xref: /linux/include/linux/spi/spi-mem.h (revision a9cb09b7be84a7adc9e6f4aaf8d770933d65f953)
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Copyright (C) 2018 Exceet Electronics GmbH
4  * Copyright (C) 2018 Bootlin
5  *
6  * Author:
7  *	Peter Pan <peterpandong@micron.com>
8  *	Boris Brezillon <boris.brezillon@bootlin.com>
9  */
10 
11 #ifndef __LINUX_SPI_MEM_H
12 #define __LINUX_SPI_MEM_H
13 
14 #include <linux/spi/spi.h>
15 
16 #define SPI_MEM_OP_CMD(__opcode, __buswidth)			\
17 	{							\
18 		.buswidth = __buswidth,				\
19 		.opcode = __opcode,				\
20 		.nbytes = 1,					\
21 	}
22 
23 #define SPI_MEM_OP_ADDR(__nbytes, __val, __buswidth)		\
24 	{							\
25 		.nbytes = __nbytes,				\
26 		.val = __val,					\
27 		.buswidth = __buswidth,				\
28 	}
29 
30 #define SPI_MEM_OP_NO_ADDR	{ }
31 
32 #define SPI_MEM_OP_DUMMY(__nbytes, __buswidth)			\
33 	{							\
34 		.nbytes = __nbytes,				\
35 		.buswidth = __buswidth,				\
36 	}
37 
38 #define SPI_MEM_OP_NO_DUMMY	{ }
39 
40 #define SPI_MEM_OP_DATA_IN(__nbytes, __buf, __buswidth)		\
41 	{							\
42 		.dir = SPI_MEM_DATA_IN,				\
43 		.nbytes = __nbytes,				\
44 		.buf.in = __buf,				\
45 		.buswidth = __buswidth,				\
46 	}
47 
48 #define SPI_MEM_OP_DATA_OUT(__nbytes, __buf, __buswidth)	\
49 	{							\
50 		.dir = SPI_MEM_DATA_OUT,			\
51 		.nbytes = __nbytes,				\
52 		.buf.out = __buf,				\
53 		.buswidth = __buswidth,				\
54 	}
55 
56 #define SPI_MEM_OP_NO_DATA	{ }
57 
58 /**
59  * enum spi_mem_data_dir - describes the direction of a SPI memory data
60  *			   transfer from the controller perspective
61  * @SPI_MEM_NO_DATA: no data transferred
62  * @SPI_MEM_DATA_IN: data coming from the SPI memory
63  * @SPI_MEM_DATA_OUT: data sent to the SPI memory
64  */
65 enum spi_mem_data_dir {
66 	SPI_MEM_NO_DATA,
67 	SPI_MEM_DATA_IN,
68 	SPI_MEM_DATA_OUT,
69 };
70 
71 /**
72  * struct spi_mem_op - describes a SPI memory operation
73  * @cmd.nbytes: number of opcode bytes (only 1 or 2 are valid). The opcode is
74  *		sent MSB-first.
75  * @cmd.buswidth: number of IO lines used to transmit the command
76  * @cmd.opcode: operation opcode
77  * @cmd.dtr: whether the command opcode should be sent in DTR mode or not
78  * @addr.nbytes: number of address bytes to send. Can be zero if the operation
79  *		 does not need to send an address
80  * @addr.buswidth: number of IO lines used to transmit the address cycles
81  * @addr.dtr: whether the address should be sent in DTR mode or not
82  * @addr.val: address value. This value is always sent MSB first on the bus.
83  *	      Note that only @addr.nbytes are taken into account in this
84  *	      address value, so users should make sure the value fits in the
85  *	      assigned number of bytes.
86  * @dummy.nbytes: number of dummy bytes to send after an opcode or address. Can
87  *		  be zero if the operation does not require dummy bytes
88  * @dummy.buswidth: number of IO lanes used to transmit the dummy bytes
89  * @dummy.dtr: whether the dummy bytes should be sent in DTR mode or not
90  * @data.buswidth: number of IO lanes used to send/receive the data
91  * @data.dtr: whether the data should be sent in DTR mode or not
92  * @data.dir: direction of the transfer
93  * @data.nbytes: number of data bytes to send/receive. Can be zero if the
94  *		 operation does not involve transferring data
95  * @data.buf.in: input buffer (must be DMA-able)
96  * @data.buf.out: output buffer (must be DMA-able)
97  */
98 struct spi_mem_op {
99 	struct {
100 		u8 nbytes;
101 		u8 buswidth;
102 		u8 dtr : 1;
103 		u16 opcode;
104 	} cmd;
105 
106 	struct {
107 		u8 nbytes;
108 		u8 buswidth;
109 		u8 dtr : 1;
110 		u64 val;
111 	} addr;
112 
113 	struct {
114 		u8 nbytes;
115 		u8 buswidth;
116 		u8 dtr : 1;
117 	} dummy;
118 
119 	struct {
120 		u8 buswidth;
121 		u8 dtr : 1;
122 		enum spi_mem_data_dir dir;
123 		unsigned int nbytes;
124 		union {
125 			void *in;
126 			const void *out;
127 		} buf;
128 	} data;
129 };
130 
131 #define SPI_MEM_OP(__cmd, __addr, __dummy, __data)		\
132 	{							\
133 		.cmd = __cmd,					\
134 		.addr = __addr,					\
135 		.dummy = __dummy,				\
136 		.data = __data,					\
137 	}
138 
139 /**
140  * struct spi_mem_dirmap_info - Direct mapping information
141  * @op_tmpl: operation template that should be used by the direct mapping when
142  *	     the memory device is accessed
143  * @offset: absolute offset this direct mapping is pointing to
144  * @length: length in byte of this direct mapping
145  *
146  * These information are used by the controller specific implementation to know
147  * the portion of memory that is directly mapped and the spi_mem_op that should
148  * be used to access the device.
149  * A direct mapping is only valid for one direction (read or write) and this
150  * direction is directly encoded in the ->op_tmpl.data.dir field.
151  */
152 struct spi_mem_dirmap_info {
153 	struct spi_mem_op op_tmpl;
154 	u64 offset;
155 	u64 length;
156 };
157 
158 /**
159  * struct spi_mem_dirmap_desc - Direct mapping descriptor
160  * @mem: the SPI memory device this direct mapping is attached to
161  * @info: information passed at direct mapping creation time
162  * @nodirmap: set to 1 if the SPI controller does not implement
163  *	      ->mem_ops->dirmap_create() or when this function returned an
164  *	      error. If @nodirmap is true, all spi_mem_dirmap_{read,write}()
165  *	      calls will use spi_mem_exec_op() to access the memory. This is a
166  *	      degraded mode that allows spi_mem drivers to use the same code
167  *	      no matter whether the controller supports direct mapping or not
168  * @priv: field pointing to controller specific data
169  *
170  * Common part of a direct mapping descriptor. This object is created by
171  * spi_mem_dirmap_create() and controller implementation of ->create_dirmap()
172  * can create/attach direct mapping resources to the descriptor in the ->priv
173  * field.
174  */
175 struct spi_mem_dirmap_desc {
176 	struct spi_mem *mem;
177 	struct spi_mem_dirmap_info info;
178 	unsigned int nodirmap;
179 	void *priv;
180 };
181 
182 /**
183  * struct spi_mem - describes a SPI memory device
184  * @spi: the underlying SPI device
185  * @drvpriv: spi_mem_driver private data
186  * @name: name of the SPI memory device
187  *
188  * Extra information that describe the SPI memory device and may be needed by
189  * the controller to properly handle this device should be placed here.
190  *
191  * One example would be the device size since some controller expose their SPI
192  * mem devices through a io-mapped region.
193  */
194 struct spi_mem {
195 	struct spi_device *spi;
196 	void *drvpriv;
197 	const char *name;
198 };
199 
200 /**
201  * struct spi_mem_set_drvdata() - attach driver private data to a SPI mem
202  *				  device
203  * @mem: memory device
204  * @data: data to attach to the memory device
205  */
206 static inline void spi_mem_set_drvdata(struct spi_mem *mem, void *data)
207 {
208 	mem->drvpriv = data;
209 }
210 
211 /**
212  * struct spi_mem_get_drvdata() - get driver private data attached to a SPI mem
213  *				  device
214  * @mem: memory device
215  *
216  * Return: the data attached to the mem device.
217  */
218 static inline void *spi_mem_get_drvdata(struct spi_mem *mem)
219 {
220 	return mem->drvpriv;
221 }
222 
223 /**
224  * struct spi_controller_mem_ops - SPI memory operations
225  * @adjust_op_size: shrink the data xfer of an operation to match controller's
226  *		    limitations (can be alignment of max RX/TX size
227  *		    limitations)
228  * @supports_op: check if an operation is supported by the controller
229  * @exec_op: execute a SPI memory operation
230  * @get_name: get a custom name for the SPI mem device from the controller.
231  *	      This might be needed if the controller driver has been ported
232  *	      to use the SPI mem layer and a custom name is used to keep
233  *	      mtdparts compatible.
234  *	      Note that if the implementation of this function allocates memory
235  *	      dynamically, then it should do so with devm_xxx(), as we don't
236  *	      have a ->free_name() function.
237  * @dirmap_create: create a direct mapping descriptor that can later be used to
238  *		   access the memory device. This method is optional
239  * @dirmap_destroy: destroy a memory descriptor previous created by
240  *		    ->dirmap_create()
241  * @dirmap_read: read data from the memory device using the direct mapping
242  *		 created by ->dirmap_create(). The function can return less
243  *		 data than requested (for example when the request is crossing
244  *		 the currently mapped area), and the caller of
245  *		 spi_mem_dirmap_read() is responsible for calling it again in
246  *		 this case.
247  * @dirmap_write: write data to the memory device using the direct mapping
248  *		  created by ->dirmap_create(). The function can return less
249  *		  data than requested (for example when the request is crossing
250  *		  the currently mapped area), and the caller of
251  *		  spi_mem_dirmap_write() is responsible for calling it again in
252  *		  this case.
253  * @poll_status: poll memory device status until (status & mask) == match or
254  *               when the timeout has expired. It fills the data buffer with
255  *               the last status value.
256  *
257  * This interface should be implemented by SPI controllers providing an
258  * high-level interface to execute SPI memory operation, which is usually the
259  * case for QSPI controllers.
260  *
261  * Note on ->dirmap_{read,write}(): drivers should avoid accessing the direct
262  * mapping from the CPU because doing that can stall the CPU waiting for the
263  * SPI mem transaction to finish, and this will make real-time maintainers
264  * unhappy and might make your system less reactive. Instead, drivers should
265  * use DMA to access this direct mapping.
266  */
267 struct spi_controller_mem_ops {
268 	int (*adjust_op_size)(struct spi_mem *mem, struct spi_mem_op *op);
269 	bool (*supports_op)(struct spi_mem *mem,
270 			    const struct spi_mem_op *op);
271 	int (*exec_op)(struct spi_mem *mem,
272 		       const struct spi_mem_op *op);
273 	const char *(*get_name)(struct spi_mem *mem);
274 	int (*dirmap_create)(struct spi_mem_dirmap_desc *desc);
275 	void (*dirmap_destroy)(struct spi_mem_dirmap_desc *desc);
276 	ssize_t (*dirmap_read)(struct spi_mem_dirmap_desc *desc,
277 			       u64 offs, size_t len, void *buf);
278 	ssize_t (*dirmap_write)(struct spi_mem_dirmap_desc *desc,
279 				u64 offs, size_t len, const void *buf);
280 	int (*poll_status)(struct spi_mem *mem,
281 			   const struct spi_mem_op *op,
282 			   u16 mask, u16 match,
283 			   unsigned long initial_delay_us,
284 			   unsigned long polling_rate_us,
285 			   unsigned long timeout_ms);
286 };
287 
288 /**
289  * struct spi_mem_driver - SPI memory driver
290  * @spidrv: inherit from a SPI driver
291  * @probe: probe a SPI memory. Usually where detection/initialization takes
292  *	   place
293  * @remove: remove a SPI memory
294  * @shutdown: take appropriate action when the system is shutdown
295  *
296  * This is just a thin wrapper around a spi_driver. The core takes care of
297  * allocating the spi_mem object and forwarding the probe/remove/shutdown
298  * request to the spi_mem_driver. The reason we use this wrapper is because
299  * we might have to stuff more information into the spi_mem struct to let
300  * SPI controllers know more about the SPI memory they interact with, and
301  * having this intermediate layer allows us to do that without adding more
302  * useless fields to the spi_device object.
303  */
304 struct spi_mem_driver {
305 	struct spi_driver spidrv;
306 	int (*probe)(struct spi_mem *mem);
307 	int (*remove)(struct spi_mem *mem);
308 	void (*shutdown)(struct spi_mem *mem);
309 };
310 
311 #if IS_ENABLED(CONFIG_SPI_MEM)
312 int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
313 				       const struct spi_mem_op *op,
314 				       struct sg_table *sg);
315 
316 void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
317 					  const struct spi_mem_op *op,
318 					  struct sg_table *sg);
319 
320 bool spi_mem_default_supports_op(struct spi_mem *mem,
321 				 const struct spi_mem_op *op);
322 
323 bool spi_mem_dtr_supports_op(struct spi_mem *mem,
324 			     const struct spi_mem_op *op);
325 
326 #else
327 static inline int
328 spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
329 				   const struct spi_mem_op *op,
330 				   struct sg_table *sg)
331 {
332 	return -ENOTSUPP;
333 }
334 
335 static inline void
336 spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
337 				     const struct spi_mem_op *op,
338 				     struct sg_table *sg)
339 {
340 }
341 
342 static inline
343 bool spi_mem_default_supports_op(struct spi_mem *mem,
344 				 const struct spi_mem_op *op)
345 {
346 	return false;
347 }
348 
349 static inline
350 bool spi_mem_dtr_supports_op(struct spi_mem *mem,
351 			     const struct spi_mem_op *op)
352 {
353 	return false;
354 }
355 #endif /* CONFIG_SPI_MEM */
356 
357 int spi_mem_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op);
358 
359 bool spi_mem_supports_op(struct spi_mem *mem,
360 			 const struct spi_mem_op *op);
361 
362 int spi_mem_exec_op(struct spi_mem *mem,
363 		    const struct spi_mem_op *op);
364 
365 const char *spi_mem_get_name(struct spi_mem *mem);
366 
367 struct spi_mem_dirmap_desc *
368 spi_mem_dirmap_create(struct spi_mem *mem,
369 		      const struct spi_mem_dirmap_info *info);
370 void spi_mem_dirmap_destroy(struct spi_mem_dirmap_desc *desc);
371 ssize_t spi_mem_dirmap_read(struct spi_mem_dirmap_desc *desc,
372 			    u64 offs, size_t len, void *buf);
373 ssize_t spi_mem_dirmap_write(struct spi_mem_dirmap_desc *desc,
374 			     u64 offs, size_t len, const void *buf);
375 struct spi_mem_dirmap_desc *
376 devm_spi_mem_dirmap_create(struct device *dev, struct spi_mem *mem,
377 			   const struct spi_mem_dirmap_info *info);
378 void devm_spi_mem_dirmap_destroy(struct device *dev,
379 				 struct spi_mem_dirmap_desc *desc);
380 
381 int spi_mem_poll_status(struct spi_mem *mem,
382 			const struct spi_mem_op *op,
383 			u16 mask, u16 match,
384 			unsigned long initial_delay_us,
385 			unsigned long polling_delay_us,
386 			u16 timeout_ms);
387 
388 int spi_mem_driver_register_with_owner(struct spi_mem_driver *drv,
389 				       struct module *owner);
390 
391 void spi_mem_driver_unregister(struct spi_mem_driver *drv);
392 
393 #define spi_mem_driver_register(__drv)                                  \
394 	spi_mem_driver_register_with_owner(__drv, THIS_MODULE)
395 
396 #define module_spi_mem_driver(__drv)                                    \
397 	module_driver(__drv, spi_mem_driver_register,                   \
398 		      spi_mem_driver_unregister)
399 
400 #endif /* __LINUX_SPI_MEM_H */
401