIPHY_WOWLAN_4WAY_HANDSHAKE: supports wakeup on 4-way handshake failure
2757  * @WIPHY_WOWLAN_RFKILL_RELEASE: supports wakeup on RF-kill release
2758  */
2759 enum wiphy_wowlan_support_flags {
2760 	WIPHY_WOWLAN_ANY		= BIT(0),
2761 	WIPHY_WOWLAN_MAGIC_PKT		= BIT(1),
2762 	WIPHY_WOWLAN_DISCONNECT		= BIT(2),
2763 	WIPHY_WOWLAN_SUPPORTS_GTK_REKEY	= BIT(3),
2764 	WIPHY_WOWLAN_GTK_REKEY_FAILURE	= BIT(4),
2765 	WIPHY_WOWLAN_EAP_IDENTITY_REQ	= BIT(5),
2766 	WIPHY_WOWLAN_4WAY_HANDSHAKE	= BIT(6),
2767 	WIPHY_WOWLAN_RFKILL_RELEASE	= BIT(7),
2768 };
2769 
2770 struct wiphy_wowlan_tcp_support {
2771 	const struct nl80211_wowlan_tcp_data_token_feature *tok;
2772 	u32 data_payload_max;
2773 	u32 data_interval_max;
2774 	u32 wake_payload_max;
2775 	bool seq;
2776 };
2777 
2778 /**
2779  * struct wiphy_wowlan_support - WoWLAN support data
2780  * @flags: see &enum wiphy_wowlan_support_flags
2781  * @n_patterns: number of supported wakeup patterns
2782  *	(see nl80211.h for the pattern definition)
2783  * @pattern_max_len: maximum length of each pattern
2784  * @pattern_min_len: minimum length of each pattern
2785  * @max_pkt_offset: maximum Rx packet offset
2786  * @tcp: TCP wakeup support information
2787  */
2788 struct wiphy_wowlan_support {
2789 	u32 flags;
2790 	int n_patterns;
2791 	int pattern_max_len;
2792 	int pattern_min_len;
2793 	int max_pkt_offset;
2794 	const struct wiphy_wowlan_tcp_support *tcp;
2795 };
2796 
2797 /**
2798  * struct wiphy_coalesce_support - coalesce support data
2799  * @n_rules: maximum number of coalesce rules
2800  * @max_delay: maximum supported coalescing delay in msecs
2801  * @n_patterns: number of supported patterns in a rule
2802  *	(see nl80211.h for the pattern definition)
2803  * @pattern_max_len: maximum length of each pattern
2804  * @pattern_min_len: minimum length of each pattern
2805  * @max_pkt_offset: maximum Rx packet offset
2806  */
2807 struct wiphy_coalesce_support {
2808 	int n_rules;
2809 	int max_delay;
2810 	int n_patterns;
2811 	int pattern_max_len;
2812 	int pattern_min_len;
2813 	int max_pkt_offset;
2814 };
2815 
2816 /**
2817  * enum wiphy_vendor_command_flags - validation flags for vendor commands
2818  * @WIPHY_VENDOR_CMD_NEED_WDEV: vendor command requires wdev
2819  * @WIPHY_VENDOR_CMD_NEED_NETDEV: vendor command requires netdev
2820  * @WIPHY_VENDOR_CMD_NEED_RUNNING: interface/wdev must be up & running
2821  *	(must be combined with %_WDEV or %_NETDEV)
2822  */
2823 enum wiphy_vendor_command_flags {
2824 	WIPHY_VENDOR_CMD_NEED_WDEV = BIT(0),
2825 	WIPHY_VENDOR_CMD_NEED_NETDEV = BIT(1),
2826 	WIPHY_VENDOR_CMD_NEED_RUNNING = BIT(2),
2827 };
2828 
2829 /**
2830  * struct wiphy_vendor_command - vendor command definition
2831  * @info: vendor command identifying information, as used in nl80211
2832  * @flags: flags, see &enum wiphy_vendor_command_flags
2833  * @doit: callback for the operation, note that wdev is %NULL if the
2834  *	flags didn't ask for a wdev and non-%NULL otherwise; the data
2835  *	pointer may be %NULL if userspace provided no data at all
2836  */
2837 struct wiphy_vendor_command {
2838 	struct nl80211_vendor_cmd_info info;
2839 	u32 flags;
2840 	int (*doit)(struct wiphy *wiphy, struct wireless_dev *wdev,
2841 		    const void *data, int data_len);
2842 };
2843 
2844 /**
2845  * struct wiphy - wireless hardware description
2846  * @reg_notifier: the driver's regulatory notification callback,
2847  *	note that if your driver uses wiphy_apply_custom_regulatory()
2848  *	the reg_notifier's request can be passed as NULL
2849  * @regd: the driver's regulatory domain, if one was requested via
2850  * 	the regulatory_hint() API. This can be used by the driver
2851  *	on the reg_notifier() if it chooses to ignore future
2852  *	regulatory domain changes caused by other drivers.
2853  * @signal_type: signal type reported in &struct cfg80211_bss.
2854  * @cipher_suites: supported cipher suites
2855  * @n_cipher_suites: number of supported cipher suites
2856  * @retry_short: Retry limit for short frames (dot11ShortRetryLimit)
2857  * @retry_long: Retry limit for long frames (dot11LongRetryLimit)
2858  * @frag_threshold: Fragmentation threshold (dot11FragmentationThreshold);
2859  *	-1 = fragmentation disabled, only odd values >= 256 used
2860  * @rts_threshold: RTS threshold (dot11RTSThreshold); -1 = RTS/CTS disabled
2861  * @_net: the network namespace this wiphy currently lives in
2862  * @perm_addr: permanent MAC address of this device
2863  * @addr_mask: If the device supports multiple MAC addresses by masking,
2864  *	set this to a mask with variable bits set to 1, e.g. if the last
2865  *	four bits are variable then set it to 00-00-00-00-00-0f. The actual
2866  *	variable bits shall be determined by the interfaces added, with
2867  *	interfaces not matching the mask being rejected to be brought up.
2868  * @n_addresses: number of addresses in @addresses.
2869  * @addresses: If the device has more than one address, set this pointer
2870  *	to a list of addresses (6 bytes each). The first one will be used
2871  *	by default for perm_addr. In this case, the mask should be set to
2872  *	all-zeroes. In this case it is assumed that the device can handle
2873  *	the same number of arbitrary MAC addresses.
2874  * @registered: protects ->resume and ->suspend sysfs callbacks against
2875  *	unregister hardware
2876  * @debugfsdir: debugfs directory used for this wiphy, will be renamed
2877  *	automatically on wiphy renames
2878  * @dev: (virtual) struct device for this wiphy
2879  * @registered: helps synchronize suspend/resume with wiphy unregister
2880  * @wext: wireless extension handlers
2881  * @priv: driver private data (sized according to wiphy_new() parameter)
2882  * @interface_modes: bitmask of interfaces types valid for this wiphy,
2883  *	must be set by driver
2884  * @iface_combinations: Valid interface combinations array, should not
2885  *	list single interface types.
2886  * @n_iface_combinations: number of entries in @iface_combinations array.
2887  * @software_iftypes: bitmask of software interface types, these are not
2888  *	subject to any restrictions since they are purely managed in SW.
2889  * @flags: wiphy flags, see &enum wiphy_flags
2890  * @regulatory_flags: wiphy regulatory flags, see
2891  *	&enum ieee80211_regulatory_flags
2892  * @features: features advertised to nl80211, see &enum nl80211_feature_flags.
2893  * @bss_priv_size: each BSS struct has private data allocated with it,
2894  *	this variable determines its size
2895  * @max_scan_ssids: maximum number of SSIDs the device can scan for in
2896  *	any given scan
2897  * @max_sched_scan_ssids: maximum number of SSIDs the device can scan
2898  *	for in any given scheduled scan
2899  * @max_match_sets: maximum number of match sets the device can handle
2900  *	when performing a scheduled scan, 0 if filtering is not
2901  *	supported.
2902  * @max_scan_ie_len: maximum length of user-controlled IEs device can
2903  *	add to probe request frames transmitted during a scan, must not
2904  *	include fixed IEs like supported rates
2905  * @max_sched_scan_ie_len: same as max_scan_ie_len, but for scheduled
2906  *	scans
2907  * @coverage_class: current coverage class
2908  * @fw_version: firmware version for ethtool reporting
2909  * @hw_version: hardware version for ethtool reporting
2910  * @max_num_pmkids: maximum number of PMKIDs supported by device
2911  * @privid: a pointer that drivers can use to identify if an arbitrary
2912  *	wiphy is theirs, e.g. in global notifiers
2913  * @bands: information about bands/channels supported by this device
2914  *
2915  * @mgmt_stypes: bitmasks of frame subtypes that can be subscribed to or
2916  *	transmitted through nl80211, points to an array indexed by interface
2917  *	type
2918  *
2919  * @available_antennas_tx: bitmap of antennas which are available to be
2920  *	configured as TX antennas. Antenna configuration commands will be
2921  *	rejected unless this or @available_antennas_rx is set.
2922  *
2923  * @available_antennas_rx: bitmap of antennas which are available to be
2924  *	configured as RX antennas. Antenna configuration commands will be
2925  *	rejected unless this or @available_antennas_tx is set.
2926  *
2927  * @probe_resp_offload:
2928  *	 Bitmap of supported protocols for probe response offloading.
2929  *	 See &enum nl80211_probe_resp_offload_support_attr. Only valid
2930  *	 when the wiphy flag @WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD is set.
2931  *
2932  * @max_remain_on_channel_duration: Maximum time a remain-on-channel operation
2933  *	may request, if implemented.
2934  *
2935  * @wowlan: WoWLAN support information
2936  * @wowlan_config: current WoWLAN configuration; this should usually not be
2937  *	used since access to it is necessarily racy, use the parameter passed
2938  *	to the suspend() operation instead.
2939  *
2940  * @ap_sme_capa: AP SME capabilities, flags from &enum nl80211_ap_sme_features.
2941  * @ht_capa_mod_mask:  Specify what ht_cap values can be over-ridden.
2942  *	If null, then none can be over-ridden.
2943  * @vht_capa_mod_mask:  Specify what VHT capabilities can be over-ridden.
2944  *	If null, then none can be over-ridden.
2945  *
2946  * @max_acl_mac_addrs: Maximum number of MAC addresses that the device
2947  *	supports for ACL.
2948  *
2949  * @extended_capabilities: extended capabilities supported by the driver,
2950  *	additional capabilities might be supported by userspace; these are
2951  *	the 802.11 extended capabilities ("Extended Capabilities element")
2952  *	and are in the same format as in the information element. See
2953  *	802.11-2012 8.4.2.29 for the defined fields.
2954  * @extended_capabilities_mask: mask of the valid values
2955  * @extended_capabilities_len: length of the extended capabilities
2956  * @coalesce: packet coalescing support information
2957  *
2958  * @vendor_commands: array of vendor commands supported by the hardware
2959  * @n_vendor_commands: number of vendor commands
2960  * @vendor_events: array of vendor events supported by the hardware
2961  * @n_vendor_events: number of vendor events
2962  *
2963  * @max_ap_assoc_sta: maximum number of associated stations supported in AP mode
2964  *	(including P2P GO) or 0 to indicate no such limit is advertised. The
2965  *	driver is allowed to advertise a theoretical limit that it can reach in
2966  *	some cases, but may not always reach.
2967  *
2968  * @max_num_csa_counters: Number of supported csa_counters in beacons
2969  *	and probe responses.  This value should be set if the driver
2970  *	wishes to limit the number of csa counters. Default (0) means
2971  *	infinite.
2972  * @max_adj_channel_rssi_comp: max offset of between the channel on which the
2973  *	frame was sent and the channel on which the frame was heard for which
2974  *	the reported rssi is still valid. If a driver is able to compensate the
2975  *	low rssi when a frame is heard on different channel, then it should set
2976  *	this variable to the maximal offset for which it can compensate.
2977  *	This value should be set in MHz.
2978  */
2979 struct wiphy {
2980 	/* assign these fields before you register the wiphy */
2981 
2982 	/* permanent MAC address(es) */
2983 	u8 perm_addr[ETH_ALEN];
2984 	u8 addr_mask[ETH_ALEN];
2985 
2986 	struct mac_address *addresses;
2987 
2988 	const struct ieee80211_txrx_stypes *mgmt_stypes;
2989 
2990 	const struct ieee80211_iface_combination *iface_combinations;
2991 	int n_iface_combinations;
2992 	u16 software_iftypes;
2993 
2994 	u16 n_addresses;
2995 
2996 	/* Supported interface modes, OR together BIT(NL80211_IFTYPE_...) */
2997 	u16 interface_modes;
2998 
2999 	u16 max_acl_mac_addrs;
3000 
3001 	u32 flags, regulatory_flags, features;
3002 
3003 	u32 ap_sme_capa;
3004 
3005 	enum cfg80211_signal_type signal_type;
3006 
3007 	int bss_priv_size;
3008 	u8 max_scan_ssids;
3009 	u8 max_sched_scan_ssids;
3010 	u8 max_match_sets;
3011 	u16 max_scan_ie_len;
3012 	u16 max_sched_scan_ie_len;
3013 
3014 	int n_cipher_suites;
3015 	const u32 *cipher_suites;
3016 
3017 	u8 retry_short;
3018 	u8 retry_long;
3019 	u32 frag_threshold;
3020 	u32 rts_threshold;
3021 	u8 coverage_class;
3022 
3023 	char fw_version[ETHTOOL_FWVERS_LEN];
3024 	u32 hw_version;
3025 
3026 #ifdef CONFIG_PM
3027 	const struct wiphy_wowlan_support *wowlan;
3028 	struct cfg80211_wowlan *wowlan_config;
3029 #endif
3030 
3031 	u16 max_remain_on_channel_duration;
3032 
3033 	u8 max_num_pmkids;
3034 
3035 	u32 available_antennas_tx;
3036 	u32 available_antennas_rx;
3037 
3038 	/*
3039 	 * Bitmap of supported protocols for probe response offloading
3040 	 * see &enum nl80211_probe_resp_offload_support_attr. Only valid
3041 	 * when the wiphy flag @WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD is set.
3042 	 */
3043 	u32 probe_resp_offload;
3044 
3045 	const u8 *extended_capabilities, *extended_capabilities_mask;
3046 	u8 extended_capabilities_len;
3047 
3048 	/* If multiple wiphys are registered and you're handed e.g.
3049 	 * a regular netdev with assigned ieee80211_ptr, you won't
3050 	 * know whether it points to a wiphy your driver has registered
3051 	 * or not. Assign this to something global to your driver to
3052 	 * help determine whether you own this wiphy or not. */
3053 	const void *privid;
3054 
3055 	struct ieee80211_supported_band *bands[IEEE80211_NUM_BANDS];
3056 
3057 	/* Lets us get back the wiphy on the callback */
3058 	void (*reg_notifier)(struct wiphy *wiphy,
3059 			     struct regulatory_request *request);
3060 
3061 	/* fields below are read-only, assigned by cfg80211 */
3062 
3063 	const struct ieee80211_regdomain __rcu *regd;
3064 
3065 	/* the item in /sys/class/ieee80211/ points to this,
3066 	 * you need use set_wiphy_dev() (see below) */
3067 	struct device dev;
3068 
3069 	/* protects ->resume, ->suspend sysfs callbacks against unregister hw */
3070 	bool registered;
3071 
3072 	/* dir in debugfs: ieee80211/<wiphyname> */
3073 	struct dentry *debugfsdir;
3074 
3075 	const struct ieee80211_ht_cap *ht_capa_mod_mask;
3076 	const struct ieee80211_vht_cap *vht_capa_mod_mask;
3077 
3078 #ifdef CONFIG_NET_NS
3079 	/* the network namespace this phy lives in currently */
3080 	struct net *_net;
3081 #endif
3082 
3083 #ifdef CONFIG_CFG80211_WEXT
3084 	const struct iw_handler_def *wext;
3085 #endif
3086 
3087 	const struct wiphy_coalesce_support *coalesce;
3088 
3089 	const struct wiphy_vendor_command *vendor_commands;
3090 	const struct nl80211_vendor_cmd_info *vendor_events;
3091 	int n_vendor_commands, n_vendor_events;
3092 
3093 	u16 max_ap_assoc_sta;
3094 
3095 	u8 max_num_csa_counters;
3096 	u8 max_adj_channel_rssi_comp;
3097 
3098 	char priv[0] __aligned(NETDEV_ALIGN);
3099 };
3100 
3101 static inline struct net *wiphy_net(struct wiphy *wiphy)
3102 {
3103 	return read_pnet(&wiphy->_net);
3104 }
3105 
3106 static inline void wiphy_net_set(struct wiphy *wiphy, struct net *net)
3107 {
3108 	write_pnet(&wiphy->_net, net);
3109 }
3110 
3111 /**
3112  * wiphy_priv - return priv from wiphy
3113  *
3114  * @wiphy: the wiphy whose priv pointer to return
3115  * Return: The priv of @wiphy.
3116  */
3117 static inline void *wiphy_priv(struct wiphy *wiphy)
3118 {
3119 	BUG_ON(!wiphy);
3120 	return &wiphy->priv;
3121 }
3122 
3123 /**
3124  * priv_to_wiphy - return the wiphy containing the priv
3125  *
3126  * @priv: a pointer previously returned by wiphy_priv
3127  * Return: The wiphy of @priv.
3128  */
3129 static inline struct wiphy *priv_to_wiphy(void *priv)
3130 {
3131 	BUG_ON(!priv);
3132 	return container_of(priv, struct wiphy, priv);
3133 }
3134 
3135 /**
3136  * set_wiphy_dev - set device pointer for wiphy
3137  *
3138  * @wiphy: The wiphy whose device to bind
3139  * @dev: The device to parent it to
3140  */
3141 static inline void set_wiphy_dev(struct wiphy *wiphy, struct device *dev)
3142 {
3143 	wiphy->dev.parent = dev;
3144 }
3145 
3146 /**
3147  * wiphy_dev - get wiphy dev pointer
3148  *
3149  * @wiphy: The wiphy whose device struct to look up
3150  * Return: The dev of @wiphy.
3151  */
3152 static inline struct device *wiphy_dev(struct wiphy *wiphy)
3153 {
3154 	return wiphy->dev.parent;
3155 }
3156 
3157 /**
3158  * wiphy_name - get wiphy name
3159  *
3160  * @wiphy: The wiphy whose name to return
3161  * Return: The name of @wiphy.
3162  */
3163 static inline const char *wiphy_name(const struct wiphy *wiphy)
3164 {
3165 	return dev_name(&wiphy->dev);
3166 }
3167 
3168 /**
3169  * wiphy_new - create a new wiphy for use with cfg80211
3170  *
3171  * @ops: The configuration operations for this device
3172  * @sizeof_priv: The size of the private area to allocate
3173  *
3174  * Create a new wiphy and associate the given operations with it.
3175  * @sizeof_priv bytes are allocated for private use.
3176  *
3177  * Return: A pointer to the new wiphy. This pointer must be
3178  * assigned to each netdev's ieee80211_ptr for proper operation.
3179  */
3180 struct wiphy *wiphy_new(const struct cfg80211_ops *ops, int sizeof_priv);
3181 
3182 /**
3183  * wiphy_register - register a wiphy with cfg80211
3184  *
3185  * @wiphy: The wiphy to register.
3186  *
3187  * Return: A non-negative wiphy index or a negative error code.
3188  */
3189 int wiphy_register(struct wiphy *wiphy);
3190 
3191 /**
3192  * wiphy_unregister - deregister a wiphy from cfg80211
3193  *
3194  * @wiphy: The wiphy to unregister.
3195  *
3196  * After this call, no more requests can be made with this priv
3197  * pointer, but the call may sleep to wait for an outstanding
3198  * request that is being handled.
3199  */
3200 void wiphy_unregister(struct wiphy *wiphy);
3201 
3202 /**
3203  * wiphy_free - free wiphy
3204  *
3205  * @wiphy: The wiphy to free
3206  */
3207 void wiphy_free(struct wiphy *wiphy);
3208 
3209 /* internal structs */
3210 struct cfg80211_conn;
3211 struct cfg80211_internal_bss;
3212 struct cfg80211_cached_keys;
3213 
3214 /**
3215  * struct wireless_dev - wireless device state
3216  *
3217  * For netdevs, this structure must be allocated by the driver
3218  * that uses the ieee80211_ptr field in struct net_device (this
3219  * is intentional so it can be allocated along with the netdev.)
3220  * It need not be registered then as netdev registration will
3221  * be intercepted by cfg80211 to see the new wireless device.
3222  *
3223  * For non-netdev uses, it must also be allocated by the driver
3224  * in response to the cfg80211 callbacks that require it, as
3225  * there's no netdev registration in that case it may not be
3226  * allocated outside of callback operations that return it.
3227  *
3228  * @wiphy: pointer to hardware description
3229  * @iftype: interface type
3230  * @list: (private) Used to collect the interfaces
3231  * @netdev: (private) Used to reference back to the netdev, may be %NULL
3232  * @identifier: (private) Identifier used in nl80211 to identify this
3233  *	wireless device if it has no netdev
3234  * @current_bss: (private) Used by the internal configuration code
3235  * @chandef: (private) Used by the internal configuration code to track
3236  *	the user-set channel definition.
3237  * @preset_chandef: (private) Used by the internal configuration code to
3238  *	track the channel to be used for AP later
3239  * @bssid: (private) Used by the internal configuration code
3240  * @ssid: (private) Used by the internal configuration code
3241  * @ssid_len: (private) Used by the internal configuration code
3242  * @mesh_id_len: (private) Used by the internal configuration code
3243  * @mesh_id_up_len: (private) Used by the internal configuration code
3244  * @wext: (private) Used by the internal wireless extensions compat code
3245  * @use_4addr: indicates 4addr mode is used on this interface, must be
3246  *	set by driver (if supported) on add_interface BEFORE registering the
3247  *	netdev and may otherwise be used by driver read-only, will be update
3248  *	by cfg80211 on change_interface
3249  * @mgmt_registrations: list of registrations for management frames
3250  * @mgmt_registrations_lock: lock for the list
3251  * @mtx: mutex used to lock data in this struct, may be used by drivers
3252  *	and some API functions require it held
3253  * @beacon_interval: beacon interval used on this device for transmitting
3254  *	beacons, 0 when not valid
3255  * @address: The address for this device, valid only if @netdev is %NULL
3256  * @p2p_started: true if this is a P2P Device that has been started
3257  * @cac_started: true if DFS channel availability check has been started
3258  * @cac_start_time: timestamp (jiffies) when the dfs state was entered.
3259  * @cac_time_ms: CAC time in ms
3260  * @ps: powersave mode is enabled
3261  * @ps_timeout: dynamic powersave timeout
3262  * @ap_unexpected_nlportid: (private) netlink port ID of application
3263  *	registered for unexpected class 3 frames (AP mode)
3264  * @conn: (private) cfg80211 software SME connection state machine data
3265  * @connect_keys: (private) keys to set after connection is established
3266  * @ibss_fixed: (private) IBSS is using fixed BSSID
3267  * @ibss_dfs_possible: (private) IBSS may change to a DFS channel
3268  * @event_list: (private) list for internal event processing
3269  * @event_lock: (private) lock for event list
3270  * @owner_nlportid: (private) owner socket port ID
3271  */
3272 struct wireless_dev {
3273 	struct wiphy *wiphy;
3274 	enum nl80211_iftype iftype;
3275 
3276 	/* the remainder of this struct should be private to cfg80211 */
3277 	struct list_head list;
3278 	struct net_device *netdev;
3279 
3280 	u32 identifier;
3281 
3282 	struct list_head mgmt_registrations;
3283 	spinlock_t mgmt_registrations_lock;
3284 
3285 	struct mutex mtx;
3286 
3287 	bool use_4addr, p2p_started;
3288 
3289 	u8 address[ETH_ALEN] __aligned(sizeof(u16));
3290 
3291 	/* currently used for IBSS and SME - might be rearranged later */
3292 	u8 ssid[IEEE80211_MAX_SSID_LEN];
3293 	u8 ssid_len, mesh_id_len, mesh_id_up_len;
3294 	struct cfg80211_conn *conn;
3295 	struct cfg80211_cached_keys *connect_keys;
3296 
3297 	struct list_head event_list;
3298 	spinlock_t event_lock;
3299 
3300 	struct cfg80211_internal_bss *current_bss; /* associated / joined */
3301 	struct cfg80211_chan_def preset_chandef;
3302 	struct cfg80211_chan_def chandef;
3303 
3304 	bool ibss_fixed;
3305 	bool ibss_dfs_possible;
3306 
3307 	bool ps;
3308 	int ps_timeout;
3309 
3310 	int beacon_interval;
3311 
3312 	u32 ap_unexpected_nlportid;
3313 
3314 	bool cac_started;
3315 	unsigned long cac_start_time;
3316 	unsigned int cac_time_ms;
3317 
3318 	u32 owner_nlportid;
3319 
3320 #ifdef CONFIG_CFG80211_WEXT
3321 	/* wext data */
3322 	struct {
3323 		struct cfg80211_ibss_params ibss;
3324 		struct cfg80211_connect_params connect;
3325 		struct cfg80211_cached_keys *keys;
3326 		const u8 *ie;
3327 		size_t ie_len;
3328 		u8 bssid[ETH_ALEN], prev_bssid[ETH_ALEN];
3329 		u8 ssid[IEEE80211_MAX_SSID_LEN];
3330 		s8 default_key, default_mgmt_key;
3331 		bool prev_bssid_valid;
3332 	} wext;
3333 #endif
3334 };
3335 
3336 static inline u8 *wdev_address(struct wireless_dev *wdev)
3337 {
3338 	if (wdev->netdev)
3339 		return wdev->netdev->dev_addr;
3340 	return wdev->address;
3341 }
3342 
3343 /**
3344  * wdev_priv - return wiphy priv from wireless_dev
3345  *
3346  * @wdev: The wireless device whose wiphy's priv pointer to return
3347  * Return: The wiphy priv of @wdev.
3348  */
3349 static inline void *wdev_priv(struct wireless_dev *wdev)
3350 {
3351 	BUG_ON(!wdev);
3352 	return wiphy_priv(wdev->wiphy);
3353 }
3354 
3355 /**
3356  * DOC: Utility functions
3357  *
3358  * cfg80211 offers a number of utility functions that can be useful.
3359  */
3360 
3361 /**
3362  * ieee80211_channel_to_frequency - convert channel number to frequency
3363  * @chan: channel number
3364  * @band: band, necessary due to channel number overlap
3365  * Return: The corresponding frequency (in MHz), or 0 if the conversion failed.
3366  */
3367 int ieee80211_channel_to_frequency(int chan, enum ieee80211_band band);
3368 
3369 /**
3370  * ieee80211_frequency_to_channel - convert frequency to channel number
3371  * @freq: center frequency
3372  * Return: The corresponding channel, or 0 if the conversion failed.
3373  */
3374 int ieee80211_frequency_to_channel(int freq);
3375 
3376 /*
3377  * Name indirection necessary because the ieee80211 code also has
3378  * a function named "ieee80211_get_channel", so if you include
3379  * cfg80211's header file you get cfg80211's version, if you try
3380  * to include both header files you'll (rightfully!) get a symbol
3381  * clash.
3382  */
3383 struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy,
3384 						  int freq);
3385 /**
3386  * ieee80211_get_channel - get channel struct from wiphy for specified frequency
3387  * @wiphy: the struct wiphy to get the channel for
3388  * @freq: the center frequency of the channel
3389  * Return: The channel struct from @wiphy at @freq.
3390  */
3391 static inline struct ieee80211_channel *
3392 ieee80211_get_channel(struct wiphy *wiphy, int freq)
3393 {
3394 	return __ieee80211_get_channel(wiphy, freq);
3395 }
3396 
3397 /**
3398  * ieee80211_get_response_rate - get basic rate for a given rate
3399  *
3400  * @sband: the band to look for rates in
3401  * @basic_rates: bitmap of basic rates
3402  * @bitrate: the bitrate for which to find the basic rate
3403  *
3404  * Return: The basic rate corresponding to a given bitrate, that
3405  * is the next lower bitrate contained in the basic rate map,
3406  * which is, for this function, given as a bitmap of indices of
3407  * rates in the band's bitrate table.
3408  */
3409 struct ieee80211_rate *
3410 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
3411 			    u32 basic_rates, int bitrate);
3412 
3413 /**
3414  * ieee80211_mandatory_rates - get mandatory rates for a given band
3415  * @sband: the band to look for rates in
3416  * @scan_width: width of the control channel
3417  *
3418  * This function returns a bitmap of the mandatory rates for the given
3419  * band, bits are set according to the rate position in the bitrates array.
3420  */
3421 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
3422 			      enum nl80211_bss_scan_width scan_width);
3423 
3424 /*
3425  * Radiotap parsing functions -- for controlled injection support
3426  *
3427  * Implemented in net/wireless/radiotap.c
3428  * Documentation in Documentation/networking/radiotap-headers.txt
3429  */
3430 
3431 struct radiotap_align_size {
3432 	uint8_t align:4, size:4;
3433 };
3434 
3435 struct ieee80211_radiotap_namespace {
3436 	const struct radiotap_align_size *align_size;
3437 	int n_bits;
3438 	uint32_t oui;
3439 	uint8_t subns;
3440 };
3441 
3442 struct ieee80211_radiotap_vendor_namespaces {
3443 	const struct ieee80211_radiotap_namespace *ns;
3444 	int n_ns;
3445 };
3446 
3447 /**
3448  * struct ieee80211_radiotap_iterator - tracks walk thru present radiotap args
3449  * @this_arg_index: index of current arg, valid after each successful call
3450  *	to ieee80211_radiotap_iterator_next()
3451  * @this_arg: pointer to current radiotap arg; it is valid after each
3452  *	call to ieee80211_radiotap_iterator_next() but also after
3453  *	ieee80211_radiotap_iterator_init() where it will point to
3454  *	the beginning of the actual data portion
3455  * @this_arg_size: length of the current arg, for convenience
3456  * @current_namespace: pointer to the current namespace definition
3457  *	(or internally %NULL if the current namespace is unknown)
3458  * @is_radiotap_ns: indicates whether the current namespace is the default
3459  *	radiotap namespace or not
3460  *
3461  * @_rtheader: pointer to the radiotap header we are walking through
3462  * @_max_length: length of radiotap header in cpu byte ordering
3463  * @_arg_index: next argument index
3464  * @_arg: next argument pointer
3465  * @_next_bitmap: internal pointer to next present u32
3466  * @_bitmap_shifter: internal shifter for curr u32 bitmap, b0 set == arg present
3467  * @_vns: vendor namespace definitions
3468  * @_next_ns_data: beginning of the next namespace's data
3469  * @_reset_on_ext: internal; reset the arg index to 0 when going to the
3470  *	next bitmap word
3471  *
3472  * Describes the radiotap parser state. Fields prefixed with an underscore
3473  * must not be used by users of the parser, only by the parser internally.
3474  */
3475 
3476 struct ieee80211_radiotap_iterator {
3477 	struct ieee80211_radiotap_header *_rtheader;
3478 	const struct ieee80211_radiotap_vendor_namespaces *_vns;
3479 	const struct ieee80211_radiotap_namespace *current_namespace;
3480 
3481 	unsigned char *_arg, *_next_ns_data;
3482 	__le32 *_next_bitmap;
3483 
3484 	unsigned char *this_arg;
3485 	int this_arg_index;
3486 	int this_arg_size;
3487 
3488 	int is_radiotap_ns;
3489 
3490 	int _max_length;
3491 	int _arg_index;
3492 	uint32_t _bitmap_shifter;
3493 	int _reset_on_ext;
3494 };
3495 
3496 int
3497 ieee80211_radiotap_iterator_init(struct ieee80211_radiotap_iterator *iterator,
3498 				 struct ieee80211_radiotap_header *radiotap_header,
3499 				 int max_length,
3500 				 const struct ieee80211_radiotap_vendor_namespaces *vns);
3501 
3502 int
3503 ieee80211_radiotap_iterator_next(struct ieee80211_radiotap_iterator *iterator);
3504 
3505 
3506 extern const unsigned char rfc1042_header[6];
3507 extern const unsigned char bridge_tunnel_header[6];
3508 
3509 /**
3510  * ieee80211_get_hdrlen_from_skb - get header length from data
3511  *
3512  * @skb: the frame
3513  *
3514  * Given an skb with a raw 802.11 header at the data pointer this function
3515  * returns the 802.11 header length.
3516  *
3517  * Return: The 802.11 header length in bytes (not including encryption
3518  * headers). Or 0 if the data in the sk_buff is too short to contain a valid
3519  * 802.11 header.
3520  */
3521 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb);
3522 
3523 /**
3524  * ieee80211_hdrlen - get header length in bytes from frame control
3525  * @fc: frame control field in little-endian format
3526  * Return: The header length in bytes.
3527  */
3528 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc);
3529 
3530 /**
3531  * ieee80211_get_mesh_hdrlen - get mesh extension header length
3532  * @meshhdr: the mesh extension header, only the flags field
3533  *	(first byte) will be accessed
3534  * Return: The length of the extension header, which is always at
3535  * least 6 bytes and at most 18 if address 5 and 6 are present.
3536  */
3537 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr);
3538 
3539 /**
3540  * DOC: Data path helpers
3541  *
3542  * In addition to generic utilities, cfg80211 also offers
3543  * functions that help implement the data path for devices
3544  * that do not do the 802.11/802.3 conversion on the device.
3545  */
3546 
3547 /**
3548  * ieee80211_data_to_8023 - convert an 802.11 data frame to 802.3
3549  * @skb: the 802.11 data frame
3550  * @addr: the device MAC address
3551  * @iftype: the virtual interface type
3552  * Return: 0 on success. Non-zero on error.
3553  */
3554 int ieee80211_data_to_8023(struct sk_buff *skb, const u8 *addr,
3555 			   enum nl80211_iftype iftype);
3556 
3557 /**
3558  * ieee80211_data_from_8023 - convert an 802.3 frame to 802.11
3559  * @skb: the 802.3 frame
3560  * @addr: the device MAC address
3561  * @iftype: the virtual interface type
3562  * @bssid: the network bssid (used only for iftype STATION and ADHOC)
3563  * @qos: build 802.11 QoS data frame
3564  * Return: 0 on success, or a negative error code.
3565  */
3566 int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr,
3567 			     enum nl80211_iftype iftype, const u8 *bssid,
3568 			     bool qos);
3569 
3570 /**
3571  * ieee80211_amsdu_to_8023s - decode an IEEE 802.11n A-MSDU frame
3572  *
3573  * Decode an IEEE 802.11n A-MSDU frame and convert it to a list of
3574  * 802.3 frames. The @list will be empty if the decode fails. The
3575  * @skb is consumed after the function returns.
3576  *
3577  * @skb: The input IEEE 802.11n A-MSDU frame.
3578  * @list: The output list of 802.3 frames. It must be allocated and
3579  *	initialized by by the caller.
3580  * @addr: The device MAC address.
3581  * @iftype: The device interface type.
3582  * @extra_headroom: The hardware extra headroom for SKBs in the @list.
3583  * @has_80211_header: Set it true if SKB is with IEEE 802.11 header.
3584  */
3585 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
3586 			      const u8 *addr, enum nl80211_iftype iftype,
3587 			      const unsigned int extra_headroom,
3588 			      bool has_80211_header);
3589 
3590 /**
3591  * cfg80211_classify8021d - determine the 802.1p/1d tag for a data frame
3592  * @skb: the data frame
3593  * @qos_map: Interworking QoS mapping or %NULL if not in use
3594  * Return: The 802.1p/1d tag.
3595  */
3596 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
3597 				    struct cfg80211_qos_map *qos_map);
3598 
3599 /**
3600  * cfg80211_find_ie - find information element in data
3601  *
3602  * @eid: element ID
3603  * @ies: data consisting of IEs
3604  * @len: length of data
3605  *
3606  * Return: %NULL if the element ID could not be found or if
3607  * the element is invalid (claims to be longer than the given
3608  * data), or a pointer to the first byte of the requested
3609  * element, that is the byte containing the element ID.
3610  *
3611  * Note: There are no checks on the element length other than
3612  * having to fit into the given data.
3613  */
3614 const u8 *cfg80211_find_ie(u8 eid, const u8 *ies, int len);
3615 
3616 /**
3617  * cfg80211_find_vendor_ie - find vendor specific information element in data
3618  *
3619  * @oui: vendor OUI
3620  * @oui_type: vendor-specific OUI type
3621  * @ies: data consisting of IEs
3622  * @len: length of data
3623  *
3624  * Return: %NULL if the vendor specific element ID could not be found or if the
3625  * element is invalid (claims to be longer than the given data), or a pointer to
3626  * the first byte of the requested element, that is the byte containing the
3627  * element ID.
3628  *
3629  * Note: There are no checks on the element length other than having to fit into
3630  * the given data.
3631  */
3632 const u8 *cfg80211_find_vendor_ie(unsigned int oui, u8 oui_type,
3633 				  const u8 *ies, int len);
3634 
3635 /**
3636  * DOC: Regulatory enforcement infrastructure
3637  *
3638  * TODO
3639  */
3640 
3641 /**
3642  * regulatory_hint - driver hint to the wireless core a regulatory domain
3643  * @wiphy: the wireless device giving the hint (used only for reporting
3644  *	conflicts)
3645  * @alpha2: the ISO/IEC 3166 alpha2 the driver claims its regulatory domain
3646  * 	should be in. If @rd is set this should be NULL. Note that if you
3647  * 	set this to NULL you should still set rd->alpha2 to some accepted
3648  * 	alpha2.
3649  *
3650  * Wireless drivers can use this function to hint to the wireless core
3651  * what it believes should be the current regulatory domain by
3652  * giving it an ISO/IEC 3166 alpha2 country code it knows its regulatory
3653  * domain should be in or by providing a completely build regulatory domain.
3654  * If the driver provides an ISO/IEC 3166 alpha2 userspace will be queried
3655  * for a regulatory domain structure for the respective country.
3656  *
3657  * The wiphy must have been registered to cfg80211 prior to this call.
3658  * For cfg80211 drivers this means you must first use wiphy_register(),
3659  * for mac80211 drivers you must first use ieee80211_register_hw().
3660  *
3661  * Drivers should check the return value, its possible you can get
3662  * an -ENOMEM.
3663  *
3664  * Return: 0 on success. -ENOMEM.
3665  */
3666 int regulatory_hint(struct wiphy *wiphy, const char *alpha2);
3667 
3668 /**
3669  * wiphy_apply_custom_regulatory - apply a custom driver regulatory domain
3670  * @wiphy: the wireless device we want to process the regulatory domain on
3671  * @regd: the custom regulatory domain to use for this wiphy
3672  *
3673  * Drivers can sometimes have custom regulatory domains which do not apply
3674  * to a specific country. Drivers can use this to apply such custom regulatory
3675  * domains. This routine must be called prior to wiphy registration. The
3676  * custom regulatory domain will be trusted completely and as such previous
3677  * default channel settings will be disregarded. If no rule is found for a
3678  * channel on the regulatory domain the channel will be disabled.
3679  * Drivers using this for a wiphy should also set the wiphy flag
3680  * REGULATORY_CUSTOM_REG or cfg80211 will set it for the wiphy
3681  * that called this helper.
3682  */
3683 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
3684 				   const struct ieee80211_regdomain *regd);
3685 
3686 /**
3687  * freq_reg_info - get regulatory information for the given frequency
3688  * @wiphy: the wiphy for which we want to process this rule for
3689  * @center_freq: Frequency in KHz for which we want regulatory information for
3690  *
3691  * Use this function to get the regulatory rule for a specific frequency on
3692  * a given wireless device. If the device has a specific regulatory domain
3693  * it wants to follow we respect that unless a country IE has been received
3694  * and processed already.
3695  *
3696  * Return: A valid pointer, or, when an error occurs, for example if no rule
3697  * can be found, the return value is encoded using ERR_PTR(). Use IS_ERR() to
3698  * check and PTR_ERR() to obtain the numeric return value. The numeric return
3699  * value will be -ERANGE if we determine the given center_freq does not even
3700  * have a regulatory rule for a frequency range in the center_freq's band.
3701  * See freq_in_rule_band() for our current definition of a band -- this is
3702  * purely subjective and right now it's 802.11 specific.
3703  */
3704 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
3705 					       u32 center_freq);
3706 
3707 /**
3708  * reg_initiator_name - map regulatory request initiator enum to name
3709  * @initiator: the regulatory request initiator
3710  *
3711  * You can use this to map the regulatory request initiator enum to a
3712  * proper string representation.
3713  */
3714 const char *reg_initiator_name(enum nl80211_reg_initiator initiator);
3715 
3716 /*
3717  * callbacks for asynchronous cfg80211 methods, notification
3718  * functions and BSS handling helpers
3719  */
3720 
3721 /**
3722  * cfg80211_scan_done - notify that scan finished
3723  *
3724  * @request: the corresponding scan request
3725  * @aborted: set to true if the scan was aborted for any reason,
3726  *	userspace will be notified of that
3727  */
3728 void cfg80211_scan_done(struct cfg80211_scan_request *request, bool aborted);
3729 
3730 /**
3731  * cfg80211_sched_scan_results - notify that new scan results are available
3732  *
3733  * @wiphy: the wiphy which got scheduled scan results
3734  */
3735 void cfg80211_sched_scan_results(struct wiphy *wiphy);
3736 
3737 /**
3738  * cfg80211_sched_scan_stopped - notify that the scheduled scan has stopped
3739  *
3740  * @wiphy: the wiphy on which the scheduled scan stopped
3741  *
3742  * The driver can call this function to inform cfg80211 that the
3743  * scheduled scan had to be stopped, for whatever reason.  The driver
3744  * is then called back via the sched_scan_stop operation when done.
3745  */
3746 void cfg80211_sched_scan_stopped(struct wiphy *wiphy);
3747 
3748 /**
3749  * cfg80211_sched_scan_stopped_rtnl - notify that the scheduled scan has stopped
3750  *
3751  * @wiphy: the wiphy on which the scheduled scan stopped
3752  *
3753  * The driver can call this function to inform cfg80211 that the
3754  * scheduled scan had to be stopped, for whatever reason.  The driver
3755  * is then called back via the sched_scan_stop operation when done.
3756  * This function should be called with rtnl locked.
3757  */
3758 void cfg80211_sched_scan_stopped_rtnl(struct wiphy *wiphy);
3759 
3760 /**
3761  * cfg80211_inform_bss_width_frame - inform cfg80211 of a received BSS frame
3762  *
3763  * @wiphy: the wiphy reporting the BSS
3764  * @rx_channel: The channel the frame was received on
3765  * @scan_width: width of the control channel
3766  * @mgmt: the management frame (probe response or beacon)
3767  * @len: length of the management frame
3768  * @signal: the signal strength, type depends on the wiphy's signal_type
3769  * @gfp: context flags
3770  *
3771  * This informs cfg80211 that BSS information was found and
3772  * the BSS should be updated/added.
3773  *
3774  * Return: A referenced struct, must be released with cfg80211_put_bss()!
3775  * Or %NULL on error.
3776  */
3777 struct cfg80211_bss * __must_check
3778 cfg80211_inform_bss_width_frame(struct wiphy *wiphy,
3779 				struct ieee80211_channel *rx_channel,
3780 				enum nl80211_bss_scan_width scan_width,
3781 				struct ieee80211_mgmt *mgmt, size_t len,
3782 				s32 signal, gfp_t gfp);
3783 
3784 static inline struct cfg80211_bss * __must_check
3785 cfg80211_inform_bss_frame(struct wiphy *wiphy,
3786 			  struct ieee80211_channel *rx_channel,
3787 			  struct ieee80211_mgmt *mgmt, size_t len,
3788 			  s32 signal, gfp_t gfp)
3789 {
3790 	return cfg80211_inform_bss_width_frame(wiphy, rx_channel,
3791 					       NL80211_BSS_CHAN_WIDTH_20,
3792 					       mgmt, len, signal, gfp);
3793 }
3794 
3795 /**
3796  * enum cfg80211_bss_frame_type - frame type that the BSS data came from
3797  * @CFG80211_BSS_FTYPE_UNKNOWN: driver doesn't know whether the data is
3798  *	from a beacon or probe response
3799  * @CFG80211_BSS_FTYPE_BEACON: data comes from a beacon
3800  * @CFG80211_BSS_FTYPE_PRESP: data comes from a probe response
3801  */
3802 enum cfg80211_bss_frame_type {
3803 	CFG80211_BSS_FTYPE_UNKNOWN,
3804 	CFG80211_BSS_FTYPE_BEACON,
3805 	CFG80211_BSS_FTYPE_PRESP,
3806 };
3807 
3808 /**
3809  * cfg80211_inform_bss_width - inform cfg80211 of a new BSS
3810  *
3811  * @wiphy: the wiphy reporting the BSS
3812  * @rx_channel: The channel the frame was received on
3813  * @scan_width: width of the control channel
3814  * @ftype: frame type (if known)
3815  * @bssid: the BSSID of the BSS
3816  * @tsf: the TSF sent by the peer in the beacon/probe response (or 0)
3817  * @capability: the capability field sent by the peer
3818  * @beacon_interval: the beacon interval announced by the peer
3819  * @ie: additional IEs sent by the peer
3820  * @ielen: length of the additional IEs
3821  * @signal: the signal strength, type depends on the wiphy's signal_type
3822  * @gfp: context flags
3823  *
3824  * This informs cfg80211 that BSS information was found and
3825  * the BSS should be updated/added.
3826  *
3827  * Return: A referenced struct, must be released with cfg80211_put_bss()!
3828  * Or %NULL on error.
3829  */
3830 struct cfg80211_bss * __must_check
3831 cfg80211_inform_bss_width(struct wiphy *wiphy,
3832 			  struct ieee80211_channel *rx_channel,
3833 			  enum nl80211_bss_scan_width scan_width,
3834 			  enum cfg80211_bss_frame_type ftype,
3835 			  const u8 *bssid, u64 tsf, u16 capability,
3836 			  u16 beacon_interval, const u8 *ie, size_t ielen,
3837 			  s32 signal, gfp_t gfp);
3838 
3839 static inline struct cfg80211_bss * __must_check
3840 cfg80211_inform_bss(struct wiphy *wiphy,
3841 		    struct ieee80211_channel *rx_channel,
3842 		    enum cfg80211_bss_frame_type ftype,
3843 		    const u8 *bssid, u64 tsf, u16 capability,
3844 		    u16 beacon_interval, const u8 *ie, size_t ielen,
3845 		    s32 signal, gfp_t gfp)
3846 {
3847 	return cfg80211_inform_bss_width(wiphy, rx_channel,
3848 					 NL80211_BSS_CHAN_WIDTH_20, ftype,
3849 					 bssid, tsf, capability,
3850 					 beacon_interval, ie, ielen, signal,
3851 					 gfp);
3852 }
3853 
3854 struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy,
3855 				      struct ieee80211_channel *channel,
3856 				      const u8 *bssid,
3857 				      const u8 *ssid, size_t ssid_len,
3858 				      u16 capa_mask, u16 capa_val);
3859 static inline struct cfg80211_bss *
3860 cfg80211_get_ibss(struct wiphy *wiphy,
3861 		  struct ieee80211_channel *channel,
3862 		  const u8 *ssid, size_t ssid_len)
3863 {
3864 	return cfg80211_get_bss(wiphy, channel, NULL, ssid, ssid_len,
3865 				WLAN_CAPABILITY_IBSS, WLAN_CAPABILITY_IBSS);
3866 }
3867 
3868 /**
3869  * cfg80211_ref_bss - reference BSS struct
3870  * @wiphy: the wiphy this BSS struct belongs to
3871  * @bss: the BSS struct to reference
3872  *
3873  * Increments the refcount of the given BSS struct.
3874  */
3875 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *bss);
3876 
3877 /**
3878  * cfg80211_put_bss - unref BSS struct
3879  * @wiphy: the wiphy this BSS struct belongs to
3880  * @bss: the BSS struct
3881  *
3882  * Decrements the refcount of the given BSS struct.
3883  */
3884 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *bss);
3885 
3886 /**
3887  * cfg80211_unlink_bss - unlink BSS from internal data structures
3888  * @wiphy: the wiphy
3889  * @bss: the bss to remove
3890  *
3891  * This function removes the given BSS from the internal data structures
3892  * thereby making it no longer show up in scan results etc. Use this
3893  * function when you detect a BSS is gone. Normally BSSes will also time
3894  * out, so it is not necessary to use this function at all.
3895  */
3896 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *bss);
3897 
3898 static inline enum nl80211_bss_scan_width
3899 cfg80211_chandef_to_scan_width(const struct cfg80211_chan_def *chandef)
3900 {
3901 	switch (chandef->width) {
3902 	case NL80211_CHAN_WIDTH_5:
3903 		return NL80211_BSS_CHAN_WIDTH_5;
3904 	case NL80211_CHAN_WIDTH_10:
3905 		return NL80211_BSS_CHAN_WIDTH_10;
3906 	default:
3907 		return NL80211_BSS_CHAN_WIDTH_20;
3908 	}
3909 }
3910 
3911 /**
3912  * cfg80211_rx_mlme_mgmt - notification of processed MLME management frame
3913  * @dev: network device
3914  * @buf: authentication frame (header + body)
3915  * @len: length of the frame data
3916  *
3917  * This function is called whenever an authentication, disassociation or
3918  * deauthentication frame has been received and processed in station mode.
3919  * After being asked to authenticate via cfg80211_ops::auth() the driver must
3920  * call either this function or cfg80211_auth_timeout().
3921  * After being asked to associate via cfg80211_ops::assoc() the driver must
3922  * call either this function or cfg80211_auth_timeout().
3923  * While connected, the driver must calls this for received and processed
3924  * disassociation and deauthentication frames. If the frame couldn't be used
3925  * because it was unprotected, the driver must call the function
3926  * cfg80211_rx_unprot_mlme_mgmt() instead.
3927  *
3928  * This function may sleep. The caller must hold the corresponding wdev's mutex.
3929  */
3930 void cfg80211_rx_mlme_mgmt(struct net_device *dev, const u8 *buf, size_t len);
3931 
3932 /**
3933  * cfg80211_auth_timeout - notification of timed out authentication
3934  * @dev: network device
3935  * @addr: The MAC address of the device with which the authentication timed out
3936  *
3937  * This function may sleep. The caller must hold the corresponding wdev's
3938  * mutex.
3939  */
3940 void cfg80211_auth_timeout(struct net_device *dev, const u8 *addr);
3941 
3942 /**
3943  * cfg80211_rx_assoc_resp - notification of processed association response
3944  * @dev: network device
3945  * @bss: the BSS that association was requested with, ownership of the pointer
3946  *	moves to cfg80211 in this call
3947  * @buf: authentication frame (header + body)
3948  * @len: length of the frame data
3949  * @uapsd_queues: bitmap of ACs configured to uapsd. -1 if n/a.
3950  *
3951  * After being asked to associate via cfg80211_ops::assoc() the driver must
3952  * call either this function or cfg80211_auth_timeout().
3953  *
3954  * This function may sleep. The caller must hold the corresponding wdev's mutex.
3955  */
3956 void cfg80211_rx_assoc_resp(struct net_device *dev,
3957 			    struct cfg80211_bss *bss,
3958 			    const u8 *buf, size_t len,
3959 			    int uapsd_queues);
3960 
3961 /**
3962  * cfg80211_assoc_timeout - notification of timed out association
3963  * @dev: network device
3964  * @bss: The BSS entry with which association timed out.
3965  *
3966  * This function may sleep. The caller must hold the corresponding wdev's mutex.
3967  */
3968 void cfg80211_assoc_timeout(struct net_device *dev, struct cfg80211_bss *bss);
3969 
3970 /**
3971  * cfg80211_tx_mlme_mgmt - notification of transmitted deauth/disassoc frame
3972  * @dev: network device
3973  * @buf: 802.11 frame (header + body)
3974  * @len: length of the frame data
3975  *
3976  * This function is called whenever deauthentication has been processed in
3977  * station mode. This includes both received deauthentication frames and
3978  * locally generated ones. This function may sleep. The caller must hold the
3979  * corresponding wdev's mutex.
3980  */
3981 void cfg80211_tx_mlme_mgmt(struct net_device *dev, const u8 *buf, size_t len);
3982 
3983 /**
3984  * cfg80211_rx_unprot_mlme_mgmt - notification of unprotected mlme mgmt frame
3985  * @dev: network device
3986  * @buf: deauthentication frame (header + body)
3987  * @len: length of the frame data
3988  *
3989  * This function is called whenever a received deauthentication or dissassoc
3990  * frame has been dropped in station mode because of MFP being used but the
3991  * frame was not protected. This function may sleep.
3992  */
3993 void cfg80211_rx_unprot_mlme_mgmt(struct net_device *dev,
3994 				  const u8 *buf, size_t len);
3995 
3996 /**
3997  * cfg80211_michael_mic_failure - notification of Michael MIC failure (TKIP)
3998  * @dev: network device
3999  * @addr: The source MAC address of the frame
4000  * @key_type: The key type that the received frame used
4001  * @key_id: Key identifier (0..3). Can be -1 if missing.
4002  * @tsc: The TSC value of the frame that generated the MIC failure (6 octets)
4003  * @gfp: allocation flags
4004  *
4005  * This function is called whenever the local MAC detects a MIC failure in a
4006  * received frame. This matches with MLME-MICHAELMICFAILURE.indication()
4007  * primitive.
4008  */
4009 void cfg80211_michael_mic_failure(struct net_device *dev, const u8 *addr,
4010 				  enum nl80211_key_type key_type, int key_id,
4011 				  const u8 *tsc, gfp_t gfp);
4012 
4013 /**
4014  * cfg80211_ibss_joined - notify cfg80211 that device joined an IBSS
4015  *
4016  * @dev: network device
4017  * @bssid: the BSSID of the IBSS joined
4018  * @channel: the channel of the IBSS joined
4019  * @gfp: allocation flags
4020  *
4021  * This function notifies cfg80211 that the device joined an IBSS or
4022  * switched to a different BSSID. Before this function can be called,
4023  * either a beacon has to have been received from the IBSS, or one of
4024  * the cfg80211_inform_bss{,_frame} functions must have been called
4025  * with the locally generated beacon -- this guarantees that there is
4026  * always a scan result for this IBSS. cfg80211 will handle the rest.
4027  */
4028 void cfg80211_ibss_joined(struct net_device *dev, const u8 *bssid,
4029 			  struct ieee80211_channel *channel, gfp_t gfp);
4030 
4031 /**
4032  * cfg80211_notify_new_candidate - notify cfg80211 of a new mesh peer candidate
4033  *
4034  * @dev: network device
4035  * @macaddr: the MAC address of the new candidate
4036  * @ie: information elements advertised by the peer candidate
4037  * @ie_len: lenght of the information elements buffer
4038  * @gfp: allocation flags
4039  *
4040  * This function notifies cfg80211 that the mesh peer candidate has been
4041  * detected, most likely via a beacon or, less likely, via a probe response.
4042  * cfg80211 then sends a notification to userspace.
4043  */
4044 void cfg80211_notify_new_peer_candidate(struct net_device *dev,
4045 		const u8 *macaddr, const u8 *ie, u8 ie_len, gfp_t gfp);
4046 
4047 /**
4048  * DOC: RFkill integration
4049  *
4050  * RFkill integration in cfg80211 is almost invisible to drivers,
4051  * as cfg80211 automatically registers an rfkill instance for each
4052  * wireless device it knows about. Soft kill is also translated
4053  * into disconnecting and turning all interfaces off, drivers are
4054  * expected to turn off the device when all interfaces are down.
4055  *
4056  * However, devices may have a hard RFkill line, in which case they
4057  * also need to interact with the rfkill subsystem, via cfg80211.
4058  * They can do this with a few helper functions documented here.
4059  */
4060 
4061 /**
4062  * wiphy_rfkill_set_hw_state - notify cfg80211 about hw block state
4063  * @wiphy: the wiphy
4064  * @blocked: block status
4065  */
4066 void wiphy_rfkill_set_hw_state(struct wiphy *wiphy, bool blocked);
4067 
4068 /**
4069  * wiphy_rfkill_start_polling - start polling rfkill
4070  * @wiphy: the wiphy
4071  */
4072 void wiphy_rfkill_start_polling(struct wiphy *wiphy);
4073 
4074 /**
4075  * wiphy_rfkill_stop_polling - stop polling rfkill
4076  * @wiphy: the wiphy
4077  */
4078 void wiphy_rfkill_stop_polling(struct wiphy *wiphy);
4079 
4080 /**
4081  * DOC: Vendor commands
4082  *
4083  * Occasionally, there are special protocol or firmware features that
4084  * can't be implemented very openly. For this and similar cases, the
4085  * vendor command functionality allows implementing the features with
4086  * (typically closed-source) userspace and firmware, using nl80211 as
4087  * the configuration mechanism.
4088  *
4089  * A driver supporting vendor commands must register them as an array
4090  * in struct wiphy, with handlers for each one, each command has an
4091  * OUI and sub command ID to identify it.
4092  *
4093  * Note that this feature should not be (ab)used to implement protocol
4094  * features that could openly be shared across drivers. In particular,
4095  * it must never be required to use vendor commands to implement any
4096  * "normal" functionality that higher-level userspace like connection
4097  * managers etc. need.
4098  */
4099 
4100 struct sk_buff *__cfg80211_alloc_reply_skb(struct wiphy *wiphy,
4101 					   enum nl80211_commands cmd,
4102 					   enum nl80211_attrs attr,
4103 					   int approxlen);
4104 
4105 struct sk_buff *__cfg80211_alloc_event_skb(struct wiphy *wiphy,
4106 					   enum nl80211_commands cmd,
4107 					   enum nl80211_attrs attr,
4108 					   int vendor_event_idx,
4109 					   int approxlen, gfp_t gfp);
4110 
4111 void __cfg80211_send_event_skb(struct sk_buff *skb, gfp_t gfp);
4112 
4113 /**
4114  * cfg80211_vendor_cmd_alloc_reply_skb - allocate vendor command reply
4115  * @wiphy: the wiphy
4116  * @approxlen: an upper bound of the length of the data that will
4117  *	be put into the skb
4118  *
4119  * This function allocates and pre-fills an skb for a reply to
4120  * a vendor command. Since it is intended for a reply, calling
4121  * it outside of a vendor command's doit() operation is invalid.
4122  *
4123  * The returned skb is pre-filled with some identifying data in
4124  * a way that any data that is put into the skb (with skb_put(),
4125  * nla_put() or similar) will end up being within the
4126  * %NL80211_ATTR_VENDOR_DATA attribute, so all that needs to be done
4127  * with the skb is adding data for the corresponding userspace tool
4128  * which can then read that data out of the vendor data attribute.
4129  * You must not modify the skb in any other way.
4130  *
4131  * When done, call cfg80211_vendor_cmd_reply() with the skb and return
4132  * its error code as the result of the doit() operation.
4133  *
4134  * Return: An allocated and pre-filled skb. %NULL if any errors happen.
4135  */
4136 static inline struct sk_buff *
4137 cfg80211_vendor_cmd_alloc_reply_skb(struct wiphy *wiphy, int approxlen)
4138 {
4139 	return __cfg80211_alloc_reply_skb(wiphy, NL80211_CMD_VENDOR,
4140 					  NL80211_ATTR_VENDOR_DATA, approxlen);
4141 }
4142 
4143 /**
4144  * cfg80211_vendor_cmd_reply - send the reply skb
4145  * @skb: The skb, must have been allocated with
4146  *	cfg80211_vendor_cmd_alloc_reply_skb()
4147  *
4148  * Since calling this function will usually be the last thing
4149  * before returning from the vendor command doit() you should
4150  * return the error code.  Note that this function consumes the
4151  * skb regardless of the return value.
4152  *
4153  * Return: An error code or 0 on success.
4154  */
4155 int cfg80211_vendor_cmd_reply(struct sk_buff *skb);
4156 
4157 /**
4158  * cfg80211_vendor_event_alloc - allocate vendor-specific event skb
4159  * @wiphy: the wiphy
4160  * @event_idx: index of the vendor event in the wiphy's vendor_events
4161  * @approxlen: an upper bound of the length of the data that will
4162  *	be put into the skb
4163  * @gfp: allocation flags
4164  *
4165  * This function allocates and pre-fills an skb for an event on the
4166  * vendor-specific multicast group.
4167  *
4168  * When done filling the skb, call cfg80211_vendor_event() with the
4169  * skb to send the event.
4170  *
4171  * Return: An allocated and pre-filled skb. %NULL if any errors happen.
4172  */
4173 static inline struct sk_buff *
4174 cfg80211_vendor_event_alloc(struct wiphy *wiphy, int approxlen,
4175 			    int event_idx, gfp_t gfp)
4176 {
4177 	return __cfg80211_alloc_event_skb(wiphy, NL80211_CMD_VENDOR,
4178 					  NL80211_ATTR_VENDOR_DATA,
4179 					  event_idx, approxlen, gfp);
4180 }
4181 
4182 /**
4183  * cfg80211_vendor_event - send the event
4184  * @skb: The skb, must have been allocated with cfg80211_vendor_event_alloc()
4185  * @gfp: allocation flags
4186  *
4187  * This function sends the given @skb, which must have been allocated
4188  * by cfg80211_vendor_event_alloc(), as an event. It always consumes it.
4189  */
4190 static inline void cfg80211_vendor_event(struct sk_buff *skb, gfp_t gfp)
4191 {
4192 	__cfg80211_send_event_skb(skb, gfp);
4193 }
4194 
4195 #ifdef CONFIG_NL80211_TESTMODE
4196 /**
4197  * DOC: Test mode
4198  *
4199  * Test mode is a set of utility functions to allow drivers to
4200  * interact with driver-specific tools to aid, for instance,
4201  * factory programming.
4202  *
4203  * This chapter describes how drivers interact with it, for more
4204  * information see the nl80211 book's chapter on it.
4205  */
4206 
4207 /**
4208  * cfg80211_testmode_alloc_reply_skb - allocate testmode reply
4209  * @wiphy: the wiphy
4210  * @approxlen: an upper bound of the length of the data that will
4211  *	be put into the skb
4212  *
4213  * This function allocates and pre-fills an skb for a reply to
4214  * the testmode command. Since it is intended for a reply, calling
4215  * it outside of the @testmode_cmd operation is invalid.
4216  *
4217  * The returned skb is pre-filled with the wiphy index and set up in
4218  * a way that any data that is put into the skb (with skb_put(),
4219  * nla_put() or similar) will end up being within the
4220  * %NL80211_ATTR_TESTDATA attribute, so all that needs to be done
4221  * with the skb is adding data for the corresponding userspace tool
4222  * which can then read that data out of the testdata attribute. You
4223  * must not modify the skb in any other way.
4224  *
4225  * When done, call cfg80211_testmode_reply() with the skb and return
4226  * its error code as the result of the @testmode_cmd operation.
4227  *
4228  * Return: An allocated and pre-filled skb. %NULL if any errors happen.
4229  */
4230 static inline struct sk_buff *
4231 cfg80211_testmode_alloc_reply_skb(struct wiphy *wiphy, int approxlen)
4232 {
4233 	return __cfg80211_alloc_reply_skb(wiphy, NL80211_CMD_TESTMODE,
4234 					  NL80211_ATTR_TESTDATA, approxlen);
4235 }
4236 
4237 /**
4238  * cfg80211_testmode_reply - send the reply skb
4239  * @skb: The skb, must have been allocated with
4240  *	cfg80211_testmode_alloc_reply_skb()
4241  *
4242  * Since calling this function will usually be the last thing
4243  * before returning from the @testmode_cmd you should return
4244  * the error code.  Note that this function consumes the skb
4245  * regardless of the return value.
4246  *
4247  * Return: An error code or 0 on success.
4248  */
4249 static inline int cfg80211_testmode_reply(struct sk_buff *skb)
4250 {
4251 	return cfg80211_vendor_cmd_reply(skb);
4252 }
4253 
4254 /**
4255  * cfg80211_testmode_alloc_event_skb - allocate testmode event
4256  * @wiphy: the wiphy
4257  * @approxlen: an upper bound of the length of the data that will
4258  *	be put into the skb
4259  * @gfp: allocation flags
4260  *
4261  * This function allocates and pre-fills an skb for an event on the
4262  * testmode multicast group.
4263  *
4264  * The returned skb is set up in the same way as with
4265  * cfg80211_testmode_alloc_reply_skb() but prepared for an event. As
4266  * there, you should simply add data to it that will then end up in the
4267  * %NL80211_ATTR_TESTDATA attribute. Again, you must not modify the skb
4268  * in any other way.
4269  *
4270  * When done filling the skb, call cfg80211_testmode_event() with the
4271  * skb to send the event.
4272  *
4273  * Return: An allocated and pre-filled skb. %NULL if any errors happen.
4274  */
4275 static inline struct sk_buff *
4276 cfg80211_testmode_alloc_event_skb(struct wiphy *wiphy, int approxlen, gfp_t gfp)
4277 {
4278 	return __cfg80211_alloc_event_skb(wiphy, NL80211_CMD_TESTMODE,
4279 					  NL80211_ATTR_TESTDATA, -1,
4280 					  approxlen, gfp);
4281 }
4282 
4283 /**
4284  * cfg80211_testmode_event - send the event
4285  * @skb: The skb, must have been allocated with
4286  *	cfg80211_testmode_alloc_event_skb()
4287  * @gfp: allocation flags
4288  *
4289  * This function sends the given @skb, which must have been allocated
4290  * by cfg80211_testmode_alloc_event_skb(), as an event. It always
4291  * consumes it.
4292  */
4293 static inline void cfg80211_testmode_event(struct sk_buff *skb, gfp_t gfp)
4294 {
4295 	__cfg80211_send_event_skb(skb, gfp);
4296 }
4297 
4298 #define CFG80211_TESTMODE_CMD(cmd)	.testmode_cmd = (cmd),
4299 #define CFG80211_TESTMODE_DUMP(cmd)	.testmode_dump = (cmd),
4300 #else
4301 #define CFG80211_TESTMODE_CMD(cmd)
4302 #define CFG80211_TESTMODE_DUMP(cmd)
4303 #endif
4304 
4305 /**
4306  * cfg80211_connect_result - notify cfg80211 of connection result
4307  *
4308  * @dev: network device
4309  * @bssid: the BSSID of the AP
4310  * @req_ie: association request IEs (maybe be %NULL)
4311  * @req_ie_len: association request IEs length
4312  * @resp_ie: association response IEs (may be %NULL)
4313  * @resp_ie_len: assoc response IEs length
4314  * @status: status code, 0 for successful connection, use
4315  *	%WLAN_STATUS_UNSPECIFIED_FAILURE if your device cannot give you
4316  *	the real status code for failures.
4317  * @gfp: allocation flags
4318  *
4319  * It should be called by the underlying driver whenever connect() has
4320  * succeeded.
4321  */
4322 void cfg80211_connect_result(struct net_device *dev, const u8 *bssid,
4323 			     const u8 *req_ie, size_t req_ie_len,
4324 			     const u8 *resp_ie, size_t resp_ie_len,
4325 			     u16 status, gfp_t gfp);
4326 
4327 /**
4328  * cfg80211_roamed - notify cfg80211 of roaming
4329  *
4330  * @dev: network device
4331  * @channel: the channel of the new AP
4332  * @bssid: the BSSID of the new AP
4333  * @req_ie: association request IEs (maybe be %NULL)
4334  * @req_ie_len: association request IEs length
4335  * @resp_ie: association response IEs (may be %NULL)
4336  * @resp_ie_len: assoc response IEs length
4337  * @gfp: allocation flags
4338  *
4339  * It should be called by the underlying driver whenever it roamed
4340  * from one AP to another while connected.
4341  */
4342 void cfg80211_roamed(struct net_device *dev,
4343 		     struct ieee80211_channel *channel,
4344 		     const u8 *bssid,
4345 		     const u8 *req_ie, size_t req_ie_len,
4346 		     const u8 *resp_ie, size_t resp_ie_len, gfp_t gfp);
4347 
4348 /**
4349  * cfg80211_roamed_bss - notify cfg80211 of roaming
4350  *
4351  * @dev: network device
4352  * @bss: entry of bss to which STA got roamed
4353  * @req_ie: association request IEs (maybe be %NULL)
4354  * @req_ie_len: association request IEs length
4355  * @resp_ie: association response IEs (may be %NULL)
4356  * @resp_ie_len: assoc response IEs length
4357  * @gfp: allocation flags
4358  *
4359  * This is just a wrapper to notify cfg80211 of roaming event with driver
4360  * passing bss to avoid a race in timeout of the bss entry. It should be
4361  * called by the underlying driver whenever it roamed from one AP to another
4362  * while connected. Drivers which have roaming implemented in firmware
4363  * may use this function to avoid a race in bss entry timeout where the bss
4364  * entry of the new AP is seen in the driver, but gets timed out by the time
4365  * it is accessed in __cfg80211_roamed() due to delay in scheduling
4366  * rdev->event_work. In case of any failures, the reference is released
4367  * either in cfg80211_roamed_bss() or in __cfg80211_romed(), Otherwise,
4368  * it will be released while diconneting from the current bss.
4369  */
4370 void cfg80211_roamed_bss(struct net_device *dev, struct cfg80211_bss *bss,
4371 			 const u8 *req_ie, size_t req_ie_len,
4372 			 const u8 *resp_ie, size_t resp_ie_len, gfp_t gfp);
4373 
4374 /**
4375  * cfg80211_disconnected - notify cfg80211 that connection was dropped
4376  *
4377  * @dev: network device
4378  * @ie: information elements of the deauth/disassoc frame (may be %NULL)
4379  * @ie_len: length of IEs
4380  * @reason: reason code for the disconnection, set it to 0 if unknown
4381  * @gfp: allocation flags
4382  *
4383  * After it calls this function, the driver should enter an idle state
4384  * and not try to connect to any AP any more.
4385  */
4386 void cfg80211_disconnected(struct net_device *dev, u16 reason,
4387 			   const u8 *ie, size_t ie_len, gfp_t gfp);
4388 
4389 /**
4390  * cfg80211_ready_on_channel - notification of remain_on_channel start
4391  * @wdev: wireless device
4392  * @cookie: the request cookie
4393  * @chan: The current channel (from remain_on_channel request)
4394  * @duration: Duration in milliseconds that the driver intents to remain on the
4395  *	channel
4396  * @gfp: allocation flags
4397  */
4398 void cfg80211_ready_on_channel(struct wireless_dev *wdev, u64 cookie,
4399 			       struct ieee80211_channel *chan,
4400 			       unsigned int duration, gfp_t gfp);
4401 
4402 /**
4403  * cfg80211_remain_on_channel_expired - remain_on_channel duration expired
4404  * @wdev: wireless device
4405  * @cookie: the request cookie
4406  * @chan: The current channel (from remain_on_channel request)
4407  * @gfp: allocation flags
4408  */
4409 void cfg80211_remain_on_channel_expired(struct wireless_dev *wdev, u64 cookie,
4410 					struct ieee80211_channel *chan,
4411 					gfp_t gfp);
4412 
4413 
4414 /**
4415  * cfg80211_new_sta - notify userspace about station
4416  *
4417  * @dev: the netdev
4418  * @mac_addr: the station's address
4419  * @sinfo: the station information
4420  * @gfp: allocation flags
4421  */
4422 void cfg80211_new_sta(struct net_device *dev, const u8 *mac_addr,
4423 		      struct station_info *sinfo, gfp_t gfp);
4424 
4425 /**
4426  * cfg80211_del_sta - notify userspace about deletion of a station
4427  *
4428  * @dev: the netdev
4429  * @mac_addr: the station's address
4430  * @gfp: allocation flags
4431  */
4432 void cfg80211_del_sta(struct net_device *dev, const u8 *mac_addr, gfp_t gfp);
4433 
4434 /**
4435  * cfg80211_conn_failed - connection request failed notification
4436  *
4437  * @dev: the netdev
4438  * @mac_addr: the station's address
4439  * @reason: the reason for connection failure
4440  * @gfp: allocation flags
4441  *
4442  * Whenever a station tries to connect to an AP and if the station
4443  * could not connect to the AP as the AP has rejected the connection
4444  * for some reasons, this function is called.
4445  *
4446  * The reason for connection failure can be any of the value from
4447  * nl80211_connect_failed_reason enum
4448  */
4449 void cfg80211_conn_failed(struct net_device *dev, const u8 *mac_addr,
4450 			  enum nl80211_connect_failed_reason reason,
4451 			  gfp_t gfp);
4452 
4453 /**
4454  * cfg80211_rx_mgmt - notification of received, unprocessed management frame
4455  * @wdev: wireless device receiving the frame
4456  * @freq: Frequency on which the frame was received in MHz
4457  * @sig_dbm: signal strength in mBm, or 0 if unknown
4458  * @buf: Management frame (header + body)
4459  * @len: length of the frame data
4460  * @flags: flags, as defined in enum nl80211_rxmgmt_flags
4461  *
4462  * This function is called whenever an Action frame is received for a station
4463  * mode interface, but is not processed in kernel.
4464  *
4465  * Return: %true if a user space application has registered for this frame.
4466  * For action frames, that makes it responsible for rejecting unrecognized
4467  * action frames; %false otherwise, in which case for action frames the
4468  * driver is responsible for rejecting the frame.
4469  */
4470 bool cfg80211_rx_mgmt(struct wireless_dev *wdev, int freq, int sig_dbm,
4471 		      const u8 *buf, size_t len, u32 flags);
4472 
4473 /**
4474  * cfg80211_mgmt_tx_status - notification of TX status for management frame
4475  * @wdev: wireless device receiving the frame
4476  * @cookie: Cookie returned by cfg80211_ops::mgmt_tx()
4477  * @buf: Management frame (header + body)
4478  * @len: length of the frame data
4479  * @ack: Whether frame was acknowledged
4480  * @gfp: context flags
4481  *
4482  * This function is called whenever a management frame was requested to be
4483  * transmitted with cfg80211_ops::mgmt_tx() to report the TX status of the
4484  * transmission attempt.
4485  */
4486 void cfg80211_mgmt_tx_status(struct wireless_dev *wdev, u64 cookie,
4487 			     const u8 *buf, size_t len, bool ack, gfp_t gfp);
4488 
4489 
4490 /**
4491  * cfg80211_cqm_rssi_notify - connection quality monitoring rssi event
4492  * @dev: network device
4493  * @rssi_event: the triggered RSSI event
4494  * @gfp: context flags
4495  *
4496  * This function is called when a configured connection quality monitoring
4497  * rssi threshold reached event occurs.
4498  */
4499 void cfg80211_cqm_rssi_notify(struct net_device *dev,
4500 			      enum nl80211_cqm_rssi_threshold_event rssi_event,
4501 			      gfp_t gfp);
4502 
4503 /**
4504  * cfg80211_radar_event - radar detection event
4505  * @wiphy: the wiphy
4506  * @chandef: chandef for the current channel
4507  * @gfp: context flags
4508  *
4509  * This function is called when a radar is detected on the current chanenl.
4510  */
4511 void cfg80211_radar_event(struct wiphy *wiphy,
4512 			  struct cfg80211_chan_def *chandef, gfp_t gfp);
4513 
4514 /**
4515  * cfg80211_cac_event - Channel availability check (CAC) event
4516  * @netdev: network device
4517  * @chandef: chandef for the current channel
4518  * @event: type of event
4519  * @gfp: context flags
4520  *
4521  * This function is called when a Channel availability check (CAC) is finished
4522  * or aborted. This must be called to notify the completion of a CAC process,
4523  * also by full-MAC drivers.
4524  */
4525 void cfg80211_cac_event(struct net_device *netdev,
4526 			const struct cfg80211_chan_def *chandef,
4527 			enum nl80211_radar_event event, gfp_t gfp);
4528 
4529 
4530 /**
4531  * cfg80211_cqm_pktloss_notify - notify userspace about packetloss to peer
4532  * @dev: network device
4533  * @peer: peer's MAC address
4534  * @num_packets: how many packets were lost -- should be a fixed threshold
4535  *	but probably no less than maybe 50, or maybe a throughput dependent
4536  *	threshold (to account for temporary interference)
4537  * @gfp: context flags
4538  */
4539 void cfg80211_cqm_pktloss_notify(struct net_device *dev,
4540 				 const u8 *peer, u32 num_packets, gfp_t gfp);
4541 
4542 /**
4543  * cfg80211_cqm_txe_notify - TX error rate event
4544  * @dev: network device
4545  * @peer: peer's MAC address
4546  * @num_packets: how many packets were lost
4547  * @rate: % of packets which failed transmission
4548  * @intvl: interval (in s) over which the TX failure threshold was breached.
4549  * @gfp: context flags
4550  *
4551  * Notify userspace when configured % TX failures over number of packets in a
4552  * given interval is exceeded.
4553  */
4554 void cfg80211_cqm_txe_notify(struct net_device *dev, const u8 *peer,
4555 			     u32 num_packets, u32 rate, u32 intvl, gfp_t gfp);
4556 
4557 /**
4558  * cfg80211_gtk_rekey_notify - notify userspace about driver rekeying
4559  * @dev: network device
4560  * @bssid: BSSID of AP (to avoid races)
4561  * @replay_ctr: new replay counter
4562  * @gfp: allocation flags
4563  */
4564 void cfg80211_gtk_rekey_notify(struct net_device *dev, const u8 *bssid,
4565 			       const u8 *replay_ctr, gfp_t gfp);
4566 
4567 /**
4568  * cfg80211_pmksa_candidate_notify - notify about PMKSA caching candidate
4569  * @dev: network device
4570  * @index: candidate index (the smaller the index, the higher the priority)
4571  * @bssid: BSSID of AP
4572  * @preauth: Whether AP advertises support for RSN pre-authentication
4573  * @gfp: allocation flags
4574  */
4575 void cfg80211_pmksa_candidate_notify(struct net_device *dev, int index,
4576 				     const u8 *bssid, bool preauth, gfp_t gfp);
4577 
4578 /**
4579  * cfg80211_rx_spurious_frame - inform userspace about a spurious frame
4580  * @dev: The device the frame matched to
4581  * @addr: the transmitter address
4582  * @gfp: context flags
4583  *
4584  * This function is used in AP mode (only!) to inform userspace that
4585  * a spurious class 3 frame was received, to be able to deauth the
4586  * sender.
4587  * Return: %true if the frame was passed to userspace (or this failed
4588  * for a reason other than not having a subscription.)
4589  */
4590 bool cfg80211_rx_spurious_frame(struct net_device *dev,
4591 				const u8 *addr, gfp_t gfp);
4592 
4593 /**
4594  * cfg80211_rx_unexpected_4addr_frame - inform about unexpected WDS frame
4595  * @dev: The device the frame matched to
4596  * @addr: the transmitter address
4597  * @gfp: context flags
4598  *
4599  * This function is used in AP mode (only!) to inform userspace that
4600  * an associated station sent a 4addr frame but that wasn't expected.
4601  * It is allowed and desirable to send this event only once for each
4602  * station to avoid event flooding.
4603  * Return: %true if the frame was passed to userspace (or this failed
4604  * for a reason other than not having a subscription.)
4605  */
4606 bool cfg80211_rx_unexpected_4addr_frame(struct net_device *dev,
4607 					const u8 *addr, gfp_t gfp);
4608 
4609 /**
4610  * cfg80211_probe_status - notify userspace about probe status
4611  * @dev: the device the probe was sent on
4612  * @addr: the address of the peer
4613  * @cookie: the cookie filled in @probe_client previously
4614  * @acked: indicates whether probe was acked or not
4615  * @gfp: allocation flags
4616  */
4617 void cfg80211_probe_status(struct net_device *dev, const u8 *addr,
4618 			   u64 cookie, bool acked, gfp_t gfp);
4619 
4620 /**
4621  * cfg80211_report_obss_beacon - report beacon from other APs
4622  * @wiphy: The wiphy that received the beacon
4623  * @frame: the frame
4624  * @len: length of the frame
4625  * @freq: frequency the frame was received on
4626  * @sig_dbm: signal strength in mBm, or 0 if unknown
4627  *
4628  * Use this function to report to userspace when a beacon was
4629  * received. It is not useful to call this when there is no
4630  * netdev that is in AP/GO mode.
4631  */
4632 void cfg80211_report_obss_beacon(struct wiphy *wiphy,
4633 				 const u8 *frame, size_t len,
4634 				 int freq, int sig_dbm);
4635 
4636 /**
4637  * cfg80211_reg_can_beacon - check if beaconing is allowed
4638  * @wiphy: the wiphy
4639  * @chandef: the channel definition
4640  * @iftype: interface type
4641  *
4642  * Return: %true if there is no secondary channel or the secondary channel(s)
4643  * can be used for beaconing (i.e. is not a radar channel etc.)
4644  */
4645 bool cfg80211_reg_can_beacon(struct wiphy *wiphy,
4646 			     struct cfg80211_chan_def *chandef,
4647 			     enum nl80211_iftype iftype);
4648 
4649 /*
4650  * cfg80211_ch_switch_notify - update wdev channel and notify userspace
4651  * @dev: the device which switched channels
4652  * @chandef: the new channel definition
4653  *
4654  * Caller must acquire wdev_lock, therefore must only be called from sleepable
4655  * driver context!
4656  */
4657 void cfg80211_ch_switch_notify(struct net_device *dev,
4658 			       struct cfg80211_chan_def *chandef);
4659 
4660 /**
4661  * ieee80211_operating_class_to_band - convert operating class to band
4662  *
4663  * @operating_class: the operating class to convert
4664  * @band: band pointer to fill
4665  *
4666  * Returns %true if the conversion was successful, %false otherwise.
4667  */
4668 bool ieee80211_operating_class_to_band(u8 operating_class,
4669 				       enum ieee80211_band *band);
4670 
4671 /*
4672  * cfg80211_tdls_oper_request - request userspace to perform TDLS operation
4673  * @dev: the device on which the operation is requested
4674  * @peer: the MAC address of the peer device
4675  * @oper: the requested TDLS operation (NL80211_TDLS_SETUP or
4676  *	NL80211_TDLS_TEARDOWN)
4677  * @reason_code: the reason code for teardown request
4678  * @gfp: allocation flags
4679  *
4680  * This function is used to request userspace to perform TDLS operation that
4681  * requires knowledge of keys, i.e., link setup or teardown when the AP
4682  * connection uses encryption. This is optional mechanism for the driver to use
4683  * if it can automatically determine when a TDLS link could be useful (e.g.,
4684  * based on traffic and signal strength for a peer).
4685  */
4686 void cfg80211_tdls_oper_request(struct net_device *dev, const u8 *peer,
4687 				enum nl80211_tdls_operation oper,
4688 				u16 reason_code, gfp_t gfp);
4689 
4690 /*
4691  * cfg80211_calculate_bitrate - calculate actual bitrate (in 100Kbps units)
4692  * @rate: given rate_info to calculate bitrate from
4693  *
4694  * return 0 if MCS index >= 32
4695  */
4696 u32 cfg80211_calculate_bitrate(struct rate_info *rate);
4697 
4698 /**
4699  * cfg80211_unregister_wdev - remove the given wdev
4700  * @wdev: struct wireless_dev to remove
4701  *
4702  * Call this function only for wdevs that have no netdev assigned,
4703  * e.g. P2P Devices. It removes the device from the list so that
4704  * it can no longer be used. It is necessary to call this function
4705  * even when cfg80211 requests the removal of the interface by
4706  * calling the del_virtual_intf() callback. The function must also
4707  * be called when the driver wishes to unregister the wdev, e.g.
4708  * when the device is unbound from the driver.
4709  *
4710  * Requires the RTNL to be held.
4711  */
4712 void cfg80211_unregister_wdev(struct wireless_dev *wdev);
4713 
4714 /**
4715  * struct cfg80211_ft_event - FT Information Elements
4716  * @ies: FT IEs
4717  * @ies_len: length of the FT IE in bytes
4718  * @target_ap: target AP's MAC address
4719  * @ric_ies: RIC IE
4720  * @ric_ies_len: length of the RIC IE in bytes
4721  */
4722 struct cfg80211_ft_event_params {
4723 	const u8 *ies;
4724 	size_t ies_len;
4725 	const u8 *target_ap;
4726 	const u8 *ric_ies;
4727 	size_t ric_ies_len;
4728 };
4729 
4730 /**
4731  * cfg80211_ft_event - notify userspace about FT IE and RIC IE
4732  * @netdev: network device
4733  * @ft_event: IE information
4734  */
4735 void cfg80211_ft_event(struct net_device *netdev,
4736 		       struct cfg80211_ft_event_params *ft_event);
4737 
4738 /**
4739  * cfg80211_get_p2p_attr - find and copy a P2P attribute from IE buffer
4740  * @ies: the input IE buffer
4741  * @len: the input length
4742  * @attr: the attribute ID to find
4743  * @buf: output buffer, can be %NULL if the data isn't needed, e.g.
4744  *	if the function is only called to get the needed buffer size
4745  * @bufsize: size of the output buffer
4746  *
4747  * The function finds a given P2P attribute in the (vendor) IEs and
4748  * copies its contents to the given buffer.
4749  *
4750  * Return: A negative error code (-%EILSEQ or -%ENOENT) if the data is
4751  * malformed or the attribute can't be found (respectively), or the
4752  * length of the found attribute (which can be zero).
4753  */
4754 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
4755 			  enum ieee80211_p2p_attr_id attr,
4756 			  u8 *buf, unsigned int bufsize);
4757 
4758 /**
4759  * cfg80211_report_wowlan_wakeup - report wakeup from WoWLAN
4760  * @wdev: the wireless device reporting the wakeup
4761  * @wakeup: the wakeup report
4762  * @gfp: allocation flags
4763  *
4764  * This function reports that the given device woke up. If it
4765  * caused the wakeup, report the reason(s), otherwise you may
4766  * pass %NULL as the @wakeup parameter to advertise that something
4767  * else caused the wakeup.
4768  */
4769 void cfg80211_report_wowlan_wakeup(struct wireless_dev *wdev,
4770 				   struct cfg80211_wowlan_wakeup *wakeup,
4771 				   gfp_t gfp);
4772 
4773 /**
4774  * cfg80211_crit_proto_stopped() - indicate critical protocol stopped by driver.
4775  *
4776  * @wdev: the wireless device for which critical protocol is stopped.
4777  * @gfp: allocation flags
4778  *
4779  * This function can be called by the driver to indicate it has reverted
4780  * operation back to normal. One reason could be that the duration given
4781  * by .crit_proto_start() has expired.
4782  */
4783 void cfg80211_crit_proto_stopped(struct wireless_dev *wdev, gfp_t gfp);
4784 
4785 /**
4786  * ieee80211_get_num_supported_channels - get number of channels device has
4787  * @wiphy: the wiphy
4788  *
4789  * Return: the number of channels supported by the device.
4790  */
4791 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy);
4792 
4793 /**
4794  * cfg80211_check_combinations - check interface combinations
4795  *
4796  * @wiphy: the wiphy
4797  * @num_different_channels: the number of different channels we want
4798  *	to use for verification
4799  * @radar_detect: a bitmap where each bit corresponds to a channel
4800  *	width where radar detection is needed, as in the definition of
4801  *	&struct ieee80211_iface_combination.@radar_detect_widths
4802  * @iftype_num: array with the numbers of interfaces of each interface
4803  *	type.  The index is the interface type as specified in &enum
4804  *	nl80211_iftype.
4805  *
4806  * This function can be called by the driver to check whether a
4807  * combination of interfaces and their types are allowed according to
4808  * the interface combinations.
4809  */
4810 int cfg80211_check_combinations(struct wiphy *wiphy,
4811 				const int num_different_channels,
4812 				const u8 radar_detect,
4813 				const int iftype_num[NUM_NL80211_IFTYPES]);
4814 
4815 /**
4816  * cfg80211_iter_combinations - iterate over matching combinations
4817  *
4818  * @wiphy: the wiphy
4819  * @num_different_channels: the number of different channels we want
4820  *	to use for verification
4821  * @radar_detect: a bitmap where each bit corresponds to a channel
4822  *	width where radar detection is needed, as in the definition of
4823  *	&struct ieee80211_iface_combination.@radar_detect_widths
4824  * @iftype_num: array with the numbers of interfaces of each interface
4825  *	type.  The index is the interface type as specified in &enum
4826  *	nl80211_iftype.
4827  * @iter: function to call for each matching combination
4828  * @data: pointer to pass to iter function
4829  *
4830  * This function can be called by the driver to check what possible
4831  * combinations it fits in at a given moment, e.g. for channel switching
4832  * purposes.
4833  */
4834 int cfg80211_iter_combinations(struct wiphy *wiphy,
4835 			       const int num_different_channels,
4836 			       const u8 radar_detect,
4837 			       const int iftype_num[NUM_NL80211_IFTYPES],
4838 			       void (*iter)(const struct ieee80211_iface_combination *c,
4839 					    void *data),
4840 			       void *data);
4841 
4842 /*
4843  * cfg80211_stop_iface - trigger interface disconnection
4844  *
4845  * @wiphy: the wiphy
4846  * @wdev: wireless device
4847  * @gfp: context flags
4848  *
4849  * Trigger interface to be stopped as if AP was stopped, IBSS/mesh left, STA
4850  * disconnected.
4851  *
4852  * Note: This doesn't need any locks and is asynchronous.
4853  */
4854 void cfg80211_stop_iface(struct wiphy *wiphy, struct wireless_dev *wdev,
4855 			 gfp_t gfp);
4856 
4857 /**
4858  * cfg80211_shutdown_all_interfaces - shut down all interfaces for a wiphy
4859  * @wiphy: the wiphy to shut down
4860  *
4861  * This function shuts down all interfaces belonging to this wiphy by
4862  * calling dev_close() (and treating non-netdev interfaces as needed).
4863  * It shouldn't really be used unless there are some fatal device errors
4864  * that really can't be recovered in any other way.
4865  *
4866  * Callers must hold the RTNL and be able to deal with callbacks into
4867  * the driver while the function is running.
4868  */
4869 void cfg80211_shutdown_all_interfaces(struct wiphy *wiphy);
4870 
4871 
4872 /* ethtool helper */
4873 void cfg80211_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info);
4874 
4875 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4876 
4877 /* wiphy_printk helpers, similar to dev_printk */
4878 
4879 #define wiphy_printk(level, wiphy, format, args...)		\
4880 	dev_printk(level, &(wiphy)->dev, format, ##args)
4881 #define wiphy_emerg(wiphy, format, args...)			\
4882 	dev_emerg(&(wiphy)->dev, format, ##args)
4883 #define wiphy_alert(wiphy, format, args...)			\
4884 	dev_alert(&(wiphy)->dev, format, ##args)
4885 #define wiphy_crit(wiphy, format, args...)			\
4886 	dev_crit(&(wiphy)->dev, format, ##args)
4887 #define wiphy_err(wiphy, format, args...)			\
4888 	dev_err(&(wiphy)->dev, format, ##args)
4889 #define wiphy_warn(wiphy, format, args...)			\
4890 	dev_warn(&(wiphy)->dev, format, ##args)
4891 #define wiphy_notice(wiphy, format, args...)			\
4892 	dev_notice(&(wiphy)->dev, format, ##args)
4893 #define wiphy_info(wiphy, format, args...)			\
4894 	dev_info(&(wiphy)->dev, format, ##args)
4895 
4896 #define wiphy_debug(wiphy, format, args...)			\
4897 	wiphy_printk(KERN_DEBUG, wiphy, format, ##args)
4898 
4899 #define wiphy_dbg(wiphy, format, args...)			\
4900 	dev_dbg(&(wiphy)->dev, format, ##args)
4901 
4902 #if defined(VERBOSE_DEBUG)
4903 #define wiphy_vdbg	wiphy_dbg
4904 #else
4905 #define wiphy_vdbg(wiphy, format, args...)				\
4906 ({									\
4907 	if (0)								\
4908 		wiphy_printk(KERN_DEBUG, wiphy, format, ##args);	\
4909 	0;								\
4910 })
4911 #endif
4912 
4913 /*
4914  * wiphy_WARN() acts like wiphy_printk(), but with the key difference
4915  * of using a WARN/WARN_ON to get the message out, including the
4916  * file/line information and a backtrace.
4917  */
4918 #define wiphy_WARN(wiphy, format, args...)			\
4919 	WARN(1, "wiphy: %s\n" format, wiphy_name(wiphy), ##args);
4920 
4921 #endif /* __NET_CFG80211_H */
4922