1 /* 2 BlueZ - Bluetooth protocol stack for Linux 3 Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved. 4 5 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License version 2 as 9 published by the Free Software Foundation; 10 11 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 12 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 13 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 14 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 15 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 16 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 20 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 21 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 22 SOFTWARE IS DISCLAIMED. 23 */ 24 25 #ifndef __HCI_CORE_H 26 #define __HCI_CORE_H 27 28 #include <linux/leds.h> 29 #include <linux/rculist.h> 30 31 #include <net/bluetooth/hci.h> 32 #include <net/bluetooth/hci_sock.h> 33 34 /* HCI priority */ 35 #define HCI_PRIO_MAX 7 36 37 /* HCI Core structures */ 38 struct inquiry_data { 39 bdaddr_t bdaddr; 40 __u8 pscan_rep_mode; 41 __u8 pscan_period_mode; 42 __u8 pscan_mode; 43 __u8 dev_class[3]; 44 __le16 clock_offset; 45 __s8 rssi; 46 __u8 ssp_mode; 47 }; 48 49 struct inquiry_entry { 50 struct list_head all; /* inq_cache.all */ 51 struct list_head list; /* unknown or resolve */ 52 enum { 53 NAME_NOT_KNOWN, 54 NAME_NEEDED, 55 NAME_PENDING, 56 NAME_KNOWN, 57 } name_state; 58 __u32 timestamp; 59 struct inquiry_data data; 60 }; 61 62 struct discovery_state { 63 int type; 64 enum { 65 DISCOVERY_STOPPED, 66 DISCOVERY_STARTING, 67 DISCOVERY_FINDING, 68 DISCOVERY_RESOLVING, 69 DISCOVERY_STOPPING, 70 } state; 71 struct list_head all; /* All devices found during inquiry */ 72 struct list_head unknown; /* Name state not known */ 73 struct list_head resolve; /* Name needs to be resolved */ 74 __u32 timestamp; 75 bdaddr_t last_adv_addr; 76 u8 last_adv_addr_type; 77 s8 last_adv_rssi; 78 u32 last_adv_flags; 79 u8 last_adv_data[HCI_MAX_AD_LENGTH]; 80 u8 last_adv_data_len; 81 bool report_invalid_rssi; 82 bool result_filtering; 83 bool limited; 84 s8 rssi; 85 u16 uuid_count; 86 u8 (*uuids)[16]; 87 unsigned long scan_start; 88 unsigned long scan_duration; 89 }; 90 91 struct hci_conn_hash { 92 struct list_head list; 93 unsigned int acl_num; 94 unsigned int amp_num; 95 unsigned int sco_num; 96 unsigned int le_num; 97 unsigned int le_num_slave; 98 }; 99 100 struct bdaddr_list { 101 struct list_head list; 102 bdaddr_t bdaddr; 103 u8 bdaddr_type; 104 }; 105 106 struct bt_uuid { 107 struct list_head list; 108 u8 uuid[16]; 109 u8 size; 110 u8 svc_hint; 111 }; 112 113 struct smp_csrk { 114 bdaddr_t bdaddr; 115 u8 bdaddr_type; 116 u8 type; 117 u8 val[16]; 118 }; 119 120 struct smp_ltk { 121 struct list_head list; 122 struct rcu_head rcu; 123 bdaddr_t bdaddr; 124 u8 bdaddr_type; 125 u8 authenticated; 126 u8 type; 127 u8 enc_size; 128 __le16 ediv; 129 __le64 rand; 130 u8 val[16]; 131 }; 132 133 struct smp_irk { 134 struct list_head list; 135 struct rcu_head rcu; 136 bdaddr_t rpa; 137 bdaddr_t bdaddr; 138 u8 addr_type; 139 u8 val[16]; 140 }; 141 142 struct link_key { 143 struct list_head list; 144 struct rcu_head rcu; 145 bdaddr_t bdaddr; 146 u8 type; 147 u8 val[HCI_LINK_KEY_SIZE]; 148 u8 pin_len; 149 }; 150 151 struct oob_data { 152 struct list_head list; 153 bdaddr_t bdaddr; 154 u8 bdaddr_type; 155 u8 present; 156 u8 hash192[16]; 157 u8 rand192[16]; 158 u8 hash256[16]; 159 u8 rand256[16]; 160 }; 161 162 struct adv_info { 163 struct list_head list; 164 bool pending; 165 __u8 instance; 166 __u32 flags; 167 __u16 timeout; 168 __u16 remaining_time; 169 __u16 duration; 170 __u16 adv_data_len; 171 __u8 adv_data[HCI_MAX_AD_LENGTH]; 172 __u16 scan_rsp_len; 173 __u8 scan_rsp_data[HCI_MAX_AD_LENGTH]; 174 }; 175 176 #define HCI_MAX_ADV_INSTANCES 5 177 #define HCI_DEFAULT_ADV_DURATION 2 178 179 #define HCI_MAX_SHORT_NAME_LENGTH 10 180 181 /* Default LE RPA expiry time, 15 minutes */ 182 #define HCI_DEFAULT_RPA_TIMEOUT (15 * 60) 183 184 /* Default min/max age of connection information (1s/3s) */ 185 #define DEFAULT_CONN_INFO_MIN_AGE 1000 186 #define DEFAULT_CONN_INFO_MAX_AGE 3000 187 188 struct amp_assoc { 189 __u16 len; 190 __u16 offset; 191 __u16 rem_len; 192 __u16 len_so_far; 193 __u8 data[HCI_MAX_AMP_ASSOC_SIZE]; 194 }; 195 196 #define HCI_MAX_PAGES 3 197 198 struct hci_dev { 199 struct list_head list; 200 struct mutex lock; 201 202 char name[8]; 203 unsigned long flags; 204 __u16 id; 205 __u8 bus; 206 __u8 dev_type; 207 bdaddr_t bdaddr; 208 bdaddr_t setup_addr; 209 bdaddr_t public_addr; 210 bdaddr_t random_addr; 211 bdaddr_t static_addr; 212 __u8 adv_addr_type; 213 __u8 dev_name[HCI_MAX_NAME_LENGTH]; 214 __u8 short_name[HCI_MAX_SHORT_NAME_LENGTH]; 215 __u8 eir[HCI_MAX_EIR_LENGTH]; 216 __u16 appearance; 217 __u8 dev_class[3]; 218 __u8 major_class; 219 __u8 minor_class; 220 __u8 max_page; 221 __u8 features[HCI_MAX_PAGES][8]; 222 __u8 le_features[8]; 223 __u8 le_white_list_size; 224 __u8 le_states[8]; 225 __u8 commands[64]; 226 __u8 hci_ver; 227 __u16 hci_rev; 228 __u8 lmp_ver; 229 __u16 manufacturer; 230 __u16 lmp_subver; 231 __u16 voice_setting; 232 __u8 num_iac; 233 __u8 stored_max_keys; 234 __u8 stored_num_keys; 235 __u8 io_capability; 236 __s8 inq_tx_power; 237 __u16 page_scan_interval; 238 __u16 page_scan_window; 239 __u8 page_scan_type; 240 __u8 le_adv_channel_map; 241 __u16 le_adv_min_interval; 242 __u16 le_adv_max_interval; 243 __u8 le_scan_type; 244 __u16 le_scan_interval; 245 __u16 le_scan_window; 246 __u16 le_conn_min_interval; 247 __u16 le_conn_max_interval; 248 __u16 le_conn_latency; 249 __u16 le_supv_timeout; 250 __u16 le_def_tx_len; 251 __u16 le_def_tx_time; 252 __u16 le_max_tx_len; 253 __u16 le_max_tx_time; 254 __u16 le_max_rx_len; 255 __u16 le_max_rx_time; 256 __u16 discov_interleaved_timeout; 257 __u16 conn_info_min_age; 258 __u16 conn_info_max_age; 259 __u8 ssp_debug_mode; 260 __u8 hw_error_code; 261 __u32 clock; 262 263 __u16 devid_source; 264 __u16 devid_vendor; 265 __u16 devid_product; 266 __u16 devid_version; 267 268 __u16 pkt_type; 269 __u16 esco_type; 270 __u16 link_policy; 271 __u16 link_mode; 272 273 __u32 idle_timeout; 274 __u16 sniff_min_interval; 275 __u16 sniff_max_interval; 276 277 __u8 amp_status; 278 __u32 amp_total_bw; 279 __u32 amp_max_bw; 280 __u32 amp_min_latency; 281 __u32 amp_max_pdu; 282 __u8 amp_type; 283 __u16 amp_pal_cap; 284 __u16 amp_assoc_size; 285 __u32 amp_max_flush_to; 286 __u32 amp_be_flush_to; 287 288 struct amp_assoc loc_assoc; 289 290 __u8 flow_ctl_mode; 291 292 unsigned int auto_accept_delay; 293 294 unsigned long quirks; 295 296 atomic_t cmd_cnt; 297 unsigned int acl_cnt; 298 unsigned int sco_cnt; 299 unsigned int le_cnt; 300 301 unsigned int acl_mtu; 302 unsigned int sco_mtu; 303 unsigned int le_mtu; 304 unsigned int acl_pkts; 305 unsigned int sco_pkts; 306 unsigned int le_pkts; 307 308 __u16 block_len; 309 __u16 block_mtu; 310 __u16 num_blocks; 311 __u16 block_cnt; 312 313 unsigned long acl_last_tx; 314 unsigned long sco_last_tx; 315 unsigned long le_last_tx; 316 317 struct workqueue_struct *workqueue; 318 struct workqueue_struct *req_workqueue; 319 320 struct work_struct power_on; 321 struct delayed_work power_off; 322 struct work_struct error_reset; 323 324 __u16 discov_timeout; 325 struct delayed_work discov_off; 326 327 struct delayed_work service_cache; 328 329 struct delayed_work cmd_timer; 330 331 struct work_struct rx_work; 332 struct work_struct cmd_work; 333 struct work_struct tx_work; 334 335 struct work_struct discov_update; 336 struct work_struct bg_scan_update; 337 struct work_struct scan_update; 338 struct work_struct connectable_update; 339 struct work_struct discoverable_update; 340 struct delayed_work le_scan_disable; 341 struct delayed_work le_scan_restart; 342 343 struct sk_buff_head rx_q; 344 struct sk_buff_head raw_q; 345 struct sk_buff_head cmd_q; 346 347 struct sk_buff *sent_cmd; 348 349 struct mutex req_lock; 350 wait_queue_head_t req_wait_q; 351 __u32 req_status; 352 __u32 req_result; 353 struct sk_buff *req_skb; 354 355 void *smp_data; 356 void *smp_bredr_data; 357 358 struct discovery_state discovery; 359 struct hci_conn_hash conn_hash; 360 361 struct list_head mgmt_pending; 362 struct list_head blacklist; 363 struct list_head whitelist; 364 struct list_head uuids; 365 struct list_head link_keys; 366 struct list_head long_term_keys; 367 struct list_head identity_resolving_keys; 368 struct list_head remote_oob_data; 369 struct list_head le_white_list; 370 struct list_head le_conn_params; 371 struct list_head pend_le_conns; 372 struct list_head pend_le_reports; 373 374 struct hci_dev_stats stat; 375 376 atomic_t promisc; 377 378 const char *hw_info; 379 const char *fw_info; 380 struct dentry *debugfs; 381 382 struct device dev; 383 384 struct rfkill *rfkill; 385 386 DECLARE_BITMAP(dev_flags, __HCI_NUM_FLAGS); 387 388 __s8 adv_tx_power; 389 __u8 adv_data[HCI_MAX_AD_LENGTH]; 390 __u8 adv_data_len; 391 __u8 scan_rsp_data[HCI_MAX_AD_LENGTH]; 392 __u8 scan_rsp_data_len; 393 394 struct list_head adv_instances; 395 unsigned int adv_instance_cnt; 396 __u8 cur_adv_instance; 397 __u16 adv_instance_timeout; 398 struct delayed_work adv_instance_expire; 399 400 __u8 irk[16]; 401 __u32 rpa_timeout; 402 struct delayed_work rpa_expired; 403 bdaddr_t rpa; 404 405 #if IS_ENABLED(CONFIG_BT_LEDS) 406 struct led_trigger *power_led; 407 #endif 408 409 int (*open)(struct hci_dev *hdev); 410 int (*close)(struct hci_dev *hdev); 411 int (*flush)(struct hci_dev *hdev); 412 int (*setup)(struct hci_dev *hdev); 413 int (*shutdown)(struct hci_dev *hdev); 414 int (*send)(struct hci_dev *hdev, struct sk_buff *skb); 415 void (*notify)(struct hci_dev *hdev, unsigned int evt); 416 void (*hw_error)(struct hci_dev *hdev, u8 code); 417 int (*post_init)(struct hci_dev *hdev); 418 int (*set_diag)(struct hci_dev *hdev, bool enable); 419 int (*set_bdaddr)(struct hci_dev *hdev, const bdaddr_t *bdaddr); 420 }; 421 422 #define HCI_PHY_HANDLE(handle) (handle & 0xff) 423 424 struct hci_conn { 425 struct list_head list; 426 427 atomic_t refcnt; 428 429 bdaddr_t dst; 430 __u8 dst_type; 431 bdaddr_t src; 432 __u8 src_type; 433 bdaddr_t init_addr; 434 __u8 init_addr_type; 435 bdaddr_t resp_addr; 436 __u8 resp_addr_type; 437 __u16 handle; 438 __u16 state; 439 __u8 mode; 440 __u8 type; 441 __u8 role; 442 bool out; 443 __u8 attempt; 444 __u8 dev_class[3]; 445 __u8 features[HCI_MAX_PAGES][8]; 446 __u16 pkt_type; 447 __u16 link_policy; 448 __u8 key_type; 449 __u8 auth_type; 450 __u8 sec_level; 451 __u8 pending_sec_level; 452 __u8 pin_length; 453 __u8 enc_key_size; 454 __u8 io_capability; 455 __u32 passkey_notify; 456 __u8 passkey_entered; 457 __u16 disc_timeout; 458 __u16 conn_timeout; 459 __u16 setting; 460 __u16 le_conn_min_interval; 461 __u16 le_conn_max_interval; 462 __u16 le_conn_interval; 463 __u16 le_conn_latency; 464 __u16 le_supv_timeout; 465 __u8 le_adv_data[HCI_MAX_AD_LENGTH]; 466 __u8 le_adv_data_len; 467 __s8 rssi; 468 __s8 tx_power; 469 __s8 max_tx_power; 470 unsigned long flags; 471 472 __u32 clock; 473 __u16 clock_accuracy; 474 475 unsigned long conn_info_timestamp; 476 477 __u8 remote_cap; 478 __u8 remote_auth; 479 __u8 remote_id; 480 481 unsigned int sent; 482 483 struct sk_buff_head data_q; 484 struct list_head chan_list; 485 486 struct delayed_work disc_work; 487 struct delayed_work auto_accept_work; 488 struct delayed_work idle_work; 489 struct delayed_work le_conn_timeout; 490 struct work_struct le_scan_cleanup; 491 492 struct device dev; 493 struct dentry *debugfs; 494 495 struct hci_dev *hdev; 496 void *l2cap_data; 497 void *sco_data; 498 struct amp_mgr *amp_mgr; 499 500 struct hci_conn *link; 501 502 void (*connect_cfm_cb) (struct hci_conn *conn, u8 status); 503 void (*security_cfm_cb) (struct hci_conn *conn, u8 status); 504 void (*disconn_cfm_cb) (struct hci_conn *conn, u8 reason); 505 }; 506 507 struct hci_chan { 508 struct list_head list; 509 __u16 handle; 510 struct hci_conn *conn; 511 struct sk_buff_head data_q; 512 unsigned int sent; 513 __u8 state; 514 }; 515 516 struct hci_conn_params { 517 struct list_head list; 518 struct list_head action; 519 520 bdaddr_t addr; 521 u8 addr_type; 522 523 u16 conn_min_interval; 524 u16 conn_max_interval; 525 u16 conn_latency; 526 u16 supervision_timeout; 527 528 enum { 529 HCI_AUTO_CONN_DISABLED, 530 HCI_AUTO_CONN_REPORT, 531 HCI_AUTO_CONN_DIRECT, 532 HCI_AUTO_CONN_ALWAYS, 533 HCI_AUTO_CONN_LINK_LOSS, 534 HCI_AUTO_CONN_EXPLICIT, 535 } auto_connect; 536 537 struct hci_conn *conn; 538 bool explicit_connect; 539 }; 540 541 extern struct list_head hci_dev_list; 542 extern struct list_head hci_cb_list; 543 extern rwlock_t hci_dev_list_lock; 544 extern struct mutex hci_cb_list_lock; 545 546 #define hci_dev_set_flag(hdev, nr) set_bit((nr), (hdev)->dev_flags) 547 #define hci_dev_clear_flag(hdev, nr) clear_bit((nr), (hdev)->dev_flags) 548 #define hci_dev_change_flag(hdev, nr) change_bit((nr), (hdev)->dev_flags) 549 #define hci_dev_test_flag(hdev, nr) test_bit((nr), (hdev)->dev_flags) 550 #define hci_dev_test_and_set_flag(hdev, nr) test_and_set_bit((nr), (hdev)->dev_flags) 551 #define hci_dev_test_and_clear_flag(hdev, nr) test_and_clear_bit((nr), (hdev)->dev_flags) 552 #define hci_dev_test_and_change_flag(hdev, nr) test_and_change_bit((nr), (hdev)->dev_flags) 553 554 #define hci_dev_clear_volatile_flags(hdev) \ 555 do { \ 556 hci_dev_clear_flag(hdev, HCI_LE_SCAN); \ 557 hci_dev_clear_flag(hdev, HCI_LE_ADV); \ 558 hci_dev_clear_flag(hdev, HCI_PERIODIC_INQ); \ 559 } while (0) 560 561 /* ----- HCI interface to upper protocols ----- */ 562 int l2cap_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr); 563 int l2cap_disconn_ind(struct hci_conn *hcon); 564 void l2cap_recv_acldata(struct hci_conn *hcon, struct sk_buff *skb, u16 flags); 565 566 #if IS_ENABLED(CONFIG_BT_BREDR) 567 int sco_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr, __u8 *flags); 568 void sco_recv_scodata(struct hci_conn *hcon, struct sk_buff *skb); 569 #else 570 static inline int sco_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr, 571 __u8 *flags) 572 { 573 return 0; 574 } 575 576 static inline void sco_recv_scodata(struct hci_conn *hcon, struct sk_buff *skb) 577 { 578 } 579 #endif 580 581 /* ----- Inquiry cache ----- */ 582 #define INQUIRY_CACHE_AGE_MAX (HZ*30) /* 30 seconds */ 583 #define INQUIRY_ENTRY_AGE_MAX (HZ*60) /* 60 seconds */ 584 585 static inline void discovery_init(struct hci_dev *hdev) 586 { 587 hdev->discovery.state = DISCOVERY_STOPPED; 588 INIT_LIST_HEAD(&hdev->discovery.all); 589 INIT_LIST_HEAD(&hdev->discovery.unknown); 590 INIT_LIST_HEAD(&hdev->discovery.resolve); 591 hdev->discovery.report_invalid_rssi = true; 592 hdev->discovery.rssi = HCI_RSSI_INVALID; 593 } 594 595 static inline void hci_discovery_filter_clear(struct hci_dev *hdev) 596 { 597 hdev->discovery.result_filtering = false; 598 hdev->discovery.report_invalid_rssi = true; 599 hdev->discovery.rssi = HCI_RSSI_INVALID; 600 hdev->discovery.uuid_count = 0; 601 kfree(hdev->discovery.uuids); 602 hdev->discovery.uuids = NULL; 603 hdev->discovery.scan_start = 0; 604 hdev->discovery.scan_duration = 0; 605 } 606 607 bool hci_discovery_active(struct hci_dev *hdev); 608 609 void hci_discovery_set_state(struct hci_dev *hdev, int state); 610 611 static inline int inquiry_cache_empty(struct hci_dev *hdev) 612 { 613 return list_empty(&hdev->discovery.all); 614 } 615 616 static inline long inquiry_cache_age(struct hci_dev *hdev) 617 { 618 struct discovery_state *c = &hdev->discovery; 619 return jiffies - c->timestamp; 620 } 621 622 static inline long inquiry_entry_age(struct inquiry_entry *e) 623 { 624 return jiffies - e->timestamp; 625 } 626 627 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev, 628 bdaddr_t *bdaddr); 629 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev, 630 bdaddr_t *bdaddr); 631 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev, 632 bdaddr_t *bdaddr, 633 int state); 634 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev, 635 struct inquiry_entry *ie); 636 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data, 637 bool name_known); 638 void hci_inquiry_cache_flush(struct hci_dev *hdev); 639 640 /* ----- HCI Connections ----- */ 641 enum { 642 HCI_CONN_AUTH_PEND, 643 HCI_CONN_REAUTH_PEND, 644 HCI_CONN_ENCRYPT_PEND, 645 HCI_CONN_RSWITCH_PEND, 646 HCI_CONN_MODE_CHANGE_PEND, 647 HCI_CONN_SCO_SETUP_PEND, 648 HCI_CONN_MGMT_CONNECTED, 649 HCI_CONN_SSP_ENABLED, 650 HCI_CONN_SC_ENABLED, 651 HCI_CONN_AES_CCM, 652 HCI_CONN_POWER_SAVE, 653 HCI_CONN_FLUSH_KEY, 654 HCI_CONN_ENCRYPT, 655 HCI_CONN_AUTH, 656 HCI_CONN_SECURE, 657 HCI_CONN_FIPS, 658 HCI_CONN_STK_ENCRYPT, 659 HCI_CONN_AUTH_INITIATOR, 660 HCI_CONN_DROP, 661 HCI_CONN_PARAM_REMOVAL_PEND, 662 HCI_CONN_NEW_LINK_KEY, 663 HCI_CONN_SCANNING, 664 HCI_CONN_AUTH_FAILURE, 665 }; 666 667 static inline bool hci_conn_ssp_enabled(struct hci_conn *conn) 668 { 669 struct hci_dev *hdev = conn->hdev; 670 return hci_dev_test_flag(hdev, HCI_SSP_ENABLED) && 671 test_bit(HCI_CONN_SSP_ENABLED, &conn->flags); 672 } 673 674 static inline bool hci_conn_sc_enabled(struct hci_conn *conn) 675 { 676 struct hci_dev *hdev = conn->hdev; 677 return hci_dev_test_flag(hdev, HCI_SC_ENABLED) && 678 test_bit(HCI_CONN_SC_ENABLED, &conn->flags); 679 } 680 681 static inline void hci_conn_hash_add(struct hci_dev *hdev, struct hci_conn *c) 682 { 683 struct hci_conn_hash *h = &hdev->conn_hash; 684 list_add_rcu(&c->list, &h->list); 685 switch (c->type) { 686 case ACL_LINK: 687 h->acl_num++; 688 break; 689 case AMP_LINK: 690 h->amp_num++; 691 break; 692 case LE_LINK: 693 h->le_num++; 694 if (c->role == HCI_ROLE_SLAVE) 695 h->le_num_slave++; 696 break; 697 case SCO_LINK: 698 case ESCO_LINK: 699 h->sco_num++; 700 break; 701 } 702 } 703 704 static inline void hci_conn_hash_del(struct hci_dev *hdev, struct hci_conn *c) 705 { 706 struct hci_conn_hash *h = &hdev->conn_hash; 707 708 list_del_rcu(&c->list); 709 synchronize_rcu(); 710 711 switch (c->type) { 712 case ACL_LINK: 713 h->acl_num--; 714 break; 715 case AMP_LINK: 716 h->amp_num--; 717 break; 718 case LE_LINK: 719 h->le_num--; 720 if (c->role == HCI_ROLE_SLAVE) 721 h->le_num_slave--; 722 break; 723 case SCO_LINK: 724 case ESCO_LINK: 725 h->sco_num--; 726 break; 727 } 728 } 729 730 static inline unsigned int hci_conn_num(struct hci_dev *hdev, __u8 type) 731 { 732 struct hci_conn_hash *h = &hdev->conn_hash; 733 switch (type) { 734 case ACL_LINK: 735 return h->acl_num; 736 case AMP_LINK: 737 return h->amp_num; 738 case LE_LINK: 739 return h->le_num; 740 case SCO_LINK: 741 case ESCO_LINK: 742 return h->sco_num; 743 default: 744 return 0; 745 } 746 } 747 748 static inline unsigned int hci_conn_count(struct hci_dev *hdev) 749 { 750 struct hci_conn_hash *c = &hdev->conn_hash; 751 752 return c->acl_num + c->amp_num + c->sco_num + c->le_num; 753 } 754 755 static inline __u8 hci_conn_lookup_type(struct hci_dev *hdev, __u16 handle) 756 { 757 struct hci_conn_hash *h = &hdev->conn_hash; 758 struct hci_conn *c; 759 __u8 type = INVALID_LINK; 760 761 rcu_read_lock(); 762 763 list_for_each_entry_rcu(c, &h->list, list) { 764 if (c->handle == handle) { 765 type = c->type; 766 break; 767 } 768 } 769 770 rcu_read_unlock(); 771 772 return type; 773 } 774 775 static inline struct hci_conn *hci_conn_hash_lookup_handle(struct hci_dev *hdev, 776 __u16 handle) 777 { 778 struct hci_conn_hash *h = &hdev->conn_hash; 779 struct hci_conn *c; 780 781 rcu_read_lock(); 782 783 list_for_each_entry_rcu(c, &h->list, list) { 784 if (c->handle == handle) { 785 rcu_read_unlock(); 786 return c; 787 } 788 } 789 rcu_read_unlock(); 790 791 return NULL; 792 } 793 794 static inline struct hci_conn *hci_conn_hash_lookup_ba(struct hci_dev *hdev, 795 __u8 type, bdaddr_t *ba) 796 { 797 struct hci_conn_hash *h = &hdev->conn_hash; 798 struct hci_conn *c; 799 800 rcu_read_lock(); 801 802 list_for_each_entry_rcu(c, &h->list, list) { 803 if (c->type == type && !bacmp(&c->dst, ba)) { 804 rcu_read_unlock(); 805 return c; 806 } 807 } 808 809 rcu_read_unlock(); 810 811 return NULL; 812 } 813 814 static inline struct hci_conn *hci_conn_hash_lookup_le(struct hci_dev *hdev, 815 bdaddr_t *ba, 816 __u8 ba_type) 817 { 818 struct hci_conn_hash *h = &hdev->conn_hash; 819 struct hci_conn *c; 820 821 rcu_read_lock(); 822 823 list_for_each_entry_rcu(c, &h->list, list) { 824 if (c->type != LE_LINK) 825 continue; 826 827 if (ba_type == c->dst_type && !bacmp(&c->dst, ba)) { 828 rcu_read_unlock(); 829 return c; 830 } 831 } 832 833 rcu_read_unlock(); 834 835 return NULL; 836 } 837 838 static inline struct hci_conn *hci_conn_hash_lookup_state(struct hci_dev *hdev, 839 __u8 type, __u16 state) 840 { 841 struct hci_conn_hash *h = &hdev->conn_hash; 842 struct hci_conn *c; 843 844 rcu_read_lock(); 845 846 list_for_each_entry_rcu(c, &h->list, list) { 847 if (c->type == type && c->state == state) { 848 rcu_read_unlock(); 849 return c; 850 } 851 } 852 853 rcu_read_unlock(); 854 855 return NULL; 856 } 857 858 static inline struct hci_conn *hci_lookup_le_connect(struct hci_dev *hdev) 859 { 860 struct hci_conn_hash *h = &hdev->conn_hash; 861 struct hci_conn *c; 862 863 rcu_read_lock(); 864 865 list_for_each_entry_rcu(c, &h->list, list) { 866 if (c->type == LE_LINK && c->state == BT_CONNECT && 867 !test_bit(HCI_CONN_SCANNING, &c->flags)) { 868 rcu_read_unlock(); 869 return c; 870 } 871 } 872 873 rcu_read_unlock(); 874 875 return NULL; 876 } 877 878 int hci_disconnect(struct hci_conn *conn, __u8 reason); 879 bool hci_setup_sync(struct hci_conn *conn, __u16 handle); 880 void hci_sco_setup(struct hci_conn *conn, __u8 status); 881 882 struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst, 883 u8 role); 884 int hci_conn_del(struct hci_conn *conn); 885 void hci_conn_hash_flush(struct hci_dev *hdev); 886 void hci_conn_check_pending(struct hci_dev *hdev); 887 888 struct hci_chan *hci_chan_create(struct hci_conn *conn); 889 void hci_chan_del(struct hci_chan *chan); 890 void hci_chan_list_flush(struct hci_conn *conn); 891 struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle); 892 893 struct hci_conn *hci_connect_le_scan(struct hci_dev *hdev, bdaddr_t *dst, 894 u8 dst_type, u8 sec_level, 895 u16 conn_timeout); 896 struct hci_conn *hci_connect_le(struct hci_dev *hdev, bdaddr_t *dst, 897 u8 dst_type, u8 sec_level, u16 conn_timeout, 898 u8 role, bdaddr_t *direct_rpa); 899 struct hci_conn *hci_connect_acl(struct hci_dev *hdev, bdaddr_t *dst, 900 u8 sec_level, u8 auth_type); 901 struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst, 902 __u16 setting); 903 int hci_conn_check_link_mode(struct hci_conn *conn); 904 int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level); 905 int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type, 906 bool initiator); 907 int hci_conn_switch_role(struct hci_conn *conn, __u8 role); 908 909 void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active); 910 911 void hci_le_conn_failed(struct hci_conn *conn, u8 status); 912 913 /* 914 * hci_conn_get() and hci_conn_put() are used to control the life-time of an 915 * "hci_conn" object. They do not guarantee that the hci_conn object is running, 916 * working or anything else. They just guarantee that the object is available 917 * and can be dereferenced. So you can use its locks, local variables and any 918 * other constant data. 919 * Before accessing runtime data, you _must_ lock the object and then check that 920 * it is still running. As soon as you release the locks, the connection might 921 * get dropped, though. 922 * 923 * On the other hand, hci_conn_hold() and hci_conn_drop() are used to control 924 * how long the underlying connection is held. So every channel that runs on the 925 * hci_conn object calls this to prevent the connection from disappearing. As 926 * long as you hold a device, you must also guarantee that you have a valid 927 * reference to the device via hci_conn_get() (or the initial reference from 928 * hci_conn_add()). 929 * The hold()/drop() ref-count is known to drop below 0 sometimes, which doesn't 930 * break because nobody cares for that. But this means, we cannot use 931 * _get()/_drop() in it, but require the caller to have a valid ref (FIXME). 932 */ 933 934 static inline struct hci_conn *hci_conn_get(struct hci_conn *conn) 935 { 936 get_device(&conn->dev); 937 return conn; 938 } 939 940 static inline void hci_conn_put(struct hci_conn *conn) 941 { 942 put_device(&conn->dev); 943 } 944 945 static inline void hci_conn_hold(struct hci_conn *conn) 946 { 947 BT_DBG("hcon %p orig refcnt %d", conn, atomic_read(&conn->refcnt)); 948 949 atomic_inc(&conn->refcnt); 950 cancel_delayed_work(&conn->disc_work); 951 } 952 953 static inline void hci_conn_drop(struct hci_conn *conn) 954 { 955 BT_DBG("hcon %p orig refcnt %d", conn, atomic_read(&conn->refcnt)); 956 957 if (atomic_dec_and_test(&conn->refcnt)) { 958 unsigned long timeo; 959 960 switch (conn->type) { 961 case ACL_LINK: 962 case LE_LINK: 963 cancel_delayed_work(&conn->idle_work); 964 if (conn->state == BT_CONNECTED) { 965 timeo = conn->disc_timeout; 966 if (!conn->out) 967 timeo *= 2; 968 } else { 969 timeo = 0; 970 } 971 break; 972 973 case AMP_LINK: 974 timeo = conn->disc_timeout; 975 break; 976 977 default: 978 timeo = 0; 979 break; 980 } 981 982 cancel_delayed_work(&conn->disc_work); 983 queue_delayed_work(conn->hdev->workqueue, 984 &conn->disc_work, timeo); 985 } 986 } 987 988 /* ----- HCI Devices ----- */ 989 static inline void hci_dev_put(struct hci_dev *d) 990 { 991 BT_DBG("%s orig refcnt %d", d->name, 992 kref_read(&d->dev.kobj.kref)); 993 994 put_device(&d->dev); 995 } 996 997 static inline struct hci_dev *hci_dev_hold(struct hci_dev *d) 998 { 999 BT_DBG("%s orig refcnt %d", d->name, 1000 kref_read(&d->dev.kobj.kref)); 1001 1002 get_device(&d->dev); 1003 return d; 1004 } 1005 1006 #define hci_dev_lock(d) mutex_lock(&d->lock) 1007 #define hci_dev_unlock(d) mutex_unlock(&d->lock) 1008 1009 #define to_hci_dev(d) container_of(d, struct hci_dev, dev) 1010 #define to_hci_conn(c) container_of(c, struct hci_conn, dev) 1011 1012 static inline void *hci_get_drvdata(struct hci_dev *hdev) 1013 { 1014 return dev_get_drvdata(&hdev->dev); 1015 } 1016 1017 static inline void hci_set_drvdata(struct hci_dev *hdev, void *data) 1018 { 1019 dev_set_drvdata(&hdev->dev, data); 1020 } 1021 1022 struct hci_dev *hci_dev_get(int index); 1023 struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src, u8 src_type); 1024 1025 struct hci_dev *hci_alloc_dev(void); 1026 void hci_free_dev(struct hci_dev *hdev); 1027 int hci_register_dev(struct hci_dev *hdev); 1028 void hci_unregister_dev(struct hci_dev *hdev); 1029 int hci_suspend_dev(struct hci_dev *hdev); 1030 int hci_resume_dev(struct hci_dev *hdev); 1031 int hci_reset_dev(struct hci_dev *hdev); 1032 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb); 1033 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb); 1034 __printf(2, 3) void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...); 1035 __printf(2, 3) void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...); 1036 int hci_dev_open(__u16 dev); 1037 int hci_dev_close(__u16 dev); 1038 int hci_dev_do_close(struct hci_dev *hdev); 1039 int hci_dev_reset(__u16 dev); 1040 int hci_dev_reset_stat(__u16 dev); 1041 int hci_dev_cmd(unsigned int cmd, void __user *arg); 1042 int hci_get_dev_list(void __user *arg); 1043 int hci_get_dev_info(void __user *arg); 1044 int hci_get_conn_list(void __user *arg); 1045 int hci_get_conn_info(struct hci_dev *hdev, void __user *arg); 1046 int hci_get_auth_info(struct hci_dev *hdev, void __user *arg); 1047 int hci_inquiry(void __user *arg); 1048 1049 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *list, 1050 bdaddr_t *bdaddr, u8 type); 1051 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type); 1052 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type); 1053 void hci_bdaddr_list_clear(struct list_head *list); 1054 1055 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev, 1056 bdaddr_t *addr, u8 addr_type); 1057 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev, 1058 bdaddr_t *addr, u8 addr_type); 1059 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type); 1060 void hci_conn_params_clear_disabled(struct hci_dev *hdev); 1061 1062 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list, 1063 bdaddr_t *addr, 1064 u8 addr_type); 1065 1066 void hci_uuids_clear(struct hci_dev *hdev); 1067 1068 void hci_link_keys_clear(struct hci_dev *hdev); 1069 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr); 1070 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn, 1071 bdaddr_t *bdaddr, u8 *val, u8 type, 1072 u8 pin_len, bool *persistent); 1073 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, 1074 u8 addr_type, u8 type, u8 authenticated, 1075 u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand); 1076 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, 1077 u8 addr_type, u8 role); 1078 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type); 1079 void hci_smp_ltks_clear(struct hci_dev *hdev); 1080 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr); 1081 1082 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa); 1083 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr, 1084 u8 addr_type); 1085 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, 1086 u8 addr_type, u8 val[16], bdaddr_t *rpa); 1087 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type); 1088 void hci_smp_irks_clear(struct hci_dev *hdev); 1089 1090 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type); 1091 1092 void hci_remote_oob_data_clear(struct hci_dev *hdev); 1093 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev, 1094 bdaddr_t *bdaddr, u8 bdaddr_type); 1095 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, 1096 u8 bdaddr_type, u8 *hash192, u8 *rand192, 1097 u8 *hash256, u8 *rand256); 1098 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, 1099 u8 bdaddr_type); 1100 1101 void hci_adv_instances_clear(struct hci_dev *hdev); 1102 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance); 1103 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance); 1104 int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags, 1105 u16 adv_data_len, u8 *adv_data, 1106 u16 scan_rsp_len, u8 *scan_rsp_data, 1107 u16 timeout, u16 duration); 1108 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance); 1109 1110 void hci_event_packet(struct hci_dev *hdev, struct sk_buff *skb); 1111 1112 void hci_init_sysfs(struct hci_dev *hdev); 1113 void hci_conn_init_sysfs(struct hci_conn *conn); 1114 void hci_conn_add_sysfs(struct hci_conn *conn); 1115 void hci_conn_del_sysfs(struct hci_conn *conn); 1116 1117 #define SET_HCIDEV_DEV(hdev, pdev) ((hdev)->dev.parent = (pdev)) 1118 1119 /* ----- LMP capabilities ----- */ 1120 #define lmp_encrypt_capable(dev) ((dev)->features[0][0] & LMP_ENCRYPT) 1121 #define lmp_rswitch_capable(dev) ((dev)->features[0][0] & LMP_RSWITCH) 1122 #define lmp_hold_capable(dev) ((dev)->features[0][0] & LMP_HOLD) 1123 #define lmp_sniff_capable(dev) ((dev)->features[0][0] & LMP_SNIFF) 1124 #define lmp_park_capable(dev) ((dev)->features[0][1] & LMP_PARK) 1125 #define lmp_inq_rssi_capable(dev) ((dev)->features[0][3] & LMP_RSSI_INQ) 1126 #define lmp_esco_capable(dev) ((dev)->features[0][3] & LMP_ESCO) 1127 #define lmp_bredr_capable(dev) (!((dev)->features[0][4] & LMP_NO_BREDR)) 1128 #define lmp_le_capable(dev) ((dev)->features[0][4] & LMP_LE) 1129 #define lmp_sniffsubr_capable(dev) ((dev)->features[0][5] & LMP_SNIFF_SUBR) 1130 #define lmp_pause_enc_capable(dev) ((dev)->features[0][5] & LMP_PAUSE_ENC) 1131 #define lmp_ext_inq_capable(dev) ((dev)->features[0][6] & LMP_EXT_INQ) 1132 #define lmp_le_br_capable(dev) (!!((dev)->features[0][6] & LMP_SIMUL_LE_BR)) 1133 #define lmp_ssp_capable(dev) ((dev)->features[0][6] & LMP_SIMPLE_PAIR) 1134 #define lmp_no_flush_capable(dev) ((dev)->features[0][6] & LMP_NO_FLUSH) 1135 #define lmp_lsto_capable(dev) ((dev)->features[0][7] & LMP_LSTO) 1136 #define lmp_inq_tx_pwr_capable(dev) ((dev)->features[0][7] & LMP_INQ_TX_PWR) 1137 #define lmp_ext_feat_capable(dev) ((dev)->features[0][7] & LMP_EXTFEATURES) 1138 #define lmp_transp_capable(dev) ((dev)->features[0][2] & LMP_TRANSPARENT) 1139 1140 /* ----- Extended LMP capabilities ----- */ 1141 #define lmp_csb_master_capable(dev) ((dev)->features[2][0] & LMP_CSB_MASTER) 1142 #define lmp_csb_slave_capable(dev) ((dev)->features[2][0] & LMP_CSB_SLAVE) 1143 #define lmp_sync_train_capable(dev) ((dev)->features[2][0] & LMP_SYNC_TRAIN) 1144 #define lmp_sync_scan_capable(dev) ((dev)->features[2][0] & LMP_SYNC_SCAN) 1145 #define lmp_sc_capable(dev) ((dev)->features[2][1] & LMP_SC) 1146 #define lmp_ping_capable(dev) ((dev)->features[2][1] & LMP_PING) 1147 1148 /* ----- Host capabilities ----- */ 1149 #define lmp_host_ssp_capable(dev) ((dev)->features[1][0] & LMP_HOST_SSP) 1150 #define lmp_host_sc_capable(dev) ((dev)->features[1][0] & LMP_HOST_SC) 1151 #define lmp_host_le_capable(dev) (!!((dev)->features[1][0] & LMP_HOST_LE)) 1152 #define lmp_host_le_br_capable(dev) (!!((dev)->features[1][0] & LMP_HOST_LE_BREDR)) 1153 1154 #define hdev_is_powered(dev) (test_bit(HCI_UP, &(dev)->flags) && \ 1155 !hci_dev_test_flag(dev, HCI_AUTO_OFF)) 1156 #define bredr_sc_enabled(dev) (lmp_sc_capable(dev) && \ 1157 hci_dev_test_flag(dev, HCI_SC_ENABLED)) 1158 1159 /* ----- HCI protocols ----- */ 1160 #define HCI_PROTO_DEFER 0x01 1161 1162 static inline int hci_proto_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr, 1163 __u8 type, __u8 *flags) 1164 { 1165 switch (type) { 1166 case ACL_LINK: 1167 return l2cap_connect_ind(hdev, bdaddr); 1168 1169 case SCO_LINK: 1170 case ESCO_LINK: 1171 return sco_connect_ind(hdev, bdaddr, flags); 1172 1173 default: 1174 BT_ERR("unknown link type %d", type); 1175 return -EINVAL; 1176 } 1177 } 1178 1179 static inline int hci_proto_disconn_ind(struct hci_conn *conn) 1180 { 1181 if (conn->type != ACL_LINK && conn->type != LE_LINK) 1182 return HCI_ERROR_REMOTE_USER_TERM; 1183 1184 return l2cap_disconn_ind(conn); 1185 } 1186 1187 /* ----- HCI callbacks ----- */ 1188 struct hci_cb { 1189 struct list_head list; 1190 1191 char *name; 1192 1193 void (*connect_cfm) (struct hci_conn *conn, __u8 status); 1194 void (*disconn_cfm) (struct hci_conn *conn, __u8 status); 1195 void (*security_cfm) (struct hci_conn *conn, __u8 status, 1196 __u8 encrypt); 1197 void (*key_change_cfm) (struct hci_conn *conn, __u8 status); 1198 void (*role_switch_cfm) (struct hci_conn *conn, __u8 status, __u8 role); 1199 }; 1200 1201 static inline void hci_connect_cfm(struct hci_conn *conn, __u8 status) 1202 { 1203 struct hci_cb *cb; 1204 1205 mutex_lock(&hci_cb_list_lock); 1206 list_for_each_entry(cb, &hci_cb_list, list) { 1207 if (cb->connect_cfm) 1208 cb->connect_cfm(conn, status); 1209 } 1210 mutex_unlock(&hci_cb_list_lock); 1211 1212 if (conn->connect_cfm_cb) 1213 conn->connect_cfm_cb(conn, status); 1214 } 1215 1216 static inline void hci_disconn_cfm(struct hci_conn *conn, __u8 reason) 1217 { 1218 struct hci_cb *cb; 1219 1220 mutex_lock(&hci_cb_list_lock); 1221 list_for_each_entry(cb, &hci_cb_list, list) { 1222 if (cb->disconn_cfm) 1223 cb->disconn_cfm(conn, reason); 1224 } 1225 mutex_unlock(&hci_cb_list_lock); 1226 1227 if (conn->disconn_cfm_cb) 1228 conn->disconn_cfm_cb(conn, reason); 1229 } 1230 1231 static inline void hci_auth_cfm(struct hci_conn *conn, __u8 status) 1232 { 1233 struct hci_cb *cb; 1234 __u8 encrypt; 1235 1236 if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) 1237 return; 1238 1239 encrypt = test_bit(HCI_CONN_ENCRYPT, &conn->flags) ? 0x01 : 0x00; 1240 1241 mutex_lock(&hci_cb_list_lock); 1242 list_for_each_entry(cb, &hci_cb_list, list) { 1243 if (cb->security_cfm) 1244 cb->security_cfm(conn, status, encrypt); 1245 } 1246 mutex_unlock(&hci_cb_list_lock); 1247 1248 if (conn->security_cfm_cb) 1249 conn->security_cfm_cb(conn, status); 1250 } 1251 1252 static inline void hci_encrypt_cfm(struct hci_conn *conn, __u8 status, 1253 __u8 encrypt) 1254 { 1255 struct hci_cb *cb; 1256 1257 if (conn->sec_level == BT_SECURITY_SDP) 1258 conn->sec_level = BT_SECURITY_LOW; 1259 1260 if (conn->pending_sec_level > conn->sec_level) 1261 conn->sec_level = conn->pending_sec_level; 1262 1263 mutex_lock(&hci_cb_list_lock); 1264 list_for_each_entry(cb, &hci_cb_list, list) { 1265 if (cb->security_cfm) 1266 cb->security_cfm(conn, status, encrypt); 1267 } 1268 mutex_unlock(&hci_cb_list_lock); 1269 1270 if (conn->security_cfm_cb) 1271 conn->security_cfm_cb(conn, status); 1272 } 1273 1274 static inline void hci_key_change_cfm(struct hci_conn *conn, __u8 status) 1275 { 1276 struct hci_cb *cb; 1277 1278 mutex_lock(&hci_cb_list_lock); 1279 list_for_each_entry(cb, &hci_cb_list, list) { 1280 if (cb->key_change_cfm) 1281 cb->key_change_cfm(conn, status); 1282 } 1283 mutex_unlock(&hci_cb_list_lock); 1284 } 1285 1286 static inline void hci_role_switch_cfm(struct hci_conn *conn, __u8 status, 1287 __u8 role) 1288 { 1289 struct hci_cb *cb; 1290 1291 mutex_lock(&hci_cb_list_lock); 1292 list_for_each_entry(cb, &hci_cb_list, list) { 1293 if (cb->role_switch_cfm) 1294 cb->role_switch_cfm(conn, status, role); 1295 } 1296 mutex_unlock(&hci_cb_list_lock); 1297 } 1298 1299 static inline void *eir_get_data(u8 *eir, size_t eir_len, u8 type, 1300 size_t *data_len) 1301 { 1302 size_t parsed = 0; 1303 1304 if (eir_len < 2) 1305 return NULL; 1306 1307 while (parsed < eir_len - 1) { 1308 u8 field_len = eir[0]; 1309 1310 if (field_len == 0) 1311 break; 1312 1313 parsed += field_len + 1; 1314 1315 if (parsed > eir_len) 1316 break; 1317 1318 if (eir[1] != type) { 1319 eir += field_len + 1; 1320 continue; 1321 } 1322 1323 /* Zero length data */ 1324 if (field_len == 1) 1325 return NULL; 1326 1327 if (data_len) 1328 *data_len = field_len - 1; 1329 1330 return &eir[2]; 1331 } 1332 1333 return NULL; 1334 } 1335 1336 static inline bool hci_bdaddr_is_rpa(bdaddr_t *bdaddr, u8 addr_type) 1337 { 1338 if (addr_type != ADDR_LE_DEV_RANDOM) 1339 return false; 1340 1341 if ((bdaddr->b[5] & 0xc0) == 0x40) 1342 return true; 1343 1344 return false; 1345 } 1346 1347 static inline bool hci_is_identity_address(bdaddr_t *addr, u8 addr_type) 1348 { 1349 if (addr_type == ADDR_LE_DEV_PUBLIC) 1350 return true; 1351 1352 /* Check for Random Static address type */ 1353 if ((addr->b[5] & 0xc0) == 0xc0) 1354 return true; 1355 1356 return false; 1357 } 1358 1359 static inline struct smp_irk *hci_get_irk(struct hci_dev *hdev, 1360 bdaddr_t *bdaddr, u8 addr_type) 1361 { 1362 if (!hci_bdaddr_is_rpa(bdaddr, addr_type)) 1363 return NULL; 1364 1365 return hci_find_irk_by_rpa(hdev, bdaddr); 1366 } 1367 1368 static inline int hci_check_conn_params(u16 min, u16 max, u16 latency, 1369 u16 to_multiplier) 1370 { 1371 u16 max_latency; 1372 1373 if (min > max || min < 6 || max > 3200) 1374 return -EINVAL; 1375 1376 if (to_multiplier < 10 || to_multiplier > 3200) 1377 return -EINVAL; 1378 1379 if (max >= to_multiplier * 8) 1380 return -EINVAL; 1381 1382 max_latency = (to_multiplier * 4 / max) - 1; 1383 if (latency > 499 || latency > max_latency) 1384 return -EINVAL; 1385 1386 return 0; 1387 } 1388 1389 int hci_register_cb(struct hci_cb *hcb); 1390 int hci_unregister_cb(struct hci_cb *hcb); 1391 1392 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 1393 const void *param, u32 timeout); 1394 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen, 1395 const void *param, u8 event, u32 timeout); 1396 1397 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen, 1398 const void *param); 1399 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags); 1400 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb); 1401 1402 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode); 1403 1404 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 1405 const void *param, u32 timeout); 1406 1407 /* ----- HCI Sockets ----- */ 1408 void hci_send_to_sock(struct hci_dev *hdev, struct sk_buff *skb); 1409 void hci_send_to_channel(unsigned short channel, struct sk_buff *skb, 1410 int flag, struct sock *skip_sk); 1411 void hci_send_to_monitor(struct hci_dev *hdev, struct sk_buff *skb); 1412 void hci_send_monitor_ctrl_event(struct hci_dev *hdev, u16 event, 1413 void *data, u16 data_len, ktime_t tstamp, 1414 int flag, struct sock *skip_sk); 1415 1416 void hci_sock_dev_event(struct hci_dev *hdev, int event); 1417 1418 #define HCI_MGMT_VAR_LEN BIT(0) 1419 #define HCI_MGMT_NO_HDEV BIT(1) 1420 #define HCI_MGMT_UNTRUSTED BIT(2) 1421 #define HCI_MGMT_UNCONFIGURED BIT(3) 1422 1423 struct hci_mgmt_handler { 1424 int (*func) (struct sock *sk, struct hci_dev *hdev, void *data, 1425 u16 data_len); 1426 size_t data_len; 1427 unsigned long flags; 1428 }; 1429 1430 struct hci_mgmt_chan { 1431 struct list_head list; 1432 unsigned short channel; 1433 size_t handler_count; 1434 const struct hci_mgmt_handler *handlers; 1435 void (*hdev_init) (struct sock *sk, struct hci_dev *hdev); 1436 }; 1437 1438 int hci_mgmt_chan_register(struct hci_mgmt_chan *c); 1439 void hci_mgmt_chan_unregister(struct hci_mgmt_chan *c); 1440 1441 /* Management interface */ 1442 #define DISCOV_TYPE_BREDR (BIT(BDADDR_BREDR)) 1443 #define DISCOV_TYPE_LE (BIT(BDADDR_LE_PUBLIC) | \ 1444 BIT(BDADDR_LE_RANDOM)) 1445 #define DISCOV_TYPE_INTERLEAVED (BIT(BDADDR_BREDR) | \ 1446 BIT(BDADDR_LE_PUBLIC) | \ 1447 BIT(BDADDR_LE_RANDOM)) 1448 1449 /* These LE scan and inquiry parameters were chosen according to LE General 1450 * Discovery Procedure specification. 1451 */ 1452 #define DISCOV_LE_SCAN_WIN 0x12 1453 #define DISCOV_LE_SCAN_INT 0x12 1454 #define DISCOV_LE_TIMEOUT 10240 /* msec */ 1455 #define DISCOV_INTERLEAVED_TIMEOUT 5120 /* msec */ 1456 #define DISCOV_INTERLEAVED_INQUIRY_LEN 0x04 1457 #define DISCOV_BREDR_INQUIRY_LEN 0x08 1458 #define DISCOV_LE_RESTART_DELAY msecs_to_jiffies(200) /* msec */ 1459 1460 void mgmt_fill_version_info(void *ver); 1461 int mgmt_new_settings(struct hci_dev *hdev); 1462 void mgmt_index_added(struct hci_dev *hdev); 1463 void mgmt_index_removed(struct hci_dev *hdev); 1464 void mgmt_set_powered_failed(struct hci_dev *hdev, int err); 1465 void mgmt_power_on(struct hci_dev *hdev, int err); 1466 void __mgmt_power_off(struct hci_dev *hdev); 1467 void mgmt_new_link_key(struct hci_dev *hdev, struct link_key *key, 1468 bool persistent); 1469 void mgmt_device_connected(struct hci_dev *hdev, struct hci_conn *conn, 1470 u32 flags, u8 *name, u8 name_len); 1471 void mgmt_device_disconnected(struct hci_dev *hdev, bdaddr_t *bdaddr, 1472 u8 link_type, u8 addr_type, u8 reason, 1473 bool mgmt_connected); 1474 void mgmt_disconnect_failed(struct hci_dev *hdev, bdaddr_t *bdaddr, 1475 u8 link_type, u8 addr_type, u8 status); 1476 void mgmt_connect_failed(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, 1477 u8 addr_type, u8 status); 1478 void mgmt_pin_code_request(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 secure); 1479 void mgmt_pin_code_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 1480 u8 status); 1481 void mgmt_pin_code_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 1482 u8 status); 1483 int mgmt_user_confirm_request(struct hci_dev *hdev, bdaddr_t *bdaddr, 1484 u8 link_type, u8 addr_type, u32 value, 1485 u8 confirm_hint); 1486 int mgmt_user_confirm_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 1487 u8 link_type, u8 addr_type, u8 status); 1488 int mgmt_user_confirm_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 1489 u8 link_type, u8 addr_type, u8 status); 1490 int mgmt_user_passkey_request(struct hci_dev *hdev, bdaddr_t *bdaddr, 1491 u8 link_type, u8 addr_type); 1492 int mgmt_user_passkey_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 1493 u8 link_type, u8 addr_type, u8 status); 1494 int mgmt_user_passkey_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 1495 u8 link_type, u8 addr_type, u8 status); 1496 int mgmt_user_passkey_notify(struct hci_dev *hdev, bdaddr_t *bdaddr, 1497 u8 link_type, u8 addr_type, u32 passkey, 1498 u8 entered); 1499 void mgmt_auth_failed(struct hci_conn *conn, u8 status); 1500 void mgmt_auth_enable_complete(struct hci_dev *hdev, u8 status); 1501 void mgmt_ssp_enable_complete(struct hci_dev *hdev, u8 enable, u8 status); 1502 void mgmt_set_class_of_dev_complete(struct hci_dev *hdev, u8 *dev_class, 1503 u8 status); 1504 void mgmt_set_local_name_complete(struct hci_dev *hdev, u8 *name, u8 status); 1505 void mgmt_start_discovery_complete(struct hci_dev *hdev, u8 status); 1506 void mgmt_stop_discovery_complete(struct hci_dev *hdev, u8 status); 1507 void mgmt_device_found(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, 1508 u8 addr_type, u8 *dev_class, s8 rssi, u32 flags, 1509 u8 *eir, u16 eir_len, u8 *scan_rsp, u8 scan_rsp_len); 1510 void mgmt_remote_name(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, 1511 u8 addr_type, s8 rssi, u8 *name, u8 name_len); 1512 void mgmt_discovering(struct hci_dev *hdev, u8 discovering); 1513 bool mgmt_powering_down(struct hci_dev *hdev); 1514 void mgmt_new_ltk(struct hci_dev *hdev, struct smp_ltk *key, bool persistent); 1515 void mgmt_new_irk(struct hci_dev *hdev, struct smp_irk *irk, bool persistent); 1516 void mgmt_new_csrk(struct hci_dev *hdev, struct smp_csrk *csrk, 1517 bool persistent); 1518 void mgmt_new_conn_param(struct hci_dev *hdev, bdaddr_t *bdaddr, 1519 u8 bdaddr_type, u8 store_hint, u16 min_interval, 1520 u16 max_interval, u16 latency, u16 timeout); 1521 void mgmt_smp_complete(struct hci_conn *conn, bool complete); 1522 bool mgmt_get_connectable(struct hci_dev *hdev); 1523 void mgmt_set_connectable_complete(struct hci_dev *hdev, u8 status); 1524 void mgmt_set_discoverable_complete(struct hci_dev *hdev, u8 status); 1525 u8 mgmt_get_adv_discov_flags(struct hci_dev *hdev); 1526 void mgmt_advertising_added(struct sock *sk, struct hci_dev *hdev, 1527 u8 instance); 1528 void mgmt_advertising_removed(struct sock *sk, struct hci_dev *hdev, 1529 u8 instance); 1530 1531 u8 hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max, u16 latency, 1532 u16 to_multiplier); 1533 void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __le64 rand, 1534 __u8 ltk[16], __u8 key_size); 1535 1536 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr, 1537 u8 *bdaddr_type); 1538 1539 #define SCO_AIRMODE_MASK 0x0003 1540 #define SCO_AIRMODE_CVSD 0x0000 1541 #define SCO_AIRMODE_TRANSP 0x0003 1542 1543 #endif /* __HCI_CORE_H */ 1544