xref: /linux/include/linux/spi/spi-mem.h (revision 71e2f4dd5a65bd8dbca0b77661e75eea471168f8)
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Copyright (C) 2018 Exceet Electronics GmbH
4  * Copyright (C) 2018 Bootlin
5  *
6  * Author:
7  *	Peter Pan <peterpandong@micron.com>
8  *	Boris Brezillon <boris.brezillon@bootlin.com>
9  */
10 
11 #ifndef __LINUX_SPI_MEM_H
12 #define __LINUX_SPI_MEM_H
13 
14 #include <linux/spi/spi.h>
15 
16 #define SPI_MEM_OP_CMD(__opcode, __buswidth)			\
17 	{							\
18 		.buswidth = __buswidth,				\
19 		.opcode = __opcode,				\
20 	}
21 
22 #define SPI_MEM_OP_ADDR(__nbytes, __val, __buswidth)		\
23 	{							\
24 		.nbytes = __nbytes,				\
25 		.val = __val,					\
26 		.buswidth = __buswidth,				\
27 	}
28 
29 #define SPI_MEM_OP_NO_ADDR	{ }
30 
31 #define SPI_MEM_OP_DUMMY(__nbytes, __buswidth)			\
32 	{							\
33 		.nbytes = __nbytes,				\
34 		.buswidth = __buswidth,				\
35 	}
36 
37 #define SPI_MEM_OP_NO_DUMMY	{ }
38 
39 #define SPI_MEM_OP_DATA_IN(__nbytes, __buf, __buswidth)		\
40 	{							\
41 		.dir = SPI_MEM_DATA_IN,				\
42 		.nbytes = __nbytes,				\
43 		.buf.in = __buf,				\
44 		.buswidth = __buswidth,				\
45 	}
46 
47 #define SPI_MEM_OP_DATA_OUT(__nbytes, __buf, __buswidth)	\
48 	{							\
49 		.dir = SPI_MEM_DATA_OUT,			\
50 		.nbytes = __nbytes,				\
51 		.buf.out = __buf,				\
52 		.buswidth = __buswidth,				\
53 	}
54 
55 #define SPI_MEM_OP_NO_DATA	{ }
56 
57 /**
58  * enum spi_mem_data_dir - describes the direction of a SPI memory data
59  *			   transfer from the controller perspective
60  * @SPI_MEM_NO_DATA: no data transferred
61  * @SPI_MEM_DATA_IN: data coming from the SPI memory
62  * @SPI_MEM_DATA_OUT: data sent to the SPI memory
63  */
64 enum spi_mem_data_dir {
65 	SPI_MEM_NO_DATA,
66 	SPI_MEM_DATA_IN,
67 	SPI_MEM_DATA_OUT,
68 };
69 
70 /**
71  * struct spi_mem_op - describes a SPI memory operation
72  * @cmd.buswidth: number of IO lines used to transmit the command
73  * @cmd.opcode: operation opcode
74  * @addr.nbytes: number of address bytes to send. Can be zero if the operation
75  *		 does not need to send an address
76  * @addr.buswidth: number of IO lines used to transmit the address cycles
77  * @addr.val: address value. This value is always sent MSB first on the bus.
78  *	      Note that only @addr.nbytes are taken into account in this
79  *	      address value, so users should make sure the value fits in the
80  *	      assigned number of bytes.
81  * @dummy.nbytes: number of dummy bytes to send after an opcode or address. Can
82  *		  be zero if the operation does not require dummy bytes
83  * @dummy.buswidth: number of IO lanes used to transmit the dummy bytes
84  * @data.buswidth: number of IO lanes used to send/receive the data
85  * @data.dir: direction of the transfer
86  * @data.nbytes: number of data bytes to send/receive. Can be zero if the
87  *		 operation does not involve transferring data
88  * @data.buf.in: input buffer (must be DMA-able)
89  * @data.buf.out: output buffer (must be DMA-able)
90  */
91 struct spi_mem_op {
92 	struct {
93 		u8 buswidth;
94 		u8 opcode;
95 	} cmd;
96 
97 	struct {
98 		u8 nbytes;
99 		u8 buswidth;
100 		u64 val;
101 	} addr;
102 
103 	struct {
104 		u8 nbytes;
105 		u8 buswidth;
106 	} dummy;
107 
108 	struct {
109 		u8 buswidth;
110 		enum spi_mem_data_dir dir;
111 		unsigned int nbytes;
112 		union {
113 			void *in;
114 			const void *out;
115 		} buf;
116 	} data;
117 };
118 
119 #define SPI_MEM_OP(__cmd, __addr, __dummy, __data)		\
120 	{							\
121 		.cmd = __cmd,					\
122 		.addr = __addr,					\
123 		.dummy = __dummy,				\
124 		.data = __data,					\
125 	}
126 
127 /**
128  * struct spi_mem_dirmap_info - Direct mapping information
129  * @op_tmpl: operation template that should be used by the direct mapping when
130  *	     the memory device is accessed
131  * @offset: absolute offset this direct mapping is pointing to
132  * @length: length in byte of this direct mapping
133  *
134  * These information are used by the controller specific implementation to know
135  * the portion of memory that is directly mapped and the spi_mem_op that should
136  * be used to access the device.
137  * A direct mapping is only valid for one direction (read or write) and this
138  * direction is directly encoded in the ->op_tmpl.data.dir field.
139  */
140 struct spi_mem_dirmap_info {
141 	struct spi_mem_op op_tmpl;
142 	u64 offset;
143 	u64 length;
144 };
145 
146 /**
147  * struct spi_mem_dirmap_desc - Direct mapping descriptor
148  * @mem: the SPI memory device this direct mapping is attached to
149  * @info: information passed at direct mapping creation time
150  * @nodirmap: set to 1 if the SPI controller does not implement
151  *	      ->mem_ops->dirmap_create() or when this function returned an
152  *	      error. If @nodirmap is true, all spi_mem_dirmap_{read,write}()
153  *	      calls will use spi_mem_exec_op() to access the memory. This is a
154  *	      degraded mode that allows spi_mem drivers to use the same code
155  *	      no matter whether the controller supports direct mapping or not
156  * @priv: field pointing to controller specific data
157  *
158  * Common part of a direct mapping descriptor. This object is created by
159  * spi_mem_dirmap_create() and controller implementation of ->create_dirmap()
160  * can create/attach direct mapping resources to the descriptor in the ->priv
161  * field.
162  */
163 struct spi_mem_dirmap_desc {
164 	struct spi_mem *mem;
165 	struct spi_mem_dirmap_info info;
166 	unsigned int nodirmap;
167 	void *priv;
168 };
169 
170 /**
171  * struct spi_mem - describes a SPI memory device
172  * @spi: the underlying SPI device
173  * @drvpriv: spi_mem_driver private data
174  * @name: name of the SPI memory device
175  *
176  * Extra information that describe the SPI memory device and may be needed by
177  * the controller to properly handle this device should be placed here.
178  *
179  * One example would be the device size since some controller expose their SPI
180  * mem devices through a io-mapped region.
181  */
182 struct spi_mem {
183 	struct spi_device *spi;
184 	void *drvpriv;
185 	const char *name;
186 };
187 
188 /**
189  * struct spi_mem_set_drvdata() - attach driver private data to a SPI mem
190  *				  device
191  * @mem: memory device
192  * @data: data to attach to the memory device
193  */
194 static inline void spi_mem_set_drvdata(struct spi_mem *mem, void *data)
195 {
196 	mem->drvpriv = data;
197 }
198 
199 /**
200  * struct spi_mem_get_drvdata() - get driver private data attached to a SPI mem
201  *				  device
202  * @mem: memory device
203  *
204  * Return: the data attached to the mem device.
205  */
206 static inline void *spi_mem_get_drvdata(struct spi_mem *mem)
207 {
208 	return mem->drvpriv;
209 }
210 
211 /**
212  * struct spi_controller_mem_ops - SPI memory operations
213  * @adjust_op_size: shrink the data xfer of an operation to match controller's
214  *		    limitations (can be alignment of max RX/TX size
215  *		    limitations)
216  * @supports_op: check if an operation is supported by the controller
217  * @exec_op: execute a SPI memory operation
218  * @get_name: get a custom name for the SPI mem device from the controller.
219  *	      This might be needed if the controller driver has been ported
220  *	      to use the SPI mem layer and a custom name is used to keep
221  *	      mtdparts compatible.
222  *	      Note that if the implementation of this function allocates memory
223  *	      dynamically, then it should do so with devm_xxx(), as we don't
224  *	      have a ->free_name() function.
225  * @dirmap_create: create a direct mapping descriptor that can later be used to
226  *		   access the memory device. This method is optional
227  * @dirmap_destroy: destroy a memory descriptor previous created by
228  *		    ->dirmap_create()
229  * @dirmap_read: read data from the memory device using the direct mapping
230  *		 created by ->dirmap_create(). The function can return less
231  *		 data than requested (for example when the request is crossing
232  *		 the currently mapped area), and the caller of
233  *		 spi_mem_dirmap_read() is responsible for calling it again in
234  *		 this case.
235  * @dirmap_write: write data to the memory device using the direct mapping
236  *		  created by ->dirmap_create(). The function can return less
237  *		  data than requested (for example when the request is crossing
238  *		  the currently mapped area), and the caller of
239  *		  spi_mem_dirmap_write() is responsible for calling it again in
240  *		  this case.
241  *
242  * This interface should be implemented by SPI controllers providing an
243  * high-level interface to execute SPI memory operation, which is usually the
244  * case for QSPI controllers.
245  *
246  * Note on ->dirmap_{read,write}(): drivers should avoid accessing the direct
247  * mapping from the CPU because doing that can stall the CPU waiting for the
248  * SPI mem transaction to finish, and this will make real-time maintainers
249  * unhappy and might make your system less reactive. Instead, drivers should
250  * use DMA to access this direct mapping.
251  */
252 struct spi_controller_mem_ops {
253 	int (*adjust_op_size)(struct spi_mem *mem, struct spi_mem_op *op);
254 	bool (*supports_op)(struct spi_mem *mem,
255 			    const struct spi_mem_op *op);
256 	int (*exec_op)(struct spi_mem *mem,
257 		       const struct spi_mem_op *op);
258 	const char *(*get_name)(struct spi_mem *mem);
259 	int (*dirmap_create)(struct spi_mem_dirmap_desc *desc);
260 	void (*dirmap_destroy)(struct spi_mem_dirmap_desc *desc);
261 	ssize_t (*dirmap_read)(struct spi_mem_dirmap_desc *desc,
262 			       u64 offs, size_t len, void *buf);
263 	ssize_t (*dirmap_write)(struct spi_mem_dirmap_desc *desc,
264 				u64 offs, size_t len, const void *buf);
265 };
266 
267 /**
268  * struct spi_mem_driver - SPI memory driver
269  * @spidrv: inherit from a SPI driver
270  * @probe: probe a SPI memory. Usually where detection/initialization takes
271  *	   place
272  * @remove: remove a SPI memory
273  * @shutdown: take appropriate action when the system is shutdown
274  *
275  * This is just a thin wrapper around a spi_driver. The core takes care of
276  * allocating the spi_mem object and forwarding the probe/remove/shutdown
277  * request to the spi_mem_driver. The reason we use this wrapper is because
278  * we might have to stuff more information into the spi_mem struct to let
279  * SPI controllers know more about the SPI memory they interact with, and
280  * having this intermediate layer allows us to do that without adding more
281  * useless fields to the spi_device object.
282  */
283 struct spi_mem_driver {
284 	struct spi_driver spidrv;
285 	int (*probe)(struct spi_mem *mem);
286 	int (*remove)(struct spi_mem *mem);
287 	void (*shutdown)(struct spi_mem *mem);
288 };
289 
290 #if IS_ENABLED(CONFIG_SPI_MEM)
291 int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
292 				       const struct spi_mem_op *op,
293 				       struct sg_table *sg);
294 
295 void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
296 					  const struct spi_mem_op *op,
297 					  struct sg_table *sg);
298 
299 bool spi_mem_default_supports_op(struct spi_mem *mem,
300 				 const struct spi_mem_op *op);
301 
302 #else
303 static inline int
304 spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
305 				   const struct spi_mem_op *op,
306 				   struct sg_table *sg)
307 {
308 	return -ENOTSUPP;
309 }
310 
311 static inline void
312 spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
313 				     const struct spi_mem_op *op,
314 				     struct sg_table *sg)
315 {
316 }
317 
318 static inline
319 bool spi_mem_default_supports_op(struct spi_mem *mem,
320 				 const struct spi_mem_op *op)
321 {
322 	return false;
323 }
324 
325 #endif /* CONFIG_SPI_MEM */
326 
327 int spi_mem_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op);
328 
329 bool spi_mem_supports_op(struct spi_mem *mem,
330 			 const struct spi_mem_op *op);
331 
332 int spi_mem_exec_op(struct spi_mem *mem,
333 		    const struct spi_mem_op *op);
334 
335 const char *spi_mem_get_name(struct spi_mem *mem);
336 
337 struct spi_mem_dirmap_desc *
338 spi_mem_dirmap_create(struct spi_mem *mem,
339 		      const struct spi_mem_dirmap_info *info);
340 void spi_mem_dirmap_destroy(struct spi_mem_dirmap_desc *desc);
341 ssize_t spi_mem_dirmap_read(struct spi_mem_dirmap_desc *desc,
342 			    u64 offs, size_t len, void *buf);
343 ssize_t spi_mem_dirmap_write(struct spi_mem_dirmap_desc *desc,
344 			     u64 offs, size_t len, const void *buf);
345 struct spi_mem_dirmap_desc *
346 devm_spi_mem_dirmap_create(struct device *dev, struct spi_mem *mem,
347 			   const struct spi_mem_dirmap_info *info);
348 void devm_spi_mem_dirmap_destroy(struct device *dev,
349 				 struct spi_mem_dirmap_desc *desc);
350 
351 int spi_mem_driver_register_with_owner(struct spi_mem_driver *drv,
352 				       struct module *owner);
353 
354 void spi_mem_driver_unregister(struct spi_mem_driver *drv);
355 
356 #define spi_mem_driver_register(__drv)                                  \
357 	spi_mem_driver_register_with_owner(__drv, THIS_MODULE)
358 
359 #define module_spi_mem_driver(__drv)                                    \
360 	module_driver(__drv, spi_mem_driver_register,                   \
361 		      spi_mem_driver_unregister)
362 
363 #endif /* __LINUX_SPI_MEM_H */
364