1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 /* 3 * Copyright (C) 2018 Exceet Electronics GmbH 4 * Copyright (C) 2018 Bootlin 5 * 6 * Author: 7 * Peter Pan <peterpandong@micron.com> 8 * Boris Brezillon <boris.brezillon@bootlin.com> 9 */ 10 11 #ifndef __LINUX_SPI_MEM_H 12 #define __LINUX_SPI_MEM_H 13 14 #include <linux/spi/spi.h> 15 16 #define SPI_MEM_OP_CMD(__opcode, __buswidth) \ 17 { \ 18 .buswidth = __buswidth, \ 19 .opcode = __opcode, \ 20 .nbytes = 1, \ 21 } 22 23 #define SPI_MEM_OP_ADDR(__nbytes, __val, __buswidth) \ 24 { \ 25 .nbytes = __nbytes, \ 26 .val = __val, \ 27 .buswidth = __buswidth, \ 28 } 29 30 #define SPI_MEM_OP_NO_ADDR { } 31 32 #define SPI_MEM_OP_DUMMY(__nbytes, __buswidth) \ 33 { \ 34 .nbytes = __nbytes, \ 35 .buswidth = __buswidth, \ 36 } 37 38 #define SPI_MEM_OP_NO_DUMMY { } 39 40 #define SPI_MEM_OP_DATA_IN(__nbytes, __buf, __buswidth) \ 41 { \ 42 .dir = SPI_MEM_DATA_IN, \ 43 .nbytes = __nbytes, \ 44 .buf.in = __buf, \ 45 .buswidth = __buswidth, \ 46 } 47 48 #define SPI_MEM_OP_DATA_OUT(__nbytes, __buf, __buswidth) \ 49 { \ 50 .dir = SPI_MEM_DATA_OUT, \ 51 .nbytes = __nbytes, \ 52 .buf.out = __buf, \ 53 .buswidth = __buswidth, \ 54 } 55 56 #define SPI_MEM_OP_NO_DATA { } 57 58 /** 59 * enum spi_mem_data_dir - describes the direction of a SPI memory data 60 * transfer from the controller perspective 61 * @SPI_MEM_NO_DATA: no data transferred 62 * @SPI_MEM_DATA_IN: data coming from the SPI memory 63 * @SPI_MEM_DATA_OUT: data sent to the SPI memory 64 */ 65 enum spi_mem_data_dir { 66 SPI_MEM_NO_DATA, 67 SPI_MEM_DATA_IN, 68 SPI_MEM_DATA_OUT, 69 }; 70 71 /** 72 * struct spi_mem_op - describes a SPI memory operation 73 * @cmd.nbytes: number of opcode bytes (only 1 or 2 are valid). The opcode is 74 * sent MSB-first. 75 * @cmd.buswidth: number of IO lines used to transmit the command 76 * @cmd.opcode: operation opcode 77 * @cmd.dtr: whether the command opcode should be sent in DTR mode or not 78 * @addr.nbytes: number of address bytes to send. Can be zero if the operation 79 * does not need to send an address 80 * @addr.buswidth: number of IO lines used to transmit the address cycles 81 * @addr.dtr: whether the address should be sent in DTR mode or not 82 * @addr.val: address value. This value is always sent MSB first on the bus. 83 * Note that only @addr.nbytes are taken into account in this 84 * address value, so users should make sure the value fits in the 85 * assigned number of bytes. 86 * @dummy.nbytes: number of dummy bytes to send after an opcode or address. Can 87 * be zero if the operation does not require dummy bytes 88 * @dummy.buswidth: number of IO lanes used to transmit the dummy bytes 89 * @dummy.dtr: whether the dummy bytes should be sent in DTR mode or not 90 * @data.buswidth: number of IO lanes used to send/receive the data 91 * @data.dtr: whether the data should be sent in DTR mode or not 92 * @data.ecc: whether error correction is required or not 93 * @data.swap16: whether the byte order of 16-bit words is swapped when read 94 * or written in Octal DTR mode compared to STR mode. 95 * @data.dir: direction of the transfer 96 * @data.nbytes: number of data bytes to send/receive. Can be zero if the 97 * operation does not involve transferring data 98 * @data.buf.in: input buffer (must be DMA-able) 99 * @data.buf.out: output buffer (must be DMA-able) 100 */ 101 struct spi_mem_op { 102 struct { 103 u8 nbytes; 104 u8 buswidth; 105 u8 dtr : 1; 106 u8 __pad : 7; 107 u16 opcode; 108 } cmd; 109 110 struct { 111 u8 nbytes; 112 u8 buswidth; 113 u8 dtr : 1; 114 u8 __pad : 7; 115 u64 val; 116 } addr; 117 118 struct { 119 u8 nbytes; 120 u8 buswidth; 121 u8 dtr : 1; 122 u8 __pad : 7; 123 } dummy; 124 125 struct { 126 u8 buswidth; 127 u8 dtr : 1; 128 u8 ecc : 1; 129 u8 swap16 : 1; 130 u8 __pad : 5; 131 enum spi_mem_data_dir dir; 132 unsigned int nbytes; 133 union { 134 void *in; 135 const void *out; 136 } buf; 137 } data; 138 }; 139 140 #define SPI_MEM_OP(__cmd, __addr, __dummy, __data) \ 141 { \ 142 .cmd = __cmd, \ 143 .addr = __addr, \ 144 .dummy = __dummy, \ 145 .data = __data, \ 146 } 147 148 /** 149 * struct spi_mem_dirmap_info - Direct mapping information 150 * @op_tmpl: operation template that should be used by the direct mapping when 151 * the memory device is accessed 152 * @offset: absolute offset this direct mapping is pointing to 153 * @length: length in byte of this direct mapping 154 * 155 * These information are used by the controller specific implementation to know 156 * the portion of memory that is directly mapped and the spi_mem_op that should 157 * be used to access the device. 158 * A direct mapping is only valid for one direction (read or write) and this 159 * direction is directly encoded in the ->op_tmpl.data.dir field. 160 */ 161 struct spi_mem_dirmap_info { 162 struct spi_mem_op op_tmpl; 163 u64 offset; 164 u64 length; 165 }; 166 167 /** 168 * struct spi_mem_dirmap_desc - Direct mapping descriptor 169 * @mem: the SPI memory device this direct mapping is attached to 170 * @info: information passed at direct mapping creation time 171 * @nodirmap: set to 1 if the SPI controller does not implement 172 * ->mem_ops->dirmap_create() or when this function returned an 173 * error. If @nodirmap is true, all spi_mem_dirmap_{read,write}() 174 * calls will use spi_mem_exec_op() to access the memory. This is a 175 * degraded mode that allows spi_mem drivers to use the same code 176 * no matter whether the controller supports direct mapping or not 177 * @priv: field pointing to controller specific data 178 * 179 * Common part of a direct mapping descriptor. This object is created by 180 * spi_mem_dirmap_create() and controller implementation of ->create_dirmap() 181 * can create/attach direct mapping resources to the descriptor in the ->priv 182 * field. 183 */ 184 struct spi_mem_dirmap_desc { 185 struct spi_mem *mem; 186 struct spi_mem_dirmap_info info; 187 unsigned int nodirmap; 188 void *priv; 189 }; 190 191 /** 192 * struct spi_mem - describes a SPI memory device 193 * @spi: the underlying SPI device 194 * @drvpriv: spi_mem_driver private data 195 * @name: name of the SPI memory device 196 * 197 * Extra information that describe the SPI memory device and may be needed by 198 * the controller to properly handle this device should be placed here. 199 * 200 * One example would be the device size since some controller expose their SPI 201 * mem devices through a io-mapped region. 202 */ 203 struct spi_mem { 204 struct spi_device *spi; 205 void *drvpriv; 206 const char *name; 207 }; 208 209 /** 210 * struct spi_mem_set_drvdata() - attach driver private data to a SPI mem 211 * device 212 * @mem: memory device 213 * @data: data to attach to the memory device 214 */ 215 static inline void spi_mem_set_drvdata(struct spi_mem *mem, void *data) 216 { 217 mem->drvpriv = data; 218 } 219 220 /** 221 * struct spi_mem_get_drvdata() - get driver private data attached to a SPI mem 222 * device 223 * @mem: memory device 224 * 225 * Return: the data attached to the mem device. 226 */ 227 static inline void *spi_mem_get_drvdata(struct spi_mem *mem) 228 { 229 return mem->drvpriv; 230 } 231 232 /** 233 * struct spi_controller_mem_ops - SPI memory operations 234 * @adjust_op_size: shrink the data xfer of an operation to match controller's 235 * limitations (can be alignment or max RX/TX size 236 * limitations) 237 * @supports_op: check if an operation is supported by the controller 238 * @exec_op: execute a SPI memory operation 239 * not all driver provides supports_op(), so it can return -EOPNOTSUPP 240 * if the op is not supported by the driver/controller 241 * @get_name: get a custom name for the SPI mem device from the controller. 242 * This might be needed if the controller driver has been ported 243 * to use the SPI mem layer and a custom name is used to keep 244 * mtdparts compatible. 245 * Note that if the implementation of this function allocates memory 246 * dynamically, then it should do so with devm_xxx(), as we don't 247 * have a ->free_name() function. 248 * @dirmap_create: create a direct mapping descriptor that can later be used to 249 * access the memory device. This method is optional 250 * @dirmap_destroy: destroy a memory descriptor previous created by 251 * ->dirmap_create() 252 * @dirmap_read: read data from the memory device using the direct mapping 253 * created by ->dirmap_create(). The function can return less 254 * data than requested (for example when the request is crossing 255 * the currently mapped area), and the caller of 256 * spi_mem_dirmap_read() is responsible for calling it again in 257 * this case. 258 * @dirmap_write: write data to the memory device using the direct mapping 259 * created by ->dirmap_create(). The function can return less 260 * data than requested (for example when the request is crossing 261 * the currently mapped area), and the caller of 262 * spi_mem_dirmap_write() is responsible for calling it again in 263 * this case. 264 * @poll_status: poll memory device status until (status & mask) == match or 265 * when the timeout has expired. It fills the data buffer with 266 * the last status value. 267 * 268 * This interface should be implemented by SPI controllers providing an 269 * high-level interface to execute SPI memory operation, which is usually the 270 * case for QSPI controllers. 271 * 272 * Note on ->dirmap_{read,write}(): drivers should avoid accessing the direct 273 * mapping from the CPU because doing that can stall the CPU waiting for the 274 * SPI mem transaction to finish, and this will make real-time maintainers 275 * unhappy and might make your system less reactive. Instead, drivers should 276 * use DMA to access this direct mapping. 277 */ 278 struct spi_controller_mem_ops { 279 int (*adjust_op_size)(struct spi_mem *mem, struct spi_mem_op *op); 280 bool (*supports_op)(struct spi_mem *mem, 281 const struct spi_mem_op *op); 282 int (*exec_op)(struct spi_mem *mem, 283 const struct spi_mem_op *op); 284 const char *(*get_name)(struct spi_mem *mem); 285 int (*dirmap_create)(struct spi_mem_dirmap_desc *desc); 286 void (*dirmap_destroy)(struct spi_mem_dirmap_desc *desc); 287 ssize_t (*dirmap_read)(struct spi_mem_dirmap_desc *desc, 288 u64 offs, size_t len, void *buf); 289 ssize_t (*dirmap_write)(struct spi_mem_dirmap_desc *desc, 290 u64 offs, size_t len, const void *buf); 291 int (*poll_status)(struct spi_mem *mem, 292 const struct spi_mem_op *op, 293 u16 mask, u16 match, 294 unsigned long initial_delay_us, 295 unsigned long polling_rate_us, 296 unsigned long timeout_ms); 297 }; 298 299 /** 300 * struct spi_controller_mem_caps - SPI memory controller capabilities 301 * @dtr: Supports DTR operations 302 * @ecc: Supports operations with error correction 303 * @swap16: Supports swapping bytes on a 16 bit boundary when configured in 304 * Octal DTR 305 */ 306 struct spi_controller_mem_caps { 307 bool dtr; 308 bool ecc; 309 bool swap16; 310 }; 311 312 #define spi_mem_controller_is_capable(ctlr, cap) \ 313 ((ctlr)->mem_caps && (ctlr)->mem_caps->cap) 314 315 /** 316 * struct spi_mem_driver - SPI memory driver 317 * @spidrv: inherit from a SPI driver 318 * @probe: probe a SPI memory. Usually where detection/initialization takes 319 * place 320 * @remove: remove a SPI memory 321 * @shutdown: take appropriate action when the system is shutdown 322 * 323 * This is just a thin wrapper around a spi_driver. The core takes care of 324 * allocating the spi_mem object and forwarding the probe/remove/shutdown 325 * request to the spi_mem_driver. The reason we use this wrapper is because 326 * we might have to stuff more information into the spi_mem struct to let 327 * SPI controllers know more about the SPI memory they interact with, and 328 * having this intermediate layer allows us to do that without adding more 329 * useless fields to the spi_device object. 330 */ 331 struct spi_mem_driver { 332 struct spi_driver spidrv; 333 int (*probe)(struct spi_mem *mem); 334 int (*remove)(struct spi_mem *mem); 335 void (*shutdown)(struct spi_mem *mem); 336 }; 337 338 #if IS_ENABLED(CONFIG_SPI_MEM) 339 int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr, 340 const struct spi_mem_op *op, 341 struct sg_table *sg); 342 343 void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr, 344 const struct spi_mem_op *op, 345 struct sg_table *sg); 346 347 bool spi_mem_default_supports_op(struct spi_mem *mem, 348 const struct spi_mem_op *op); 349 #else 350 static inline int 351 spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr, 352 const struct spi_mem_op *op, 353 struct sg_table *sg) 354 { 355 return -ENOTSUPP; 356 } 357 358 static inline void 359 spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr, 360 const struct spi_mem_op *op, 361 struct sg_table *sg) 362 { 363 } 364 365 static inline 366 bool spi_mem_default_supports_op(struct spi_mem *mem, 367 const struct spi_mem_op *op) 368 { 369 return false; 370 } 371 #endif /* CONFIG_SPI_MEM */ 372 373 int spi_mem_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op); 374 375 bool spi_mem_supports_op(struct spi_mem *mem, 376 const struct spi_mem_op *op); 377 378 int spi_mem_exec_op(struct spi_mem *mem, 379 const struct spi_mem_op *op); 380 381 const char *spi_mem_get_name(struct spi_mem *mem); 382 383 struct spi_mem_dirmap_desc * 384 spi_mem_dirmap_create(struct spi_mem *mem, 385 const struct spi_mem_dirmap_info *info); 386 void spi_mem_dirmap_destroy(struct spi_mem_dirmap_desc *desc); 387 ssize_t spi_mem_dirmap_read(struct spi_mem_dirmap_desc *desc, 388 u64 offs, size_t len, void *buf); 389 ssize_t spi_mem_dirmap_write(struct spi_mem_dirmap_desc *desc, 390 u64 offs, size_t len, const void *buf); 391 struct spi_mem_dirmap_desc * 392 devm_spi_mem_dirmap_create(struct device *dev, struct spi_mem *mem, 393 const struct spi_mem_dirmap_info *info); 394 void devm_spi_mem_dirmap_destroy(struct device *dev, 395 struct spi_mem_dirmap_desc *desc); 396 397 int spi_mem_poll_status(struct spi_mem *mem, 398 const struct spi_mem_op *op, 399 u16 mask, u16 match, 400 unsigned long initial_delay_us, 401 unsigned long polling_delay_us, 402 u16 timeout_ms); 403 404 int spi_mem_driver_register_with_owner(struct spi_mem_driver *drv, 405 struct module *owner); 406 407 void spi_mem_driver_unregister(struct spi_mem_driver *drv); 408 409 #define spi_mem_driver_register(__drv) \ 410 spi_mem_driver_register_with_owner(__drv, THIS_MODULE) 411 412 #define module_spi_mem_driver(__drv) \ 413 module_driver(__drv, spi_mem_driver_register, \ 414 spi_mem_driver_unregister) 415 416 #endif /* __LINUX_SPI_MEM_H */ 417