1 /* 2 BlueZ - Bluetooth protocol stack for Linux 3 Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved. 4 5 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License version 2 as 9 published by the Free Software Foundation; 10 11 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 12 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 13 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 14 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 15 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 16 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 20 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 21 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 22 SOFTWARE IS DISCLAIMED. 23 */ 24 25 #ifndef __HCI_CORE_H 26 #define __HCI_CORE_H 27 28 #include <net/bluetooth/hci.h> 29 30 /* HCI priority */ 31 #define HCI_PRIO_MAX 7 32 33 /* HCI Core structures */ 34 struct inquiry_data { 35 bdaddr_t bdaddr; 36 __u8 pscan_rep_mode; 37 __u8 pscan_period_mode; 38 __u8 pscan_mode; 39 __u8 dev_class[3]; 40 __le16 clock_offset; 41 __s8 rssi; 42 __u8 ssp_mode; 43 }; 44 45 struct inquiry_entry { 46 struct list_head all; /* inq_cache.all */ 47 struct list_head list; /* unknown or resolve */ 48 enum { 49 NAME_NOT_KNOWN, 50 NAME_NEEDED, 51 NAME_PENDING, 52 NAME_KNOWN, 53 } name_state; 54 __u32 timestamp; 55 struct inquiry_data data; 56 }; 57 58 struct discovery_state { 59 int type; 60 enum { 61 DISCOVERY_STOPPED, 62 DISCOVERY_STARTING, 63 DISCOVERY_FINDING, 64 DISCOVERY_RESOLVING, 65 DISCOVERY_STOPPING, 66 } state; 67 struct list_head all; /* All devices found during inquiry */ 68 struct list_head unknown; /* Name state not known */ 69 struct list_head resolve; /* Name needs to be resolved */ 70 __u32 timestamp; 71 }; 72 73 struct hci_conn_hash { 74 struct list_head list; 75 unsigned int acl_num; 76 unsigned int amp_num; 77 unsigned int sco_num; 78 unsigned int le_num; 79 }; 80 81 struct bdaddr_list { 82 struct list_head list; 83 bdaddr_t bdaddr; 84 }; 85 86 struct bt_uuid { 87 struct list_head list; 88 u8 uuid[16]; 89 u8 size; 90 u8 svc_hint; 91 }; 92 93 struct smp_ltk { 94 struct list_head list; 95 bdaddr_t bdaddr; 96 u8 bdaddr_type; 97 u8 authenticated; 98 u8 type; 99 u8 enc_size; 100 __le16 ediv; 101 u8 rand[8]; 102 u8 val[16]; 103 } __packed; 104 105 struct link_key { 106 struct list_head list; 107 bdaddr_t bdaddr; 108 u8 type; 109 u8 val[HCI_LINK_KEY_SIZE]; 110 u8 pin_len; 111 }; 112 113 struct oob_data { 114 struct list_head list; 115 bdaddr_t bdaddr; 116 u8 hash[16]; 117 u8 randomizer[16]; 118 }; 119 120 #define HCI_MAX_SHORT_NAME_LENGTH 10 121 122 struct amp_assoc { 123 __u16 len; 124 __u16 offset; 125 __u16 rem_len; 126 __u16 len_so_far; 127 __u8 data[HCI_MAX_AMP_ASSOC_SIZE]; 128 }; 129 130 #define HCI_MAX_PAGES 3 131 132 #define NUM_REASSEMBLY 4 133 struct hci_dev { 134 struct list_head list; 135 struct mutex lock; 136 137 char name[8]; 138 unsigned long flags; 139 __u16 id; 140 __u8 bus; 141 __u8 dev_type; 142 bdaddr_t bdaddr; 143 __u8 dev_name[HCI_MAX_NAME_LENGTH]; 144 __u8 short_name[HCI_MAX_SHORT_NAME_LENGTH]; 145 __u8 eir[HCI_MAX_EIR_LENGTH]; 146 __u8 dev_class[3]; 147 __u8 major_class; 148 __u8 minor_class; 149 __u8 max_page; 150 __u8 features[HCI_MAX_PAGES][8]; 151 __u8 le_features[8]; 152 __u8 le_white_list_size; 153 __u8 le_states[8]; 154 __u8 commands[64]; 155 __u8 hci_ver; 156 __u16 hci_rev; 157 __u8 lmp_ver; 158 __u16 manufacturer; 159 __u16 lmp_subver; 160 __u16 voice_setting; 161 __u8 io_capability; 162 __s8 inq_tx_power; 163 __u16 page_scan_interval; 164 __u16 page_scan_window; 165 __u8 page_scan_type; 166 167 __u16 devid_source; 168 __u16 devid_vendor; 169 __u16 devid_product; 170 __u16 devid_version; 171 172 __u16 pkt_type; 173 __u16 esco_type; 174 __u16 link_policy; 175 __u16 link_mode; 176 177 __u32 idle_timeout; 178 __u16 sniff_min_interval; 179 __u16 sniff_max_interval; 180 181 __u8 amp_status; 182 __u32 amp_total_bw; 183 __u32 amp_max_bw; 184 __u32 amp_min_latency; 185 __u32 amp_max_pdu; 186 __u8 amp_type; 187 __u16 amp_pal_cap; 188 __u16 amp_assoc_size; 189 __u32 amp_max_flush_to; 190 __u32 amp_be_flush_to; 191 192 struct amp_assoc loc_assoc; 193 194 __u8 flow_ctl_mode; 195 196 unsigned int auto_accept_delay; 197 198 unsigned long quirks; 199 200 atomic_t cmd_cnt; 201 unsigned int acl_cnt; 202 unsigned int sco_cnt; 203 unsigned int le_cnt; 204 205 unsigned int acl_mtu; 206 unsigned int sco_mtu; 207 unsigned int le_mtu; 208 unsigned int acl_pkts; 209 unsigned int sco_pkts; 210 unsigned int le_pkts; 211 212 __u16 block_len; 213 __u16 block_mtu; 214 __u16 num_blocks; 215 __u16 block_cnt; 216 217 unsigned long acl_last_tx; 218 unsigned long sco_last_tx; 219 unsigned long le_last_tx; 220 221 struct workqueue_struct *workqueue; 222 struct workqueue_struct *req_workqueue; 223 224 struct work_struct power_on; 225 struct delayed_work power_off; 226 227 __u16 discov_timeout; 228 struct delayed_work discov_off; 229 230 struct delayed_work service_cache; 231 232 struct timer_list cmd_timer; 233 234 struct work_struct rx_work; 235 struct work_struct cmd_work; 236 struct work_struct tx_work; 237 238 struct sk_buff_head rx_q; 239 struct sk_buff_head raw_q; 240 struct sk_buff_head cmd_q; 241 242 struct sk_buff *recv_evt; 243 struct sk_buff *sent_cmd; 244 struct sk_buff *reassembly[NUM_REASSEMBLY]; 245 246 struct mutex req_lock; 247 wait_queue_head_t req_wait_q; 248 __u32 req_status; 249 __u32 req_result; 250 251 struct list_head mgmt_pending; 252 253 struct discovery_state discovery; 254 struct hci_conn_hash conn_hash; 255 struct list_head blacklist; 256 257 struct list_head uuids; 258 259 struct list_head link_keys; 260 261 struct list_head long_term_keys; 262 263 struct list_head remote_oob_data; 264 265 struct hci_dev_stats stat; 266 267 atomic_t promisc; 268 269 struct dentry *debugfs; 270 271 struct device dev; 272 273 struct rfkill *rfkill; 274 275 unsigned long dev_flags; 276 277 struct delayed_work le_scan_disable; 278 279 __s8 adv_tx_power; 280 __u8 adv_data[HCI_MAX_AD_LENGTH]; 281 __u8 adv_data_len; 282 283 int (*open)(struct hci_dev *hdev); 284 int (*close)(struct hci_dev *hdev); 285 int (*flush)(struct hci_dev *hdev); 286 int (*setup)(struct hci_dev *hdev); 287 int (*send)(struct sk_buff *skb); 288 void (*notify)(struct hci_dev *hdev, unsigned int evt); 289 int (*ioctl)(struct hci_dev *hdev, unsigned int cmd, unsigned long arg); 290 }; 291 292 #define HCI_PHY_HANDLE(handle) (handle & 0xff) 293 294 struct hci_conn { 295 struct list_head list; 296 297 atomic_t refcnt; 298 299 bdaddr_t dst; 300 __u8 dst_type; 301 __u16 handle; 302 __u16 state; 303 __u8 mode; 304 __u8 type; 305 bool out; 306 __u8 attempt; 307 __u8 dev_class[3]; 308 __u8 features[HCI_MAX_PAGES][8]; 309 __u16 interval; 310 __u16 pkt_type; 311 __u16 link_policy; 312 __u32 link_mode; 313 __u8 key_type; 314 __u8 auth_type; 315 __u8 sec_level; 316 __u8 pending_sec_level; 317 __u8 pin_length; 318 __u8 enc_key_size; 319 __u8 io_capability; 320 __u32 passkey_notify; 321 __u8 passkey_entered; 322 __u16 disc_timeout; 323 unsigned long flags; 324 325 __u8 remote_cap; 326 __u8 remote_auth; 327 __u8 remote_id; 328 bool flush_key; 329 330 unsigned int sent; 331 332 struct sk_buff_head data_q; 333 struct list_head chan_list; 334 335 struct delayed_work disc_work; 336 struct timer_list idle_timer; 337 struct timer_list auto_accept_timer; 338 339 struct device dev; 340 341 struct hci_dev *hdev; 342 void *l2cap_data; 343 void *sco_data; 344 void *smp_conn; 345 struct amp_mgr *amp_mgr; 346 347 struct hci_conn *link; 348 349 void (*connect_cfm_cb) (struct hci_conn *conn, u8 status); 350 void (*security_cfm_cb) (struct hci_conn *conn, u8 status); 351 void (*disconn_cfm_cb) (struct hci_conn *conn, u8 reason); 352 }; 353 354 struct hci_chan { 355 struct list_head list; 356 __u16 handle; 357 struct hci_conn *conn; 358 struct sk_buff_head data_q; 359 unsigned int sent; 360 __u8 state; 361 }; 362 363 extern struct list_head hci_dev_list; 364 extern struct list_head hci_cb_list; 365 extern rwlock_t hci_dev_list_lock; 366 extern rwlock_t hci_cb_list_lock; 367 368 /* ----- HCI interface to upper protocols ----- */ 369 extern int l2cap_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr); 370 extern void l2cap_connect_cfm(struct hci_conn *hcon, u8 status); 371 extern int l2cap_disconn_ind(struct hci_conn *hcon); 372 extern void l2cap_disconn_cfm(struct hci_conn *hcon, u8 reason); 373 extern int l2cap_security_cfm(struct hci_conn *hcon, u8 status, u8 encrypt); 374 extern int l2cap_recv_acldata(struct hci_conn *hcon, struct sk_buff *skb, 375 u16 flags); 376 377 extern int sco_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr, __u8 *flags); 378 extern void sco_connect_cfm(struct hci_conn *hcon, __u8 status); 379 extern void sco_disconn_cfm(struct hci_conn *hcon, __u8 reason); 380 extern int sco_recv_scodata(struct hci_conn *hcon, struct sk_buff *skb); 381 382 /* ----- Inquiry cache ----- */ 383 #define INQUIRY_CACHE_AGE_MAX (HZ*30) /* 30 seconds */ 384 #define INQUIRY_ENTRY_AGE_MAX (HZ*60) /* 60 seconds */ 385 386 static inline void discovery_init(struct hci_dev *hdev) 387 { 388 hdev->discovery.state = DISCOVERY_STOPPED; 389 INIT_LIST_HEAD(&hdev->discovery.all); 390 INIT_LIST_HEAD(&hdev->discovery.unknown); 391 INIT_LIST_HEAD(&hdev->discovery.resolve); 392 } 393 394 bool hci_discovery_active(struct hci_dev *hdev); 395 396 void hci_discovery_set_state(struct hci_dev *hdev, int state); 397 398 static inline int inquiry_cache_empty(struct hci_dev *hdev) 399 { 400 return list_empty(&hdev->discovery.all); 401 } 402 403 static inline long inquiry_cache_age(struct hci_dev *hdev) 404 { 405 struct discovery_state *c = &hdev->discovery; 406 return jiffies - c->timestamp; 407 } 408 409 static inline long inquiry_entry_age(struct inquiry_entry *e) 410 { 411 return jiffies - e->timestamp; 412 } 413 414 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev, 415 bdaddr_t *bdaddr); 416 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev, 417 bdaddr_t *bdaddr); 418 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev, 419 bdaddr_t *bdaddr, 420 int state); 421 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev, 422 struct inquiry_entry *ie); 423 bool hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data, 424 bool name_known, bool *ssp); 425 void hci_inquiry_cache_flush(struct hci_dev *hdev); 426 427 /* ----- HCI Connections ----- */ 428 enum { 429 HCI_CONN_AUTH_PEND, 430 HCI_CONN_REAUTH_PEND, 431 HCI_CONN_ENCRYPT_PEND, 432 HCI_CONN_RSWITCH_PEND, 433 HCI_CONN_MODE_CHANGE_PEND, 434 HCI_CONN_SCO_SETUP_PEND, 435 HCI_CONN_LE_SMP_PEND, 436 HCI_CONN_MGMT_CONNECTED, 437 HCI_CONN_SSP_ENABLED, 438 HCI_CONN_POWER_SAVE, 439 HCI_CONN_REMOTE_OOB, 440 }; 441 442 static inline bool hci_conn_ssp_enabled(struct hci_conn *conn) 443 { 444 struct hci_dev *hdev = conn->hdev; 445 return test_bit(HCI_SSP_ENABLED, &hdev->dev_flags) && 446 test_bit(HCI_CONN_SSP_ENABLED, &conn->flags); 447 } 448 449 static inline void hci_conn_hash_add(struct hci_dev *hdev, struct hci_conn *c) 450 { 451 struct hci_conn_hash *h = &hdev->conn_hash; 452 list_add_rcu(&c->list, &h->list); 453 switch (c->type) { 454 case ACL_LINK: 455 h->acl_num++; 456 break; 457 case AMP_LINK: 458 h->amp_num++; 459 break; 460 case LE_LINK: 461 h->le_num++; 462 break; 463 case SCO_LINK: 464 case ESCO_LINK: 465 h->sco_num++; 466 break; 467 } 468 } 469 470 static inline void hci_conn_hash_del(struct hci_dev *hdev, struct hci_conn *c) 471 { 472 struct hci_conn_hash *h = &hdev->conn_hash; 473 474 list_del_rcu(&c->list); 475 synchronize_rcu(); 476 477 switch (c->type) { 478 case ACL_LINK: 479 h->acl_num--; 480 break; 481 case AMP_LINK: 482 h->amp_num--; 483 break; 484 case LE_LINK: 485 h->le_num--; 486 break; 487 case SCO_LINK: 488 case ESCO_LINK: 489 h->sco_num--; 490 break; 491 } 492 } 493 494 static inline unsigned int hci_conn_num(struct hci_dev *hdev, __u8 type) 495 { 496 struct hci_conn_hash *h = &hdev->conn_hash; 497 switch (type) { 498 case ACL_LINK: 499 return h->acl_num; 500 case AMP_LINK: 501 return h->amp_num; 502 case LE_LINK: 503 return h->le_num; 504 case SCO_LINK: 505 case ESCO_LINK: 506 return h->sco_num; 507 default: 508 return 0; 509 } 510 } 511 512 static inline struct hci_conn *hci_conn_hash_lookup_handle(struct hci_dev *hdev, 513 __u16 handle) 514 { 515 struct hci_conn_hash *h = &hdev->conn_hash; 516 struct hci_conn *c; 517 518 rcu_read_lock(); 519 520 list_for_each_entry_rcu(c, &h->list, list) { 521 if (c->handle == handle) { 522 rcu_read_unlock(); 523 return c; 524 } 525 } 526 rcu_read_unlock(); 527 528 return NULL; 529 } 530 531 static inline struct hci_conn *hci_conn_hash_lookup_ba(struct hci_dev *hdev, 532 __u8 type, bdaddr_t *ba) 533 { 534 struct hci_conn_hash *h = &hdev->conn_hash; 535 struct hci_conn *c; 536 537 rcu_read_lock(); 538 539 list_for_each_entry_rcu(c, &h->list, list) { 540 if (c->type == type && !bacmp(&c->dst, ba)) { 541 rcu_read_unlock(); 542 return c; 543 } 544 } 545 546 rcu_read_unlock(); 547 548 return NULL; 549 } 550 551 static inline struct hci_conn *hci_conn_hash_lookup_state(struct hci_dev *hdev, 552 __u8 type, __u16 state) 553 { 554 struct hci_conn_hash *h = &hdev->conn_hash; 555 struct hci_conn *c; 556 557 rcu_read_lock(); 558 559 list_for_each_entry_rcu(c, &h->list, list) { 560 if (c->type == type && c->state == state) { 561 rcu_read_unlock(); 562 return c; 563 } 564 } 565 566 rcu_read_unlock(); 567 568 return NULL; 569 } 570 571 void hci_disconnect(struct hci_conn *conn, __u8 reason); 572 void hci_setup_sync(struct hci_conn *conn, __u16 handle); 573 void hci_sco_setup(struct hci_conn *conn, __u8 status); 574 575 struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst); 576 int hci_conn_del(struct hci_conn *conn); 577 void hci_conn_hash_flush(struct hci_dev *hdev); 578 void hci_conn_check_pending(struct hci_dev *hdev); 579 580 struct hci_chan *hci_chan_create(struct hci_conn *conn); 581 void hci_chan_del(struct hci_chan *chan); 582 void hci_chan_list_flush(struct hci_conn *conn); 583 struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle); 584 585 struct hci_conn *hci_connect(struct hci_dev *hdev, int type, bdaddr_t *dst, 586 __u8 dst_type, __u8 sec_level, __u8 auth_type); 587 int hci_conn_check_link_mode(struct hci_conn *conn); 588 int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level); 589 int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type); 590 int hci_conn_change_link_key(struct hci_conn *conn); 591 int hci_conn_switch_role(struct hci_conn *conn, __u8 role); 592 593 void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active); 594 595 /* 596 * hci_conn_get() and hci_conn_put() are used to control the life-time of an 597 * "hci_conn" object. They do not guarantee that the hci_conn object is running, 598 * working or anything else. They just guarantee that the object is available 599 * and can be dereferenced. So you can use its locks, local variables and any 600 * other constant data. 601 * Before accessing runtime data, you _must_ lock the object and then check that 602 * it is still running. As soon as you release the locks, the connection might 603 * get dropped, though. 604 * 605 * On the other hand, hci_conn_hold() and hci_conn_drop() are used to control 606 * how long the underlying connection is held. So every channel that runs on the 607 * hci_conn object calls this to prevent the connection from disappearing. As 608 * long as you hold a device, you must also guarantee that you have a valid 609 * reference to the device via hci_conn_get() (or the initial reference from 610 * hci_conn_add()). 611 * The hold()/drop() ref-count is known to drop below 0 sometimes, which doesn't 612 * break because nobody cares for that. But this means, we cannot use 613 * _get()/_drop() in it, but require the caller to have a valid ref (FIXME). 614 */ 615 616 static inline void hci_conn_get(struct hci_conn *conn) 617 { 618 get_device(&conn->dev); 619 } 620 621 static inline void hci_conn_put(struct hci_conn *conn) 622 { 623 put_device(&conn->dev); 624 } 625 626 static inline void hci_conn_hold(struct hci_conn *conn) 627 { 628 BT_DBG("hcon %p orig refcnt %d", conn, atomic_read(&conn->refcnt)); 629 630 atomic_inc(&conn->refcnt); 631 cancel_delayed_work(&conn->disc_work); 632 } 633 634 static inline void hci_conn_drop(struct hci_conn *conn) 635 { 636 BT_DBG("hcon %p orig refcnt %d", conn, atomic_read(&conn->refcnt)); 637 638 if (atomic_dec_and_test(&conn->refcnt)) { 639 unsigned long timeo; 640 641 switch (conn->type) { 642 case ACL_LINK: 643 case LE_LINK: 644 del_timer(&conn->idle_timer); 645 if (conn->state == BT_CONNECTED) { 646 timeo = conn->disc_timeout; 647 if (!conn->out) 648 timeo *= 2; 649 } else { 650 timeo = msecs_to_jiffies(10); 651 } 652 break; 653 654 case AMP_LINK: 655 timeo = conn->disc_timeout; 656 break; 657 658 default: 659 timeo = msecs_to_jiffies(10); 660 break; 661 } 662 663 cancel_delayed_work(&conn->disc_work); 664 queue_delayed_work(conn->hdev->workqueue, 665 &conn->disc_work, timeo); 666 } 667 } 668 669 /* ----- HCI Devices ----- */ 670 static inline void hci_dev_put(struct hci_dev *d) 671 { 672 BT_DBG("%s orig refcnt %d", d->name, 673 atomic_read(&d->dev.kobj.kref.refcount)); 674 675 put_device(&d->dev); 676 } 677 678 static inline struct hci_dev *hci_dev_hold(struct hci_dev *d) 679 { 680 BT_DBG("%s orig refcnt %d", d->name, 681 atomic_read(&d->dev.kobj.kref.refcount)); 682 683 get_device(&d->dev); 684 return d; 685 } 686 687 #define hci_dev_lock(d) mutex_lock(&d->lock) 688 #define hci_dev_unlock(d) mutex_unlock(&d->lock) 689 690 #define to_hci_dev(d) container_of(d, struct hci_dev, dev) 691 #define to_hci_conn(c) container_of(c, struct hci_conn, dev) 692 693 static inline void *hci_get_drvdata(struct hci_dev *hdev) 694 { 695 return dev_get_drvdata(&hdev->dev); 696 } 697 698 static inline void hci_set_drvdata(struct hci_dev *hdev, void *data) 699 { 700 dev_set_drvdata(&hdev->dev, data); 701 } 702 703 /* hci_dev_list shall be locked */ 704 static inline uint8_t __hci_num_ctrl(void) 705 { 706 uint8_t count = 0; 707 struct list_head *p; 708 709 list_for_each(p, &hci_dev_list) { 710 count++; 711 } 712 713 return count; 714 } 715 716 struct hci_dev *hci_dev_get(int index); 717 struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src); 718 719 struct hci_dev *hci_alloc_dev(void); 720 void hci_free_dev(struct hci_dev *hdev); 721 int hci_register_dev(struct hci_dev *hdev); 722 void hci_unregister_dev(struct hci_dev *hdev); 723 int hci_suspend_dev(struct hci_dev *hdev); 724 int hci_resume_dev(struct hci_dev *hdev); 725 int hci_dev_open(__u16 dev); 726 int hci_dev_close(__u16 dev); 727 int hci_dev_reset(__u16 dev); 728 int hci_dev_reset_stat(__u16 dev); 729 int hci_dev_cmd(unsigned int cmd, void __user *arg); 730 int hci_get_dev_list(void __user *arg); 731 int hci_get_dev_info(void __user *arg); 732 int hci_get_conn_list(void __user *arg); 733 int hci_get_conn_info(struct hci_dev *hdev, void __user *arg); 734 int hci_get_auth_info(struct hci_dev *hdev, void __user *arg); 735 int hci_inquiry(void __user *arg); 736 737 struct bdaddr_list *hci_blacklist_lookup(struct hci_dev *hdev, 738 bdaddr_t *bdaddr); 739 int hci_blacklist_clear(struct hci_dev *hdev); 740 int hci_blacklist_add(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type); 741 int hci_blacklist_del(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type); 742 743 int hci_uuids_clear(struct hci_dev *hdev); 744 745 int hci_link_keys_clear(struct hci_dev *hdev); 746 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr); 747 int hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn, int new_key, 748 bdaddr_t *bdaddr, u8 *val, u8 type, u8 pin_len); 749 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, __le16 ediv, u8 rand[8]); 750 int hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type, u8 type, 751 int new_key, u8 authenticated, u8 tk[16], u8 enc_size, 752 __le16 ediv, u8 rand[8]); 753 struct smp_ltk *hci_find_ltk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr, 754 u8 addr_type); 755 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr); 756 int hci_smp_ltks_clear(struct hci_dev *hdev); 757 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr); 758 759 int hci_remote_oob_data_clear(struct hci_dev *hdev); 760 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev, 761 bdaddr_t *bdaddr); 762 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 *hash, 763 u8 *randomizer); 764 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr); 765 766 void hci_event_packet(struct hci_dev *hdev, struct sk_buff *skb); 767 768 int hci_recv_frame(struct sk_buff *skb); 769 int hci_recv_fragment(struct hci_dev *hdev, int type, void *data, int count); 770 int hci_recv_stream_fragment(struct hci_dev *hdev, void *data, int count); 771 772 void hci_init_sysfs(struct hci_dev *hdev); 773 int hci_add_sysfs(struct hci_dev *hdev); 774 void hci_del_sysfs(struct hci_dev *hdev); 775 void hci_conn_init_sysfs(struct hci_conn *conn); 776 void hci_conn_add_sysfs(struct hci_conn *conn); 777 void hci_conn_del_sysfs(struct hci_conn *conn); 778 779 #define SET_HCIDEV_DEV(hdev, pdev) ((hdev)->dev.parent = (pdev)) 780 781 /* ----- LMP capabilities ----- */ 782 #define lmp_encrypt_capable(dev) ((dev)->features[0][0] & LMP_ENCRYPT) 783 #define lmp_rswitch_capable(dev) ((dev)->features[0][0] & LMP_RSWITCH) 784 #define lmp_hold_capable(dev) ((dev)->features[0][0] & LMP_HOLD) 785 #define lmp_sniff_capable(dev) ((dev)->features[0][0] & LMP_SNIFF) 786 #define lmp_park_capable(dev) ((dev)->features[0][1] & LMP_PARK) 787 #define lmp_inq_rssi_capable(dev) ((dev)->features[0][3] & LMP_RSSI_INQ) 788 #define lmp_esco_capable(dev) ((dev)->features[0][3] & LMP_ESCO) 789 #define lmp_bredr_capable(dev) (!((dev)->features[0][4] & LMP_NO_BREDR)) 790 #define lmp_le_capable(dev) ((dev)->features[0][4] & LMP_LE) 791 #define lmp_sniffsubr_capable(dev) ((dev)->features[0][5] & LMP_SNIFF_SUBR) 792 #define lmp_pause_enc_capable(dev) ((dev)->features[0][5] & LMP_PAUSE_ENC) 793 #define lmp_ext_inq_capable(dev) ((dev)->features[0][6] & LMP_EXT_INQ) 794 #define lmp_le_br_capable(dev) (!!((dev)->features[0][6] & LMP_SIMUL_LE_BR)) 795 #define lmp_ssp_capable(dev) ((dev)->features[0][6] & LMP_SIMPLE_PAIR) 796 #define lmp_no_flush_capable(dev) ((dev)->features[0][6] & LMP_NO_FLUSH) 797 #define lmp_lsto_capable(dev) ((dev)->features[0][7] & LMP_LSTO) 798 #define lmp_inq_tx_pwr_capable(dev) ((dev)->features[0][7] & LMP_INQ_TX_PWR) 799 #define lmp_ext_feat_capable(dev) ((dev)->features[0][7] & LMP_EXTFEATURES) 800 801 /* ----- Extended LMP capabilities ----- */ 802 #define lmp_host_ssp_capable(dev) ((dev)->features[1][0] & LMP_HOST_SSP) 803 #define lmp_host_le_capable(dev) (!!((dev)->features[1][0] & LMP_HOST_LE)) 804 #define lmp_host_le_br_capable(dev) (!!((dev)->features[1][0] & LMP_HOST_LE_BREDR)) 805 806 /* returns true if at least one AMP active */ 807 static inline bool hci_amp_capable(void) 808 { 809 struct hci_dev *hdev; 810 bool ret = false; 811 812 read_lock(&hci_dev_list_lock); 813 list_for_each_entry(hdev, &hci_dev_list, list) 814 if (hdev->amp_type == HCI_AMP && 815 test_bit(HCI_UP, &hdev->flags)) 816 ret = true; 817 read_unlock(&hci_dev_list_lock); 818 819 return ret; 820 } 821 822 /* ----- HCI protocols ----- */ 823 #define HCI_PROTO_DEFER 0x01 824 825 static inline int hci_proto_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr, 826 __u8 type, __u8 *flags) 827 { 828 switch (type) { 829 case ACL_LINK: 830 return l2cap_connect_ind(hdev, bdaddr); 831 832 case SCO_LINK: 833 case ESCO_LINK: 834 return sco_connect_ind(hdev, bdaddr, flags); 835 836 default: 837 BT_ERR("unknown link type %d", type); 838 return -EINVAL; 839 } 840 } 841 842 static inline void hci_proto_connect_cfm(struct hci_conn *conn, __u8 status) 843 { 844 switch (conn->type) { 845 case ACL_LINK: 846 case LE_LINK: 847 l2cap_connect_cfm(conn, status); 848 break; 849 850 case SCO_LINK: 851 case ESCO_LINK: 852 sco_connect_cfm(conn, status); 853 break; 854 855 default: 856 BT_ERR("unknown link type %d", conn->type); 857 break; 858 } 859 860 if (conn->connect_cfm_cb) 861 conn->connect_cfm_cb(conn, status); 862 } 863 864 static inline int hci_proto_disconn_ind(struct hci_conn *conn) 865 { 866 if (conn->type != ACL_LINK && conn->type != LE_LINK) 867 return HCI_ERROR_REMOTE_USER_TERM; 868 869 return l2cap_disconn_ind(conn); 870 } 871 872 static inline void hci_proto_disconn_cfm(struct hci_conn *conn, __u8 reason) 873 { 874 switch (conn->type) { 875 case ACL_LINK: 876 case LE_LINK: 877 l2cap_disconn_cfm(conn, reason); 878 break; 879 880 case SCO_LINK: 881 case ESCO_LINK: 882 sco_disconn_cfm(conn, reason); 883 break; 884 885 /* L2CAP would be handled for BREDR chan */ 886 case AMP_LINK: 887 break; 888 889 default: 890 BT_ERR("unknown link type %d", conn->type); 891 break; 892 } 893 894 if (conn->disconn_cfm_cb) 895 conn->disconn_cfm_cb(conn, reason); 896 } 897 898 static inline void hci_proto_auth_cfm(struct hci_conn *conn, __u8 status) 899 { 900 __u8 encrypt; 901 902 if (conn->type != ACL_LINK && conn->type != LE_LINK) 903 return; 904 905 if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) 906 return; 907 908 encrypt = (conn->link_mode & HCI_LM_ENCRYPT) ? 0x01 : 0x00; 909 l2cap_security_cfm(conn, status, encrypt); 910 911 if (conn->security_cfm_cb) 912 conn->security_cfm_cb(conn, status); 913 } 914 915 static inline void hci_proto_encrypt_cfm(struct hci_conn *conn, __u8 status, 916 __u8 encrypt) 917 { 918 if (conn->type != ACL_LINK && conn->type != LE_LINK) 919 return; 920 921 l2cap_security_cfm(conn, status, encrypt); 922 923 if (conn->security_cfm_cb) 924 conn->security_cfm_cb(conn, status); 925 } 926 927 /* ----- HCI callbacks ----- */ 928 struct hci_cb { 929 struct list_head list; 930 931 char *name; 932 933 void (*security_cfm) (struct hci_conn *conn, __u8 status, 934 __u8 encrypt); 935 void (*key_change_cfm) (struct hci_conn *conn, __u8 status); 936 void (*role_switch_cfm) (struct hci_conn *conn, __u8 status, __u8 role); 937 }; 938 939 static inline void hci_auth_cfm(struct hci_conn *conn, __u8 status) 940 { 941 struct hci_cb *cb; 942 __u8 encrypt; 943 944 hci_proto_auth_cfm(conn, status); 945 946 if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) 947 return; 948 949 encrypt = (conn->link_mode & HCI_LM_ENCRYPT) ? 0x01 : 0x00; 950 951 read_lock(&hci_cb_list_lock); 952 list_for_each_entry(cb, &hci_cb_list, list) { 953 if (cb->security_cfm) 954 cb->security_cfm(conn, status, encrypt); 955 } 956 read_unlock(&hci_cb_list_lock); 957 } 958 959 static inline void hci_encrypt_cfm(struct hci_conn *conn, __u8 status, 960 __u8 encrypt) 961 { 962 struct hci_cb *cb; 963 964 if (conn->sec_level == BT_SECURITY_SDP) 965 conn->sec_level = BT_SECURITY_LOW; 966 967 if (conn->pending_sec_level > conn->sec_level) 968 conn->sec_level = conn->pending_sec_level; 969 970 hci_proto_encrypt_cfm(conn, status, encrypt); 971 972 read_lock(&hci_cb_list_lock); 973 list_for_each_entry(cb, &hci_cb_list, list) { 974 if (cb->security_cfm) 975 cb->security_cfm(conn, status, encrypt); 976 } 977 read_unlock(&hci_cb_list_lock); 978 } 979 980 static inline void hci_key_change_cfm(struct hci_conn *conn, __u8 status) 981 { 982 struct hci_cb *cb; 983 984 read_lock(&hci_cb_list_lock); 985 list_for_each_entry(cb, &hci_cb_list, list) { 986 if (cb->key_change_cfm) 987 cb->key_change_cfm(conn, status); 988 } 989 read_unlock(&hci_cb_list_lock); 990 } 991 992 static inline void hci_role_switch_cfm(struct hci_conn *conn, __u8 status, 993 __u8 role) 994 { 995 struct hci_cb *cb; 996 997 read_lock(&hci_cb_list_lock); 998 list_for_each_entry(cb, &hci_cb_list, list) { 999 if (cb->role_switch_cfm) 1000 cb->role_switch_cfm(conn, status, role); 1001 } 1002 read_unlock(&hci_cb_list_lock); 1003 } 1004 1005 static inline bool eir_has_data_type(u8 *data, size_t data_len, u8 type) 1006 { 1007 size_t parsed = 0; 1008 1009 if (data_len < 2) 1010 return false; 1011 1012 while (parsed < data_len - 1) { 1013 u8 field_len = data[0]; 1014 1015 if (field_len == 0) 1016 break; 1017 1018 parsed += field_len + 1; 1019 1020 if (parsed > data_len) 1021 break; 1022 1023 if (data[1] == type) 1024 return true; 1025 1026 data += field_len + 1; 1027 } 1028 1029 return false; 1030 } 1031 1032 static inline size_t eir_get_length(u8 *eir, size_t eir_len) 1033 { 1034 size_t parsed = 0; 1035 1036 while (parsed < eir_len) { 1037 u8 field_len = eir[0]; 1038 1039 if (field_len == 0) 1040 return parsed; 1041 1042 parsed += field_len + 1; 1043 eir += field_len + 1; 1044 } 1045 1046 return eir_len; 1047 } 1048 1049 static inline u16 eir_append_data(u8 *eir, u16 eir_len, u8 type, u8 *data, 1050 u8 data_len) 1051 { 1052 eir[eir_len++] = sizeof(type) + data_len; 1053 eir[eir_len++] = type; 1054 memcpy(&eir[eir_len], data, data_len); 1055 eir_len += data_len; 1056 1057 return eir_len; 1058 } 1059 1060 int hci_register_cb(struct hci_cb *hcb); 1061 int hci_unregister_cb(struct hci_cb *hcb); 1062 1063 struct hci_request { 1064 struct hci_dev *hdev; 1065 struct sk_buff_head cmd_q; 1066 1067 /* If something goes wrong when building the HCI request, the error 1068 * value is stored in this field. 1069 */ 1070 int err; 1071 }; 1072 1073 void hci_req_init(struct hci_request *req, struct hci_dev *hdev); 1074 int hci_req_run(struct hci_request *req, hci_req_complete_t complete); 1075 void hci_req_add(struct hci_request *req, u16 opcode, u32 plen, 1076 const void *param); 1077 void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen, 1078 const void *param, u8 event); 1079 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status); 1080 1081 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 1082 const void *param, u32 timeout); 1083 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen, 1084 const void *param, u8 event, u32 timeout); 1085 1086 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen, 1087 const void *param); 1088 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags); 1089 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb); 1090 1091 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode); 1092 1093 /* ----- HCI Sockets ----- */ 1094 void hci_send_to_sock(struct hci_dev *hdev, struct sk_buff *skb); 1095 void hci_send_to_control(struct sk_buff *skb, struct sock *skip_sk); 1096 void hci_send_to_monitor(struct hci_dev *hdev, struct sk_buff *skb); 1097 1098 void hci_sock_dev_event(struct hci_dev *hdev, int event); 1099 1100 /* Management interface */ 1101 #define DISCOV_TYPE_BREDR (BIT(BDADDR_BREDR)) 1102 #define DISCOV_TYPE_LE (BIT(BDADDR_LE_PUBLIC) | \ 1103 BIT(BDADDR_LE_RANDOM)) 1104 #define DISCOV_TYPE_INTERLEAVED (BIT(BDADDR_BREDR) | \ 1105 BIT(BDADDR_LE_PUBLIC) | \ 1106 BIT(BDADDR_LE_RANDOM)) 1107 1108 /* These LE scan and inquiry parameters were chosen according to LE General 1109 * Discovery Procedure specification. 1110 */ 1111 #define DISCOV_LE_SCAN_WIN 0x12 1112 #define DISCOV_LE_SCAN_INT 0x12 1113 #define DISCOV_LE_TIMEOUT msecs_to_jiffies(10240) 1114 #define DISCOV_INTERLEAVED_TIMEOUT msecs_to_jiffies(5120) 1115 #define DISCOV_INTERLEAVED_INQUIRY_LEN 0x04 1116 #define DISCOV_BREDR_INQUIRY_LEN 0x08 1117 1118 int mgmt_control(struct sock *sk, struct msghdr *msg, size_t len); 1119 int mgmt_index_added(struct hci_dev *hdev); 1120 int mgmt_index_removed(struct hci_dev *hdev); 1121 int mgmt_set_powered_failed(struct hci_dev *hdev, int err); 1122 int mgmt_powered(struct hci_dev *hdev, u8 powered); 1123 int mgmt_discoverable(struct hci_dev *hdev, u8 discoverable); 1124 int mgmt_connectable(struct hci_dev *hdev, u8 connectable); 1125 int mgmt_write_scan_failed(struct hci_dev *hdev, u8 scan, u8 status); 1126 int mgmt_new_link_key(struct hci_dev *hdev, struct link_key *key, 1127 bool persistent); 1128 int mgmt_device_connected(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, 1129 u8 addr_type, u32 flags, u8 *name, u8 name_len, 1130 u8 *dev_class); 1131 int mgmt_device_disconnected(struct hci_dev *hdev, bdaddr_t *bdaddr, 1132 u8 link_type, u8 addr_type, u8 reason); 1133 int mgmt_disconnect_failed(struct hci_dev *hdev, bdaddr_t *bdaddr, 1134 u8 link_type, u8 addr_type, u8 status); 1135 int mgmt_connect_failed(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, 1136 u8 addr_type, u8 status); 1137 int mgmt_pin_code_request(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 secure); 1138 int mgmt_pin_code_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 1139 u8 status); 1140 int mgmt_pin_code_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 1141 u8 status); 1142 int mgmt_user_confirm_request(struct hci_dev *hdev, bdaddr_t *bdaddr, 1143 u8 link_type, u8 addr_type, __le32 value, 1144 u8 confirm_hint); 1145 int mgmt_user_confirm_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 1146 u8 link_type, u8 addr_type, u8 status); 1147 int mgmt_user_confirm_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 1148 u8 link_type, u8 addr_type, u8 status); 1149 int mgmt_user_passkey_request(struct hci_dev *hdev, bdaddr_t *bdaddr, 1150 u8 link_type, u8 addr_type); 1151 int mgmt_user_passkey_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 1152 u8 link_type, u8 addr_type, u8 status); 1153 int mgmt_user_passkey_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 1154 u8 link_type, u8 addr_type, u8 status); 1155 int mgmt_user_passkey_notify(struct hci_dev *hdev, bdaddr_t *bdaddr, 1156 u8 link_type, u8 addr_type, u32 passkey, 1157 u8 entered); 1158 int mgmt_auth_failed(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, 1159 u8 addr_type, u8 status); 1160 int mgmt_auth_enable_complete(struct hci_dev *hdev, u8 status); 1161 int mgmt_ssp_enable_complete(struct hci_dev *hdev, u8 enable, u8 status); 1162 int mgmt_set_class_of_dev_complete(struct hci_dev *hdev, u8 *dev_class, 1163 u8 status); 1164 int mgmt_set_local_name_complete(struct hci_dev *hdev, u8 *name, u8 status); 1165 int mgmt_read_local_oob_data_reply_complete(struct hci_dev *hdev, u8 *hash, 1166 u8 *randomizer, u8 status); 1167 int mgmt_le_enable_complete(struct hci_dev *hdev, u8 enable, u8 status); 1168 int mgmt_device_found(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, 1169 u8 addr_type, u8 *dev_class, s8 rssi, u8 cfm_name, 1170 u8 ssp, u8 *eir, u16 eir_len); 1171 int mgmt_remote_name(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, 1172 u8 addr_type, s8 rssi, u8 *name, u8 name_len); 1173 int mgmt_discovering(struct hci_dev *hdev, u8 discovering); 1174 int mgmt_device_blocked(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type); 1175 int mgmt_device_unblocked(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type); 1176 bool mgmt_valid_hdev(struct hci_dev *hdev); 1177 int mgmt_new_ltk(struct hci_dev *hdev, struct smp_ltk *key, u8 persistent); 1178 1179 /* HCI info for socket */ 1180 #define hci_pi(sk) ((struct hci_pinfo *) sk) 1181 1182 struct hci_pinfo { 1183 struct bt_sock bt; 1184 struct hci_dev *hdev; 1185 struct hci_filter filter; 1186 __u32 cmsg_mask; 1187 unsigned short channel; 1188 }; 1189 1190 /* HCI security filter */ 1191 #define HCI_SFLT_MAX_OGF 5 1192 1193 struct hci_sec_filter { 1194 __u32 type_mask; 1195 __u32 event_mask[2]; 1196 __u32 ocf_mask[HCI_SFLT_MAX_OGF + 1][4]; 1197 }; 1198 1199 /* ----- HCI requests ----- */ 1200 #define HCI_REQ_DONE 0 1201 #define HCI_REQ_PEND 1 1202 #define HCI_REQ_CANCELED 2 1203 1204 #define hci_req_lock(d) mutex_lock(&d->req_lock) 1205 #define hci_req_unlock(d) mutex_unlock(&d->req_lock) 1206 1207 void hci_update_ad(struct hci_request *req); 1208 1209 void hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max, 1210 u16 latency, u16 to_multiplier); 1211 void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __u8 rand[8], 1212 __u8 ltk[16]); 1213 1214 u8 bdaddr_to_le(u8 bdaddr_type); 1215 1216 #endif /* __HCI_CORE_H */ 1217