1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_SCHED_SIGNAL_H 3 #define _LINUX_SCHED_SIGNAL_H 4 5 #include <linux/rculist.h> 6 #include <linux/signal.h> 7 #include <linux/sched.h> 8 #include <linux/sched/jobctl.h> 9 #include <linux/sched/task.h> 10 #include <linux/cred.h> 11 #include <linux/refcount.h> 12 #include <linux/pid.h> 13 #include <linux/posix-timers.h> 14 #include <linux/mm_types.h> 15 #include <asm/ptrace.h> 16 17 /* 18 * Types defining task->signal and task->sighand and APIs using them: 19 */ 20 21 struct sighand_struct { 22 spinlock_t siglock; 23 refcount_t count; 24 wait_queue_head_t signalfd_wqh; 25 struct k_sigaction action[_NSIG]; 26 }; 27 28 /* 29 * Per-process accounting stats: 30 */ 31 struct pacct_struct { 32 int ac_flag; 33 long ac_exitcode; 34 unsigned long ac_mem; 35 u64 ac_utime, ac_stime; 36 unsigned long ac_minflt, ac_majflt; 37 }; 38 39 struct cpu_itimer { 40 u64 expires; 41 u64 incr; 42 }; 43 44 /* 45 * This is the atomic variant of task_cputime, which can be used for 46 * storing and updating task_cputime statistics without locking. 47 */ 48 struct task_cputime_atomic { 49 atomic64_t utime; 50 atomic64_t stime; 51 atomic64_t sum_exec_runtime; 52 }; 53 54 #define INIT_CPUTIME_ATOMIC \ 55 (struct task_cputime_atomic) { \ 56 .utime = ATOMIC64_INIT(0), \ 57 .stime = ATOMIC64_INIT(0), \ 58 .sum_exec_runtime = ATOMIC64_INIT(0), \ 59 } 60 /** 61 * struct thread_group_cputimer - thread group interval timer counts 62 * @cputime_atomic: atomic thread group interval timers. 63 * 64 * This structure contains the version of task_cputime, above, that is 65 * used for thread group CPU timer calculations. 66 */ 67 struct thread_group_cputimer { 68 struct task_cputime_atomic cputime_atomic; 69 }; 70 71 struct multiprocess_signals { 72 sigset_t signal; 73 struct hlist_node node; 74 }; 75 76 struct core_thread { 77 struct task_struct *task; 78 struct core_thread *next; 79 }; 80 81 struct core_state { 82 atomic_t nr_threads; 83 struct core_thread dumper; 84 struct completion startup; 85 }; 86 87 /* 88 * NOTE! "signal_struct" does not have its own 89 * locking, because a shared signal_struct always 90 * implies a shared sighand_struct, so locking 91 * sighand_struct is always a proper superset of 92 * the locking of signal_struct. 93 */ 94 struct signal_struct { 95 refcount_t sigcnt; 96 atomic_t live; 97 int nr_threads; 98 int quick_threads; 99 struct list_head thread_head; 100 101 wait_queue_head_t wait_chldexit; /* for wait4() */ 102 103 /* current thread group signal load-balancing target: */ 104 struct task_struct *curr_target; 105 106 /* shared signal handling: */ 107 struct sigpending shared_pending; 108 109 /* For collecting multiprocess signals during fork */ 110 struct hlist_head multiprocess; 111 112 /* thread group exit support */ 113 int group_exit_code; 114 /* notify group_exec_task when notify_count is less or equal to 0 */ 115 int notify_count; 116 struct task_struct *group_exec_task; 117 118 /* thread group stop support, overloads group_exit_code too */ 119 int group_stop_count; 120 unsigned int flags; /* see SIGNAL_* flags below */ 121 122 struct core_state *core_state; /* coredumping support */ 123 124 /* 125 * PR_SET_CHILD_SUBREAPER marks a process, like a service 126 * manager, to re-parent orphan (double-forking) child processes 127 * to this process instead of 'init'. The service manager is 128 * able to receive SIGCHLD signals and is able to investigate 129 * the process until it calls wait(). All children of this 130 * process will inherit a flag if they should look for a 131 * child_subreaper process at exit. 132 */ 133 unsigned int is_child_subreaper:1; 134 unsigned int has_child_subreaper:1; 135 136 #ifdef CONFIG_POSIX_TIMERS 137 138 /* POSIX.1b Interval Timers */ 139 unsigned int next_posix_timer_id; 140 struct hlist_head posix_timers; 141 struct hlist_head ignored_posix_timers; 142 143 /* ITIMER_REAL timer for the process */ 144 struct hrtimer real_timer; 145 ktime_t it_real_incr; 146 147 /* 148 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 149 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 150 * values are defined to 0 and 1 respectively 151 */ 152 struct cpu_itimer it[2]; 153 154 /* 155 * Thread group totals for process CPU timers. 156 * See thread_group_cputimer(), et al, for details. 157 */ 158 struct thread_group_cputimer cputimer; 159 160 #endif 161 /* Empty if CONFIG_POSIX_TIMERS=n */ 162 struct posix_cputimers posix_cputimers; 163 164 /* PID/PID hash table linkage. */ 165 struct pid *pids[PIDTYPE_MAX]; 166 167 #ifdef CONFIG_NO_HZ_FULL 168 atomic_t tick_dep_mask; 169 #endif 170 171 struct pid *tty_old_pgrp; 172 173 /* boolean value for session group leader */ 174 int leader; 175 176 struct tty_struct *tty; /* NULL if no tty */ 177 178 #ifdef CONFIG_SCHED_AUTOGROUP 179 struct autogroup *autogroup; 180 #endif 181 /* 182 * Cumulative resource counters for dead threads in the group, 183 * and for reaped dead child processes forked by this group. 184 * Live threads maintain their own counters and add to these 185 * in __exit_signal, except for the group leader. 186 */ 187 seqlock_t stats_lock; 188 u64 utime, stime, cutime, cstime; 189 u64 gtime; 190 u64 cgtime; 191 struct prev_cputime prev_cputime; 192 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 193 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 194 unsigned long inblock, oublock, cinblock, coublock; 195 unsigned long maxrss, cmaxrss; 196 struct task_io_accounting ioac; 197 198 /* 199 * Cumulative ns of schedule CPU time fo dead threads in the 200 * group, not including a zombie group leader, (This only differs 201 * from jiffies_to_ns(utime + stime) if sched_clock uses something 202 * other than jiffies.) 203 */ 204 unsigned long long sum_sched_runtime; 205 206 /* 207 * We don't bother to synchronize most readers of this at all, 208 * because there is no reader checking a limit that actually needs 209 * to get both rlim_cur and rlim_max atomically, and either one 210 * alone is a single word that can safely be read normally. 211 * getrlimit/setrlimit use task_lock(current->group_leader) to 212 * protect this instead of the siglock, because they really 213 * have no need to disable irqs. 214 */ 215 struct rlimit rlim[RLIM_NLIMITS]; 216 217 #ifdef CONFIG_BSD_PROCESS_ACCT 218 struct pacct_struct pacct; /* per-process accounting information */ 219 #endif 220 #ifdef CONFIG_TASKSTATS 221 struct taskstats *stats; 222 #endif 223 #ifdef CONFIG_AUDIT 224 unsigned audit_tty; 225 struct tty_audit_buf *tty_audit_buf; 226 #endif 227 228 /* 229 * Thread is the potential origin of an oom condition; kill first on 230 * oom 231 */ 232 bool oom_flag_origin; 233 short oom_score_adj; /* OOM kill score adjustment */ 234 short oom_score_adj_min; /* OOM kill score adjustment min value. 235 * Only settable by CAP_SYS_RESOURCE. */ 236 struct mm_struct *oom_mm; /* recorded mm when the thread group got 237 * killed by the oom killer */ 238 239 struct mutex cred_guard_mutex; /* guard against foreign influences on 240 * credential calculations 241 * (notably. ptrace) 242 * Deprecated do not use in new code. 243 * Use exec_update_lock instead. 244 */ 245 struct rw_semaphore exec_update_lock; /* Held while task_struct is 246 * being updated during exec, 247 * and may have inconsistent 248 * permissions. 249 */ 250 } __randomize_layout; 251 252 /* 253 * Bits in flags field of signal_struct. 254 */ 255 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 256 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ 257 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ 258 /* 259 * Pending notifications to parent. 260 */ 261 #define SIGNAL_CLD_STOPPED 0x00000010 262 #define SIGNAL_CLD_CONTINUED 0x00000020 263 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 264 265 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 266 267 #define SIGNAL_STOP_MASK (SIGNAL_CLD_MASK | SIGNAL_STOP_STOPPED | \ 268 SIGNAL_STOP_CONTINUED) 269 270 static inline void signal_set_stop_flags(struct signal_struct *sig, 271 unsigned int flags) 272 { 273 WARN_ON(sig->flags & SIGNAL_GROUP_EXIT); 274 sig->flags = (sig->flags & ~SIGNAL_STOP_MASK) | flags; 275 } 276 277 extern void flush_signals(struct task_struct *); 278 extern void ignore_signals(struct task_struct *); 279 extern void flush_signal_handlers(struct task_struct *, int force_default); 280 extern int dequeue_signal(sigset_t *mask, kernel_siginfo_t *info, enum pid_type *type); 281 282 static inline int kernel_dequeue_signal(void) 283 { 284 struct task_struct *task = current; 285 kernel_siginfo_t __info; 286 enum pid_type __type; 287 int ret; 288 289 spin_lock_irq(&task->sighand->siglock); 290 ret = dequeue_signal(&task->blocked, &__info, &__type); 291 spin_unlock_irq(&task->sighand->siglock); 292 293 return ret; 294 } 295 296 static inline void kernel_signal_stop(void) 297 { 298 spin_lock_irq(¤t->sighand->siglock); 299 if (current->jobctl & JOBCTL_STOP_DEQUEUED) { 300 current->jobctl |= JOBCTL_STOPPED; 301 set_special_state(TASK_STOPPED); 302 } 303 spin_unlock_irq(¤t->sighand->siglock); 304 305 schedule(); 306 } 307 308 int force_sig_fault_to_task(int sig, int code, void __user *addr, 309 struct task_struct *t); 310 int force_sig_fault(int sig, int code, void __user *addr); 311 int send_sig_fault(int sig, int code, void __user *addr, struct task_struct *t); 312 313 int force_sig_mceerr(int code, void __user *, short); 314 int send_sig_mceerr(int code, void __user *, short, struct task_struct *); 315 316 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper); 317 int force_sig_pkuerr(void __user *addr, u32 pkey); 318 int send_sig_perf(void __user *addr, u32 type, u64 sig_data); 319 320 int force_sig_ptrace_errno_trap(int errno, void __user *addr); 321 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno); 322 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno, 323 struct task_struct *t); 324 int force_sig_seccomp(int syscall, int reason, bool force_coredump); 325 326 extern int send_sig_info(int, struct kernel_siginfo *, struct task_struct *); 327 extern void force_sigsegv(int sig); 328 extern int force_sig_info(struct kernel_siginfo *); 329 extern int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp); 330 extern int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid); 331 extern int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, struct pid *, 332 const struct cred *); 333 extern int kill_pgrp(struct pid *pid, int sig, int priv); 334 extern int kill_pid(struct pid *pid, int sig, int priv); 335 extern __must_check bool do_notify_parent(struct task_struct *, int); 336 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 337 extern void force_sig(int); 338 extern void force_fatal_sig(int); 339 extern void force_exit_sig(int); 340 extern int send_sig(int, struct task_struct *, int); 341 extern int zap_other_threads(struct task_struct *p); 342 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 343 344 static inline void clear_notify_signal(void) 345 { 346 clear_thread_flag(TIF_NOTIFY_SIGNAL); 347 smp_mb__after_atomic(); 348 } 349 350 /* 351 * Returns 'true' if kick_process() is needed to force a transition from 352 * user -> kernel to guarantee expedient run of TWA_SIGNAL based task_work. 353 */ 354 static inline bool __set_notify_signal(struct task_struct *task) 355 { 356 return !test_and_set_tsk_thread_flag(task, TIF_NOTIFY_SIGNAL) && 357 !wake_up_state(task, TASK_INTERRUPTIBLE); 358 } 359 360 /* 361 * Called to break out of interruptible wait loops, and enter the 362 * exit_to_user_mode_loop(). 363 */ 364 static inline void set_notify_signal(struct task_struct *task) 365 { 366 if (__set_notify_signal(task)) 367 kick_process(task); 368 } 369 370 static inline int restart_syscall(void) 371 { 372 set_tsk_thread_flag(current, TIF_SIGPENDING); 373 return -ERESTARTNOINTR; 374 } 375 376 static inline int task_sigpending(struct task_struct *p) 377 { 378 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 379 } 380 381 static inline int signal_pending(struct task_struct *p) 382 { 383 /* 384 * TIF_NOTIFY_SIGNAL isn't really a signal, but it requires the same 385 * behavior in terms of ensuring that we break out of wait loops 386 * so that notify signal callbacks can be processed. 387 */ 388 if (unlikely(test_tsk_thread_flag(p, TIF_NOTIFY_SIGNAL))) 389 return 1; 390 return task_sigpending(p); 391 } 392 393 static inline int __fatal_signal_pending(struct task_struct *p) 394 { 395 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 396 } 397 398 static inline int fatal_signal_pending(struct task_struct *p) 399 { 400 return task_sigpending(p) && __fatal_signal_pending(p); 401 } 402 403 static inline int signal_pending_state(unsigned int state, struct task_struct *p) 404 { 405 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 406 return 0; 407 if (!signal_pending(p)) 408 return 0; 409 410 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 411 } 412 413 /* 414 * This should only be used in fault handlers to decide whether we 415 * should stop the current fault routine to handle the signals 416 * instead, especially with the case where we've got interrupted with 417 * a VM_FAULT_RETRY. 418 */ 419 static inline bool fault_signal_pending(vm_fault_t fault_flags, 420 struct pt_regs *regs) 421 { 422 return unlikely((fault_flags & VM_FAULT_RETRY) && 423 (fatal_signal_pending(current) || 424 (user_mode(regs) && signal_pending(current)))); 425 } 426 427 /* 428 * Reevaluate whether the task has signals pending delivery. 429 * Wake the task if so. 430 * This is required every time the blocked sigset_t changes. 431 * callers must hold sighand->siglock. 432 */ 433 extern void recalc_sigpending(void); 434 extern void calculate_sigpending(void); 435 436 extern void signal_wake_up_state(struct task_struct *t, unsigned int state); 437 438 static inline void signal_wake_up(struct task_struct *t, bool fatal) 439 { 440 unsigned int state = 0; 441 if (fatal && !(t->jobctl & JOBCTL_PTRACE_FROZEN)) { 442 t->jobctl &= ~(JOBCTL_STOPPED | JOBCTL_TRACED); 443 state = TASK_WAKEKILL | __TASK_TRACED; 444 } 445 signal_wake_up_state(t, state); 446 } 447 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume) 448 { 449 unsigned int state = 0; 450 if (resume) { 451 t->jobctl &= ~JOBCTL_TRACED; 452 state = __TASK_TRACED; 453 } 454 signal_wake_up_state(t, state); 455 } 456 457 void task_join_group_stop(struct task_struct *task); 458 459 #ifdef TIF_RESTORE_SIGMASK 460 /* 461 * Legacy restore_sigmask accessors. These are inefficient on 462 * SMP architectures because they require atomic operations. 463 */ 464 465 /** 466 * set_restore_sigmask() - make sure saved_sigmask processing gets done 467 * 468 * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code 469 * will run before returning to user mode, to process the flag. For 470 * all callers, TIF_SIGPENDING is already set or it's no harm to set 471 * it. TIF_RESTORE_SIGMASK need not be in the set of bits that the 472 * arch code will notice on return to user mode, in case those bits 473 * are scarce. We set TIF_SIGPENDING here to ensure that the arch 474 * signal code always gets run when TIF_RESTORE_SIGMASK is set. 475 */ 476 static inline void set_restore_sigmask(void) 477 { 478 set_thread_flag(TIF_RESTORE_SIGMASK); 479 } 480 481 static inline void clear_tsk_restore_sigmask(struct task_struct *task) 482 { 483 clear_tsk_thread_flag(task, TIF_RESTORE_SIGMASK); 484 } 485 486 static inline void clear_restore_sigmask(void) 487 { 488 clear_thread_flag(TIF_RESTORE_SIGMASK); 489 } 490 static inline bool test_tsk_restore_sigmask(struct task_struct *task) 491 { 492 return test_tsk_thread_flag(task, TIF_RESTORE_SIGMASK); 493 } 494 static inline bool test_restore_sigmask(void) 495 { 496 return test_thread_flag(TIF_RESTORE_SIGMASK); 497 } 498 static inline bool test_and_clear_restore_sigmask(void) 499 { 500 return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK); 501 } 502 503 #else /* TIF_RESTORE_SIGMASK */ 504 505 /* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */ 506 static inline void set_restore_sigmask(void) 507 { 508 current->restore_sigmask = true; 509 } 510 static inline void clear_tsk_restore_sigmask(struct task_struct *task) 511 { 512 task->restore_sigmask = false; 513 } 514 static inline void clear_restore_sigmask(void) 515 { 516 current->restore_sigmask = false; 517 } 518 static inline bool test_restore_sigmask(void) 519 { 520 return current->restore_sigmask; 521 } 522 static inline bool test_tsk_restore_sigmask(struct task_struct *task) 523 { 524 return task->restore_sigmask; 525 } 526 static inline bool test_and_clear_restore_sigmask(void) 527 { 528 if (!current->restore_sigmask) 529 return false; 530 current->restore_sigmask = false; 531 return true; 532 } 533 #endif 534 535 static inline void restore_saved_sigmask(void) 536 { 537 if (test_and_clear_restore_sigmask()) 538 __set_current_blocked(¤t->saved_sigmask); 539 } 540 541 extern int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize); 542 543 static inline void restore_saved_sigmask_unless(bool interrupted) 544 { 545 if (interrupted) 546 WARN_ON(!signal_pending(current)); 547 else 548 restore_saved_sigmask(); 549 } 550 551 static inline sigset_t *sigmask_to_save(void) 552 { 553 sigset_t *res = ¤t->blocked; 554 if (unlikely(test_restore_sigmask())) 555 res = ¤t->saved_sigmask; 556 return res; 557 } 558 559 static inline int kill_cad_pid(int sig, int priv) 560 { 561 return kill_pid(cad_pid, sig, priv); 562 } 563 564 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 565 #define SEND_SIG_NOINFO ((struct kernel_siginfo *) 0) 566 #define SEND_SIG_PRIV ((struct kernel_siginfo *) 1) 567 568 static inline int __on_sig_stack(unsigned long sp) 569 { 570 #ifdef CONFIG_STACK_GROWSUP 571 return sp >= current->sas_ss_sp && 572 sp - current->sas_ss_sp < current->sas_ss_size; 573 #else 574 return sp > current->sas_ss_sp && 575 sp - current->sas_ss_sp <= current->sas_ss_size; 576 #endif 577 } 578 579 /* 580 * True if we are on the alternate signal stack. 581 */ 582 static inline int on_sig_stack(unsigned long sp) 583 { 584 /* 585 * If the signal stack is SS_AUTODISARM then, by construction, we 586 * can't be on the signal stack unless user code deliberately set 587 * SS_AUTODISARM when we were already on it. 588 * 589 * This improves reliability: if user state gets corrupted such that 590 * the stack pointer points very close to the end of the signal stack, 591 * then this check will enable the signal to be handled anyway. 592 */ 593 if (current->sas_ss_flags & SS_AUTODISARM) 594 return 0; 595 596 return __on_sig_stack(sp); 597 } 598 599 static inline int sas_ss_flags(unsigned long sp) 600 { 601 if (!current->sas_ss_size) 602 return SS_DISABLE; 603 604 return on_sig_stack(sp) ? SS_ONSTACK : 0; 605 } 606 607 static inline void sas_ss_reset(struct task_struct *p) 608 { 609 p->sas_ss_sp = 0; 610 p->sas_ss_size = 0; 611 p->sas_ss_flags = SS_DISABLE; 612 } 613 614 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig) 615 { 616 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp)) 617 #ifdef CONFIG_STACK_GROWSUP 618 return current->sas_ss_sp; 619 #else 620 return current->sas_ss_sp + current->sas_ss_size; 621 #endif 622 return sp; 623 } 624 625 extern void __cleanup_sighand(struct sighand_struct *); 626 extern void flush_itimer_signals(void); 627 628 #define tasklist_empty() \ 629 list_empty(&init_task.tasks) 630 631 #define next_task(p) \ 632 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 633 634 #define for_each_process(p) \ 635 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 636 637 extern bool current_is_single_threaded(void); 638 639 /* 640 * Without tasklist/siglock it is only rcu-safe if g can't exit/exec, 641 * otherwise next_thread(t) will never reach g after list_del_rcu(g). 642 */ 643 #define while_each_thread(g, t) \ 644 while ((t = next_thread(t)) != g) 645 646 #define for_other_threads(p, t) \ 647 for (t = p; (t = next_thread(t)) != p; ) 648 649 #define __for_each_thread(signal, t) \ 650 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node, \ 651 lockdep_is_held(&tasklist_lock)) 652 653 #define for_each_thread(p, t) \ 654 __for_each_thread((p)->signal, t) 655 656 /* Careful: this is a double loop, 'break' won't work as expected. */ 657 #define for_each_process_thread(p, t) \ 658 for_each_process(p) for_each_thread(p, t) 659 660 typedef int (*proc_visitor)(struct task_struct *p, void *data); 661 void walk_process_tree(struct task_struct *top, proc_visitor, void *); 662 663 static inline 664 struct pid *task_pid_type(struct task_struct *task, enum pid_type type) 665 { 666 struct pid *pid; 667 if (type == PIDTYPE_PID) 668 pid = task_pid(task); 669 else 670 pid = task->signal->pids[type]; 671 return pid; 672 } 673 674 static inline struct pid *task_tgid(struct task_struct *task) 675 { 676 return task->signal->pids[PIDTYPE_TGID]; 677 } 678 679 /* 680 * Without tasklist or RCU lock it is not safe to dereference 681 * the result of task_pgrp/task_session even if task == current, 682 * we can race with another thread doing sys_setsid/sys_setpgid. 683 */ 684 static inline struct pid *task_pgrp(struct task_struct *task) 685 { 686 return task->signal->pids[PIDTYPE_PGID]; 687 } 688 689 static inline struct pid *task_session(struct task_struct *task) 690 { 691 return task->signal->pids[PIDTYPE_SID]; 692 } 693 694 static inline int get_nr_threads(struct task_struct *task) 695 { 696 return task->signal->nr_threads; 697 } 698 699 static inline bool thread_group_leader(struct task_struct *p) 700 { 701 return p->exit_signal >= 0; 702 } 703 704 static inline 705 bool same_thread_group(struct task_struct *p1, struct task_struct *p2) 706 { 707 return p1->signal == p2->signal; 708 } 709 710 /* 711 * returns NULL if p is the last thread in the thread group 712 */ 713 static inline struct task_struct *__next_thread(struct task_struct *p) 714 { 715 return list_next_or_null_rcu(&p->signal->thread_head, 716 &p->thread_node, 717 struct task_struct, 718 thread_node); 719 } 720 721 static inline struct task_struct *next_thread(struct task_struct *p) 722 { 723 return __next_thread(p) ?: p->group_leader; 724 } 725 726 static inline int thread_group_empty(struct task_struct *p) 727 { 728 return thread_group_leader(p) && 729 list_is_last(&p->thread_node, &p->signal->thread_head); 730 } 731 732 #define delay_group_leader(p) \ 733 (thread_group_leader(p) && !thread_group_empty(p)) 734 735 extern struct sighand_struct *__lock_task_sighand(struct task_struct *task, 736 unsigned long *flags); 737 738 static inline struct sighand_struct *lock_task_sighand(struct task_struct *task, 739 unsigned long *flags) 740 { 741 struct sighand_struct *ret; 742 743 ret = __lock_task_sighand(task, flags); 744 (void)__cond_lock(&task->sighand->siglock, ret); 745 return ret; 746 } 747 748 static inline void unlock_task_sighand(struct task_struct *task, 749 unsigned long *flags) 750 { 751 spin_unlock_irqrestore(&task->sighand->siglock, *flags); 752 } 753 754 #ifdef CONFIG_LOCKDEP 755 extern void lockdep_assert_task_sighand_held(struct task_struct *task); 756 #else 757 static inline void lockdep_assert_task_sighand_held(struct task_struct *task) { } 758 #endif 759 760 static inline unsigned long task_rlimit(const struct task_struct *task, 761 unsigned int limit) 762 { 763 return READ_ONCE(task->signal->rlim[limit].rlim_cur); 764 } 765 766 static inline unsigned long task_rlimit_max(const struct task_struct *task, 767 unsigned int limit) 768 { 769 return READ_ONCE(task->signal->rlim[limit].rlim_max); 770 } 771 772 static inline unsigned long rlimit(unsigned int limit) 773 { 774 return task_rlimit(current, limit); 775 } 776 777 static inline unsigned long rlimit_max(unsigned int limit) 778 { 779 return task_rlimit_max(current, limit); 780 } 781 782 #endif /* _LINUX_SCHED_SIGNAL_H */ 783