1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 /* 3 * Copyright (C) 2018 Exceet Electronics GmbH 4 * Copyright (C) 2018 Bootlin 5 * 6 * Author: 7 * Peter Pan <peterpandong@micron.com> 8 * Boris Brezillon <boris.brezillon@bootlin.com> 9 */ 10 11 #ifndef __LINUX_SPI_MEM_H 12 #define __LINUX_SPI_MEM_H 13 14 #include <linux/spi/spi.h> 15 16 #define SPI_MEM_OP_CMD(__opcode, __buswidth) \ 17 { \ 18 .buswidth = __buswidth, \ 19 .opcode = __opcode, \ 20 .nbytes = 1, \ 21 } 22 23 #define SPI_MEM_OP_ADDR(__nbytes, __val, __buswidth) \ 24 { \ 25 .nbytes = __nbytes, \ 26 .val = __val, \ 27 .buswidth = __buswidth, \ 28 } 29 30 #define SPI_MEM_OP_NO_ADDR { } 31 32 #define SPI_MEM_OP_DUMMY(__nbytes, __buswidth) \ 33 { \ 34 .nbytes = __nbytes, \ 35 .buswidth = __buswidth, \ 36 } 37 38 #define SPI_MEM_OP_NO_DUMMY { } 39 40 #define SPI_MEM_OP_DATA_IN(__nbytes, __buf, __buswidth) \ 41 { \ 42 .dir = SPI_MEM_DATA_IN, \ 43 .nbytes = __nbytes, \ 44 .buf.in = __buf, \ 45 .buswidth = __buswidth, \ 46 } 47 48 #define SPI_MEM_OP_DATA_OUT(__nbytes, __buf, __buswidth) \ 49 { \ 50 .dir = SPI_MEM_DATA_OUT, \ 51 .nbytes = __nbytes, \ 52 .buf.out = __buf, \ 53 .buswidth = __buswidth, \ 54 } 55 56 #define SPI_MEM_OP_NO_DATA { } 57 58 /** 59 * enum spi_mem_data_dir - describes the direction of a SPI memory data 60 * transfer from the controller perspective 61 * @SPI_MEM_NO_DATA: no data transferred 62 * @SPI_MEM_DATA_IN: data coming from the SPI memory 63 * @SPI_MEM_DATA_OUT: data sent to the SPI memory 64 */ 65 enum spi_mem_data_dir { 66 SPI_MEM_NO_DATA, 67 SPI_MEM_DATA_IN, 68 SPI_MEM_DATA_OUT, 69 }; 70 71 /** 72 * struct spi_mem_op - describes a SPI memory operation 73 * @cmd.nbytes: number of opcode bytes (only 1 or 2 are valid). The opcode is 74 * sent MSB-first. 75 * @cmd.buswidth: number of IO lines used to transmit the command 76 * @cmd.opcode: operation opcode 77 * @cmd.dtr: whether the command opcode should be sent in DTR mode or not 78 * @addr.nbytes: number of address bytes to send. Can be zero if the operation 79 * does not need to send an address 80 * @addr.buswidth: number of IO lines used to transmit the address cycles 81 * @addr.dtr: whether the address should be sent in DTR mode or not 82 * @addr.val: address value. This value is always sent MSB first on the bus. 83 * Note that only @addr.nbytes are taken into account in this 84 * address value, so users should make sure the value fits in the 85 * assigned number of bytes. 86 * @dummy.nbytes: number of dummy bytes to send after an opcode or address. Can 87 * be zero if the operation does not require dummy bytes 88 * @dummy.buswidth: number of IO lanes used to transmit the dummy bytes 89 * @dummy.dtr: whether the dummy bytes should be sent in DTR mode or not 90 * @data.buswidth: number of IO lanes used to send/receive the data 91 * @data.dtr: whether the data should be sent in DTR mode or not 92 * @data.dir: direction of the transfer 93 * @data.nbytes: number of data bytes to send/receive. Can be zero if the 94 * operation does not involve transferring data 95 * @data.buf.in: input buffer (must be DMA-able) 96 * @data.buf.out: output buffer (must be DMA-able) 97 */ 98 struct spi_mem_op { 99 struct { 100 u8 nbytes; 101 u8 buswidth; 102 u8 dtr : 1; 103 u16 opcode; 104 } cmd; 105 106 struct { 107 u8 nbytes; 108 u8 buswidth; 109 u8 dtr : 1; 110 u64 val; 111 } addr; 112 113 struct { 114 u8 nbytes; 115 u8 buswidth; 116 u8 dtr : 1; 117 } dummy; 118 119 struct { 120 u8 buswidth; 121 u8 dtr : 1; 122 enum spi_mem_data_dir dir; 123 unsigned int nbytes; 124 union { 125 void *in; 126 const void *out; 127 } buf; 128 } data; 129 }; 130 131 #define SPI_MEM_OP(__cmd, __addr, __dummy, __data) \ 132 { \ 133 .cmd = __cmd, \ 134 .addr = __addr, \ 135 .dummy = __dummy, \ 136 .data = __data, \ 137 } 138 139 /** 140 * struct spi_mem_dirmap_info - Direct mapping information 141 * @op_tmpl: operation template that should be used by the direct mapping when 142 * the memory device is accessed 143 * @offset: absolute offset this direct mapping is pointing to 144 * @length: length in byte of this direct mapping 145 * 146 * These information are used by the controller specific implementation to know 147 * the portion of memory that is directly mapped and the spi_mem_op that should 148 * be used to access the device. 149 * A direct mapping is only valid for one direction (read or write) and this 150 * direction is directly encoded in the ->op_tmpl.data.dir field. 151 */ 152 struct spi_mem_dirmap_info { 153 struct spi_mem_op op_tmpl; 154 u64 offset; 155 u64 length; 156 }; 157 158 /** 159 * struct spi_mem_dirmap_desc - Direct mapping descriptor 160 * @mem: the SPI memory device this direct mapping is attached to 161 * @info: information passed at direct mapping creation time 162 * @nodirmap: set to 1 if the SPI controller does not implement 163 * ->mem_ops->dirmap_create() or when this function returned an 164 * error. If @nodirmap is true, all spi_mem_dirmap_{read,write}() 165 * calls will use spi_mem_exec_op() to access the memory. This is a 166 * degraded mode that allows spi_mem drivers to use the same code 167 * no matter whether the controller supports direct mapping or not 168 * @priv: field pointing to controller specific data 169 * 170 * Common part of a direct mapping descriptor. This object is created by 171 * spi_mem_dirmap_create() and controller implementation of ->create_dirmap() 172 * can create/attach direct mapping resources to the descriptor in the ->priv 173 * field. 174 */ 175 struct spi_mem_dirmap_desc { 176 struct spi_mem *mem; 177 struct spi_mem_dirmap_info info; 178 unsigned int nodirmap; 179 void *priv; 180 }; 181 182 /** 183 * struct spi_mem - describes a SPI memory device 184 * @spi: the underlying SPI device 185 * @drvpriv: spi_mem_driver private data 186 * @name: name of the SPI memory device 187 * 188 * Extra information that describe the SPI memory device and may be needed by 189 * the controller to properly handle this device should be placed here. 190 * 191 * One example would be the device size since some controller expose their SPI 192 * mem devices through a io-mapped region. 193 */ 194 struct spi_mem { 195 struct spi_device *spi; 196 void *drvpriv; 197 const char *name; 198 }; 199 200 /** 201 * struct spi_mem_set_drvdata() - attach driver private data to a SPI mem 202 * device 203 * @mem: memory device 204 * @data: data to attach to the memory device 205 */ 206 static inline void spi_mem_set_drvdata(struct spi_mem *mem, void *data) 207 { 208 mem->drvpriv = data; 209 } 210 211 /** 212 * struct spi_mem_get_drvdata() - get driver private data attached to a SPI mem 213 * device 214 * @mem: memory device 215 * 216 * Return: the data attached to the mem device. 217 */ 218 static inline void *spi_mem_get_drvdata(struct spi_mem *mem) 219 { 220 return mem->drvpriv; 221 } 222 223 /** 224 * struct spi_controller_mem_ops - SPI memory operations 225 * @adjust_op_size: shrink the data xfer of an operation to match controller's 226 * limitations (can be alignment of max RX/TX size 227 * limitations) 228 * @supports_op: check if an operation is supported by the controller 229 * @exec_op: execute a SPI memory operation 230 * @get_name: get a custom name for the SPI mem device from the controller. 231 * This might be needed if the controller driver has been ported 232 * to use the SPI mem layer and a custom name is used to keep 233 * mtdparts compatible. 234 * Note that if the implementation of this function allocates memory 235 * dynamically, then it should do so with devm_xxx(), as we don't 236 * have a ->free_name() function. 237 * @dirmap_create: create a direct mapping descriptor that can later be used to 238 * access the memory device. This method is optional 239 * @dirmap_destroy: destroy a memory descriptor previous created by 240 * ->dirmap_create() 241 * @dirmap_read: read data from the memory device using the direct mapping 242 * created by ->dirmap_create(). The function can return less 243 * data than requested (for example when the request is crossing 244 * the currently mapped area), and the caller of 245 * spi_mem_dirmap_read() is responsible for calling it again in 246 * this case. 247 * @dirmap_write: write data to the memory device using the direct mapping 248 * created by ->dirmap_create(). The function can return less 249 * data than requested (for example when the request is crossing 250 * the currently mapped area), and the caller of 251 * spi_mem_dirmap_write() is responsible for calling it again in 252 * this case. 253 * @poll_status: poll memory device status until (status & mask) == match or 254 * when the timeout has expired. It fills the data buffer with 255 * the last status value. 256 * 257 * This interface should be implemented by SPI controllers providing an 258 * high-level interface to execute SPI memory operation, which is usually the 259 * case for QSPI controllers. 260 * 261 * Note on ->dirmap_{read,write}(): drivers should avoid accessing the direct 262 * mapping from the CPU because doing that can stall the CPU waiting for the 263 * SPI mem transaction to finish, and this will make real-time maintainers 264 * unhappy and might make your system less reactive. Instead, drivers should 265 * use DMA to access this direct mapping. 266 */ 267 struct spi_controller_mem_ops { 268 int (*adjust_op_size)(struct spi_mem *mem, struct spi_mem_op *op); 269 bool (*supports_op)(struct spi_mem *mem, 270 const struct spi_mem_op *op); 271 int (*exec_op)(struct spi_mem *mem, 272 const struct spi_mem_op *op); 273 const char *(*get_name)(struct spi_mem *mem); 274 int (*dirmap_create)(struct spi_mem_dirmap_desc *desc); 275 void (*dirmap_destroy)(struct spi_mem_dirmap_desc *desc); 276 ssize_t (*dirmap_read)(struct spi_mem_dirmap_desc *desc, 277 u64 offs, size_t len, void *buf); 278 ssize_t (*dirmap_write)(struct spi_mem_dirmap_desc *desc, 279 u64 offs, size_t len, const void *buf); 280 int (*poll_status)(struct spi_mem *mem, 281 const struct spi_mem_op *op, 282 u16 mask, u16 match, 283 unsigned long initial_delay_us, 284 unsigned long polling_rate_us, 285 unsigned long timeout_ms); 286 }; 287 288 /** 289 * struct spi_mem_driver - SPI memory driver 290 * @spidrv: inherit from a SPI driver 291 * @probe: probe a SPI memory. Usually where detection/initialization takes 292 * place 293 * @remove: remove a SPI memory 294 * @shutdown: take appropriate action when the system is shutdown 295 * 296 * This is just a thin wrapper around a spi_driver. The core takes care of 297 * allocating the spi_mem object and forwarding the probe/remove/shutdown 298 * request to the spi_mem_driver. The reason we use this wrapper is because 299 * we might have to stuff more information into the spi_mem struct to let 300 * SPI controllers know more about the SPI memory they interact with, and 301 * having this intermediate layer allows us to do that without adding more 302 * useless fields to the spi_device object. 303 */ 304 struct spi_mem_driver { 305 struct spi_driver spidrv; 306 int (*probe)(struct spi_mem *mem); 307 int (*remove)(struct spi_mem *mem); 308 void (*shutdown)(struct spi_mem *mem); 309 }; 310 311 #if IS_ENABLED(CONFIG_SPI_MEM) 312 int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr, 313 const struct spi_mem_op *op, 314 struct sg_table *sg); 315 316 void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr, 317 const struct spi_mem_op *op, 318 struct sg_table *sg); 319 320 bool spi_mem_default_supports_op(struct spi_mem *mem, 321 const struct spi_mem_op *op); 322 323 bool spi_mem_dtr_supports_op(struct spi_mem *mem, 324 const struct spi_mem_op *op); 325 326 #else 327 static inline int 328 spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr, 329 const struct spi_mem_op *op, 330 struct sg_table *sg) 331 { 332 return -ENOTSUPP; 333 } 334 335 static inline void 336 spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr, 337 const struct spi_mem_op *op, 338 struct sg_table *sg) 339 { 340 } 341 342 static inline 343 bool spi_mem_default_supports_op(struct spi_mem *mem, 344 const struct spi_mem_op *op) 345 { 346 return false; 347 } 348 349 static inline 350 bool spi_mem_dtr_supports_op(struct spi_mem *mem, 351 const struct spi_mem_op *op) 352 { 353 return false; 354 } 355 #endif /* CONFIG_SPI_MEM */ 356 357 int spi_mem_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op); 358 359 bool spi_mem_supports_op(struct spi_mem *mem, 360 const struct spi_mem_op *op); 361 362 int spi_mem_exec_op(struct spi_mem *mem, 363 const struct spi_mem_op *op); 364 365 const char *spi_mem_get_name(struct spi_mem *mem); 366 367 struct spi_mem_dirmap_desc * 368 spi_mem_dirmap_create(struct spi_mem *mem, 369 const struct spi_mem_dirmap_info *info); 370 void spi_mem_dirmap_destroy(struct spi_mem_dirmap_desc *desc); 371 ssize_t spi_mem_dirmap_read(struct spi_mem_dirmap_desc *desc, 372 u64 offs, size_t len, void *buf); 373 ssize_t spi_mem_dirmap_write(struct spi_mem_dirmap_desc *desc, 374 u64 offs, size_t len, const void *buf); 375 struct spi_mem_dirmap_desc * 376 devm_spi_mem_dirmap_create(struct device *dev, struct spi_mem *mem, 377 const struct spi_mem_dirmap_info *info); 378 void devm_spi_mem_dirmap_destroy(struct device *dev, 379 struct spi_mem_dirmap_desc *desc); 380 381 int spi_mem_poll_status(struct spi_mem *mem, 382 const struct spi_mem_op *op, 383 u16 mask, u16 match, 384 unsigned long initial_delay_us, 385 unsigned long polling_delay_us, 386 u16 timeout_ms); 387 388 int spi_mem_driver_register_with_owner(struct spi_mem_driver *drv, 389 struct module *owner); 390 391 void spi_mem_driver_unregister(struct spi_mem_driver *drv); 392 393 #define spi_mem_driver_register(__drv) \ 394 spi_mem_driver_register_with_owner(__drv, THIS_MODULE) 395 396 #define module_spi_mem_driver(__drv) \ 397 module_driver(__drv, spi_mem_driver_register, \ 398 spi_mem_driver_unregister) 399 400 #endif /* __LINUX_SPI_MEM_H */ 401