1 /* 2 BlueZ - Bluetooth protocol stack for Linux 3 Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved. 4 Copyright 2023-2024 NXP 5 6 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> 7 8 This program is free software; you can redistribute it and/or modify 9 it under the terms of the GNU General Public License version 2 as 10 published by the Free Software Foundation; 11 12 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 13 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 14 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 15 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 16 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 17 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 18 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 19 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 20 21 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 22 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 23 SOFTWARE IS DISCLAIMED. 24 */ 25 26 #ifndef __HCI_CORE_H 27 #define __HCI_CORE_H 28 29 #include <linux/idr.h> 30 #include <linux/leds.h> 31 #include <linux/rculist.h> 32 #include <linux/spinlock.h> 33 #include <linux/srcu.h> 34 35 #include <net/bluetooth/hci.h> 36 #include <net/bluetooth/hci_drv.h> 37 #include <net/bluetooth/hci_sync.h> 38 #include <net/bluetooth/hci_sock.h> 39 #include <net/bluetooth/coredump.h> 40 41 /* HCI priority */ 42 #define HCI_PRIO_MAX 7 43 44 /* HCI maximum id value */ 45 #define HCI_MAX_ID 10000 46 47 /* HCI Core structures */ 48 struct inquiry_data { 49 bdaddr_t bdaddr; 50 __u8 pscan_rep_mode; 51 __u8 pscan_period_mode; 52 __u8 pscan_mode; 53 __u8 dev_class[3]; 54 __le16 clock_offset; 55 __s8 rssi; 56 __u8 ssp_mode; 57 }; 58 59 struct inquiry_entry { 60 struct list_head all; /* inq_cache.all */ 61 struct list_head list; /* unknown or resolve */ 62 enum { 63 NAME_NOT_KNOWN, 64 NAME_NEEDED, 65 NAME_PENDING, 66 NAME_KNOWN, 67 } name_state; 68 __u32 timestamp; 69 struct inquiry_data data; 70 }; 71 72 struct discovery_state { 73 int type; 74 enum { 75 DISCOVERY_STOPPED, 76 DISCOVERY_STARTING, 77 DISCOVERY_FINDING, 78 DISCOVERY_RESOLVING, 79 DISCOVERY_STOPPING, 80 } state; 81 struct list_head all; /* All devices found during inquiry */ 82 struct list_head unknown; /* Name state not known */ 83 struct list_head resolve; /* Name needs to be resolved */ 84 __u32 timestamp; 85 bdaddr_t last_adv_addr; 86 u8 last_adv_addr_type; 87 s8 last_adv_rssi; 88 u32 last_adv_flags; 89 u8 last_adv_data[HCI_MAX_EXT_AD_LENGTH]; 90 u8 last_adv_data_len; 91 bool report_invalid_rssi; 92 bool result_filtering; 93 bool limited; 94 s8 rssi; 95 u16 uuid_count; 96 u8 (*uuids)[16]; 97 unsigned long name_resolve_timeout; 98 spinlock_t lock; 99 }; 100 101 #define SUSPEND_NOTIFIER_TIMEOUT msecs_to_jiffies(2000) /* 2 seconds */ 102 103 enum suspend_tasks { 104 SUSPEND_PAUSE_DISCOVERY, 105 SUSPEND_UNPAUSE_DISCOVERY, 106 107 SUSPEND_PAUSE_ADVERTISING, 108 SUSPEND_UNPAUSE_ADVERTISING, 109 110 SUSPEND_SCAN_DISABLE, 111 SUSPEND_SCAN_ENABLE, 112 SUSPEND_DISCONNECTING, 113 114 SUSPEND_POWERING_DOWN, 115 116 SUSPEND_PREPARE_NOTIFIER, 117 118 SUSPEND_SET_ADV_FILTER, 119 __SUSPEND_NUM_TASKS 120 }; 121 122 enum suspended_state { 123 BT_RUNNING = 0, 124 BT_SUSPEND_DISCONNECT, 125 BT_SUSPEND_CONFIGURE_WAKE, 126 }; 127 128 struct hci_conn_hash { 129 struct list_head list; 130 unsigned int acl_num; 131 unsigned int sco_num; 132 unsigned int cis_num; 133 unsigned int bis_num; 134 unsigned int pa_num; 135 unsigned int le_num; 136 unsigned int le_num_peripheral; 137 }; 138 139 struct bdaddr_list { 140 struct list_head list; 141 bdaddr_t bdaddr; 142 u8 bdaddr_type; 143 }; 144 145 struct codec_list { 146 struct list_head list; 147 u8 id; 148 __u16 cid; 149 __u16 vid; 150 u8 transport; 151 u8 num_caps; 152 u32 len; 153 struct hci_codec_caps caps[]; 154 }; 155 156 struct bdaddr_list_with_irk { 157 struct list_head list; 158 bdaddr_t bdaddr; 159 u8 bdaddr_type; 160 u8 peer_irk[16]; 161 u8 local_irk[16]; 162 }; 163 164 /* Bitmask of connection flags */ 165 enum hci_conn_flags { 166 HCI_CONN_FLAG_REMOTE_WAKEUP = BIT(0), 167 HCI_CONN_FLAG_DEVICE_PRIVACY = BIT(1), 168 HCI_CONN_FLAG_ADDRESS_RESOLUTION = BIT(2), 169 }; 170 typedef u8 hci_conn_flags_t; 171 172 struct bdaddr_list_with_flags { 173 struct list_head list; 174 bdaddr_t bdaddr; 175 u8 bdaddr_type; 176 hci_conn_flags_t flags; 177 }; 178 179 struct bt_uuid { 180 struct list_head list; 181 u8 uuid[16]; 182 u8 size; 183 u8 svc_hint; 184 }; 185 186 struct blocked_key { 187 struct list_head list; 188 struct rcu_head rcu; 189 u8 type; 190 u8 val[16]; 191 }; 192 193 struct smp_csrk { 194 bdaddr_t bdaddr; 195 u8 bdaddr_type; 196 u8 type; 197 u8 val[16]; 198 }; 199 200 struct smp_ltk { 201 struct list_head list; 202 struct rcu_head rcu; 203 bdaddr_t bdaddr; 204 u8 bdaddr_type; 205 u8 authenticated; 206 u8 type; 207 u8 enc_size; 208 __le16 ediv; 209 __le64 rand; 210 u8 val[16]; 211 }; 212 213 struct smp_irk { 214 struct list_head list; 215 struct rcu_head rcu; 216 bdaddr_t rpa; 217 bdaddr_t bdaddr; 218 u8 addr_type; 219 u8 val[16]; 220 }; 221 222 struct link_key { 223 struct list_head list; 224 struct rcu_head rcu; 225 bdaddr_t bdaddr; 226 u8 type; 227 u8 val[HCI_LINK_KEY_SIZE]; 228 u8 pin_len; 229 }; 230 231 struct oob_data { 232 struct list_head list; 233 bdaddr_t bdaddr; 234 u8 bdaddr_type; 235 u8 present; 236 u8 hash192[16]; 237 u8 rand192[16]; 238 u8 hash256[16]; 239 u8 rand256[16]; 240 }; 241 242 struct adv_info { 243 struct list_head list; 244 bool enabled; 245 bool pending; 246 bool periodic; 247 bool periodic_enabled; 248 __u8 mesh; 249 __u8 instance; 250 __u8 handle; 251 __u8 sid; 252 __u32 flags; 253 __u16 timeout; 254 __u16 remaining_time; 255 __u16 duration; 256 __u16 adv_data_len; 257 __u8 adv_data[HCI_MAX_EXT_AD_LENGTH]; 258 bool adv_data_changed; 259 __u16 scan_rsp_len; 260 __u8 scan_rsp_data[HCI_MAX_EXT_AD_LENGTH]; 261 bool scan_rsp_changed; 262 __u16 per_adv_data_len; 263 __u8 per_adv_data[HCI_MAX_PER_AD_LENGTH]; 264 __s8 tx_power; 265 __u32 min_interval; 266 __u32 max_interval; 267 bdaddr_t random_addr; 268 bool rpa_expired; 269 struct delayed_work rpa_expired_cb; 270 }; 271 272 struct tx_queue { 273 struct sk_buff_head queue; 274 unsigned int extra; 275 unsigned int tracked; 276 }; 277 278 #define HCI_MAX_ADV_INSTANCES 5 279 #define HCI_DEFAULT_ADV_DURATION 2 280 281 #define HCI_ADV_TX_POWER_NO_PREFERENCE 0x7F 282 283 #define DATA_CMP(_d1, _l1, _d2, _l2) \ 284 (_l1 == _l2 ? memcmp(_d1, _d2, _l1) : _l1 - _l2) 285 286 #define ADV_DATA_CMP(_adv, _data, _len) \ 287 DATA_CMP((_adv)->adv_data, (_adv)->adv_data_len, _data, _len) 288 289 #define SCAN_RSP_CMP(_adv, _data, _len) \ 290 DATA_CMP((_adv)->scan_rsp_data, (_adv)->scan_rsp_len, _data, _len) 291 292 struct monitored_device { 293 struct list_head list; 294 295 bdaddr_t bdaddr; 296 __u8 addr_type; 297 __u16 handle; 298 bool notified; 299 }; 300 301 struct adv_pattern { 302 struct list_head list; 303 __u8 ad_type; 304 __u8 offset; 305 __u8 length; 306 __u8 value[HCI_MAX_EXT_AD_LENGTH]; 307 }; 308 309 struct adv_rssi_thresholds { 310 __s8 low_threshold; 311 __s8 high_threshold; 312 __u16 low_threshold_timeout; 313 __u16 high_threshold_timeout; 314 __u8 sampling_period; 315 }; 316 317 struct adv_monitor { 318 struct list_head patterns; 319 struct adv_rssi_thresholds rssi; 320 __u16 handle; 321 322 enum { 323 ADV_MONITOR_STATE_NOT_REGISTERED, 324 ADV_MONITOR_STATE_REGISTERED, 325 ADV_MONITOR_STATE_OFFLOADED 326 } state; 327 }; 328 329 #define HCI_MIN_ADV_MONITOR_HANDLE 1 330 #define HCI_MAX_ADV_MONITOR_NUM_HANDLES 32 331 #define HCI_MAX_ADV_MONITOR_NUM_PATTERNS 16 332 #define HCI_ADV_MONITOR_EXT_NONE 1 333 #define HCI_ADV_MONITOR_EXT_MSFT 2 334 335 #define HCI_MAX_SHORT_NAME_LENGTH 10 336 337 #define HCI_CONN_HANDLE_MAX 0x0eff 338 #define HCI_CONN_HANDLE_UNSET(_handle) (_handle > HCI_CONN_HANDLE_MAX) 339 340 /* Min encryption key size to match with SMP */ 341 #define HCI_MIN_ENC_KEY_SIZE 7 342 343 /* Default LE RPA expiry time, 15 minutes */ 344 #define HCI_DEFAULT_RPA_TIMEOUT (15 * 60) 345 346 /* Default min/max age of connection information (1s/3s) */ 347 #define DEFAULT_CONN_INFO_MIN_AGE 1000 348 #define DEFAULT_CONN_INFO_MAX_AGE 3000 349 /* Default authenticated payload timeout 30s */ 350 #define DEFAULT_AUTH_PAYLOAD_TIMEOUT 0x0bb8 351 352 #define HCI_MAX_PAGES 3 353 354 struct hci_dev { 355 struct list_head list; 356 struct srcu_struct srcu; 357 struct mutex lock; 358 359 struct ida unset_handle_ida; 360 361 const char *name; 362 unsigned long flags; 363 __u16 id; 364 __u8 bus; 365 bdaddr_t bdaddr; 366 bdaddr_t setup_addr; 367 bdaddr_t public_addr; 368 bdaddr_t random_addr; 369 bdaddr_t static_addr; 370 __u8 adv_addr_type; 371 __u8 dev_name[HCI_MAX_NAME_LENGTH]; 372 __u8 short_name[HCI_MAX_SHORT_NAME_LENGTH]; 373 __u8 eir[HCI_MAX_EIR_LENGTH]; 374 __u16 appearance; 375 __u8 dev_class[3]; 376 __u8 major_class; 377 __u8 minor_class; 378 __u8 max_page; 379 __u8 features[HCI_MAX_PAGES][8]; 380 __u8 le_features[8]; 381 __u8 le_accept_list_size; 382 __u8 le_resolv_list_size; 383 __u8 le_num_of_adv_sets; 384 __u8 le_states[8]; 385 __u8 mesh_ad_types[16]; 386 __u8 mesh_send_ref; 387 __u8 commands[64]; 388 __u8 hci_ver; 389 __u16 hci_rev; 390 __u8 lmp_ver; 391 __u16 manufacturer; 392 __u16 lmp_subver; 393 __u16 voice_setting; 394 __u8 num_iac; 395 __u16 stored_max_keys; 396 __u16 stored_num_keys; 397 __u8 io_capability; 398 __s8 inq_tx_power; 399 __u8 err_data_reporting; 400 __u16 page_scan_interval; 401 __u16 page_scan_window; 402 __u8 page_scan_type; 403 __u8 le_adv_channel_map; 404 __u16 le_adv_min_interval; 405 __u16 le_adv_max_interval; 406 __u8 le_scan_type; 407 __u16 le_scan_interval; 408 __u16 le_scan_window; 409 __u16 le_scan_int_suspend; 410 __u16 le_scan_window_suspend; 411 __u16 le_scan_int_discovery; 412 __u16 le_scan_window_discovery; 413 __u16 le_scan_int_adv_monitor; 414 __u16 le_scan_window_adv_monitor; 415 __u16 le_scan_int_connect; 416 __u16 le_scan_window_connect; 417 __u16 le_conn_min_interval; 418 __u16 le_conn_max_interval; 419 __u16 le_conn_latency; 420 __u16 le_supv_timeout; 421 __u16 le_def_tx_len; 422 __u16 le_def_tx_time; 423 __u16 le_max_tx_len; 424 __u16 le_max_tx_time; 425 __u16 le_max_rx_len; 426 __u16 le_max_rx_time; 427 __u8 le_max_key_size; 428 __u8 le_min_key_size; 429 __u16 discov_interleaved_timeout; 430 __u16 conn_info_min_age; 431 __u16 conn_info_max_age; 432 __u16 auth_payload_timeout; 433 __u8 min_enc_key_size; 434 __u8 max_enc_key_size; 435 __u8 pairing_opts; 436 __u8 ssp_debug_mode; 437 __u8 hw_error_code; 438 __u32 clock; 439 __u16 advmon_allowlist_duration; 440 __u16 advmon_no_filter_duration; 441 __u8 enable_advmon_interleave_scan; 442 443 __u16 devid_source; 444 __u16 devid_vendor; 445 __u16 devid_product; 446 __u16 devid_version; 447 448 __u8 def_page_scan_type; 449 __u16 def_page_scan_int; 450 __u16 def_page_scan_window; 451 __u8 def_inq_scan_type; 452 __u16 def_inq_scan_int; 453 __u16 def_inq_scan_window; 454 __u16 def_br_lsto; 455 __u16 def_page_timeout; 456 __u16 def_multi_adv_rotation_duration; 457 __u16 def_le_autoconnect_timeout; 458 __s8 min_le_tx_power; 459 __s8 max_le_tx_power; 460 461 __u16 pkt_type; 462 __u16 esco_type; 463 __u16 link_policy; 464 __u16 link_mode; 465 466 __u32 idle_timeout; 467 __u16 sniff_min_interval; 468 __u16 sniff_max_interval; 469 470 unsigned int auto_accept_delay; 471 472 DECLARE_BITMAP(quirk_flags, __HCI_NUM_QUIRKS); 473 474 atomic_t cmd_cnt; 475 unsigned int acl_cnt; 476 unsigned int sco_cnt; 477 unsigned int le_cnt; 478 unsigned int iso_cnt; 479 480 unsigned int acl_mtu; 481 unsigned int sco_mtu; 482 unsigned int le_mtu; 483 unsigned int iso_mtu; 484 unsigned int acl_pkts; 485 unsigned int sco_pkts; 486 unsigned int le_pkts; 487 unsigned int iso_pkts; 488 489 unsigned long acl_last_tx; 490 unsigned long le_last_tx; 491 unsigned long iso_last_tx; 492 493 __u8 le_tx_def_phys; 494 __u8 le_rx_def_phys; 495 496 struct workqueue_struct *workqueue; 497 struct workqueue_struct *req_workqueue; 498 499 struct work_struct power_on; 500 struct delayed_work power_off; 501 struct work_struct error_reset; 502 struct work_struct cmd_sync_work; 503 struct list_head cmd_sync_work_list; 504 struct mutex cmd_sync_work_lock; 505 struct mutex unregister_lock; 506 struct work_struct cmd_sync_cancel_work; 507 struct work_struct reenable_adv_work; 508 509 __u16 discov_timeout; 510 struct delayed_work discov_off; 511 512 struct delayed_work service_cache; 513 514 struct delayed_work cmd_timer; 515 struct delayed_work ncmd_timer; 516 517 struct work_struct rx_work; 518 struct work_struct cmd_work; 519 struct work_struct tx_work; 520 521 struct delayed_work le_scan_disable; 522 523 struct sk_buff_head rx_q; 524 struct sk_buff_head raw_q; 525 struct sk_buff_head cmd_q; 526 527 struct sk_buff *sent_cmd; 528 struct sk_buff *recv_event; 529 530 struct mutex req_lock; 531 wait_queue_head_t req_wait_q; 532 __u32 req_status; 533 __u32 req_result; 534 struct sk_buff *req_skb; 535 struct sk_buff *req_rsp; 536 537 void *smp_data; 538 void *smp_bredr_data; 539 540 struct discovery_state discovery; 541 542 bool discovery_paused; 543 int advertising_old_state; 544 bool advertising_paused; 545 546 struct notifier_block suspend_notifier; 547 enum suspended_state suspend_state_next; 548 enum suspended_state suspend_state; 549 bool scanning_paused; 550 bool suspended; 551 u8 wake_reason; 552 bdaddr_t wake_addr; 553 u8 wake_addr_type; 554 555 struct hci_conn_hash conn_hash; 556 557 struct list_head mesh_pending; 558 struct mutex mgmt_pending_lock; 559 struct list_head mgmt_pending; 560 struct list_head reject_list; 561 struct list_head accept_list; 562 struct list_head uuids; 563 struct list_head link_keys; 564 struct list_head long_term_keys; 565 struct list_head identity_resolving_keys; 566 struct list_head remote_oob_data; 567 struct list_head le_accept_list; 568 struct list_head le_resolv_list; 569 struct list_head le_conn_params; 570 struct list_head pend_le_conns; 571 struct list_head pend_le_reports; 572 struct list_head blocked_keys; 573 struct list_head local_codecs; 574 575 struct hci_dev_stats stat; 576 577 atomic_t promisc; 578 579 const char *hw_info; 580 const char *fw_info; 581 struct dentry *debugfs; 582 583 struct hci_devcoredump dump; 584 585 struct device dev; 586 587 struct rfkill *rfkill; 588 589 DECLARE_BITMAP(dev_flags, __HCI_NUM_FLAGS); 590 hci_conn_flags_t conn_flags; 591 592 __s8 adv_tx_power; 593 __u8 adv_data[HCI_MAX_EXT_AD_LENGTH]; 594 __u8 adv_data_len; 595 __u8 scan_rsp_data[HCI_MAX_EXT_AD_LENGTH]; 596 __u8 scan_rsp_data_len; 597 __u8 per_adv_data[HCI_MAX_PER_AD_LENGTH]; 598 __u8 per_adv_data_len; 599 600 struct list_head adv_instances; 601 unsigned int adv_instance_cnt; 602 __u8 cur_adv_instance; 603 __u16 adv_instance_timeout; 604 struct delayed_work adv_instance_expire; 605 606 struct idr adv_monitors_idr; 607 unsigned int adv_monitors_cnt; 608 609 __u8 irk[16]; 610 __u32 rpa_timeout; 611 struct delayed_work rpa_expired; 612 bdaddr_t rpa; 613 614 struct delayed_work mesh_send_done; 615 616 enum { 617 INTERLEAVE_SCAN_NONE, 618 INTERLEAVE_SCAN_NO_FILTER, 619 INTERLEAVE_SCAN_ALLOWLIST 620 } interleave_scan_state; 621 622 struct delayed_work interleave_scan; 623 624 struct list_head monitored_devices; 625 bool advmon_pend_notify; 626 627 struct hci_drv *hci_drv; 628 629 #if IS_ENABLED(CONFIG_BT_LEDS) 630 struct led_trigger *power_led; 631 #endif 632 633 #if IS_ENABLED(CONFIG_BT_MSFTEXT) 634 __u16 msft_opcode; 635 void *msft_data; 636 bool msft_curve_validity; 637 #endif 638 639 #if IS_ENABLED(CONFIG_BT_AOSPEXT) 640 bool aosp_capable; 641 bool aosp_quality_report; 642 #endif 643 644 int (*open)(struct hci_dev *hdev); 645 int (*close)(struct hci_dev *hdev); 646 int (*flush)(struct hci_dev *hdev); 647 int (*setup)(struct hci_dev *hdev); 648 int (*shutdown)(struct hci_dev *hdev); 649 int (*send)(struct hci_dev *hdev, struct sk_buff *skb); 650 void (*notify)(struct hci_dev *hdev, unsigned int evt); 651 void (*hw_error)(struct hci_dev *hdev, u8 code); 652 int (*post_init)(struct hci_dev *hdev); 653 int (*set_diag)(struct hci_dev *hdev, bool enable); 654 int (*set_bdaddr)(struct hci_dev *hdev, const bdaddr_t *bdaddr); 655 void (*reset)(struct hci_dev *hdev); 656 bool (*wakeup)(struct hci_dev *hdev); 657 int (*set_quality_report)(struct hci_dev *hdev, bool enable); 658 int (*get_data_path_id)(struct hci_dev *hdev, __u8 *data_path); 659 int (*get_codec_config_data)(struct hci_dev *hdev, __u8 type, 660 struct bt_codec *codec, __u8 *vnd_len, 661 __u8 **vnd_data); 662 u8 (*classify_pkt_type)(struct hci_dev *hdev, struct sk_buff *skb); 663 }; 664 665 #define hci_set_quirk(hdev, nr) set_bit((nr), (hdev)->quirk_flags) 666 #define hci_clear_quirk(hdev, nr) clear_bit((nr), (hdev)->quirk_flags) 667 #define hci_test_quirk(hdev, nr) test_bit((nr), (hdev)->quirk_flags) 668 669 #define HCI_PHY_HANDLE(handle) (handle & 0xff) 670 671 enum conn_reasons { 672 CONN_REASON_PAIR_DEVICE, 673 CONN_REASON_L2CAP_CHAN, 674 CONN_REASON_SCO_CONNECT, 675 CONN_REASON_ISO_CONNECT, 676 }; 677 678 struct hci_conn { 679 struct list_head list; 680 681 atomic_t refcnt; 682 683 bdaddr_t dst; 684 __u8 dst_type; 685 bdaddr_t src; 686 __u8 src_type; 687 bdaddr_t init_addr; 688 __u8 init_addr_type; 689 bdaddr_t resp_addr; 690 __u8 resp_addr_type; 691 __u8 adv_instance; 692 __u16 handle; 693 __u16 sync_handle; 694 __u8 sid; 695 __u16 state; 696 __u16 mtu; 697 __u8 mode; 698 __u8 type; 699 __u8 role; 700 bool out; 701 __u8 attempt; 702 __u8 dev_class[3]; 703 __u8 features[HCI_MAX_PAGES][8]; 704 __u16 pkt_type; 705 __u16 link_policy; 706 __u8 key_type; 707 __u8 auth_type; 708 __u8 sec_level; 709 __u8 pending_sec_level; 710 __u8 pin_length; 711 __u8 enc_key_size; 712 __u8 io_capability; 713 __u32 passkey_notify; 714 __u8 passkey_entered; 715 __u16 disc_timeout; 716 __u16 conn_timeout; 717 __u16 setting; 718 __u16 auth_payload_timeout; 719 __u16 le_conn_min_interval; 720 __u16 le_conn_max_interval; 721 __u16 le_conn_interval; 722 __u16 le_conn_latency; 723 __u16 le_supv_timeout; 724 __u8 le_adv_data[HCI_MAX_EXT_AD_LENGTH]; 725 __u8 le_adv_data_len; 726 __u8 le_per_adv_data[HCI_MAX_PER_AD_TOT_LEN]; 727 __u16 le_per_adv_data_len; 728 __u16 le_per_adv_data_offset; 729 __u8 le_adv_phy; 730 __u8 le_adv_sec_phy; 731 __u8 le_tx_phy; 732 __u8 le_rx_phy; 733 __s8 rssi; 734 __s8 tx_power; 735 __s8 max_tx_power; 736 struct bt_iso_qos iso_qos; 737 __u8 num_bis; 738 __u8 bis[HCI_MAX_ISO_BIS]; 739 740 unsigned long flags; 741 742 enum conn_reasons conn_reason; 743 __u8 abort_reason; 744 745 __u32 clock; 746 __u16 clock_accuracy; 747 748 unsigned long conn_info_timestamp; 749 750 __u8 remote_cap; 751 __u8 remote_auth; 752 __u8 remote_id; 753 754 unsigned int sent; 755 756 struct sk_buff_head data_q; 757 struct list_head chan_list; 758 759 struct tx_queue tx_q; 760 761 struct delayed_work disc_work; 762 struct delayed_work auto_accept_work; 763 struct delayed_work idle_work; 764 struct delayed_work le_conn_timeout; 765 766 struct device dev; 767 struct dentry *debugfs; 768 769 struct hci_dev *hdev; 770 void *l2cap_data; 771 void *sco_data; 772 void *iso_data; 773 774 struct list_head link_list; 775 struct hci_conn *parent; 776 struct hci_link *link; 777 778 struct bt_codec codec; 779 780 void (*connect_cfm_cb) (struct hci_conn *conn, u8 status); 781 void (*security_cfm_cb) (struct hci_conn *conn, u8 status); 782 void (*disconn_cfm_cb) (struct hci_conn *conn, u8 reason); 783 784 void (*cleanup)(struct hci_conn *conn); 785 }; 786 787 struct hci_link { 788 struct list_head list; 789 struct hci_conn *conn; 790 }; 791 792 struct hci_chan { 793 struct list_head list; 794 __u16 handle; 795 struct hci_conn *conn; 796 struct sk_buff_head data_q; 797 unsigned int sent; 798 __u8 state; 799 }; 800 801 struct hci_conn_params { 802 struct list_head list; 803 struct list_head action; 804 805 bdaddr_t addr; 806 u8 addr_type; 807 808 u16 conn_min_interval; 809 u16 conn_max_interval; 810 u16 conn_latency; 811 u16 supervision_timeout; 812 813 enum { 814 HCI_AUTO_CONN_DISABLED, 815 HCI_AUTO_CONN_REPORT, 816 HCI_AUTO_CONN_DIRECT, 817 HCI_AUTO_CONN_ALWAYS, 818 HCI_AUTO_CONN_LINK_LOSS, 819 HCI_AUTO_CONN_EXPLICIT, 820 } auto_connect; 821 822 struct hci_conn *conn; 823 bool explicit_connect; 824 /* Accessed without hdev->lock: */ 825 hci_conn_flags_t flags; 826 u8 privacy_mode; 827 }; 828 829 extern struct list_head hci_dev_list; 830 extern struct list_head hci_cb_list; 831 extern rwlock_t hci_dev_list_lock; 832 extern struct mutex hci_cb_list_lock; 833 834 #define hci_dev_set_flag(hdev, nr) set_bit((nr), (hdev)->dev_flags) 835 #define hci_dev_clear_flag(hdev, nr) clear_bit((nr), (hdev)->dev_flags) 836 #define hci_dev_change_flag(hdev, nr) change_bit((nr), (hdev)->dev_flags) 837 #define hci_dev_test_flag(hdev, nr) test_bit((nr), (hdev)->dev_flags) 838 #define hci_dev_test_and_set_flag(hdev, nr) test_and_set_bit((nr), (hdev)->dev_flags) 839 #define hci_dev_test_and_clear_flag(hdev, nr) test_and_clear_bit((nr), (hdev)->dev_flags) 840 #define hci_dev_test_and_change_flag(hdev, nr) test_and_change_bit((nr), (hdev)->dev_flags) 841 842 #define hci_dev_clear_volatile_flags(hdev) \ 843 do { \ 844 hci_dev_clear_flag((hdev), HCI_LE_SCAN); \ 845 hci_dev_clear_flag((hdev), HCI_LE_ADV); \ 846 hci_dev_clear_flag((hdev), HCI_LL_RPA_RESOLUTION); \ 847 hci_dev_clear_flag((hdev), HCI_PERIODIC_INQ); \ 848 hci_dev_clear_flag((hdev), HCI_QUALITY_REPORT); \ 849 } while (0) 850 851 #define hci_dev_le_state_simultaneous(hdev) \ 852 (!hci_test_quirk((hdev), HCI_QUIRK_BROKEN_LE_STATES) && \ 853 ((hdev)->le_states[4] & 0x08) && /* Central */ \ 854 ((hdev)->le_states[4] & 0x40) && /* Peripheral */ \ 855 ((hdev)->le_states[3] & 0x10)) /* Simultaneous */ 856 857 /* ----- HCI interface to upper protocols ----- */ 858 int l2cap_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr); 859 int l2cap_disconn_ind(struct hci_conn *hcon); 860 void l2cap_recv_acldata(struct hci_conn *hcon, struct sk_buff *skb, u16 flags); 861 862 #if IS_ENABLED(CONFIG_BT_BREDR) 863 int sco_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr, __u8 *flags); 864 void sco_recv_scodata(struct hci_conn *hcon, struct sk_buff *skb); 865 #else 866 static inline int sco_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr, 867 __u8 *flags) 868 { 869 return 0; 870 } 871 872 static inline void sco_recv_scodata(struct hci_conn *hcon, struct sk_buff *skb) 873 { 874 } 875 #endif 876 877 #if IS_ENABLED(CONFIG_BT_LE) 878 int iso_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr, __u8 *flags); 879 void iso_recv(struct hci_conn *hcon, struct sk_buff *skb, u16 flags); 880 #else 881 static inline int iso_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr, 882 __u8 *flags) 883 { 884 return 0; 885 } 886 static inline void iso_recv(struct hci_conn *hcon, struct sk_buff *skb, 887 u16 flags) 888 { 889 } 890 #endif 891 892 /* ----- Inquiry cache ----- */ 893 #define INQUIRY_CACHE_AGE_MAX (HZ*30) /* 30 seconds */ 894 #define INQUIRY_ENTRY_AGE_MAX (HZ*60) /* 60 seconds */ 895 896 static inline void discovery_init(struct hci_dev *hdev) 897 { 898 spin_lock_init(&hdev->discovery.lock); 899 hdev->discovery.state = DISCOVERY_STOPPED; 900 INIT_LIST_HEAD(&hdev->discovery.all); 901 INIT_LIST_HEAD(&hdev->discovery.unknown); 902 INIT_LIST_HEAD(&hdev->discovery.resolve); 903 hdev->discovery.report_invalid_rssi = true; 904 hdev->discovery.rssi = HCI_RSSI_INVALID; 905 } 906 907 static inline void hci_discovery_filter_clear(struct hci_dev *hdev) 908 { 909 hdev->discovery.result_filtering = false; 910 hdev->discovery.report_invalid_rssi = true; 911 hdev->discovery.rssi = HCI_RSSI_INVALID; 912 hdev->discovery.uuid_count = 0; 913 914 spin_lock(&hdev->discovery.lock); 915 kfree(hdev->discovery.uuids); 916 hdev->discovery.uuids = NULL; 917 spin_unlock(&hdev->discovery.lock); 918 } 919 920 bool hci_discovery_active(struct hci_dev *hdev); 921 922 void hci_discovery_set_state(struct hci_dev *hdev, int state); 923 924 static inline int inquiry_cache_empty(struct hci_dev *hdev) 925 { 926 return list_empty(&hdev->discovery.all); 927 } 928 929 static inline long inquiry_cache_age(struct hci_dev *hdev) 930 { 931 struct discovery_state *c = &hdev->discovery; 932 return jiffies - c->timestamp; 933 } 934 935 static inline long inquiry_entry_age(struct inquiry_entry *e) 936 { 937 return jiffies - e->timestamp; 938 } 939 940 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev, 941 bdaddr_t *bdaddr); 942 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev, 943 bdaddr_t *bdaddr); 944 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev, 945 bdaddr_t *bdaddr, 946 int state); 947 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev, 948 struct inquiry_entry *ie); 949 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data, 950 bool name_known); 951 void hci_inquiry_cache_flush(struct hci_dev *hdev); 952 953 /* ----- HCI Connections ----- */ 954 enum { 955 HCI_CONN_AUTH_PEND, 956 HCI_CONN_ENCRYPT_PEND, 957 HCI_CONN_RSWITCH_PEND, 958 HCI_CONN_MODE_CHANGE_PEND, 959 HCI_CONN_SCO_SETUP_PEND, 960 HCI_CONN_MGMT_CONNECTED, 961 HCI_CONN_SSP_ENABLED, 962 HCI_CONN_SC_ENABLED, 963 HCI_CONN_AES_CCM, 964 HCI_CONN_POWER_SAVE, 965 HCI_CONN_FLUSH_KEY, 966 HCI_CONN_ENCRYPT, 967 HCI_CONN_AUTH, 968 HCI_CONN_SECURE, 969 HCI_CONN_FIPS, 970 HCI_CONN_STK_ENCRYPT, 971 HCI_CONN_AUTH_INITIATOR, 972 HCI_CONN_DROP, 973 HCI_CONN_CANCEL, 974 HCI_CONN_PARAM_REMOVAL_PEND, 975 HCI_CONN_NEW_LINK_KEY, 976 HCI_CONN_SCANNING, 977 HCI_CONN_AUTH_FAILURE, 978 HCI_CONN_PER_ADV, 979 HCI_CONN_BIG_CREATED, 980 HCI_CONN_CREATE_CIS, 981 HCI_CONN_CREATE_BIG_SYNC, 982 HCI_CONN_BIG_SYNC, 983 HCI_CONN_BIG_SYNC_FAILED, 984 HCI_CONN_CREATE_PA_SYNC, 985 HCI_CONN_PA_SYNC, 986 HCI_CONN_PA_SYNC_FAILED, 987 }; 988 989 static inline bool hci_conn_ssp_enabled(struct hci_conn *conn) 990 { 991 struct hci_dev *hdev = conn->hdev; 992 return hci_dev_test_flag(hdev, HCI_SSP_ENABLED) && 993 test_bit(HCI_CONN_SSP_ENABLED, &conn->flags); 994 } 995 996 static inline bool hci_conn_sc_enabled(struct hci_conn *conn) 997 { 998 struct hci_dev *hdev = conn->hdev; 999 return hci_dev_test_flag(hdev, HCI_SC_ENABLED) && 1000 test_bit(HCI_CONN_SC_ENABLED, &conn->flags); 1001 } 1002 1003 static inline void hci_conn_hash_add(struct hci_dev *hdev, struct hci_conn *c) 1004 { 1005 struct hci_conn_hash *h = &hdev->conn_hash; 1006 list_add_tail_rcu(&c->list, &h->list); 1007 switch (c->type) { 1008 case ACL_LINK: 1009 h->acl_num++; 1010 break; 1011 case LE_LINK: 1012 h->le_num++; 1013 if (c->role == HCI_ROLE_SLAVE) 1014 h->le_num_peripheral++; 1015 break; 1016 case SCO_LINK: 1017 case ESCO_LINK: 1018 h->sco_num++; 1019 break; 1020 case CIS_LINK: 1021 h->cis_num++; 1022 break; 1023 case BIS_LINK: 1024 h->bis_num++; 1025 break; 1026 case PA_LINK: 1027 h->pa_num++; 1028 break; 1029 } 1030 } 1031 1032 static inline void hci_conn_hash_del(struct hci_dev *hdev, struct hci_conn *c) 1033 { 1034 struct hci_conn_hash *h = &hdev->conn_hash; 1035 1036 list_del_rcu(&c->list); 1037 synchronize_rcu(); 1038 1039 switch (c->type) { 1040 case ACL_LINK: 1041 h->acl_num--; 1042 break; 1043 case LE_LINK: 1044 h->le_num--; 1045 if (c->role == HCI_ROLE_SLAVE) 1046 h->le_num_peripheral--; 1047 break; 1048 case SCO_LINK: 1049 case ESCO_LINK: 1050 h->sco_num--; 1051 break; 1052 case CIS_LINK: 1053 h->cis_num--; 1054 break; 1055 case BIS_LINK: 1056 h->bis_num--; 1057 break; 1058 case PA_LINK: 1059 h->pa_num--; 1060 break; 1061 } 1062 } 1063 1064 static inline unsigned int hci_conn_num(struct hci_dev *hdev, __u8 type) 1065 { 1066 struct hci_conn_hash *h = &hdev->conn_hash; 1067 switch (type) { 1068 case ACL_LINK: 1069 return h->acl_num; 1070 case LE_LINK: 1071 return h->le_num; 1072 case SCO_LINK: 1073 case ESCO_LINK: 1074 return h->sco_num; 1075 case CIS_LINK: 1076 return h->cis_num; 1077 case BIS_LINK: 1078 return h->bis_num; 1079 case PA_LINK: 1080 return h->pa_num; 1081 default: 1082 return 0; 1083 } 1084 } 1085 1086 static inline unsigned int hci_conn_count(struct hci_dev *hdev) 1087 { 1088 struct hci_conn_hash *c = &hdev->conn_hash; 1089 1090 return c->acl_num + c->sco_num + c->le_num + c->cis_num + c->bis_num + 1091 c->pa_num; 1092 } 1093 1094 static inline unsigned int hci_iso_count(struct hci_dev *hdev) 1095 { 1096 struct hci_conn_hash *c = &hdev->conn_hash; 1097 1098 return c->cis_num + c->bis_num; 1099 } 1100 1101 static inline bool hci_conn_valid(struct hci_dev *hdev, struct hci_conn *conn) 1102 { 1103 struct hci_conn_hash *h = &hdev->conn_hash; 1104 struct hci_conn *c; 1105 1106 rcu_read_lock(); 1107 1108 list_for_each_entry_rcu(c, &h->list, list) { 1109 if (c == conn) { 1110 rcu_read_unlock(); 1111 return true; 1112 } 1113 } 1114 rcu_read_unlock(); 1115 1116 return false; 1117 } 1118 1119 static inline __u8 hci_conn_lookup_type(struct hci_dev *hdev, __u16 handle) 1120 { 1121 struct hci_conn_hash *h = &hdev->conn_hash; 1122 struct hci_conn *c; 1123 __u8 type = INVALID_LINK; 1124 1125 rcu_read_lock(); 1126 1127 list_for_each_entry_rcu(c, &h->list, list) { 1128 if (c->handle == handle) { 1129 type = c->type; 1130 break; 1131 } 1132 } 1133 1134 rcu_read_unlock(); 1135 1136 return type; 1137 } 1138 1139 static inline struct hci_conn *hci_conn_hash_lookup_bis(struct hci_dev *hdev, 1140 bdaddr_t *ba, __u8 bis) 1141 { 1142 struct hci_conn_hash *h = &hdev->conn_hash; 1143 struct hci_conn *c; 1144 1145 rcu_read_lock(); 1146 1147 list_for_each_entry_rcu(c, &h->list, list) { 1148 if (bacmp(&c->dst, ba) || c->type != BIS_LINK) 1149 continue; 1150 1151 if (c->iso_qos.bcast.bis == bis) { 1152 rcu_read_unlock(); 1153 return c; 1154 } 1155 } 1156 rcu_read_unlock(); 1157 1158 return NULL; 1159 } 1160 1161 static inline struct hci_conn * 1162 hci_conn_hash_lookup_create_pa_sync(struct hci_dev *hdev) 1163 { 1164 struct hci_conn_hash *h = &hdev->conn_hash; 1165 struct hci_conn *c; 1166 1167 rcu_read_lock(); 1168 1169 list_for_each_entry_rcu(c, &h->list, list) { 1170 if (c->type != PA_LINK) 1171 continue; 1172 1173 if (!test_bit(HCI_CONN_CREATE_PA_SYNC, &c->flags)) 1174 continue; 1175 1176 rcu_read_unlock(); 1177 return c; 1178 } 1179 1180 rcu_read_unlock(); 1181 1182 return NULL; 1183 } 1184 1185 static inline struct hci_conn * 1186 hci_conn_hash_lookup_per_adv_bis(struct hci_dev *hdev, 1187 bdaddr_t *ba, 1188 __u8 big, __u8 bis) 1189 { 1190 struct hci_conn_hash *h = &hdev->conn_hash; 1191 struct hci_conn *c; 1192 1193 rcu_read_lock(); 1194 1195 list_for_each_entry_rcu(c, &h->list, list) { 1196 if (bacmp(&c->dst, ba) || c->type != BIS_LINK || 1197 !test_bit(HCI_CONN_PER_ADV, &c->flags)) 1198 continue; 1199 1200 if (c->iso_qos.bcast.big == big && 1201 c->iso_qos.bcast.bis == bis) { 1202 rcu_read_unlock(); 1203 return c; 1204 } 1205 } 1206 rcu_read_unlock(); 1207 1208 return NULL; 1209 } 1210 1211 static inline struct hci_conn *hci_conn_hash_lookup_handle(struct hci_dev *hdev, 1212 __u16 handle) 1213 { 1214 struct hci_conn_hash *h = &hdev->conn_hash; 1215 struct hci_conn *c; 1216 1217 rcu_read_lock(); 1218 1219 list_for_each_entry_rcu(c, &h->list, list) { 1220 if (c->handle == handle) { 1221 rcu_read_unlock(); 1222 return c; 1223 } 1224 } 1225 rcu_read_unlock(); 1226 1227 return NULL; 1228 } 1229 1230 static inline struct hci_conn *hci_conn_hash_lookup_ba(struct hci_dev *hdev, 1231 __u8 type, bdaddr_t *ba) 1232 { 1233 struct hci_conn_hash *h = &hdev->conn_hash; 1234 struct hci_conn *c; 1235 1236 rcu_read_lock(); 1237 1238 list_for_each_entry_rcu(c, &h->list, list) { 1239 if (c->type == type && !bacmp(&c->dst, ba)) { 1240 rcu_read_unlock(); 1241 return c; 1242 } 1243 } 1244 1245 rcu_read_unlock(); 1246 1247 return NULL; 1248 } 1249 1250 static inline struct hci_conn *hci_conn_hash_lookup_role(struct hci_dev *hdev, 1251 __u8 type, __u8 role, 1252 bdaddr_t *ba) 1253 { 1254 struct hci_conn_hash *h = &hdev->conn_hash; 1255 struct hci_conn *c; 1256 1257 rcu_read_lock(); 1258 1259 list_for_each_entry_rcu(c, &h->list, list) { 1260 if (c->type == type && c->role == role && !bacmp(&c->dst, ba)) { 1261 rcu_read_unlock(); 1262 return c; 1263 } 1264 } 1265 1266 rcu_read_unlock(); 1267 1268 return NULL; 1269 } 1270 1271 static inline struct hci_conn *hci_conn_hash_lookup_le(struct hci_dev *hdev, 1272 bdaddr_t *ba, 1273 __u8 ba_type) 1274 { 1275 struct hci_conn_hash *h = &hdev->conn_hash; 1276 struct hci_conn *c; 1277 1278 rcu_read_lock(); 1279 1280 list_for_each_entry_rcu(c, &h->list, list) { 1281 if (c->type != LE_LINK) 1282 continue; 1283 1284 if (ba_type == c->dst_type && !bacmp(&c->dst, ba)) { 1285 rcu_read_unlock(); 1286 return c; 1287 } 1288 } 1289 1290 rcu_read_unlock(); 1291 1292 return NULL; 1293 } 1294 1295 static inline struct hci_conn *hci_conn_hash_lookup_cis(struct hci_dev *hdev, 1296 bdaddr_t *ba, 1297 __u8 ba_type, 1298 __u8 cig, 1299 __u8 id) 1300 { 1301 struct hci_conn_hash *h = &hdev->conn_hash; 1302 struct hci_conn *c; 1303 1304 rcu_read_lock(); 1305 1306 list_for_each_entry_rcu(c, &h->list, list) { 1307 if (c->type != CIS_LINK) 1308 continue; 1309 1310 /* Match CIG ID if set */ 1311 if (cig != c->iso_qos.ucast.cig) 1312 continue; 1313 1314 /* Match CIS ID if set */ 1315 if (id != c->iso_qos.ucast.cis) 1316 continue; 1317 1318 /* Match destination address if set */ 1319 if (!ba || (ba_type == c->dst_type && !bacmp(&c->dst, ba))) { 1320 rcu_read_unlock(); 1321 return c; 1322 } 1323 } 1324 1325 rcu_read_unlock(); 1326 1327 return NULL; 1328 } 1329 1330 static inline struct hci_conn *hci_conn_hash_lookup_cig(struct hci_dev *hdev, 1331 __u8 handle) 1332 { 1333 struct hci_conn_hash *h = &hdev->conn_hash; 1334 struct hci_conn *c; 1335 1336 rcu_read_lock(); 1337 1338 list_for_each_entry_rcu(c, &h->list, list) { 1339 if (c->type != CIS_LINK) 1340 continue; 1341 1342 if (handle == c->iso_qos.ucast.cig) { 1343 rcu_read_unlock(); 1344 return c; 1345 } 1346 } 1347 1348 rcu_read_unlock(); 1349 1350 return NULL; 1351 } 1352 1353 static inline struct hci_conn *hci_conn_hash_lookup_big(struct hci_dev *hdev, 1354 __u8 handle) 1355 { 1356 struct hci_conn_hash *h = &hdev->conn_hash; 1357 struct hci_conn *c; 1358 1359 rcu_read_lock(); 1360 1361 list_for_each_entry_rcu(c, &h->list, list) { 1362 if (c->type != BIS_LINK) 1363 continue; 1364 1365 if (handle == c->iso_qos.bcast.big) { 1366 rcu_read_unlock(); 1367 return c; 1368 } 1369 } 1370 1371 rcu_read_unlock(); 1372 1373 return NULL; 1374 } 1375 1376 static inline struct hci_conn * 1377 hci_conn_hash_lookup_big_sync_pend(struct hci_dev *hdev, 1378 __u8 handle, __u8 num_bis) 1379 { 1380 struct hci_conn_hash *h = &hdev->conn_hash; 1381 struct hci_conn *c; 1382 1383 rcu_read_lock(); 1384 1385 list_for_each_entry_rcu(c, &h->list, list) { 1386 if (c->type != PA_LINK) 1387 continue; 1388 1389 if (handle == c->iso_qos.bcast.big && num_bis == c->num_bis) { 1390 rcu_read_unlock(); 1391 return c; 1392 } 1393 } 1394 1395 rcu_read_unlock(); 1396 1397 return NULL; 1398 } 1399 1400 static inline struct hci_conn * 1401 hci_conn_hash_lookup_big_state(struct hci_dev *hdev, __u8 handle, __u16 state, 1402 __u8 role) 1403 { 1404 struct hci_conn_hash *h = &hdev->conn_hash; 1405 struct hci_conn *c; 1406 1407 rcu_read_lock(); 1408 1409 list_for_each_entry_rcu(c, &h->list, list) { 1410 if (c->type != BIS_LINK || c->state != state || c->role != role) 1411 continue; 1412 1413 if (handle == c->iso_qos.bcast.big) { 1414 rcu_read_unlock(); 1415 return c; 1416 } 1417 } 1418 1419 rcu_read_unlock(); 1420 1421 return NULL; 1422 } 1423 1424 static inline struct hci_conn * 1425 hci_conn_hash_lookup_pa_sync_big_handle(struct hci_dev *hdev, __u8 big) 1426 { 1427 struct hci_conn_hash *h = &hdev->conn_hash; 1428 struct hci_conn *c; 1429 1430 rcu_read_lock(); 1431 1432 list_for_each_entry_rcu(c, &h->list, list) { 1433 if (c->type != BIS_LINK || 1434 !test_bit(HCI_CONN_PA_SYNC, &c->flags)) 1435 continue; 1436 1437 if (c->iso_qos.bcast.big == big) { 1438 rcu_read_unlock(); 1439 return c; 1440 } 1441 } 1442 rcu_read_unlock(); 1443 1444 return NULL; 1445 } 1446 1447 static inline struct hci_conn * 1448 hci_conn_hash_lookup_pa_sync_handle(struct hci_dev *hdev, __u16 sync_handle) 1449 { 1450 struct hci_conn_hash *h = &hdev->conn_hash; 1451 struct hci_conn *c; 1452 1453 rcu_read_lock(); 1454 1455 list_for_each_entry_rcu(c, &h->list, list) { 1456 if (c->type != PA_LINK) 1457 continue; 1458 1459 /* Ignore the listen hcon, we are looking 1460 * for the child hcon that was created as 1461 * a result of the PA sync established event. 1462 */ 1463 if (c->state == BT_LISTEN) 1464 continue; 1465 1466 if (c->sync_handle == sync_handle) { 1467 rcu_read_unlock(); 1468 return c; 1469 } 1470 } 1471 rcu_read_unlock(); 1472 1473 return NULL; 1474 } 1475 1476 typedef void (*hci_conn_func_t)(struct hci_conn *conn, void *data); 1477 static inline void hci_conn_hash_list_state(struct hci_dev *hdev, 1478 hci_conn_func_t func, __u8 type, 1479 __u16 state, void *data) 1480 { 1481 struct hci_conn_hash *h = &hdev->conn_hash; 1482 struct hci_conn *c; 1483 1484 if (!func) 1485 return; 1486 1487 rcu_read_lock(); 1488 1489 list_for_each_entry_rcu(c, &h->list, list) { 1490 if (c->type == type && c->state == state) 1491 func(c, data); 1492 } 1493 1494 rcu_read_unlock(); 1495 } 1496 1497 static inline void hci_conn_hash_list_flag(struct hci_dev *hdev, 1498 hci_conn_func_t func, __u8 type, 1499 __u8 flag, void *data) 1500 { 1501 struct hci_conn_hash *h = &hdev->conn_hash; 1502 struct hci_conn *c; 1503 1504 if (!func) 1505 return; 1506 1507 rcu_read_lock(); 1508 1509 list_for_each_entry_rcu(c, &h->list, list) { 1510 if (c->type == type && test_bit(flag, &c->flags)) 1511 func(c, data); 1512 } 1513 1514 rcu_read_unlock(); 1515 } 1516 1517 static inline struct hci_conn *hci_lookup_le_connect(struct hci_dev *hdev) 1518 { 1519 struct hci_conn_hash *h = &hdev->conn_hash; 1520 struct hci_conn *c; 1521 1522 rcu_read_lock(); 1523 1524 list_for_each_entry_rcu(c, &h->list, list) { 1525 if (c->type == LE_LINK && c->state == BT_CONNECT && 1526 !test_bit(HCI_CONN_SCANNING, &c->flags)) { 1527 rcu_read_unlock(); 1528 return c; 1529 } 1530 } 1531 1532 rcu_read_unlock(); 1533 1534 return NULL; 1535 } 1536 1537 /* Returns true if an le connection is in the scanning state */ 1538 static inline bool hci_is_le_conn_scanning(struct hci_dev *hdev) 1539 { 1540 struct hci_conn_hash *h = &hdev->conn_hash; 1541 struct hci_conn *c; 1542 1543 rcu_read_lock(); 1544 1545 list_for_each_entry_rcu(c, &h->list, list) { 1546 if (c->type == LE_LINK && c->state == BT_CONNECT && 1547 test_bit(HCI_CONN_SCANNING, &c->flags)) { 1548 rcu_read_unlock(); 1549 return true; 1550 } 1551 } 1552 1553 rcu_read_unlock(); 1554 1555 return false; 1556 } 1557 1558 int hci_disconnect(struct hci_conn *conn, __u8 reason); 1559 bool hci_setup_sync(struct hci_conn *conn, __u16 handle); 1560 void hci_sco_setup(struct hci_conn *conn, __u8 status); 1561 bool hci_iso_setup_path(struct hci_conn *conn); 1562 int hci_le_create_cis_pending(struct hci_dev *hdev); 1563 int hci_conn_check_create_cis(struct hci_conn *conn); 1564 1565 struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst, 1566 u8 role, u16 handle); 1567 struct hci_conn *hci_conn_add_unset(struct hci_dev *hdev, int type, 1568 bdaddr_t *dst, u8 role); 1569 void hci_conn_del(struct hci_conn *conn); 1570 void hci_conn_hash_flush(struct hci_dev *hdev); 1571 1572 struct hci_chan *hci_chan_create(struct hci_conn *conn); 1573 void hci_chan_del(struct hci_chan *chan); 1574 void hci_chan_list_flush(struct hci_conn *conn); 1575 struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle); 1576 1577 struct hci_conn *hci_connect_le_scan(struct hci_dev *hdev, bdaddr_t *dst, 1578 u8 dst_type, u8 sec_level, 1579 u16 conn_timeout, 1580 enum conn_reasons conn_reason); 1581 struct hci_conn *hci_connect_le(struct hci_dev *hdev, bdaddr_t *dst, 1582 u8 dst_type, bool dst_resolved, u8 sec_level, 1583 u16 conn_timeout, u8 role, u8 phy, u8 sec_phy); 1584 void hci_connect_le_scan_cleanup(struct hci_conn *conn, u8 status); 1585 struct hci_conn *hci_connect_acl(struct hci_dev *hdev, bdaddr_t *dst, 1586 u8 sec_level, u8 auth_type, 1587 enum conn_reasons conn_reason, u16 timeout); 1588 struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst, 1589 __u16 setting, struct bt_codec *codec, 1590 u16 timeout); 1591 struct hci_conn *hci_bind_cis(struct hci_dev *hdev, bdaddr_t *dst, 1592 __u8 dst_type, struct bt_iso_qos *qos, 1593 u16 timeout); 1594 struct hci_conn *hci_bind_bis(struct hci_dev *hdev, bdaddr_t *dst, __u8 sid, 1595 struct bt_iso_qos *qos, 1596 __u8 base_len, __u8 *base, u16 timeout); 1597 struct hci_conn *hci_connect_cis(struct hci_dev *hdev, bdaddr_t *dst, 1598 __u8 dst_type, struct bt_iso_qos *qos, 1599 u16 timeout); 1600 struct hci_conn *hci_connect_bis(struct hci_dev *hdev, bdaddr_t *dst, 1601 __u8 dst_type, __u8 sid, 1602 struct bt_iso_qos *qos, 1603 __u8 data_len, __u8 *data, u16 timeout); 1604 struct hci_conn *hci_pa_create_sync(struct hci_dev *hdev, bdaddr_t *dst, 1605 __u8 dst_type, __u8 sid, struct bt_iso_qos *qos); 1606 int hci_conn_big_create_sync(struct hci_dev *hdev, struct hci_conn *hcon, 1607 struct bt_iso_qos *qos, __u16 sync_handle, 1608 __u8 num_bis, __u8 bis[]); 1609 int hci_conn_check_link_mode(struct hci_conn *conn); 1610 int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level); 1611 int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type, 1612 bool initiator); 1613 int hci_conn_switch_role(struct hci_conn *conn, __u8 role); 1614 1615 void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active); 1616 1617 void hci_conn_failed(struct hci_conn *conn, u8 status); 1618 u8 hci_conn_set_handle(struct hci_conn *conn, u16 handle); 1619 1620 void hci_conn_tx_queue(struct hci_conn *conn, struct sk_buff *skb); 1621 void hci_conn_tx_dequeue(struct hci_conn *conn); 1622 void hci_setup_tx_timestamp(struct sk_buff *skb, size_t key_offset, 1623 const struct sockcm_cookie *sockc); 1624 1625 static inline void hci_sockcm_init(struct sockcm_cookie *sockc, struct sock *sk) 1626 { 1627 *sockc = (struct sockcm_cookie) { 1628 .tsflags = READ_ONCE(sk->sk_tsflags), 1629 }; 1630 } 1631 1632 /* 1633 * hci_conn_get() and hci_conn_put() are used to control the life-time of an 1634 * "hci_conn" object. They do not guarantee that the hci_conn object is running, 1635 * working or anything else. They just guarantee that the object is available 1636 * and can be dereferenced. So you can use its locks, local variables and any 1637 * other constant data. 1638 * Before accessing runtime data, you _must_ lock the object and then check that 1639 * it is still running. As soon as you release the locks, the connection might 1640 * get dropped, though. 1641 * 1642 * On the other hand, hci_conn_hold() and hci_conn_drop() are used to control 1643 * how long the underlying connection is held. So every channel that runs on the 1644 * hci_conn object calls this to prevent the connection from disappearing. As 1645 * long as you hold a device, you must also guarantee that you have a valid 1646 * reference to the device via hci_conn_get() (or the initial reference from 1647 * hci_conn_add()). 1648 * The hold()/drop() ref-count is known to drop below 0 sometimes, which doesn't 1649 * break because nobody cares for that. But this means, we cannot use 1650 * _get()/_drop() in it, but require the caller to have a valid ref (FIXME). 1651 */ 1652 1653 static inline struct hci_conn *hci_conn_get(struct hci_conn *conn) 1654 { 1655 get_device(&conn->dev); 1656 return conn; 1657 } 1658 1659 static inline void hci_conn_put(struct hci_conn *conn) 1660 { 1661 put_device(&conn->dev); 1662 } 1663 1664 static inline struct hci_conn *hci_conn_hold(struct hci_conn *conn) 1665 { 1666 BT_DBG("hcon %p orig refcnt %d", conn, atomic_read(&conn->refcnt)); 1667 1668 atomic_inc(&conn->refcnt); 1669 cancel_delayed_work(&conn->disc_work); 1670 1671 return conn; 1672 } 1673 1674 static inline void hci_conn_drop(struct hci_conn *conn) 1675 { 1676 BT_DBG("hcon %p orig refcnt %d", conn, atomic_read(&conn->refcnt)); 1677 1678 if (atomic_dec_and_test(&conn->refcnt)) { 1679 unsigned long timeo; 1680 1681 switch (conn->type) { 1682 case ACL_LINK: 1683 case LE_LINK: 1684 cancel_delayed_work(&conn->idle_work); 1685 if (conn->state == BT_CONNECTED) { 1686 timeo = conn->disc_timeout; 1687 if (!conn->out) 1688 timeo *= 2; 1689 } else { 1690 timeo = 0; 1691 } 1692 break; 1693 1694 default: 1695 timeo = 0; 1696 break; 1697 } 1698 1699 cancel_delayed_work(&conn->disc_work); 1700 queue_delayed_work(conn->hdev->workqueue, 1701 &conn->disc_work, timeo); 1702 } 1703 } 1704 1705 /* ----- HCI Devices ----- */ 1706 static inline void hci_dev_put(struct hci_dev *d) 1707 { 1708 BT_DBG("%s orig refcnt %d", d->name, 1709 kref_read(&d->dev.kobj.kref)); 1710 1711 put_device(&d->dev); 1712 } 1713 1714 static inline struct hci_dev *hci_dev_hold(struct hci_dev *d) 1715 { 1716 BT_DBG("%s orig refcnt %d", d->name, 1717 kref_read(&d->dev.kobj.kref)); 1718 1719 get_device(&d->dev); 1720 return d; 1721 } 1722 1723 #define hci_dev_lock(d) mutex_lock(&d->lock) 1724 #define hci_dev_unlock(d) mutex_unlock(&d->lock) 1725 1726 #define to_hci_dev(d) container_of(d, struct hci_dev, dev) 1727 #define to_hci_conn(c) container_of(c, struct hci_conn, dev) 1728 1729 static inline void *hci_get_drvdata(struct hci_dev *hdev) 1730 { 1731 return dev_get_drvdata(&hdev->dev); 1732 } 1733 1734 static inline void hci_set_drvdata(struct hci_dev *hdev, void *data) 1735 { 1736 dev_set_drvdata(&hdev->dev, data); 1737 } 1738 1739 static inline void *hci_get_priv(struct hci_dev *hdev) 1740 { 1741 return (char *)hdev + sizeof(*hdev); 1742 } 1743 1744 struct hci_dev *hci_dev_get(int index); 1745 struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src, u8 src_type); 1746 1747 struct hci_dev *hci_alloc_dev_priv(int sizeof_priv); 1748 1749 static inline struct hci_dev *hci_alloc_dev(void) 1750 { 1751 return hci_alloc_dev_priv(0); 1752 } 1753 1754 void hci_free_dev(struct hci_dev *hdev); 1755 int hci_register_dev(struct hci_dev *hdev); 1756 void hci_unregister_dev(struct hci_dev *hdev); 1757 void hci_release_dev(struct hci_dev *hdev); 1758 int hci_register_suspend_notifier(struct hci_dev *hdev); 1759 int hci_unregister_suspend_notifier(struct hci_dev *hdev); 1760 int hci_suspend_dev(struct hci_dev *hdev); 1761 int hci_resume_dev(struct hci_dev *hdev); 1762 int hci_reset_dev(struct hci_dev *hdev); 1763 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb); 1764 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb); 1765 __printf(2, 3) void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...); 1766 __printf(2, 3) void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...); 1767 1768 static inline void hci_set_msft_opcode(struct hci_dev *hdev, __u16 opcode) 1769 { 1770 #if IS_ENABLED(CONFIG_BT_MSFTEXT) 1771 hdev->msft_opcode = opcode; 1772 #endif 1773 } 1774 1775 static inline void hci_set_aosp_capable(struct hci_dev *hdev) 1776 { 1777 #if IS_ENABLED(CONFIG_BT_AOSPEXT) 1778 hdev->aosp_capable = true; 1779 #endif 1780 } 1781 1782 static inline void hci_devcd_setup(struct hci_dev *hdev) 1783 { 1784 #ifdef CONFIG_DEV_COREDUMP 1785 INIT_WORK(&hdev->dump.dump_rx, hci_devcd_rx); 1786 INIT_DELAYED_WORK(&hdev->dump.dump_timeout, hci_devcd_timeout); 1787 skb_queue_head_init(&hdev->dump.dump_q); 1788 #endif 1789 } 1790 1791 int hci_dev_open(__u16 dev); 1792 int hci_dev_close(__u16 dev); 1793 int hci_dev_do_close(struct hci_dev *hdev); 1794 int hci_dev_reset(__u16 dev); 1795 int hci_dev_reset_stat(__u16 dev); 1796 int hci_dev_cmd(unsigned int cmd, void __user *arg); 1797 int hci_get_dev_list(void __user *arg); 1798 int hci_get_dev_info(void __user *arg); 1799 int hci_get_conn_list(void __user *arg); 1800 int hci_get_conn_info(struct hci_dev *hdev, void __user *arg); 1801 int hci_get_auth_info(struct hci_dev *hdev, void __user *arg); 1802 int hci_inquiry(void __user *arg); 1803 1804 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *list, 1805 bdaddr_t *bdaddr, u8 type); 1806 struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk( 1807 struct list_head *list, bdaddr_t *bdaddr, 1808 u8 type); 1809 struct bdaddr_list_with_flags * 1810 hci_bdaddr_list_lookup_with_flags(struct list_head *list, bdaddr_t *bdaddr, 1811 u8 type); 1812 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type); 1813 int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr, 1814 u8 type, u8 *peer_irk, u8 *local_irk); 1815 int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr, 1816 u8 type, u32 flags); 1817 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type); 1818 int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr, 1819 u8 type); 1820 void hci_bdaddr_list_clear(struct list_head *list); 1821 1822 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev, 1823 bdaddr_t *addr, u8 addr_type); 1824 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev, 1825 bdaddr_t *addr, u8 addr_type); 1826 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type); 1827 void hci_conn_params_clear_disabled(struct hci_dev *hdev); 1828 void hci_conn_params_free(struct hci_conn_params *param); 1829 1830 void hci_pend_le_list_del_init(struct hci_conn_params *param); 1831 void hci_pend_le_list_add(struct hci_conn_params *param, 1832 struct list_head *list); 1833 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list, 1834 bdaddr_t *addr, 1835 u8 addr_type); 1836 1837 void hci_uuids_clear(struct hci_dev *hdev); 1838 1839 void hci_link_keys_clear(struct hci_dev *hdev); 1840 u8 *hci_conn_key_enc_size(struct hci_conn *conn); 1841 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr); 1842 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn, 1843 bdaddr_t *bdaddr, u8 *val, u8 type, 1844 u8 pin_len, bool *persistent); 1845 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, 1846 u8 addr_type, u8 type, u8 authenticated, 1847 u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand); 1848 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, 1849 u8 addr_type, u8 role); 1850 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type); 1851 void hci_smp_ltks_clear(struct hci_dev *hdev); 1852 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr); 1853 1854 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa); 1855 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr, 1856 u8 addr_type); 1857 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, 1858 u8 addr_type, u8 val[16], bdaddr_t *rpa); 1859 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type); 1860 bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16]); 1861 void hci_blocked_keys_clear(struct hci_dev *hdev); 1862 void hci_smp_irks_clear(struct hci_dev *hdev); 1863 1864 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type); 1865 1866 void hci_remote_oob_data_clear(struct hci_dev *hdev); 1867 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev, 1868 bdaddr_t *bdaddr, u8 bdaddr_type); 1869 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, 1870 u8 bdaddr_type, u8 *hash192, u8 *rand192, 1871 u8 *hash256, u8 *rand256); 1872 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, 1873 u8 bdaddr_type); 1874 1875 void hci_adv_instances_clear(struct hci_dev *hdev); 1876 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance); 1877 struct adv_info *hci_find_adv_sid(struct hci_dev *hdev, u8 sid); 1878 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance); 1879 struct adv_info *hci_add_adv_instance(struct hci_dev *hdev, u8 instance, 1880 u32 flags, u16 adv_data_len, u8 *adv_data, 1881 u16 scan_rsp_len, u8 *scan_rsp_data, 1882 u16 timeout, u16 duration, s8 tx_power, 1883 u32 min_interval, u32 max_interval, 1884 u8 mesh_handle); 1885 struct adv_info *hci_add_per_instance(struct hci_dev *hdev, u8 instance, u8 sid, 1886 u32 flags, u8 data_len, u8 *data, 1887 u32 min_interval, u32 max_interval); 1888 int hci_set_adv_instance_data(struct hci_dev *hdev, u8 instance, 1889 u16 adv_data_len, u8 *adv_data, 1890 u16 scan_rsp_len, u8 *scan_rsp_data); 1891 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance); 1892 void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired); 1893 u32 hci_adv_instance_flags(struct hci_dev *hdev, u8 instance); 1894 bool hci_adv_instance_is_scannable(struct hci_dev *hdev, u8 instance); 1895 1896 void hci_adv_monitors_clear(struct hci_dev *hdev); 1897 void hci_free_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor); 1898 int hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor); 1899 int hci_remove_single_adv_monitor(struct hci_dev *hdev, u16 handle); 1900 int hci_remove_all_adv_monitor(struct hci_dev *hdev); 1901 bool hci_is_adv_monitoring(struct hci_dev *hdev); 1902 int hci_get_adv_monitor_offload_ext(struct hci_dev *hdev); 1903 1904 void hci_event_packet(struct hci_dev *hdev, struct sk_buff *skb); 1905 1906 void hci_init_sysfs(struct hci_dev *hdev); 1907 void hci_conn_init_sysfs(struct hci_conn *conn); 1908 void hci_conn_add_sysfs(struct hci_conn *conn); 1909 void hci_conn_del_sysfs(struct hci_conn *conn); 1910 1911 #define SET_HCIDEV_DEV(hdev, pdev) ((hdev)->dev.parent = (pdev)) 1912 #define GET_HCIDEV_DEV(hdev) ((hdev)->dev.parent) 1913 1914 /* ----- LMP capabilities ----- */ 1915 #define lmp_encrypt_capable(dev) ((dev)->features[0][0] & LMP_ENCRYPT) 1916 #define lmp_rswitch_capable(dev) ((dev)->features[0][0] & LMP_RSWITCH) 1917 #define lmp_hold_capable(dev) ((dev)->features[0][0] & LMP_HOLD) 1918 #define lmp_sniff_capable(dev) ((dev)->features[0][0] & LMP_SNIFF) 1919 #define lmp_park_capable(dev) ((dev)->features[0][1] & LMP_PARK) 1920 #define lmp_sco_capable(dev) ((dev)->features[0][1] & LMP_SCO) 1921 #define lmp_inq_rssi_capable(dev) ((dev)->features[0][3] & LMP_RSSI_INQ) 1922 #define lmp_esco_capable(dev) ((dev)->features[0][3] & LMP_ESCO) 1923 #define lmp_bredr_capable(dev) (!((dev)->features[0][4] & LMP_NO_BREDR)) 1924 #define lmp_le_capable(dev) ((dev)->features[0][4] & LMP_LE) 1925 #define lmp_sniffsubr_capable(dev) ((dev)->features[0][5] & LMP_SNIFF_SUBR) 1926 #define lmp_pause_enc_capable(dev) ((dev)->features[0][5] & LMP_PAUSE_ENC) 1927 #define lmp_esco_2m_capable(dev) ((dev)->features[0][5] & LMP_EDR_ESCO_2M) 1928 #define lmp_ext_inq_capable(dev) ((dev)->features[0][6] & LMP_EXT_INQ) 1929 #define lmp_le_br_capable(dev) (!!((dev)->features[0][6] & LMP_SIMUL_LE_BR)) 1930 #define lmp_ssp_capable(dev) ((dev)->features[0][6] & LMP_SIMPLE_PAIR) 1931 #define lmp_no_flush_capable(dev) ((dev)->features[0][6] & LMP_NO_FLUSH) 1932 #define lmp_lsto_capable(dev) ((dev)->features[0][7] & LMP_LSTO) 1933 #define lmp_inq_tx_pwr_capable(dev) ((dev)->features[0][7] & LMP_INQ_TX_PWR) 1934 #define lmp_ext_feat_capable(dev) ((dev)->features[0][7] & LMP_EXTFEATURES) 1935 #define lmp_transp_capable(dev) ((dev)->features[0][2] & LMP_TRANSPARENT) 1936 #define lmp_edr_2m_capable(dev) ((dev)->features[0][3] & LMP_EDR_2M) 1937 #define lmp_edr_3m_capable(dev) ((dev)->features[0][3] & LMP_EDR_3M) 1938 #define lmp_edr_3slot_capable(dev) ((dev)->features[0][4] & LMP_EDR_3SLOT) 1939 #define lmp_edr_5slot_capable(dev) ((dev)->features[0][5] & LMP_EDR_5SLOT) 1940 1941 /* ----- Extended LMP capabilities ----- */ 1942 #define lmp_cpb_central_capable(dev) ((dev)->features[2][0] & LMP_CPB_CENTRAL) 1943 #define lmp_cpb_peripheral_capable(dev) ((dev)->features[2][0] & LMP_CPB_PERIPHERAL) 1944 #define lmp_sync_train_capable(dev) ((dev)->features[2][0] & LMP_SYNC_TRAIN) 1945 #define lmp_sync_scan_capable(dev) ((dev)->features[2][0] & LMP_SYNC_SCAN) 1946 #define lmp_sc_capable(dev) ((dev)->features[2][1] & LMP_SC) 1947 #define lmp_ping_capable(dev) ((dev)->features[2][1] & LMP_PING) 1948 1949 /* ----- Host capabilities ----- */ 1950 #define lmp_host_ssp_capable(dev) ((dev)->features[1][0] & LMP_HOST_SSP) 1951 #define lmp_host_sc_capable(dev) ((dev)->features[1][0] & LMP_HOST_SC) 1952 #define lmp_host_le_capable(dev) (!!((dev)->features[1][0] & LMP_HOST_LE)) 1953 #define lmp_host_le_br_capable(dev) (!!((dev)->features[1][0] & LMP_HOST_LE_BREDR)) 1954 1955 #define hdev_is_powered(dev) (test_bit(HCI_UP, &(dev)->flags) && \ 1956 !hci_dev_test_flag(dev, HCI_AUTO_OFF)) 1957 #define bredr_sc_enabled(dev) (lmp_sc_capable(dev) && \ 1958 hci_dev_test_flag(dev, HCI_SC_ENABLED)) 1959 #define rpa_valid(dev) (bacmp(&dev->rpa, BDADDR_ANY) && \ 1960 !hci_dev_test_flag(dev, HCI_RPA_EXPIRED)) 1961 #define adv_rpa_valid(adv) (bacmp(&adv->random_addr, BDADDR_ANY) && \ 1962 !adv->rpa_expired) 1963 #define le_enabled(dev) (lmp_le_capable(dev) && \ 1964 hci_dev_test_flag(dev, HCI_LE_ENABLED)) 1965 1966 #define scan_1m(dev) (((dev)->le_tx_def_phys & HCI_LE_SET_PHY_1M) || \ 1967 ((dev)->le_rx_def_phys & HCI_LE_SET_PHY_1M)) 1968 1969 #define le_2m_capable(dev) (((dev)->le_features[1] & HCI_LE_PHY_2M)) 1970 1971 #define scan_2m(dev) (((dev)->le_tx_def_phys & HCI_LE_SET_PHY_2M) || \ 1972 ((dev)->le_rx_def_phys & HCI_LE_SET_PHY_2M)) 1973 1974 #define le_coded_capable(dev) (((dev)->le_features[1] & HCI_LE_PHY_CODED) && \ 1975 !hci_test_quirk((dev), \ 1976 HCI_QUIRK_BROKEN_LE_CODED)) 1977 1978 #define scan_coded(dev) (((dev)->le_tx_def_phys & HCI_LE_SET_PHY_CODED) || \ 1979 ((dev)->le_rx_def_phys & HCI_LE_SET_PHY_CODED)) 1980 1981 #define ll_privacy_capable(dev) ((dev)->le_features[0] & HCI_LE_LL_PRIVACY) 1982 #define ll_privacy_enabled(dev) (le_enabled(dev) && ll_privacy_capable(dev)) 1983 1984 #define privacy_mode_capable(dev) (ll_privacy_capable(dev) && \ 1985 ((dev)->commands[39] & 0x04)) 1986 1987 #define read_key_size_capable(dev) \ 1988 ((dev)->commands[20] & 0x10 && \ 1989 !hci_test_quirk((dev), HCI_QUIRK_BROKEN_READ_ENC_KEY_SIZE)) 1990 1991 #define read_voice_setting_capable(dev) \ 1992 ((dev)->commands[9] & 0x04 && \ 1993 !hci_test_quirk((dev), HCI_QUIRK_BROKEN_READ_VOICE_SETTING)) 1994 1995 /* Use enhanced synchronous connection if command is supported and its quirk 1996 * has not been set. 1997 */ 1998 #define enhanced_sync_conn_capable(dev) \ 1999 (((dev)->commands[29] & 0x08) && \ 2000 !hci_test_quirk((dev), HCI_QUIRK_BROKEN_ENHANCED_SETUP_SYNC_CONN)) 2001 2002 /* Use ext scanning if set ext scan param and ext scan enable is supported */ 2003 #define use_ext_scan(dev) (((dev)->commands[37] & 0x20) && \ 2004 ((dev)->commands[37] & 0x40) && \ 2005 !hci_test_quirk((dev), HCI_QUIRK_BROKEN_EXT_SCAN)) 2006 2007 /* Use ext create connection if command is supported */ 2008 #define use_ext_conn(dev) (((dev)->commands[37] & 0x80) && \ 2009 !hci_test_quirk((dev), HCI_QUIRK_BROKEN_EXT_CREATE_CONN)) 2010 /* Extended advertising support */ 2011 #define ext_adv_capable(dev) (((dev)->le_features[1] & HCI_LE_EXT_ADV)) 2012 2013 /* Maximum advertising length */ 2014 #define max_adv_len(dev) \ 2015 (ext_adv_capable(dev) ? HCI_MAX_EXT_AD_LENGTH : HCI_MAX_AD_LENGTH) 2016 2017 /* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E page 1789: 2018 * 2019 * C24: Mandatory if the LE Controller supports Connection State and either 2020 * LE Feature (LL Privacy) or LE Feature (Extended Advertising) is supported 2021 */ 2022 #define use_enhanced_conn_complete(dev) ((ll_privacy_capable(dev) || \ 2023 ext_adv_capable(dev)) && \ 2024 !hci_test_quirk((dev), \ 2025 HCI_QUIRK_BROKEN_EXT_CREATE_CONN)) 2026 2027 /* Periodic advertising support */ 2028 #define per_adv_capable(dev) (((dev)->le_features[1] & HCI_LE_PERIODIC_ADV)) 2029 2030 /* CIS Master/Slave and BIS support */ 2031 #define iso_capable(dev) (cis_capable(dev) || bis_capable(dev)) 2032 #define iso_enabled(dev) (le_enabled(dev) && iso_capable(dev)) 2033 #define cis_capable(dev) \ 2034 (cis_central_capable(dev) || cis_peripheral_capable(dev)) 2035 #define cis_enabled(dev) (le_enabled(dev) && cis_capable(dev)) 2036 #define cis_central_capable(dev) \ 2037 ((dev)->le_features[3] & HCI_LE_CIS_CENTRAL) 2038 #define cis_central_enabled(dev) \ 2039 (le_enabled(dev) && cis_central_capable(dev)) 2040 #define cis_peripheral_capable(dev) \ 2041 ((dev)->le_features[3] & HCI_LE_CIS_PERIPHERAL) 2042 #define cis_peripheral_enabled(dev) \ 2043 (le_enabled(dev) && cis_peripheral_capable(dev)) 2044 #define bis_capable(dev) ((dev)->le_features[3] & HCI_LE_ISO_BROADCASTER) 2045 #define bis_enabled(dev) (le_enabled(dev) && bis_capable(dev)) 2046 #define sync_recv_capable(dev) \ 2047 ((dev)->le_features[3] & HCI_LE_ISO_SYNC_RECEIVER) 2048 #define sync_recv_enabled(dev) (le_enabled(dev) && sync_recv_capable(dev)) 2049 2050 #define mws_transport_config_capable(dev) (((dev)->commands[30] & 0x08) && \ 2051 (!hci_test_quirk((dev), HCI_QUIRK_BROKEN_MWS_TRANSPORT_CONFIG))) 2052 2053 /* ----- HCI protocols ----- */ 2054 #define HCI_PROTO_DEFER 0x01 2055 2056 static inline int hci_proto_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr, 2057 __u8 type, __u8 *flags) 2058 { 2059 switch (type) { 2060 case ACL_LINK: 2061 return l2cap_connect_ind(hdev, bdaddr); 2062 2063 case SCO_LINK: 2064 case ESCO_LINK: 2065 return sco_connect_ind(hdev, bdaddr, flags); 2066 2067 case CIS_LINK: 2068 case BIS_LINK: 2069 case PA_LINK: 2070 return iso_connect_ind(hdev, bdaddr, flags); 2071 2072 default: 2073 BT_ERR("unknown link type %d", type); 2074 return -EINVAL; 2075 } 2076 } 2077 2078 static inline int hci_proto_disconn_ind(struct hci_conn *conn) 2079 { 2080 if (conn->type != ACL_LINK && conn->type != LE_LINK) 2081 return HCI_ERROR_REMOTE_USER_TERM; 2082 2083 return l2cap_disconn_ind(conn); 2084 } 2085 2086 /* ----- HCI callbacks ----- */ 2087 struct hci_cb { 2088 struct list_head list; 2089 2090 char *name; 2091 2092 void (*connect_cfm) (struct hci_conn *conn, __u8 status); 2093 void (*disconn_cfm) (struct hci_conn *conn, __u8 status); 2094 void (*security_cfm) (struct hci_conn *conn, __u8 status, 2095 __u8 encrypt); 2096 void (*key_change_cfm) (struct hci_conn *conn, __u8 status); 2097 void (*role_switch_cfm) (struct hci_conn *conn, __u8 status, __u8 role); 2098 }; 2099 2100 static inline void hci_connect_cfm(struct hci_conn *conn, __u8 status) 2101 { 2102 struct hci_cb *cb; 2103 2104 mutex_lock(&hci_cb_list_lock); 2105 list_for_each_entry(cb, &hci_cb_list, list) { 2106 if (cb->connect_cfm) 2107 cb->connect_cfm(conn, status); 2108 } 2109 mutex_unlock(&hci_cb_list_lock); 2110 2111 if (conn->connect_cfm_cb) 2112 conn->connect_cfm_cb(conn, status); 2113 } 2114 2115 static inline void hci_disconn_cfm(struct hci_conn *conn, __u8 reason) 2116 { 2117 struct hci_cb *cb; 2118 2119 mutex_lock(&hci_cb_list_lock); 2120 list_for_each_entry(cb, &hci_cb_list, list) { 2121 if (cb->disconn_cfm) 2122 cb->disconn_cfm(conn, reason); 2123 } 2124 mutex_unlock(&hci_cb_list_lock); 2125 2126 if (conn->disconn_cfm_cb) 2127 conn->disconn_cfm_cb(conn, reason); 2128 } 2129 2130 static inline void hci_auth_cfm(struct hci_conn *conn, __u8 status) 2131 { 2132 struct hci_cb *cb; 2133 __u8 encrypt; 2134 2135 if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) 2136 return; 2137 2138 encrypt = test_bit(HCI_CONN_ENCRYPT, &conn->flags) ? 0x01 : 0x00; 2139 2140 mutex_lock(&hci_cb_list_lock); 2141 list_for_each_entry(cb, &hci_cb_list, list) { 2142 if (cb->security_cfm) 2143 cb->security_cfm(conn, status, encrypt); 2144 } 2145 mutex_unlock(&hci_cb_list_lock); 2146 2147 if (conn->security_cfm_cb) 2148 conn->security_cfm_cb(conn, status); 2149 } 2150 2151 static inline void hci_encrypt_cfm(struct hci_conn *conn, __u8 status) 2152 { 2153 struct hci_cb *cb; 2154 __u8 encrypt; 2155 2156 if (conn->state == BT_CONFIG) { 2157 if (!status) 2158 conn->state = BT_CONNECTED; 2159 2160 hci_connect_cfm(conn, status); 2161 hci_conn_drop(conn); 2162 return; 2163 } 2164 2165 if (!test_bit(HCI_CONN_ENCRYPT, &conn->flags)) 2166 encrypt = 0x00; 2167 else if (test_bit(HCI_CONN_AES_CCM, &conn->flags)) 2168 encrypt = 0x02; 2169 else 2170 encrypt = 0x01; 2171 2172 if (!status) { 2173 if (conn->sec_level == BT_SECURITY_SDP) 2174 conn->sec_level = BT_SECURITY_LOW; 2175 2176 if (conn->pending_sec_level > conn->sec_level) 2177 conn->sec_level = conn->pending_sec_level; 2178 } 2179 2180 mutex_lock(&hci_cb_list_lock); 2181 list_for_each_entry(cb, &hci_cb_list, list) { 2182 if (cb->security_cfm) 2183 cb->security_cfm(conn, status, encrypt); 2184 } 2185 mutex_unlock(&hci_cb_list_lock); 2186 2187 if (conn->security_cfm_cb) 2188 conn->security_cfm_cb(conn, status); 2189 } 2190 2191 static inline void hci_key_change_cfm(struct hci_conn *conn, __u8 status) 2192 { 2193 struct hci_cb *cb; 2194 2195 mutex_lock(&hci_cb_list_lock); 2196 list_for_each_entry(cb, &hci_cb_list, list) { 2197 if (cb->key_change_cfm) 2198 cb->key_change_cfm(conn, status); 2199 } 2200 mutex_unlock(&hci_cb_list_lock); 2201 } 2202 2203 static inline void hci_role_switch_cfm(struct hci_conn *conn, __u8 status, 2204 __u8 role) 2205 { 2206 struct hci_cb *cb; 2207 2208 mutex_lock(&hci_cb_list_lock); 2209 list_for_each_entry(cb, &hci_cb_list, list) { 2210 if (cb->role_switch_cfm) 2211 cb->role_switch_cfm(conn, status, role); 2212 } 2213 mutex_unlock(&hci_cb_list_lock); 2214 } 2215 2216 static inline bool hci_bdaddr_is_rpa(bdaddr_t *bdaddr, u8 addr_type) 2217 { 2218 if (addr_type != ADDR_LE_DEV_RANDOM) 2219 return false; 2220 2221 if ((bdaddr->b[5] & 0xc0) == 0x40) 2222 return true; 2223 2224 return false; 2225 } 2226 2227 static inline bool hci_is_identity_address(bdaddr_t *addr, u8 addr_type) 2228 { 2229 if (addr_type == ADDR_LE_DEV_PUBLIC) 2230 return true; 2231 2232 /* Check for Random Static address type */ 2233 if ((addr->b[5] & 0xc0) == 0xc0) 2234 return true; 2235 2236 return false; 2237 } 2238 2239 static inline struct smp_irk *hci_get_irk(struct hci_dev *hdev, 2240 bdaddr_t *bdaddr, u8 addr_type) 2241 { 2242 if (!hci_bdaddr_is_rpa(bdaddr, addr_type)) 2243 return NULL; 2244 2245 return hci_find_irk_by_rpa(hdev, bdaddr); 2246 } 2247 2248 static inline int hci_check_conn_params(u16 min, u16 max, u16 latency, 2249 u16 to_multiplier) 2250 { 2251 u16 max_latency; 2252 2253 if (min > max) { 2254 BT_WARN("min %d > max %d", min, max); 2255 return -EINVAL; 2256 } 2257 2258 if (min < 6) { 2259 BT_WARN("min %d < 6", min); 2260 return -EINVAL; 2261 } 2262 2263 if (max > 3200) { 2264 BT_WARN("max %d > 3200", max); 2265 return -EINVAL; 2266 } 2267 2268 if (to_multiplier < 10) { 2269 BT_WARN("to_multiplier %d < 10", to_multiplier); 2270 return -EINVAL; 2271 } 2272 2273 if (to_multiplier > 3200) { 2274 BT_WARN("to_multiplier %d > 3200", to_multiplier); 2275 return -EINVAL; 2276 } 2277 2278 if (max >= to_multiplier * 8) { 2279 BT_WARN("max %d >= to_multiplier %d * 8", max, to_multiplier); 2280 return -EINVAL; 2281 } 2282 2283 max_latency = (to_multiplier * 4 / max) - 1; 2284 if (latency > 499) { 2285 BT_WARN("latency %d > 499", latency); 2286 return -EINVAL; 2287 } 2288 2289 if (latency > max_latency) { 2290 BT_WARN("latency %d > max_latency %d", latency, max_latency); 2291 return -EINVAL; 2292 } 2293 2294 return 0; 2295 } 2296 2297 int hci_register_cb(struct hci_cb *hcb); 2298 int hci_unregister_cb(struct hci_cb *hcb); 2299 2300 int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen, 2301 const void *param); 2302 2303 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen, 2304 const void *param); 2305 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags); 2306 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb); 2307 void hci_send_iso(struct hci_conn *conn, struct sk_buff *skb); 2308 2309 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode); 2310 void *hci_recv_event_data(struct hci_dev *hdev, __u8 event); 2311 2312 u32 hci_conn_get_phy(struct hci_conn *conn); 2313 2314 /* ----- HCI Sockets ----- */ 2315 void hci_send_to_sock(struct hci_dev *hdev, struct sk_buff *skb); 2316 void hci_send_to_channel(unsigned short channel, struct sk_buff *skb, 2317 int flag, struct sock *skip_sk); 2318 void hci_send_to_monitor(struct hci_dev *hdev, struct sk_buff *skb); 2319 void hci_send_monitor_ctrl_event(struct hci_dev *hdev, u16 event, 2320 void *data, u16 data_len, ktime_t tstamp, 2321 int flag, struct sock *skip_sk); 2322 2323 void hci_sock_dev_event(struct hci_dev *hdev, int event); 2324 2325 #define HCI_MGMT_VAR_LEN BIT(0) 2326 #define HCI_MGMT_NO_HDEV BIT(1) 2327 #define HCI_MGMT_UNTRUSTED BIT(2) 2328 #define HCI_MGMT_UNCONFIGURED BIT(3) 2329 #define HCI_MGMT_HDEV_OPTIONAL BIT(4) 2330 2331 struct hci_mgmt_handler { 2332 int (*func) (struct sock *sk, struct hci_dev *hdev, void *data, 2333 u16 data_len); 2334 size_t data_len; 2335 unsigned long flags; 2336 }; 2337 2338 struct hci_mgmt_chan { 2339 struct list_head list; 2340 unsigned short channel; 2341 size_t handler_count; 2342 const struct hci_mgmt_handler *handlers; 2343 void (*hdev_init) (struct sock *sk, struct hci_dev *hdev); 2344 }; 2345 2346 int hci_mgmt_chan_register(struct hci_mgmt_chan *c); 2347 void hci_mgmt_chan_unregister(struct hci_mgmt_chan *c); 2348 2349 /* Management interface */ 2350 #define DISCOV_TYPE_BREDR (BIT(BDADDR_BREDR)) 2351 #define DISCOV_TYPE_LE (BIT(BDADDR_LE_PUBLIC) | \ 2352 BIT(BDADDR_LE_RANDOM)) 2353 #define DISCOV_TYPE_INTERLEAVED (BIT(BDADDR_BREDR) | \ 2354 BIT(BDADDR_LE_PUBLIC) | \ 2355 BIT(BDADDR_LE_RANDOM)) 2356 2357 /* These LE scan and inquiry parameters were chosen according to LE General 2358 * Discovery Procedure specification. 2359 */ 2360 #define DISCOV_LE_SCAN_WIN 0x0012 /* 11.25 msec */ 2361 #define DISCOV_LE_SCAN_INT 0x0012 /* 11.25 msec */ 2362 #define DISCOV_LE_SCAN_INT_FAST 0x0060 /* 60 msec */ 2363 #define DISCOV_LE_SCAN_WIN_FAST 0x0030 /* 30 msec */ 2364 #define DISCOV_LE_SCAN_INT_CONN 0x0060 /* 60 msec */ 2365 #define DISCOV_LE_SCAN_WIN_CONN 0x0060 /* 60 msec */ 2366 #define DISCOV_LE_SCAN_INT_SLOW1 0x0800 /* 1.28 sec */ 2367 #define DISCOV_LE_SCAN_WIN_SLOW1 0x0012 /* 11.25 msec */ 2368 #define DISCOV_LE_SCAN_INT_SLOW2 0x1000 /* 2.56 sec */ 2369 #define DISCOV_LE_SCAN_WIN_SLOW2 0x0024 /* 22.5 msec */ 2370 #define DISCOV_CODED_SCAN_INT_FAST 0x0120 /* 180 msec */ 2371 #define DISCOV_CODED_SCAN_WIN_FAST 0x0090 /* 90 msec */ 2372 #define DISCOV_CODED_SCAN_INT_SLOW1 0x1800 /* 3.84 sec */ 2373 #define DISCOV_CODED_SCAN_WIN_SLOW1 0x0036 /* 33.75 msec */ 2374 #define DISCOV_CODED_SCAN_INT_SLOW2 0x3000 /* 7.68 sec */ 2375 #define DISCOV_CODED_SCAN_WIN_SLOW2 0x006c /* 67.5 msec */ 2376 #define DISCOV_LE_TIMEOUT 10240 /* msec */ 2377 #define DISCOV_INTERLEAVED_TIMEOUT 5120 /* msec */ 2378 #define DISCOV_INTERLEAVED_INQUIRY_LEN 0x04 2379 #define DISCOV_BREDR_INQUIRY_LEN 0x08 2380 #define DISCOV_LE_RESTART_DELAY msecs_to_jiffies(200) /* msec */ 2381 #define DISCOV_LE_FAST_ADV_INT_MIN 0x00A0 /* 100 msec */ 2382 #define DISCOV_LE_FAST_ADV_INT_MAX 0x00F0 /* 150 msec */ 2383 #define DISCOV_LE_PER_ADV_INT_MIN 0x00A0 /* 200 msec */ 2384 #define DISCOV_LE_PER_ADV_INT_MAX 0x00A0 /* 200 msec */ 2385 #define DISCOV_LE_ADV_MESH_MIN 0x00A0 /* 100 msec */ 2386 #define DISCOV_LE_ADV_MESH_MAX 0x00A0 /* 100 msec */ 2387 #define INTERVAL_TO_MS(x) (((x) * 10) / 0x10) 2388 2389 #define NAME_RESOLVE_DURATION msecs_to_jiffies(10240) /* 10.24 sec */ 2390 2391 void mgmt_fill_version_info(void *ver); 2392 int mgmt_new_settings(struct hci_dev *hdev); 2393 void mgmt_index_added(struct hci_dev *hdev); 2394 void mgmt_index_removed(struct hci_dev *hdev); 2395 void mgmt_set_powered_failed(struct hci_dev *hdev, int err); 2396 void mgmt_power_on(struct hci_dev *hdev, int err); 2397 void __mgmt_power_off(struct hci_dev *hdev); 2398 void mgmt_new_link_key(struct hci_dev *hdev, struct link_key *key, 2399 bool persistent); 2400 void mgmt_device_connected(struct hci_dev *hdev, struct hci_conn *conn, 2401 u8 *name, u8 name_len); 2402 void mgmt_device_disconnected(struct hci_dev *hdev, bdaddr_t *bdaddr, 2403 u8 link_type, u8 addr_type, u8 reason, 2404 bool mgmt_connected); 2405 void mgmt_disconnect_failed(struct hci_dev *hdev, bdaddr_t *bdaddr, 2406 u8 link_type, u8 addr_type, u8 status); 2407 void mgmt_connect_failed(struct hci_dev *hdev, struct hci_conn *conn, 2408 u8 status); 2409 void mgmt_pin_code_request(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 secure); 2410 void mgmt_pin_code_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 2411 u8 status); 2412 void mgmt_pin_code_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 2413 u8 status); 2414 int mgmt_user_confirm_request(struct hci_dev *hdev, bdaddr_t *bdaddr, 2415 u8 link_type, u8 addr_type, u32 value, 2416 u8 confirm_hint); 2417 int mgmt_user_confirm_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 2418 u8 link_type, u8 addr_type, u8 status); 2419 int mgmt_user_confirm_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 2420 u8 link_type, u8 addr_type, u8 status); 2421 int mgmt_user_passkey_request(struct hci_dev *hdev, bdaddr_t *bdaddr, 2422 u8 link_type, u8 addr_type); 2423 int mgmt_user_passkey_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 2424 u8 link_type, u8 addr_type, u8 status); 2425 int mgmt_user_passkey_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 2426 u8 link_type, u8 addr_type, u8 status); 2427 int mgmt_user_passkey_notify(struct hci_dev *hdev, bdaddr_t *bdaddr, 2428 u8 link_type, u8 addr_type, u32 passkey, 2429 u8 entered); 2430 void mgmt_auth_failed(struct hci_conn *conn, u8 status); 2431 void mgmt_auth_enable_complete(struct hci_dev *hdev, u8 status); 2432 void mgmt_set_class_of_dev_complete(struct hci_dev *hdev, u8 *dev_class, 2433 u8 status); 2434 void mgmt_set_local_name_complete(struct hci_dev *hdev, u8 *name, u8 status); 2435 void mgmt_device_found(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, 2436 u8 addr_type, u8 *dev_class, s8 rssi, u32 flags, 2437 u8 *eir, u16 eir_len, u8 *scan_rsp, u8 scan_rsp_len, 2438 u64 instant); 2439 void mgmt_remote_name(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, 2440 u8 addr_type, s8 rssi, u8 *name, u8 name_len); 2441 void mgmt_discovering(struct hci_dev *hdev, u8 discovering); 2442 void mgmt_suspending(struct hci_dev *hdev, u8 state); 2443 void mgmt_resuming(struct hci_dev *hdev, u8 reason, bdaddr_t *bdaddr, 2444 u8 addr_type); 2445 bool mgmt_powering_down(struct hci_dev *hdev); 2446 void mgmt_new_ltk(struct hci_dev *hdev, struct smp_ltk *key, bool persistent); 2447 void mgmt_new_irk(struct hci_dev *hdev, struct smp_irk *irk, bool persistent); 2448 void mgmt_new_csrk(struct hci_dev *hdev, struct smp_csrk *csrk, 2449 bool persistent); 2450 void mgmt_new_conn_param(struct hci_dev *hdev, bdaddr_t *bdaddr, 2451 u8 bdaddr_type, u8 store_hint, u16 min_interval, 2452 u16 max_interval, u16 latency, u16 timeout); 2453 void mgmt_smp_complete(struct hci_conn *conn, bool complete); 2454 bool mgmt_get_connectable(struct hci_dev *hdev); 2455 u8 mgmt_get_adv_discov_flags(struct hci_dev *hdev); 2456 void mgmt_advertising_added(struct sock *sk, struct hci_dev *hdev, 2457 u8 instance); 2458 void mgmt_advertising_removed(struct sock *sk, struct hci_dev *hdev, 2459 u8 instance); 2460 int mgmt_phy_configuration_changed(struct hci_dev *hdev, struct sock *skip); 2461 void mgmt_adv_monitor_device_lost(struct hci_dev *hdev, u16 handle, 2462 bdaddr_t *bdaddr, u8 addr_type); 2463 2464 int hci_abort_conn(struct hci_conn *conn, u8 reason); 2465 u8 hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max, u16 latency, 2466 u16 to_multiplier); 2467 void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __le64 rand, 2468 __u8 ltk[16], __u8 key_size); 2469 2470 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr, 2471 u8 *bdaddr_type); 2472 2473 #define SCO_AIRMODE_MASK 0x0003 2474 #define SCO_AIRMODE_CVSD 0x0000 2475 #define SCO_AIRMODE_TRANSP 0x0003 2476 2477 #define LOCAL_CODEC_ACL_MASK BIT(0) 2478 #define LOCAL_CODEC_SCO_MASK BIT(1) 2479 2480 #define TRANSPORT_TYPE_MAX 0x04 2481 2482 #endif /* __HCI_CORE_H */ 2483