1 /* 2 BlueZ - Bluetooth protocol stack for Linux 3 Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved. 4 5 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License version 2 as 9 published by the Free Software Foundation; 10 11 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 12 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 13 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 14 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 15 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 16 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 20 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 21 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 22 SOFTWARE IS DISCLAIMED. 23 */ 24 25 #ifndef __HCI_CORE_H 26 #define __HCI_CORE_H 27 28 #include <linux/leds.h> 29 #include <net/bluetooth/hci.h> 30 #include <net/bluetooth/hci_sock.h> 31 32 /* HCI priority */ 33 #define HCI_PRIO_MAX 7 34 35 /* HCI Core structures */ 36 struct inquiry_data { 37 bdaddr_t bdaddr; 38 __u8 pscan_rep_mode; 39 __u8 pscan_period_mode; 40 __u8 pscan_mode; 41 __u8 dev_class[3]; 42 __le16 clock_offset; 43 __s8 rssi; 44 __u8 ssp_mode; 45 }; 46 47 struct inquiry_entry { 48 struct list_head all; /* inq_cache.all */ 49 struct list_head list; /* unknown or resolve */ 50 enum { 51 NAME_NOT_KNOWN, 52 NAME_NEEDED, 53 NAME_PENDING, 54 NAME_KNOWN, 55 } name_state; 56 __u32 timestamp; 57 struct inquiry_data data; 58 }; 59 60 struct discovery_state { 61 int type; 62 enum { 63 DISCOVERY_STOPPED, 64 DISCOVERY_STARTING, 65 DISCOVERY_FINDING, 66 DISCOVERY_RESOLVING, 67 DISCOVERY_STOPPING, 68 } state; 69 struct list_head all; /* All devices found during inquiry */ 70 struct list_head unknown; /* Name state not known */ 71 struct list_head resolve; /* Name needs to be resolved */ 72 __u32 timestamp; 73 bdaddr_t last_adv_addr; 74 u8 last_adv_addr_type; 75 s8 last_adv_rssi; 76 u32 last_adv_flags; 77 u8 last_adv_data[HCI_MAX_AD_LENGTH]; 78 u8 last_adv_data_len; 79 bool report_invalid_rssi; 80 bool result_filtering; 81 bool limited; 82 s8 rssi; 83 u16 uuid_count; 84 u8 (*uuids)[16]; 85 unsigned long scan_start; 86 unsigned long scan_duration; 87 }; 88 89 struct hci_conn_hash { 90 struct list_head list; 91 unsigned int acl_num; 92 unsigned int amp_num; 93 unsigned int sco_num; 94 unsigned int le_num; 95 unsigned int le_num_slave; 96 }; 97 98 struct bdaddr_list { 99 struct list_head list; 100 bdaddr_t bdaddr; 101 u8 bdaddr_type; 102 }; 103 104 struct bt_uuid { 105 struct list_head list; 106 u8 uuid[16]; 107 u8 size; 108 u8 svc_hint; 109 }; 110 111 struct smp_csrk { 112 bdaddr_t bdaddr; 113 u8 bdaddr_type; 114 u8 type; 115 u8 val[16]; 116 }; 117 118 struct smp_ltk { 119 struct list_head list; 120 struct rcu_head rcu; 121 bdaddr_t bdaddr; 122 u8 bdaddr_type; 123 u8 authenticated; 124 u8 type; 125 u8 enc_size; 126 __le16 ediv; 127 __le64 rand; 128 u8 val[16]; 129 }; 130 131 struct smp_irk { 132 struct list_head list; 133 struct rcu_head rcu; 134 bdaddr_t rpa; 135 bdaddr_t bdaddr; 136 u8 addr_type; 137 u8 val[16]; 138 }; 139 140 struct link_key { 141 struct list_head list; 142 struct rcu_head rcu; 143 bdaddr_t bdaddr; 144 u8 type; 145 u8 val[HCI_LINK_KEY_SIZE]; 146 u8 pin_len; 147 }; 148 149 struct oob_data { 150 struct list_head list; 151 bdaddr_t bdaddr; 152 u8 bdaddr_type; 153 u8 present; 154 u8 hash192[16]; 155 u8 rand192[16]; 156 u8 hash256[16]; 157 u8 rand256[16]; 158 }; 159 160 struct adv_info { 161 struct list_head list; 162 bool pending; 163 __u8 instance; 164 __u32 flags; 165 __u16 timeout; 166 __u16 remaining_time; 167 __u16 duration; 168 __u16 adv_data_len; 169 __u8 adv_data[HCI_MAX_AD_LENGTH]; 170 __u16 scan_rsp_len; 171 __u8 scan_rsp_data[HCI_MAX_AD_LENGTH]; 172 }; 173 174 #define HCI_MAX_ADV_INSTANCES 5 175 #define HCI_DEFAULT_ADV_DURATION 2 176 177 #define HCI_MAX_SHORT_NAME_LENGTH 10 178 179 /* Default LE RPA expiry time, 15 minutes */ 180 #define HCI_DEFAULT_RPA_TIMEOUT (15 * 60) 181 182 /* Default min/max age of connection information (1s/3s) */ 183 #define DEFAULT_CONN_INFO_MIN_AGE 1000 184 #define DEFAULT_CONN_INFO_MAX_AGE 3000 185 186 struct amp_assoc { 187 __u16 len; 188 __u16 offset; 189 __u16 rem_len; 190 __u16 len_so_far; 191 __u8 data[HCI_MAX_AMP_ASSOC_SIZE]; 192 }; 193 194 #define HCI_MAX_PAGES 3 195 196 struct hci_dev { 197 struct list_head list; 198 struct mutex lock; 199 200 char name[8]; 201 unsigned long flags; 202 __u16 id; 203 __u8 bus; 204 __u8 dev_type; 205 bdaddr_t bdaddr; 206 bdaddr_t setup_addr; 207 bdaddr_t public_addr; 208 bdaddr_t random_addr; 209 bdaddr_t static_addr; 210 __u8 adv_addr_type; 211 __u8 dev_name[HCI_MAX_NAME_LENGTH]; 212 __u8 short_name[HCI_MAX_SHORT_NAME_LENGTH]; 213 __u8 eir[HCI_MAX_EIR_LENGTH]; 214 __u8 dev_class[3]; 215 __u8 major_class; 216 __u8 minor_class; 217 __u8 max_page; 218 __u8 features[HCI_MAX_PAGES][8]; 219 __u8 le_features[8]; 220 __u8 le_white_list_size; 221 __u8 le_states[8]; 222 __u8 commands[64]; 223 __u8 hci_ver; 224 __u16 hci_rev; 225 __u8 lmp_ver; 226 __u16 manufacturer; 227 __u16 lmp_subver; 228 __u16 voice_setting; 229 __u8 num_iac; 230 __u8 stored_max_keys; 231 __u8 stored_num_keys; 232 __u8 io_capability; 233 __s8 inq_tx_power; 234 __u16 page_scan_interval; 235 __u16 page_scan_window; 236 __u8 page_scan_type; 237 __u8 le_adv_channel_map; 238 __u16 le_adv_min_interval; 239 __u16 le_adv_max_interval; 240 __u8 le_scan_type; 241 __u16 le_scan_interval; 242 __u16 le_scan_window; 243 __u16 le_conn_min_interval; 244 __u16 le_conn_max_interval; 245 __u16 le_conn_latency; 246 __u16 le_supv_timeout; 247 __u16 le_def_tx_len; 248 __u16 le_def_tx_time; 249 __u16 le_max_tx_len; 250 __u16 le_max_tx_time; 251 __u16 le_max_rx_len; 252 __u16 le_max_rx_time; 253 __u16 discov_interleaved_timeout; 254 __u16 conn_info_min_age; 255 __u16 conn_info_max_age; 256 __u8 ssp_debug_mode; 257 __u8 hw_error_code; 258 __u32 clock; 259 260 __u16 devid_source; 261 __u16 devid_vendor; 262 __u16 devid_product; 263 __u16 devid_version; 264 265 __u16 pkt_type; 266 __u16 esco_type; 267 __u16 link_policy; 268 __u16 link_mode; 269 270 __u32 idle_timeout; 271 __u16 sniff_min_interval; 272 __u16 sniff_max_interval; 273 274 __u8 amp_status; 275 __u32 amp_total_bw; 276 __u32 amp_max_bw; 277 __u32 amp_min_latency; 278 __u32 amp_max_pdu; 279 __u8 amp_type; 280 __u16 amp_pal_cap; 281 __u16 amp_assoc_size; 282 __u32 amp_max_flush_to; 283 __u32 amp_be_flush_to; 284 285 struct amp_assoc loc_assoc; 286 287 __u8 flow_ctl_mode; 288 289 unsigned int auto_accept_delay; 290 291 unsigned long quirks; 292 293 atomic_t cmd_cnt; 294 unsigned int acl_cnt; 295 unsigned int sco_cnt; 296 unsigned int le_cnt; 297 298 unsigned int acl_mtu; 299 unsigned int sco_mtu; 300 unsigned int le_mtu; 301 unsigned int acl_pkts; 302 unsigned int sco_pkts; 303 unsigned int le_pkts; 304 305 __u16 block_len; 306 __u16 block_mtu; 307 __u16 num_blocks; 308 __u16 block_cnt; 309 310 unsigned long acl_last_tx; 311 unsigned long sco_last_tx; 312 unsigned long le_last_tx; 313 314 struct workqueue_struct *workqueue; 315 struct workqueue_struct *req_workqueue; 316 317 struct work_struct power_on; 318 struct delayed_work power_off; 319 struct work_struct error_reset; 320 321 __u16 discov_timeout; 322 struct delayed_work discov_off; 323 324 struct delayed_work service_cache; 325 326 struct delayed_work cmd_timer; 327 328 struct work_struct rx_work; 329 struct work_struct cmd_work; 330 struct work_struct tx_work; 331 332 struct work_struct discov_update; 333 struct work_struct bg_scan_update; 334 struct work_struct scan_update; 335 struct work_struct connectable_update; 336 struct work_struct discoverable_update; 337 struct delayed_work le_scan_disable; 338 struct delayed_work le_scan_restart; 339 340 struct sk_buff_head rx_q; 341 struct sk_buff_head raw_q; 342 struct sk_buff_head cmd_q; 343 344 struct sk_buff *sent_cmd; 345 346 struct mutex req_lock; 347 wait_queue_head_t req_wait_q; 348 __u32 req_status; 349 __u32 req_result; 350 struct sk_buff *req_skb; 351 352 void *smp_data; 353 void *smp_bredr_data; 354 355 struct discovery_state discovery; 356 struct hci_conn_hash conn_hash; 357 358 struct list_head mgmt_pending; 359 struct list_head blacklist; 360 struct list_head whitelist; 361 struct list_head uuids; 362 struct list_head link_keys; 363 struct list_head long_term_keys; 364 struct list_head identity_resolving_keys; 365 struct list_head remote_oob_data; 366 struct list_head le_white_list; 367 struct list_head le_conn_params; 368 struct list_head pend_le_conns; 369 struct list_head pend_le_reports; 370 371 struct hci_dev_stats stat; 372 373 atomic_t promisc; 374 375 struct dentry *debugfs; 376 377 struct device dev; 378 379 struct rfkill *rfkill; 380 381 DECLARE_BITMAP(dev_flags, __HCI_NUM_FLAGS); 382 383 __s8 adv_tx_power; 384 __u8 adv_data[HCI_MAX_AD_LENGTH]; 385 __u8 adv_data_len; 386 __u8 scan_rsp_data[HCI_MAX_AD_LENGTH]; 387 __u8 scan_rsp_data_len; 388 389 struct list_head adv_instances; 390 unsigned int adv_instance_cnt; 391 __u8 cur_adv_instance; 392 __u16 adv_instance_timeout; 393 struct delayed_work adv_instance_expire; 394 395 __u8 irk[16]; 396 __u32 rpa_timeout; 397 struct delayed_work rpa_expired; 398 bdaddr_t rpa; 399 400 struct led_trigger *power_led; 401 402 int (*open)(struct hci_dev *hdev); 403 int (*close)(struct hci_dev *hdev); 404 int (*flush)(struct hci_dev *hdev); 405 int (*setup)(struct hci_dev *hdev); 406 int (*shutdown)(struct hci_dev *hdev); 407 int (*send)(struct hci_dev *hdev, struct sk_buff *skb); 408 void (*notify)(struct hci_dev *hdev, unsigned int evt); 409 void (*hw_error)(struct hci_dev *hdev, u8 code); 410 int (*post_init)(struct hci_dev *hdev); 411 int (*set_diag)(struct hci_dev *hdev, bool enable); 412 int (*set_bdaddr)(struct hci_dev *hdev, const bdaddr_t *bdaddr); 413 }; 414 415 #define HCI_PHY_HANDLE(handle) (handle & 0xff) 416 417 struct hci_conn { 418 struct list_head list; 419 420 atomic_t refcnt; 421 422 bdaddr_t dst; 423 __u8 dst_type; 424 bdaddr_t src; 425 __u8 src_type; 426 bdaddr_t init_addr; 427 __u8 init_addr_type; 428 bdaddr_t resp_addr; 429 __u8 resp_addr_type; 430 __u16 handle; 431 __u16 state; 432 __u8 mode; 433 __u8 type; 434 __u8 role; 435 bool out; 436 __u8 attempt; 437 __u8 dev_class[3]; 438 __u8 features[HCI_MAX_PAGES][8]; 439 __u16 pkt_type; 440 __u16 link_policy; 441 __u8 key_type; 442 __u8 auth_type; 443 __u8 sec_level; 444 __u8 pending_sec_level; 445 __u8 pin_length; 446 __u8 enc_key_size; 447 __u8 io_capability; 448 __u32 passkey_notify; 449 __u8 passkey_entered; 450 __u16 disc_timeout; 451 __u16 conn_timeout; 452 __u16 setting; 453 __u16 le_conn_min_interval; 454 __u16 le_conn_max_interval; 455 __u16 le_conn_interval; 456 __u16 le_conn_latency; 457 __u16 le_supv_timeout; 458 __u8 le_adv_data[HCI_MAX_AD_LENGTH]; 459 __u8 le_adv_data_len; 460 __s8 rssi; 461 __s8 tx_power; 462 __s8 max_tx_power; 463 unsigned long flags; 464 465 __u32 clock; 466 __u16 clock_accuracy; 467 468 unsigned long conn_info_timestamp; 469 470 __u8 remote_cap; 471 __u8 remote_auth; 472 __u8 remote_id; 473 474 unsigned int sent; 475 476 struct sk_buff_head data_q; 477 struct list_head chan_list; 478 479 struct delayed_work disc_work; 480 struct delayed_work auto_accept_work; 481 struct delayed_work idle_work; 482 struct delayed_work le_conn_timeout; 483 struct work_struct le_scan_cleanup; 484 485 struct device dev; 486 struct dentry *debugfs; 487 488 struct hci_dev *hdev; 489 void *l2cap_data; 490 void *sco_data; 491 struct amp_mgr *amp_mgr; 492 493 struct hci_conn *link; 494 495 void (*connect_cfm_cb) (struct hci_conn *conn, u8 status); 496 void (*security_cfm_cb) (struct hci_conn *conn, u8 status); 497 void (*disconn_cfm_cb) (struct hci_conn *conn, u8 reason); 498 }; 499 500 struct hci_chan { 501 struct list_head list; 502 __u16 handle; 503 struct hci_conn *conn; 504 struct sk_buff_head data_q; 505 unsigned int sent; 506 __u8 state; 507 }; 508 509 struct hci_conn_params { 510 struct list_head list; 511 struct list_head action; 512 513 bdaddr_t addr; 514 u8 addr_type; 515 516 u16 conn_min_interval; 517 u16 conn_max_interval; 518 u16 conn_latency; 519 u16 supervision_timeout; 520 521 enum { 522 HCI_AUTO_CONN_DISABLED, 523 HCI_AUTO_CONN_REPORT, 524 HCI_AUTO_CONN_DIRECT, 525 HCI_AUTO_CONN_ALWAYS, 526 HCI_AUTO_CONN_LINK_LOSS, 527 HCI_AUTO_CONN_EXPLICIT, 528 } auto_connect; 529 530 struct hci_conn *conn; 531 bool explicit_connect; 532 }; 533 534 extern struct list_head hci_dev_list; 535 extern struct list_head hci_cb_list; 536 extern rwlock_t hci_dev_list_lock; 537 extern struct mutex hci_cb_list_lock; 538 539 #define hci_dev_set_flag(hdev, nr) set_bit((nr), (hdev)->dev_flags) 540 #define hci_dev_clear_flag(hdev, nr) clear_bit((nr), (hdev)->dev_flags) 541 #define hci_dev_change_flag(hdev, nr) change_bit((nr), (hdev)->dev_flags) 542 #define hci_dev_test_flag(hdev, nr) test_bit((nr), (hdev)->dev_flags) 543 #define hci_dev_test_and_set_flag(hdev, nr) test_and_set_bit((nr), (hdev)->dev_flags) 544 #define hci_dev_test_and_clear_flag(hdev, nr) test_and_clear_bit((nr), (hdev)->dev_flags) 545 #define hci_dev_test_and_change_flag(hdev, nr) test_and_change_bit((nr), (hdev)->dev_flags) 546 547 #define hci_dev_clear_volatile_flags(hdev) \ 548 do { \ 549 hci_dev_clear_flag(hdev, HCI_LE_SCAN); \ 550 hci_dev_clear_flag(hdev, HCI_LE_ADV); \ 551 hci_dev_clear_flag(hdev, HCI_PERIODIC_INQ); \ 552 } while (0) 553 554 /* ----- HCI interface to upper protocols ----- */ 555 int l2cap_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr); 556 int l2cap_disconn_ind(struct hci_conn *hcon); 557 void l2cap_recv_acldata(struct hci_conn *hcon, struct sk_buff *skb, u16 flags); 558 559 #if IS_ENABLED(CONFIG_BT_BREDR) 560 int sco_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr, __u8 *flags); 561 void sco_recv_scodata(struct hci_conn *hcon, struct sk_buff *skb); 562 #else 563 static inline int sco_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr, 564 __u8 *flags) 565 { 566 return 0; 567 } 568 569 static inline void sco_recv_scodata(struct hci_conn *hcon, struct sk_buff *skb) 570 { 571 } 572 #endif 573 574 /* ----- Inquiry cache ----- */ 575 #define INQUIRY_CACHE_AGE_MAX (HZ*30) /* 30 seconds */ 576 #define INQUIRY_ENTRY_AGE_MAX (HZ*60) /* 60 seconds */ 577 578 static inline void discovery_init(struct hci_dev *hdev) 579 { 580 hdev->discovery.state = DISCOVERY_STOPPED; 581 INIT_LIST_HEAD(&hdev->discovery.all); 582 INIT_LIST_HEAD(&hdev->discovery.unknown); 583 INIT_LIST_HEAD(&hdev->discovery.resolve); 584 hdev->discovery.report_invalid_rssi = true; 585 hdev->discovery.rssi = HCI_RSSI_INVALID; 586 } 587 588 static inline void hci_discovery_filter_clear(struct hci_dev *hdev) 589 { 590 hdev->discovery.result_filtering = false; 591 hdev->discovery.report_invalid_rssi = true; 592 hdev->discovery.rssi = HCI_RSSI_INVALID; 593 hdev->discovery.uuid_count = 0; 594 kfree(hdev->discovery.uuids); 595 hdev->discovery.uuids = NULL; 596 hdev->discovery.scan_start = 0; 597 hdev->discovery.scan_duration = 0; 598 } 599 600 bool hci_discovery_active(struct hci_dev *hdev); 601 602 void hci_discovery_set_state(struct hci_dev *hdev, int state); 603 604 static inline int inquiry_cache_empty(struct hci_dev *hdev) 605 { 606 return list_empty(&hdev->discovery.all); 607 } 608 609 static inline long inquiry_cache_age(struct hci_dev *hdev) 610 { 611 struct discovery_state *c = &hdev->discovery; 612 return jiffies - c->timestamp; 613 } 614 615 static inline long inquiry_entry_age(struct inquiry_entry *e) 616 { 617 return jiffies - e->timestamp; 618 } 619 620 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev, 621 bdaddr_t *bdaddr); 622 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev, 623 bdaddr_t *bdaddr); 624 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev, 625 bdaddr_t *bdaddr, 626 int state); 627 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev, 628 struct inquiry_entry *ie); 629 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data, 630 bool name_known); 631 void hci_inquiry_cache_flush(struct hci_dev *hdev); 632 633 /* ----- HCI Connections ----- */ 634 enum { 635 HCI_CONN_AUTH_PEND, 636 HCI_CONN_REAUTH_PEND, 637 HCI_CONN_ENCRYPT_PEND, 638 HCI_CONN_RSWITCH_PEND, 639 HCI_CONN_MODE_CHANGE_PEND, 640 HCI_CONN_SCO_SETUP_PEND, 641 HCI_CONN_MGMT_CONNECTED, 642 HCI_CONN_SSP_ENABLED, 643 HCI_CONN_SC_ENABLED, 644 HCI_CONN_AES_CCM, 645 HCI_CONN_POWER_SAVE, 646 HCI_CONN_FLUSH_KEY, 647 HCI_CONN_ENCRYPT, 648 HCI_CONN_AUTH, 649 HCI_CONN_SECURE, 650 HCI_CONN_FIPS, 651 HCI_CONN_STK_ENCRYPT, 652 HCI_CONN_AUTH_INITIATOR, 653 HCI_CONN_DROP, 654 HCI_CONN_PARAM_REMOVAL_PEND, 655 HCI_CONN_NEW_LINK_KEY, 656 HCI_CONN_SCANNING, 657 }; 658 659 static inline bool hci_conn_ssp_enabled(struct hci_conn *conn) 660 { 661 struct hci_dev *hdev = conn->hdev; 662 return hci_dev_test_flag(hdev, HCI_SSP_ENABLED) && 663 test_bit(HCI_CONN_SSP_ENABLED, &conn->flags); 664 } 665 666 static inline bool hci_conn_sc_enabled(struct hci_conn *conn) 667 { 668 struct hci_dev *hdev = conn->hdev; 669 return hci_dev_test_flag(hdev, HCI_SC_ENABLED) && 670 test_bit(HCI_CONN_SC_ENABLED, &conn->flags); 671 } 672 673 static inline void hci_conn_hash_add(struct hci_dev *hdev, struct hci_conn *c) 674 { 675 struct hci_conn_hash *h = &hdev->conn_hash; 676 list_add_rcu(&c->list, &h->list); 677 switch (c->type) { 678 case ACL_LINK: 679 h->acl_num++; 680 break; 681 case AMP_LINK: 682 h->amp_num++; 683 break; 684 case LE_LINK: 685 h->le_num++; 686 if (c->role == HCI_ROLE_SLAVE) 687 h->le_num_slave++; 688 break; 689 case SCO_LINK: 690 case ESCO_LINK: 691 h->sco_num++; 692 break; 693 } 694 } 695 696 static inline void hci_conn_hash_del(struct hci_dev *hdev, struct hci_conn *c) 697 { 698 struct hci_conn_hash *h = &hdev->conn_hash; 699 700 list_del_rcu(&c->list); 701 synchronize_rcu(); 702 703 switch (c->type) { 704 case ACL_LINK: 705 h->acl_num--; 706 break; 707 case AMP_LINK: 708 h->amp_num--; 709 break; 710 case LE_LINK: 711 h->le_num--; 712 if (c->role == HCI_ROLE_SLAVE) 713 h->le_num_slave--; 714 break; 715 case SCO_LINK: 716 case ESCO_LINK: 717 h->sco_num--; 718 break; 719 } 720 } 721 722 static inline unsigned int hci_conn_num(struct hci_dev *hdev, __u8 type) 723 { 724 struct hci_conn_hash *h = &hdev->conn_hash; 725 switch (type) { 726 case ACL_LINK: 727 return h->acl_num; 728 case AMP_LINK: 729 return h->amp_num; 730 case LE_LINK: 731 return h->le_num; 732 case SCO_LINK: 733 case ESCO_LINK: 734 return h->sco_num; 735 default: 736 return 0; 737 } 738 } 739 740 static inline unsigned int hci_conn_count(struct hci_dev *hdev) 741 { 742 struct hci_conn_hash *c = &hdev->conn_hash; 743 744 return c->acl_num + c->amp_num + c->sco_num + c->le_num; 745 } 746 747 static inline __u8 hci_conn_lookup_type(struct hci_dev *hdev, __u16 handle) 748 { 749 struct hci_conn_hash *h = &hdev->conn_hash; 750 struct hci_conn *c; 751 __u8 type = INVALID_LINK; 752 753 rcu_read_lock(); 754 755 list_for_each_entry_rcu(c, &h->list, list) { 756 if (c->handle == handle) { 757 type = c->type; 758 break; 759 } 760 } 761 762 rcu_read_unlock(); 763 764 return type; 765 } 766 767 static inline struct hci_conn *hci_conn_hash_lookup_handle(struct hci_dev *hdev, 768 __u16 handle) 769 { 770 struct hci_conn_hash *h = &hdev->conn_hash; 771 struct hci_conn *c; 772 773 rcu_read_lock(); 774 775 list_for_each_entry_rcu(c, &h->list, list) { 776 if (c->handle == handle) { 777 rcu_read_unlock(); 778 return c; 779 } 780 } 781 rcu_read_unlock(); 782 783 return NULL; 784 } 785 786 static inline struct hci_conn *hci_conn_hash_lookup_ba(struct hci_dev *hdev, 787 __u8 type, bdaddr_t *ba) 788 { 789 struct hci_conn_hash *h = &hdev->conn_hash; 790 struct hci_conn *c; 791 792 rcu_read_lock(); 793 794 list_for_each_entry_rcu(c, &h->list, list) { 795 if (c->type == type && !bacmp(&c->dst, ba)) { 796 rcu_read_unlock(); 797 return c; 798 } 799 } 800 801 rcu_read_unlock(); 802 803 return NULL; 804 } 805 806 static inline struct hci_conn *hci_conn_hash_lookup_le(struct hci_dev *hdev, 807 bdaddr_t *ba, 808 __u8 ba_type) 809 { 810 struct hci_conn_hash *h = &hdev->conn_hash; 811 struct hci_conn *c; 812 813 rcu_read_lock(); 814 815 list_for_each_entry_rcu(c, &h->list, list) { 816 if (c->type != LE_LINK) 817 continue; 818 819 if (ba_type == c->dst_type && !bacmp(&c->dst, ba)) { 820 rcu_read_unlock(); 821 return c; 822 } 823 } 824 825 rcu_read_unlock(); 826 827 return NULL; 828 } 829 830 static inline struct hci_conn *hci_conn_hash_lookup_state(struct hci_dev *hdev, 831 __u8 type, __u16 state) 832 { 833 struct hci_conn_hash *h = &hdev->conn_hash; 834 struct hci_conn *c; 835 836 rcu_read_lock(); 837 838 list_for_each_entry_rcu(c, &h->list, list) { 839 if (c->type == type && c->state == state) { 840 rcu_read_unlock(); 841 return c; 842 } 843 } 844 845 rcu_read_unlock(); 846 847 return NULL; 848 } 849 850 static inline struct hci_conn *hci_lookup_le_connect(struct hci_dev *hdev) 851 { 852 struct hci_conn_hash *h = &hdev->conn_hash; 853 struct hci_conn *c; 854 855 rcu_read_lock(); 856 857 list_for_each_entry_rcu(c, &h->list, list) { 858 if (c->type == LE_LINK && c->state == BT_CONNECT && 859 !test_bit(HCI_CONN_SCANNING, &c->flags)) { 860 rcu_read_unlock(); 861 return c; 862 } 863 } 864 865 rcu_read_unlock(); 866 867 return NULL; 868 } 869 870 int hci_disconnect(struct hci_conn *conn, __u8 reason); 871 bool hci_setup_sync(struct hci_conn *conn, __u16 handle); 872 void hci_sco_setup(struct hci_conn *conn, __u8 status); 873 874 struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst, 875 u8 role); 876 int hci_conn_del(struct hci_conn *conn); 877 void hci_conn_hash_flush(struct hci_dev *hdev); 878 void hci_conn_check_pending(struct hci_dev *hdev); 879 880 struct hci_chan *hci_chan_create(struct hci_conn *conn); 881 void hci_chan_del(struct hci_chan *chan); 882 void hci_chan_list_flush(struct hci_conn *conn); 883 struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle); 884 885 struct hci_conn *hci_connect_le_scan(struct hci_dev *hdev, bdaddr_t *dst, 886 u8 dst_type, u8 sec_level, 887 u16 conn_timeout); 888 struct hci_conn *hci_connect_le(struct hci_dev *hdev, bdaddr_t *dst, 889 u8 dst_type, u8 sec_level, u16 conn_timeout, 890 u8 role); 891 struct hci_conn *hci_connect_acl(struct hci_dev *hdev, bdaddr_t *dst, 892 u8 sec_level, u8 auth_type); 893 struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst, 894 __u16 setting); 895 int hci_conn_check_link_mode(struct hci_conn *conn); 896 int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level); 897 int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type, 898 bool initiator); 899 int hci_conn_switch_role(struct hci_conn *conn, __u8 role); 900 901 void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active); 902 903 void hci_le_conn_failed(struct hci_conn *conn, u8 status); 904 905 /* 906 * hci_conn_get() and hci_conn_put() are used to control the life-time of an 907 * "hci_conn" object. They do not guarantee that the hci_conn object is running, 908 * working or anything else. They just guarantee that the object is available 909 * and can be dereferenced. So you can use its locks, local variables and any 910 * other constant data. 911 * Before accessing runtime data, you _must_ lock the object and then check that 912 * it is still running. As soon as you release the locks, the connection might 913 * get dropped, though. 914 * 915 * On the other hand, hci_conn_hold() and hci_conn_drop() are used to control 916 * how long the underlying connection is held. So every channel that runs on the 917 * hci_conn object calls this to prevent the connection from disappearing. As 918 * long as you hold a device, you must also guarantee that you have a valid 919 * reference to the device via hci_conn_get() (or the initial reference from 920 * hci_conn_add()). 921 * The hold()/drop() ref-count is known to drop below 0 sometimes, which doesn't 922 * break because nobody cares for that. But this means, we cannot use 923 * _get()/_drop() in it, but require the caller to have a valid ref (FIXME). 924 */ 925 926 static inline struct hci_conn *hci_conn_get(struct hci_conn *conn) 927 { 928 get_device(&conn->dev); 929 return conn; 930 } 931 932 static inline void hci_conn_put(struct hci_conn *conn) 933 { 934 put_device(&conn->dev); 935 } 936 937 static inline void hci_conn_hold(struct hci_conn *conn) 938 { 939 BT_DBG("hcon %p orig refcnt %d", conn, atomic_read(&conn->refcnt)); 940 941 atomic_inc(&conn->refcnt); 942 cancel_delayed_work(&conn->disc_work); 943 } 944 945 static inline void hci_conn_drop(struct hci_conn *conn) 946 { 947 BT_DBG("hcon %p orig refcnt %d", conn, atomic_read(&conn->refcnt)); 948 949 if (atomic_dec_and_test(&conn->refcnt)) { 950 unsigned long timeo; 951 952 switch (conn->type) { 953 case ACL_LINK: 954 case LE_LINK: 955 cancel_delayed_work(&conn->idle_work); 956 if (conn->state == BT_CONNECTED) { 957 timeo = conn->disc_timeout; 958 if (!conn->out) 959 timeo *= 2; 960 } else { 961 timeo = 0; 962 } 963 break; 964 965 case AMP_LINK: 966 timeo = conn->disc_timeout; 967 break; 968 969 default: 970 timeo = 0; 971 break; 972 } 973 974 cancel_delayed_work(&conn->disc_work); 975 queue_delayed_work(conn->hdev->workqueue, 976 &conn->disc_work, timeo); 977 } 978 } 979 980 /* ----- HCI Devices ----- */ 981 static inline void hci_dev_put(struct hci_dev *d) 982 { 983 BT_DBG("%s orig refcnt %d", d->name, 984 atomic_read(&d->dev.kobj.kref.refcount)); 985 986 put_device(&d->dev); 987 } 988 989 static inline struct hci_dev *hci_dev_hold(struct hci_dev *d) 990 { 991 BT_DBG("%s orig refcnt %d", d->name, 992 atomic_read(&d->dev.kobj.kref.refcount)); 993 994 get_device(&d->dev); 995 return d; 996 } 997 998 #define hci_dev_lock(d) mutex_lock(&d->lock) 999 #define hci_dev_unlock(d) mutex_unlock(&d->lock) 1000 1001 #define to_hci_dev(d) container_of(d, struct hci_dev, dev) 1002 #define to_hci_conn(c) container_of(c, struct hci_conn, dev) 1003 1004 static inline void *hci_get_drvdata(struct hci_dev *hdev) 1005 { 1006 return dev_get_drvdata(&hdev->dev); 1007 } 1008 1009 static inline void hci_set_drvdata(struct hci_dev *hdev, void *data) 1010 { 1011 dev_set_drvdata(&hdev->dev, data); 1012 } 1013 1014 struct hci_dev *hci_dev_get(int index); 1015 struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src); 1016 1017 struct hci_dev *hci_alloc_dev(void); 1018 void hci_free_dev(struct hci_dev *hdev); 1019 int hci_register_dev(struct hci_dev *hdev); 1020 void hci_unregister_dev(struct hci_dev *hdev); 1021 int hci_suspend_dev(struct hci_dev *hdev); 1022 int hci_resume_dev(struct hci_dev *hdev); 1023 int hci_reset_dev(struct hci_dev *hdev); 1024 int hci_dev_open(__u16 dev); 1025 int hci_dev_close(__u16 dev); 1026 int hci_dev_do_close(struct hci_dev *hdev); 1027 int hci_dev_reset(__u16 dev); 1028 int hci_dev_reset_stat(__u16 dev); 1029 int hci_dev_cmd(unsigned int cmd, void __user *arg); 1030 int hci_get_dev_list(void __user *arg); 1031 int hci_get_dev_info(void __user *arg); 1032 int hci_get_conn_list(void __user *arg); 1033 int hci_get_conn_info(struct hci_dev *hdev, void __user *arg); 1034 int hci_get_auth_info(struct hci_dev *hdev, void __user *arg); 1035 int hci_inquiry(void __user *arg); 1036 1037 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *list, 1038 bdaddr_t *bdaddr, u8 type); 1039 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type); 1040 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type); 1041 void hci_bdaddr_list_clear(struct list_head *list); 1042 1043 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev, 1044 bdaddr_t *addr, u8 addr_type); 1045 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev, 1046 bdaddr_t *addr, u8 addr_type); 1047 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type); 1048 void hci_conn_params_clear_disabled(struct hci_dev *hdev); 1049 1050 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list, 1051 bdaddr_t *addr, 1052 u8 addr_type); 1053 1054 void hci_uuids_clear(struct hci_dev *hdev); 1055 1056 void hci_link_keys_clear(struct hci_dev *hdev); 1057 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr); 1058 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn, 1059 bdaddr_t *bdaddr, u8 *val, u8 type, 1060 u8 pin_len, bool *persistent); 1061 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, 1062 u8 addr_type, u8 type, u8 authenticated, 1063 u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand); 1064 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, 1065 u8 addr_type, u8 role); 1066 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type); 1067 void hci_smp_ltks_clear(struct hci_dev *hdev); 1068 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr); 1069 1070 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa); 1071 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr, 1072 u8 addr_type); 1073 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, 1074 u8 addr_type, u8 val[16], bdaddr_t *rpa); 1075 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type); 1076 void hci_smp_irks_clear(struct hci_dev *hdev); 1077 1078 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type); 1079 1080 void hci_remote_oob_data_clear(struct hci_dev *hdev); 1081 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev, 1082 bdaddr_t *bdaddr, u8 bdaddr_type); 1083 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, 1084 u8 bdaddr_type, u8 *hash192, u8 *rand192, 1085 u8 *hash256, u8 *rand256); 1086 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, 1087 u8 bdaddr_type); 1088 1089 void hci_adv_instances_clear(struct hci_dev *hdev); 1090 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance); 1091 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance); 1092 int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags, 1093 u16 adv_data_len, u8 *adv_data, 1094 u16 scan_rsp_len, u8 *scan_rsp_data, 1095 u16 timeout, u16 duration); 1096 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance); 1097 1098 void hci_event_packet(struct hci_dev *hdev, struct sk_buff *skb); 1099 1100 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb); 1101 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb); 1102 1103 void hci_init_sysfs(struct hci_dev *hdev); 1104 void hci_conn_init_sysfs(struct hci_conn *conn); 1105 void hci_conn_add_sysfs(struct hci_conn *conn); 1106 void hci_conn_del_sysfs(struct hci_conn *conn); 1107 1108 #define SET_HCIDEV_DEV(hdev, pdev) ((hdev)->dev.parent = (pdev)) 1109 1110 /* ----- LMP capabilities ----- */ 1111 #define lmp_encrypt_capable(dev) ((dev)->features[0][0] & LMP_ENCRYPT) 1112 #define lmp_rswitch_capable(dev) ((dev)->features[0][0] & LMP_RSWITCH) 1113 #define lmp_hold_capable(dev) ((dev)->features[0][0] & LMP_HOLD) 1114 #define lmp_sniff_capable(dev) ((dev)->features[0][0] & LMP_SNIFF) 1115 #define lmp_park_capable(dev) ((dev)->features[0][1] & LMP_PARK) 1116 #define lmp_inq_rssi_capable(dev) ((dev)->features[0][3] & LMP_RSSI_INQ) 1117 #define lmp_esco_capable(dev) ((dev)->features[0][3] & LMP_ESCO) 1118 #define lmp_bredr_capable(dev) (!((dev)->features[0][4] & LMP_NO_BREDR)) 1119 #define lmp_le_capable(dev) ((dev)->features[0][4] & LMP_LE) 1120 #define lmp_sniffsubr_capable(dev) ((dev)->features[0][5] & LMP_SNIFF_SUBR) 1121 #define lmp_pause_enc_capable(dev) ((dev)->features[0][5] & LMP_PAUSE_ENC) 1122 #define lmp_ext_inq_capable(dev) ((dev)->features[0][6] & LMP_EXT_INQ) 1123 #define lmp_le_br_capable(dev) (!!((dev)->features[0][6] & LMP_SIMUL_LE_BR)) 1124 #define lmp_ssp_capable(dev) ((dev)->features[0][6] & LMP_SIMPLE_PAIR) 1125 #define lmp_no_flush_capable(dev) ((dev)->features[0][6] & LMP_NO_FLUSH) 1126 #define lmp_lsto_capable(dev) ((dev)->features[0][7] & LMP_LSTO) 1127 #define lmp_inq_tx_pwr_capable(dev) ((dev)->features[0][7] & LMP_INQ_TX_PWR) 1128 #define lmp_ext_feat_capable(dev) ((dev)->features[0][7] & LMP_EXTFEATURES) 1129 #define lmp_transp_capable(dev) ((dev)->features[0][2] & LMP_TRANSPARENT) 1130 1131 /* ----- Extended LMP capabilities ----- */ 1132 #define lmp_csb_master_capable(dev) ((dev)->features[2][0] & LMP_CSB_MASTER) 1133 #define lmp_csb_slave_capable(dev) ((dev)->features[2][0] & LMP_CSB_SLAVE) 1134 #define lmp_sync_train_capable(dev) ((dev)->features[2][0] & LMP_SYNC_TRAIN) 1135 #define lmp_sync_scan_capable(dev) ((dev)->features[2][0] & LMP_SYNC_SCAN) 1136 #define lmp_sc_capable(dev) ((dev)->features[2][1] & LMP_SC) 1137 #define lmp_ping_capable(dev) ((dev)->features[2][1] & LMP_PING) 1138 1139 /* ----- Host capabilities ----- */ 1140 #define lmp_host_ssp_capable(dev) ((dev)->features[1][0] & LMP_HOST_SSP) 1141 #define lmp_host_sc_capable(dev) ((dev)->features[1][0] & LMP_HOST_SC) 1142 #define lmp_host_le_capable(dev) (!!((dev)->features[1][0] & LMP_HOST_LE)) 1143 #define lmp_host_le_br_capable(dev) (!!((dev)->features[1][0] & LMP_HOST_LE_BREDR)) 1144 1145 #define hdev_is_powered(dev) (test_bit(HCI_UP, &(dev)->flags) && \ 1146 !hci_dev_test_flag(dev, HCI_AUTO_OFF)) 1147 #define bredr_sc_enabled(dev) (lmp_sc_capable(dev) && \ 1148 hci_dev_test_flag(dev, HCI_SC_ENABLED)) 1149 1150 /* ----- HCI protocols ----- */ 1151 #define HCI_PROTO_DEFER 0x01 1152 1153 static inline int hci_proto_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr, 1154 __u8 type, __u8 *flags) 1155 { 1156 switch (type) { 1157 case ACL_LINK: 1158 return l2cap_connect_ind(hdev, bdaddr); 1159 1160 case SCO_LINK: 1161 case ESCO_LINK: 1162 return sco_connect_ind(hdev, bdaddr, flags); 1163 1164 default: 1165 BT_ERR("unknown link type %d", type); 1166 return -EINVAL; 1167 } 1168 } 1169 1170 static inline int hci_proto_disconn_ind(struct hci_conn *conn) 1171 { 1172 if (conn->type != ACL_LINK && conn->type != LE_LINK) 1173 return HCI_ERROR_REMOTE_USER_TERM; 1174 1175 return l2cap_disconn_ind(conn); 1176 } 1177 1178 /* ----- HCI callbacks ----- */ 1179 struct hci_cb { 1180 struct list_head list; 1181 1182 char *name; 1183 1184 void (*connect_cfm) (struct hci_conn *conn, __u8 status); 1185 void (*disconn_cfm) (struct hci_conn *conn, __u8 status); 1186 void (*security_cfm) (struct hci_conn *conn, __u8 status, 1187 __u8 encrypt); 1188 void (*key_change_cfm) (struct hci_conn *conn, __u8 status); 1189 void (*role_switch_cfm) (struct hci_conn *conn, __u8 status, __u8 role); 1190 }; 1191 1192 static inline void hci_connect_cfm(struct hci_conn *conn, __u8 status) 1193 { 1194 struct hci_cb *cb; 1195 1196 mutex_lock(&hci_cb_list_lock); 1197 list_for_each_entry(cb, &hci_cb_list, list) { 1198 if (cb->connect_cfm) 1199 cb->connect_cfm(conn, status); 1200 } 1201 mutex_unlock(&hci_cb_list_lock); 1202 1203 if (conn->connect_cfm_cb) 1204 conn->connect_cfm_cb(conn, status); 1205 } 1206 1207 static inline void hci_disconn_cfm(struct hci_conn *conn, __u8 reason) 1208 { 1209 struct hci_cb *cb; 1210 1211 mutex_lock(&hci_cb_list_lock); 1212 list_for_each_entry(cb, &hci_cb_list, list) { 1213 if (cb->disconn_cfm) 1214 cb->disconn_cfm(conn, reason); 1215 } 1216 mutex_unlock(&hci_cb_list_lock); 1217 1218 if (conn->disconn_cfm_cb) 1219 conn->disconn_cfm_cb(conn, reason); 1220 } 1221 1222 static inline void hci_auth_cfm(struct hci_conn *conn, __u8 status) 1223 { 1224 struct hci_cb *cb; 1225 __u8 encrypt; 1226 1227 if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) 1228 return; 1229 1230 encrypt = test_bit(HCI_CONN_ENCRYPT, &conn->flags) ? 0x01 : 0x00; 1231 1232 mutex_lock(&hci_cb_list_lock); 1233 list_for_each_entry(cb, &hci_cb_list, list) { 1234 if (cb->security_cfm) 1235 cb->security_cfm(conn, status, encrypt); 1236 } 1237 mutex_unlock(&hci_cb_list_lock); 1238 1239 if (conn->security_cfm_cb) 1240 conn->security_cfm_cb(conn, status); 1241 } 1242 1243 static inline void hci_encrypt_cfm(struct hci_conn *conn, __u8 status, 1244 __u8 encrypt) 1245 { 1246 struct hci_cb *cb; 1247 1248 if (conn->sec_level == BT_SECURITY_SDP) 1249 conn->sec_level = BT_SECURITY_LOW; 1250 1251 if (conn->pending_sec_level > conn->sec_level) 1252 conn->sec_level = conn->pending_sec_level; 1253 1254 mutex_lock(&hci_cb_list_lock); 1255 list_for_each_entry(cb, &hci_cb_list, list) { 1256 if (cb->security_cfm) 1257 cb->security_cfm(conn, status, encrypt); 1258 } 1259 mutex_unlock(&hci_cb_list_lock); 1260 1261 if (conn->security_cfm_cb) 1262 conn->security_cfm_cb(conn, status); 1263 } 1264 1265 static inline void hci_key_change_cfm(struct hci_conn *conn, __u8 status) 1266 { 1267 struct hci_cb *cb; 1268 1269 mutex_lock(&hci_cb_list_lock); 1270 list_for_each_entry(cb, &hci_cb_list, list) { 1271 if (cb->key_change_cfm) 1272 cb->key_change_cfm(conn, status); 1273 } 1274 mutex_unlock(&hci_cb_list_lock); 1275 } 1276 1277 static inline void hci_role_switch_cfm(struct hci_conn *conn, __u8 status, 1278 __u8 role) 1279 { 1280 struct hci_cb *cb; 1281 1282 mutex_lock(&hci_cb_list_lock); 1283 list_for_each_entry(cb, &hci_cb_list, list) { 1284 if (cb->role_switch_cfm) 1285 cb->role_switch_cfm(conn, status, role); 1286 } 1287 mutex_unlock(&hci_cb_list_lock); 1288 } 1289 1290 static inline void *eir_get_data(u8 *eir, size_t eir_len, u8 type, 1291 size_t *data_len) 1292 { 1293 size_t parsed = 0; 1294 1295 if (eir_len < 2) 1296 return NULL; 1297 1298 while (parsed < eir_len - 1) { 1299 u8 field_len = eir[0]; 1300 1301 if (field_len == 0) 1302 break; 1303 1304 parsed += field_len + 1; 1305 1306 if (parsed > eir_len) 1307 break; 1308 1309 if (eir[1] != type) { 1310 eir += field_len + 1; 1311 continue; 1312 } 1313 1314 /* Zero length data */ 1315 if (field_len == 1) 1316 return NULL; 1317 1318 if (data_len) 1319 *data_len = field_len - 1; 1320 1321 return &eir[2]; 1322 } 1323 1324 return NULL; 1325 } 1326 1327 static inline bool hci_bdaddr_is_rpa(bdaddr_t *bdaddr, u8 addr_type) 1328 { 1329 if (addr_type != ADDR_LE_DEV_RANDOM) 1330 return false; 1331 1332 if ((bdaddr->b[5] & 0xc0) == 0x40) 1333 return true; 1334 1335 return false; 1336 } 1337 1338 static inline bool hci_is_identity_address(bdaddr_t *addr, u8 addr_type) 1339 { 1340 if (addr_type == ADDR_LE_DEV_PUBLIC) 1341 return true; 1342 1343 /* Check for Random Static address type */ 1344 if ((addr->b[5] & 0xc0) == 0xc0) 1345 return true; 1346 1347 return false; 1348 } 1349 1350 static inline struct smp_irk *hci_get_irk(struct hci_dev *hdev, 1351 bdaddr_t *bdaddr, u8 addr_type) 1352 { 1353 if (!hci_bdaddr_is_rpa(bdaddr, addr_type)) 1354 return NULL; 1355 1356 return hci_find_irk_by_rpa(hdev, bdaddr); 1357 } 1358 1359 static inline int hci_check_conn_params(u16 min, u16 max, u16 latency, 1360 u16 to_multiplier) 1361 { 1362 u16 max_latency; 1363 1364 if (min > max || min < 6 || max > 3200) 1365 return -EINVAL; 1366 1367 if (to_multiplier < 10 || to_multiplier > 3200) 1368 return -EINVAL; 1369 1370 if (max >= to_multiplier * 8) 1371 return -EINVAL; 1372 1373 max_latency = (to_multiplier * 4 / max) - 1; 1374 if (latency > 499 || latency > max_latency) 1375 return -EINVAL; 1376 1377 return 0; 1378 } 1379 1380 int hci_register_cb(struct hci_cb *hcb); 1381 int hci_unregister_cb(struct hci_cb *hcb); 1382 1383 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 1384 const void *param, u32 timeout); 1385 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen, 1386 const void *param, u8 event, u32 timeout); 1387 1388 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen, 1389 const void *param); 1390 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags); 1391 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb); 1392 1393 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode); 1394 1395 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 1396 const void *param, u32 timeout); 1397 1398 /* ----- HCI Sockets ----- */ 1399 void hci_send_to_sock(struct hci_dev *hdev, struct sk_buff *skb); 1400 void hci_send_to_channel(unsigned short channel, struct sk_buff *skb, 1401 int flag, struct sock *skip_sk); 1402 void hci_send_to_monitor(struct hci_dev *hdev, struct sk_buff *skb); 1403 1404 void hci_sock_dev_event(struct hci_dev *hdev, int event); 1405 1406 #define HCI_MGMT_VAR_LEN BIT(0) 1407 #define HCI_MGMT_NO_HDEV BIT(1) 1408 #define HCI_MGMT_UNTRUSTED BIT(2) 1409 #define HCI_MGMT_UNCONFIGURED BIT(3) 1410 1411 struct hci_mgmt_handler { 1412 int (*func) (struct sock *sk, struct hci_dev *hdev, void *data, 1413 u16 data_len); 1414 size_t data_len; 1415 unsigned long flags; 1416 }; 1417 1418 struct hci_mgmt_chan { 1419 struct list_head list; 1420 unsigned short channel; 1421 size_t handler_count; 1422 const struct hci_mgmt_handler *handlers; 1423 void (*hdev_init) (struct sock *sk, struct hci_dev *hdev); 1424 }; 1425 1426 int hci_mgmt_chan_register(struct hci_mgmt_chan *c); 1427 void hci_mgmt_chan_unregister(struct hci_mgmt_chan *c); 1428 1429 /* Management interface */ 1430 #define DISCOV_TYPE_BREDR (BIT(BDADDR_BREDR)) 1431 #define DISCOV_TYPE_LE (BIT(BDADDR_LE_PUBLIC) | \ 1432 BIT(BDADDR_LE_RANDOM)) 1433 #define DISCOV_TYPE_INTERLEAVED (BIT(BDADDR_BREDR) | \ 1434 BIT(BDADDR_LE_PUBLIC) | \ 1435 BIT(BDADDR_LE_RANDOM)) 1436 1437 /* These LE scan and inquiry parameters were chosen according to LE General 1438 * Discovery Procedure specification. 1439 */ 1440 #define DISCOV_LE_SCAN_WIN 0x12 1441 #define DISCOV_LE_SCAN_INT 0x12 1442 #define DISCOV_LE_TIMEOUT 10240 /* msec */ 1443 #define DISCOV_INTERLEAVED_TIMEOUT 5120 /* msec */ 1444 #define DISCOV_INTERLEAVED_INQUIRY_LEN 0x04 1445 #define DISCOV_BREDR_INQUIRY_LEN 0x08 1446 #define DISCOV_LE_RESTART_DELAY msecs_to_jiffies(200) /* msec */ 1447 1448 int mgmt_new_settings(struct hci_dev *hdev); 1449 void mgmt_index_added(struct hci_dev *hdev); 1450 void mgmt_index_removed(struct hci_dev *hdev); 1451 void mgmt_set_powered_failed(struct hci_dev *hdev, int err); 1452 void mgmt_power_on(struct hci_dev *hdev, int err); 1453 void __mgmt_power_off(struct hci_dev *hdev); 1454 void mgmt_new_link_key(struct hci_dev *hdev, struct link_key *key, 1455 bool persistent); 1456 void mgmt_device_connected(struct hci_dev *hdev, struct hci_conn *conn, 1457 u32 flags, u8 *name, u8 name_len); 1458 void mgmt_device_disconnected(struct hci_dev *hdev, bdaddr_t *bdaddr, 1459 u8 link_type, u8 addr_type, u8 reason, 1460 bool mgmt_connected); 1461 void mgmt_disconnect_failed(struct hci_dev *hdev, bdaddr_t *bdaddr, 1462 u8 link_type, u8 addr_type, u8 status); 1463 void mgmt_connect_failed(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, 1464 u8 addr_type, u8 status); 1465 void mgmt_pin_code_request(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 secure); 1466 void mgmt_pin_code_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 1467 u8 status); 1468 void mgmt_pin_code_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 1469 u8 status); 1470 int mgmt_user_confirm_request(struct hci_dev *hdev, bdaddr_t *bdaddr, 1471 u8 link_type, u8 addr_type, u32 value, 1472 u8 confirm_hint); 1473 int mgmt_user_confirm_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 1474 u8 link_type, u8 addr_type, u8 status); 1475 int mgmt_user_confirm_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 1476 u8 link_type, u8 addr_type, u8 status); 1477 int mgmt_user_passkey_request(struct hci_dev *hdev, bdaddr_t *bdaddr, 1478 u8 link_type, u8 addr_type); 1479 int mgmt_user_passkey_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 1480 u8 link_type, u8 addr_type, u8 status); 1481 int mgmt_user_passkey_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 1482 u8 link_type, u8 addr_type, u8 status); 1483 int mgmt_user_passkey_notify(struct hci_dev *hdev, bdaddr_t *bdaddr, 1484 u8 link_type, u8 addr_type, u32 passkey, 1485 u8 entered); 1486 void mgmt_auth_failed(struct hci_conn *conn, u8 status); 1487 void mgmt_auth_enable_complete(struct hci_dev *hdev, u8 status); 1488 void mgmt_ssp_enable_complete(struct hci_dev *hdev, u8 enable, u8 status); 1489 void mgmt_set_class_of_dev_complete(struct hci_dev *hdev, u8 *dev_class, 1490 u8 status); 1491 void mgmt_set_local_name_complete(struct hci_dev *hdev, u8 *name, u8 status); 1492 void mgmt_start_discovery_complete(struct hci_dev *hdev, u8 status); 1493 void mgmt_stop_discovery_complete(struct hci_dev *hdev, u8 status); 1494 void mgmt_device_found(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, 1495 u8 addr_type, u8 *dev_class, s8 rssi, u32 flags, 1496 u8 *eir, u16 eir_len, u8 *scan_rsp, u8 scan_rsp_len); 1497 void mgmt_remote_name(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, 1498 u8 addr_type, s8 rssi, u8 *name, u8 name_len); 1499 void mgmt_discovering(struct hci_dev *hdev, u8 discovering); 1500 bool mgmt_powering_down(struct hci_dev *hdev); 1501 void mgmt_new_ltk(struct hci_dev *hdev, struct smp_ltk *key, bool persistent); 1502 void mgmt_new_irk(struct hci_dev *hdev, struct smp_irk *irk, bool persistent); 1503 void mgmt_new_csrk(struct hci_dev *hdev, struct smp_csrk *csrk, 1504 bool persistent); 1505 void mgmt_new_conn_param(struct hci_dev *hdev, bdaddr_t *bdaddr, 1506 u8 bdaddr_type, u8 store_hint, u16 min_interval, 1507 u16 max_interval, u16 latency, u16 timeout); 1508 void mgmt_smp_complete(struct hci_conn *conn, bool complete); 1509 bool mgmt_get_connectable(struct hci_dev *hdev); 1510 void mgmt_set_connectable_complete(struct hci_dev *hdev, u8 status); 1511 void mgmt_set_discoverable_complete(struct hci_dev *hdev, u8 status); 1512 u8 mgmt_get_adv_discov_flags(struct hci_dev *hdev); 1513 void mgmt_advertising_added(struct sock *sk, struct hci_dev *hdev, 1514 u8 instance); 1515 void mgmt_advertising_removed(struct sock *sk, struct hci_dev *hdev, 1516 u8 instance); 1517 1518 u8 hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max, u16 latency, 1519 u16 to_multiplier); 1520 void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __le64 rand, 1521 __u8 ltk[16], __u8 key_size); 1522 1523 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr, 1524 u8 *bdaddr_type); 1525 1526 #define SCO_AIRMODE_MASK 0x0003 1527 #define SCO_AIRMODE_CVSD 0x0000 1528 #define SCO_AIRMODE_TRANSP 0x0003 1529 1530 #endif /* __HCI_CORE_H */ 1531