xref: /linux/include/linux/spi/spi-mem.h (revision f79e4d5f92a129a1159c973735007d4ddc8541f3)
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Copyright (C) 2018 Exceet Electronics GmbH
4  * Copyright (C) 2018 Bootlin
5  *
6  * Author: Boris Brezillon <boris.brezillon@bootlin.com>
7  */
8 
9 #ifndef __LINUX_SPI_MEM_H
10 #define __LINUX_SPI_MEM_H
11 
12 #include <linux/spi/spi.h>
13 
14 #define SPI_MEM_OP_CMD(__opcode, __buswidth)			\
15 	{							\
16 		.buswidth = __buswidth,				\
17 		.opcode = __opcode,				\
18 	}
19 
20 #define SPI_MEM_OP_ADDR(__nbytes, __val, __buswidth)		\
21 	{							\
22 		.nbytes = __nbytes,				\
23 		.val = __val,					\
24 		.buswidth = __buswidth,				\
25 	}
26 
27 #define SPI_MEM_OP_NO_ADDR	{ }
28 
29 #define SPI_MEM_OP_DUMMY(__nbytes, __buswidth)			\
30 	{							\
31 		.nbytes = __nbytes,				\
32 		.buswidth = __buswidth,				\
33 	}
34 
35 #define SPI_MEM_OP_NO_DUMMY	{ }
36 
37 #define SPI_MEM_OP_DATA_IN(__nbytes, __buf, __buswidth)		\
38 	{							\
39 		.dir = SPI_MEM_DATA_IN,				\
40 		.nbytes = __nbytes,				\
41 		.buf.in = __buf,				\
42 		.buswidth = __buswidth,				\
43 	}
44 
45 #define SPI_MEM_OP_DATA_OUT(__nbytes, __buf, __buswidth)	\
46 	{							\
47 		.dir = SPI_MEM_DATA_OUT,			\
48 		.nbytes = __nbytes,				\
49 		.buf.out = __buf,				\
50 		.buswidth = __buswidth,				\
51 	}
52 
53 #define SPI_MEM_OP_NO_DATA	{ }
54 
55 /**
56  * enum spi_mem_data_dir - describes the direction of a SPI memory data
57  *			   transfer from the controller perspective
58  * @SPI_MEM_DATA_IN: data coming from the SPI memory
59  * @SPI_MEM_DATA_OUT: data sent the SPI memory
60  */
61 enum spi_mem_data_dir {
62 	SPI_MEM_DATA_IN,
63 	SPI_MEM_DATA_OUT,
64 };
65 
66 /**
67  * struct spi_mem_op - describes a SPI memory operation
68  * @cmd.buswidth: number of IO lines used to transmit the command
69  * @cmd.opcode: operation opcode
70  * @addr.nbytes: number of address bytes to send. Can be zero if the operation
71  *		 does not need to send an address
72  * @addr.buswidth: number of IO lines used to transmit the address cycles
73  * @addr.val: address value. This value is always sent MSB first on the bus.
74  *	      Note that only @addr.nbytes are taken into account in this
75  *	      address value, so users should make sure the value fits in the
76  *	      assigned number of bytes.
77  * @dummy.nbytes: number of dummy bytes to send after an opcode or address. Can
78  *		  be zero if the operation does not require dummy bytes
79  * @dummy.buswidth: number of IO lanes used to transmit the dummy bytes
80  * @data.buswidth: number of IO lanes used to send/receive the data
81  * @data.dir: direction of the transfer
82  * @data.buf.in: input buffer
83  * @data.buf.out: output buffer
84  */
85 struct spi_mem_op {
86 	struct {
87 		u8 buswidth;
88 		u8 opcode;
89 	} cmd;
90 
91 	struct {
92 		u8 nbytes;
93 		u8 buswidth;
94 		u64 val;
95 	} addr;
96 
97 	struct {
98 		u8 nbytes;
99 		u8 buswidth;
100 	} dummy;
101 
102 	struct {
103 		u8 buswidth;
104 		enum spi_mem_data_dir dir;
105 		unsigned int nbytes;
106 		/* buf.{in,out} must be DMA-able. */
107 		union {
108 			void *in;
109 			const void *out;
110 		} buf;
111 	} data;
112 };
113 
114 #define SPI_MEM_OP(__cmd, __addr, __dummy, __data)		\
115 	{							\
116 		.cmd = __cmd,					\
117 		.addr = __addr,					\
118 		.dummy = __dummy,				\
119 		.data = __data,					\
120 	}
121 
122 /**
123  * struct spi_mem - describes a SPI memory device
124  * @spi: the underlying SPI device
125  * @drvpriv: spi_mem_drviver private data
126  *
127  * Extra information that describe the SPI memory device and may be needed by
128  * the controller to properly handle this device should be placed here.
129  *
130  * One example would be the device size since some controller expose their SPI
131  * mem devices through a io-mapped region.
132  */
133 struct spi_mem {
134 	struct spi_device *spi;
135 	void *drvpriv;
136 };
137 
138 /**
139  * struct spi_mem_set_drvdata() - attach driver private data to a SPI mem
140  *				  device
141  * @mem: memory device
142  * @data: data to attach to the memory device
143  */
144 static inline void spi_mem_set_drvdata(struct spi_mem *mem, void *data)
145 {
146 	mem->drvpriv = data;
147 }
148 
149 /**
150  * struct spi_mem_get_drvdata() - get driver private data attached to a SPI mem
151  *				  device
152  * @mem: memory device
153  *
154  * Return: the data attached to the mem device.
155  */
156 static inline void *spi_mem_get_drvdata(struct spi_mem *mem)
157 {
158 	return mem->drvpriv;
159 }
160 
161 /**
162  * struct spi_controller_mem_ops - SPI memory operations
163  * @adjust_op_size: shrink the data xfer of an operation to match controller's
164  *		    limitations (can be alignment of max RX/TX size
165  *		    limitations)
166  * @supports_op: check if an operation is supported by the controller
167  * @exec_op: execute a SPI memory operation
168  *
169  * This interface should be implemented by SPI controllers providing an
170  * high-level interface to execute SPI memory operation, which is usually the
171  * case for QSPI controllers.
172  */
173 struct spi_controller_mem_ops {
174 	int (*adjust_op_size)(struct spi_mem *mem, struct spi_mem_op *op);
175 	bool (*supports_op)(struct spi_mem *mem,
176 			    const struct spi_mem_op *op);
177 	int (*exec_op)(struct spi_mem *mem,
178 		       const struct spi_mem_op *op);
179 };
180 
181 /**
182  * struct spi_mem_driver - SPI memory driver
183  * @spidrv: inherit from a SPI driver
184  * @probe: probe a SPI memory. Usually where detection/initialization takes
185  *	   place
186  * @remove: remove a SPI memory
187  * @shutdown: take appropriate action when the system is shutdown
188  *
189  * This is just a thin wrapper around a spi_driver. The core takes care of
190  * allocating the spi_mem object and forwarding the probe/remove/shutdown
191  * request to the spi_mem_driver. The reason we use this wrapper is because
192  * we might have to stuff more information into the spi_mem struct to let
193  * SPI controllers know more about the SPI memory they interact with, and
194  * having this intermediate layer allows us to do that without adding more
195  * useless fields to the spi_device object.
196  */
197 struct spi_mem_driver {
198 	struct spi_driver spidrv;
199 	int (*probe)(struct spi_mem *mem);
200 	int (*remove)(struct spi_mem *mem);
201 	void (*shutdown)(struct spi_mem *mem);
202 };
203 
204 #if IS_ENABLED(CONFIG_SPI_MEM)
205 int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
206 				       const struct spi_mem_op *op,
207 				       struct sg_table *sg);
208 
209 void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
210 					  const struct spi_mem_op *op,
211 					  struct sg_table *sg);
212 #else
213 static inline int
214 spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
215 				   const struct spi_mem_op *op,
216 				   struct sg_table *sg)
217 {
218 	return -ENOTSUPP;
219 }
220 
221 static inline void
222 spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
223 				     const struct spi_mem_op *op,
224 				     struct sg_table *sg)
225 {
226 }
227 #endif /* CONFIG_SPI_MEM */
228 
229 int spi_mem_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op);
230 
231 bool spi_mem_supports_op(struct spi_mem *mem,
232 			 const struct spi_mem_op *op);
233 
234 int spi_mem_exec_op(struct spi_mem *mem,
235 		    const struct spi_mem_op *op);
236 
237 int spi_mem_driver_register_with_owner(struct spi_mem_driver *drv,
238 				       struct module *owner);
239 
240 void spi_mem_driver_unregister(struct spi_mem_driver *drv);
241 
242 #define spi_mem_driver_register(__drv)                                  \
243 	spi_mem_driver_register_with_owner(__drv, THIS_MODULE)
244 
245 #define module_spi_mem_driver(__drv)                                    \
246 	module_driver(__drv, spi_mem_driver_register,                   \
247 		      spi_mem_driver_unregister)
248 
249 #endif /* __LINUX_SPI_MEM_H */
250