1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_SCHED_SIGNAL_H 3 #define _LINUX_SCHED_SIGNAL_H 4 5 #include <linux/rculist.h> 6 #include <linux/signal.h> 7 #include <linux/sched.h> 8 #include <linux/sched/jobctl.h> 9 #include <linux/sched/task.h> 10 #include <linux/cred.h> 11 #include <linux/refcount.h> 12 #include <linux/posix-timers.h> 13 #include <linux/mm_types.h> 14 #include <asm/ptrace.h> 15 16 /* 17 * Types defining task->signal and task->sighand and APIs using them: 18 */ 19 20 struct sighand_struct { 21 spinlock_t siglock; 22 refcount_t count; 23 wait_queue_head_t signalfd_wqh; 24 struct k_sigaction action[_NSIG]; 25 }; 26 27 /* 28 * Per-process accounting stats: 29 */ 30 struct pacct_struct { 31 int ac_flag; 32 long ac_exitcode; 33 unsigned long ac_mem; 34 u64 ac_utime, ac_stime; 35 unsigned long ac_minflt, ac_majflt; 36 }; 37 38 struct cpu_itimer { 39 u64 expires; 40 u64 incr; 41 }; 42 43 /* 44 * This is the atomic variant of task_cputime, which can be used for 45 * storing and updating task_cputime statistics without locking. 46 */ 47 struct task_cputime_atomic { 48 atomic64_t utime; 49 atomic64_t stime; 50 atomic64_t sum_exec_runtime; 51 }; 52 53 #define INIT_CPUTIME_ATOMIC \ 54 (struct task_cputime_atomic) { \ 55 .utime = ATOMIC64_INIT(0), \ 56 .stime = ATOMIC64_INIT(0), \ 57 .sum_exec_runtime = ATOMIC64_INIT(0), \ 58 } 59 /** 60 * struct thread_group_cputimer - thread group interval timer counts 61 * @cputime_atomic: atomic thread group interval timers. 62 * 63 * This structure contains the version of task_cputime, above, that is 64 * used for thread group CPU timer calculations. 65 */ 66 struct thread_group_cputimer { 67 struct task_cputime_atomic cputime_atomic; 68 }; 69 70 struct multiprocess_signals { 71 sigset_t signal; 72 struct hlist_node node; 73 }; 74 75 struct core_thread { 76 struct task_struct *task; 77 struct core_thread *next; 78 }; 79 80 struct core_state { 81 atomic_t nr_threads; 82 struct core_thread dumper; 83 struct completion startup; 84 }; 85 86 /* 87 * NOTE! "signal_struct" does not have its own 88 * locking, because a shared signal_struct always 89 * implies a shared sighand_struct, so locking 90 * sighand_struct is always a proper superset of 91 * the locking of signal_struct. 92 */ 93 struct signal_struct { 94 refcount_t sigcnt; 95 atomic_t live; 96 int nr_threads; 97 struct list_head thread_head; 98 99 wait_queue_head_t wait_chldexit; /* for wait4() */ 100 101 /* current thread group signal load-balancing target: */ 102 struct task_struct *curr_target; 103 104 /* shared signal handling: */ 105 struct sigpending shared_pending; 106 107 /* For collecting multiprocess signals during fork */ 108 struct hlist_head multiprocess; 109 110 /* thread group exit support */ 111 int group_exit_code; 112 /* overloaded: 113 * - notify group_exit_task when ->count is equal to notify_count 114 * - everyone except group_exit_task is stopped during signal delivery 115 * of fatal signals, group_exit_task processes the signal. 116 */ 117 int notify_count; 118 struct task_struct *group_exit_task; 119 120 /* thread group stop support, overloads group_exit_code too */ 121 int group_stop_count; 122 unsigned int flags; /* see SIGNAL_* flags below */ 123 124 struct core_state *core_state; /* coredumping support */ 125 126 /* 127 * PR_SET_CHILD_SUBREAPER marks a process, like a service 128 * manager, to re-parent orphan (double-forking) child processes 129 * to this process instead of 'init'. The service manager is 130 * able to receive SIGCHLD signals and is able to investigate 131 * the process until it calls wait(). All children of this 132 * process will inherit a flag if they should look for a 133 * child_subreaper process at exit. 134 */ 135 unsigned int is_child_subreaper:1; 136 unsigned int has_child_subreaper:1; 137 138 #ifdef CONFIG_POSIX_TIMERS 139 140 /* POSIX.1b Interval Timers */ 141 int posix_timer_id; 142 struct list_head posix_timers; 143 144 /* ITIMER_REAL timer for the process */ 145 struct hrtimer real_timer; 146 ktime_t it_real_incr; 147 148 /* 149 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 150 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 151 * values are defined to 0 and 1 respectively 152 */ 153 struct cpu_itimer it[2]; 154 155 /* 156 * Thread group totals for process CPU timers. 157 * See thread_group_cputimer(), et al, for details. 158 */ 159 struct thread_group_cputimer cputimer; 160 161 #endif 162 /* Empty if CONFIG_POSIX_TIMERS=n */ 163 struct posix_cputimers posix_cputimers; 164 165 /* PID/PID hash table linkage. */ 166 struct pid *pids[PIDTYPE_MAX]; 167 168 #ifdef CONFIG_NO_HZ_FULL 169 atomic_t tick_dep_mask; 170 #endif 171 172 struct pid *tty_old_pgrp; 173 174 /* boolean value for session group leader */ 175 int leader; 176 177 struct tty_struct *tty; /* NULL if no tty */ 178 179 #ifdef CONFIG_SCHED_AUTOGROUP 180 struct autogroup *autogroup; 181 #endif 182 /* 183 * Cumulative resource counters for dead threads in the group, 184 * and for reaped dead child processes forked by this group. 185 * Live threads maintain their own counters and add to these 186 * in __exit_signal, except for the group leader. 187 */ 188 seqlock_t stats_lock; 189 u64 utime, stime, cutime, cstime; 190 u64 gtime; 191 u64 cgtime; 192 struct prev_cputime prev_cputime; 193 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 194 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 195 unsigned long inblock, oublock, cinblock, coublock; 196 unsigned long maxrss, cmaxrss; 197 struct task_io_accounting ioac; 198 199 /* 200 * Cumulative ns of schedule CPU time fo dead threads in the 201 * group, not including a zombie group leader, (This only differs 202 * from jiffies_to_ns(utime + stime) if sched_clock uses something 203 * other than jiffies.) 204 */ 205 unsigned long long sum_sched_runtime; 206 207 /* 208 * We don't bother to synchronize most readers of this at all, 209 * because there is no reader checking a limit that actually needs 210 * to get both rlim_cur and rlim_max atomically, and either one 211 * alone is a single word that can safely be read normally. 212 * getrlimit/setrlimit use task_lock(current->group_leader) to 213 * protect this instead of the siglock, because they really 214 * have no need to disable irqs. 215 */ 216 struct rlimit rlim[RLIM_NLIMITS]; 217 218 #ifdef CONFIG_BSD_PROCESS_ACCT 219 struct pacct_struct pacct; /* per-process accounting information */ 220 #endif 221 #ifdef CONFIG_TASKSTATS 222 struct taskstats *stats; 223 #endif 224 #ifdef CONFIG_AUDIT 225 unsigned audit_tty; 226 struct tty_audit_buf *tty_audit_buf; 227 #endif 228 229 /* 230 * Thread is the potential origin of an oom condition; kill first on 231 * oom 232 */ 233 bool oom_flag_origin; 234 short oom_score_adj; /* OOM kill score adjustment */ 235 short oom_score_adj_min; /* OOM kill score adjustment min value. 236 * Only settable by CAP_SYS_RESOURCE. */ 237 struct mm_struct *oom_mm; /* recorded mm when the thread group got 238 * killed by the oom killer */ 239 240 struct mutex cred_guard_mutex; /* guard against foreign influences on 241 * credential calculations 242 * (notably. ptrace) 243 * Deprecated do not use in new code. 244 * Use exec_update_lock instead. 245 */ 246 struct rw_semaphore exec_update_lock; /* Held while task_struct is 247 * being updated during exec, 248 * and may have inconsistent 249 * permissions. 250 */ 251 } __randomize_layout; 252 253 /* 254 * Bits in flags field of signal_struct. 255 */ 256 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 257 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ 258 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ 259 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */ 260 /* 261 * Pending notifications to parent. 262 */ 263 #define SIGNAL_CLD_STOPPED 0x00000010 264 #define SIGNAL_CLD_CONTINUED 0x00000020 265 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 266 267 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 268 269 #define SIGNAL_STOP_MASK (SIGNAL_CLD_MASK | SIGNAL_STOP_STOPPED | \ 270 SIGNAL_STOP_CONTINUED) 271 272 static inline void signal_set_stop_flags(struct signal_struct *sig, 273 unsigned int flags) 274 { 275 WARN_ON(sig->flags & (SIGNAL_GROUP_EXIT|SIGNAL_GROUP_COREDUMP)); 276 sig->flags = (sig->flags & ~SIGNAL_STOP_MASK) | flags; 277 } 278 279 /* If true, all threads except ->group_exit_task have pending SIGKILL */ 280 static inline int signal_group_exit(const struct signal_struct *sig) 281 { 282 return (sig->flags & SIGNAL_GROUP_EXIT) || 283 (sig->group_exit_task != NULL); 284 } 285 286 extern void flush_signals(struct task_struct *); 287 extern void ignore_signals(struct task_struct *); 288 extern void flush_signal_handlers(struct task_struct *, int force_default); 289 extern int dequeue_signal(struct task_struct *task, 290 sigset_t *mask, kernel_siginfo_t *info); 291 292 static inline int kernel_dequeue_signal(void) 293 { 294 struct task_struct *task = current; 295 kernel_siginfo_t __info; 296 int ret; 297 298 spin_lock_irq(&task->sighand->siglock); 299 ret = dequeue_signal(task, &task->blocked, &__info); 300 spin_unlock_irq(&task->sighand->siglock); 301 302 return ret; 303 } 304 305 static inline void kernel_signal_stop(void) 306 { 307 spin_lock_irq(¤t->sighand->siglock); 308 if (current->jobctl & JOBCTL_STOP_DEQUEUED) 309 set_special_state(TASK_STOPPED); 310 spin_unlock_irq(¤t->sighand->siglock); 311 312 schedule(); 313 } 314 #ifdef __ia64__ 315 # define ___ARCH_SI_IA64(_a1, _a2, _a3) , _a1, _a2, _a3 316 #else 317 # define ___ARCH_SI_IA64(_a1, _a2, _a3) 318 #endif 319 320 int force_sig_fault_to_task(int sig, int code, void __user *addr 321 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 322 , struct task_struct *t); 323 int force_sig_fault(int sig, int code, void __user *addr 324 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)); 325 int send_sig_fault(int sig, int code, void __user *addr 326 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 327 , struct task_struct *t); 328 329 int force_sig_mceerr(int code, void __user *, short); 330 int send_sig_mceerr(int code, void __user *, short, struct task_struct *); 331 332 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper); 333 int force_sig_pkuerr(void __user *addr, u32 pkey); 334 int force_sig_perf(void __user *addr, u32 type, u64 sig_data); 335 336 int force_sig_ptrace_errno_trap(int errno, void __user *addr); 337 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno); 338 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno, 339 struct task_struct *t); 340 int force_sig_seccomp(int syscall, int reason, bool force_coredump); 341 342 extern int send_sig_info(int, struct kernel_siginfo *, struct task_struct *); 343 extern void force_sigsegv(int sig); 344 extern int force_sig_info(struct kernel_siginfo *); 345 extern int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp); 346 extern int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid); 347 extern int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, struct pid *, 348 const struct cred *); 349 extern int kill_pgrp(struct pid *pid, int sig, int priv); 350 extern int kill_pid(struct pid *pid, int sig, int priv); 351 extern __must_check bool do_notify_parent(struct task_struct *, int); 352 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 353 extern void force_sig(int); 354 extern int send_sig(int, struct task_struct *, int); 355 extern int zap_other_threads(struct task_struct *p); 356 extern struct sigqueue *sigqueue_alloc(void); 357 extern void sigqueue_free(struct sigqueue *); 358 extern int send_sigqueue(struct sigqueue *, struct pid *, enum pid_type); 359 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 360 361 static inline int restart_syscall(void) 362 { 363 set_tsk_thread_flag(current, TIF_SIGPENDING); 364 return -ERESTARTNOINTR; 365 } 366 367 static inline int task_sigpending(struct task_struct *p) 368 { 369 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 370 } 371 372 static inline int signal_pending(struct task_struct *p) 373 { 374 /* 375 * TIF_NOTIFY_SIGNAL isn't really a signal, but it requires the same 376 * behavior in terms of ensuring that we break out of wait loops 377 * so that notify signal callbacks can be processed. 378 */ 379 if (unlikely(test_tsk_thread_flag(p, TIF_NOTIFY_SIGNAL))) 380 return 1; 381 return task_sigpending(p); 382 } 383 384 static inline int __fatal_signal_pending(struct task_struct *p) 385 { 386 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 387 } 388 389 static inline int fatal_signal_pending(struct task_struct *p) 390 { 391 return task_sigpending(p) && __fatal_signal_pending(p); 392 } 393 394 static inline int signal_pending_state(unsigned int state, struct task_struct *p) 395 { 396 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 397 return 0; 398 if (!signal_pending(p)) 399 return 0; 400 401 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 402 } 403 404 /* 405 * This should only be used in fault handlers to decide whether we 406 * should stop the current fault routine to handle the signals 407 * instead, especially with the case where we've got interrupted with 408 * a VM_FAULT_RETRY. 409 */ 410 static inline bool fault_signal_pending(vm_fault_t fault_flags, 411 struct pt_regs *regs) 412 { 413 return unlikely((fault_flags & VM_FAULT_RETRY) && 414 (fatal_signal_pending(current) || 415 (user_mode(regs) && signal_pending(current)))); 416 } 417 418 /* 419 * Reevaluate whether the task has signals pending delivery. 420 * Wake the task if so. 421 * This is required every time the blocked sigset_t changes. 422 * callers must hold sighand->siglock. 423 */ 424 extern void recalc_sigpending_and_wake(struct task_struct *t); 425 extern void recalc_sigpending(void); 426 extern void calculate_sigpending(void); 427 428 extern void signal_wake_up_state(struct task_struct *t, unsigned int state); 429 430 static inline void signal_wake_up(struct task_struct *t, bool resume) 431 { 432 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0); 433 } 434 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume) 435 { 436 signal_wake_up_state(t, resume ? __TASK_TRACED : 0); 437 } 438 439 void task_join_group_stop(struct task_struct *task); 440 441 #ifdef TIF_RESTORE_SIGMASK 442 /* 443 * Legacy restore_sigmask accessors. These are inefficient on 444 * SMP architectures because they require atomic operations. 445 */ 446 447 /** 448 * set_restore_sigmask() - make sure saved_sigmask processing gets done 449 * 450 * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code 451 * will run before returning to user mode, to process the flag. For 452 * all callers, TIF_SIGPENDING is already set or it's no harm to set 453 * it. TIF_RESTORE_SIGMASK need not be in the set of bits that the 454 * arch code will notice on return to user mode, in case those bits 455 * are scarce. We set TIF_SIGPENDING here to ensure that the arch 456 * signal code always gets run when TIF_RESTORE_SIGMASK is set. 457 */ 458 static inline void set_restore_sigmask(void) 459 { 460 set_thread_flag(TIF_RESTORE_SIGMASK); 461 } 462 463 static inline void clear_tsk_restore_sigmask(struct task_struct *task) 464 { 465 clear_tsk_thread_flag(task, TIF_RESTORE_SIGMASK); 466 } 467 468 static inline void clear_restore_sigmask(void) 469 { 470 clear_thread_flag(TIF_RESTORE_SIGMASK); 471 } 472 static inline bool test_tsk_restore_sigmask(struct task_struct *task) 473 { 474 return test_tsk_thread_flag(task, TIF_RESTORE_SIGMASK); 475 } 476 static inline bool test_restore_sigmask(void) 477 { 478 return test_thread_flag(TIF_RESTORE_SIGMASK); 479 } 480 static inline bool test_and_clear_restore_sigmask(void) 481 { 482 return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK); 483 } 484 485 #else /* TIF_RESTORE_SIGMASK */ 486 487 /* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */ 488 static inline void set_restore_sigmask(void) 489 { 490 current->restore_sigmask = true; 491 } 492 static inline void clear_tsk_restore_sigmask(struct task_struct *task) 493 { 494 task->restore_sigmask = false; 495 } 496 static inline void clear_restore_sigmask(void) 497 { 498 current->restore_sigmask = false; 499 } 500 static inline bool test_restore_sigmask(void) 501 { 502 return current->restore_sigmask; 503 } 504 static inline bool test_tsk_restore_sigmask(struct task_struct *task) 505 { 506 return task->restore_sigmask; 507 } 508 static inline bool test_and_clear_restore_sigmask(void) 509 { 510 if (!current->restore_sigmask) 511 return false; 512 current->restore_sigmask = false; 513 return true; 514 } 515 #endif 516 517 static inline void restore_saved_sigmask(void) 518 { 519 if (test_and_clear_restore_sigmask()) 520 __set_current_blocked(¤t->saved_sigmask); 521 } 522 523 extern int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize); 524 525 static inline void restore_saved_sigmask_unless(bool interrupted) 526 { 527 if (interrupted) 528 WARN_ON(!signal_pending(current)); 529 else 530 restore_saved_sigmask(); 531 } 532 533 static inline sigset_t *sigmask_to_save(void) 534 { 535 sigset_t *res = ¤t->blocked; 536 if (unlikely(test_restore_sigmask())) 537 res = ¤t->saved_sigmask; 538 return res; 539 } 540 541 static inline int kill_cad_pid(int sig, int priv) 542 { 543 return kill_pid(cad_pid, sig, priv); 544 } 545 546 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 547 #define SEND_SIG_NOINFO ((struct kernel_siginfo *) 0) 548 #define SEND_SIG_PRIV ((struct kernel_siginfo *) 1) 549 550 static inline int __on_sig_stack(unsigned long sp) 551 { 552 #ifdef CONFIG_STACK_GROWSUP 553 return sp >= current->sas_ss_sp && 554 sp - current->sas_ss_sp < current->sas_ss_size; 555 #else 556 return sp > current->sas_ss_sp && 557 sp - current->sas_ss_sp <= current->sas_ss_size; 558 #endif 559 } 560 561 /* 562 * True if we are on the alternate signal stack. 563 */ 564 static inline int on_sig_stack(unsigned long sp) 565 { 566 /* 567 * If the signal stack is SS_AUTODISARM then, by construction, we 568 * can't be on the signal stack unless user code deliberately set 569 * SS_AUTODISARM when we were already on it. 570 * 571 * This improves reliability: if user state gets corrupted such that 572 * the stack pointer points very close to the end of the signal stack, 573 * then this check will enable the signal to be handled anyway. 574 */ 575 if (current->sas_ss_flags & SS_AUTODISARM) 576 return 0; 577 578 return __on_sig_stack(sp); 579 } 580 581 static inline int sas_ss_flags(unsigned long sp) 582 { 583 if (!current->sas_ss_size) 584 return SS_DISABLE; 585 586 return on_sig_stack(sp) ? SS_ONSTACK : 0; 587 } 588 589 static inline void sas_ss_reset(struct task_struct *p) 590 { 591 p->sas_ss_sp = 0; 592 p->sas_ss_size = 0; 593 p->sas_ss_flags = SS_DISABLE; 594 } 595 596 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig) 597 { 598 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp)) 599 #ifdef CONFIG_STACK_GROWSUP 600 return current->sas_ss_sp; 601 #else 602 return current->sas_ss_sp + current->sas_ss_size; 603 #endif 604 return sp; 605 } 606 607 extern void __cleanup_sighand(struct sighand_struct *); 608 extern void flush_itimer_signals(void); 609 610 #define tasklist_empty() \ 611 list_empty(&init_task.tasks) 612 613 #define next_task(p) \ 614 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 615 616 #define for_each_process(p) \ 617 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 618 619 extern bool current_is_single_threaded(void); 620 621 /* 622 * Careful: do_each_thread/while_each_thread is a double loop so 623 * 'break' will not work as expected - use goto instead. 624 */ 625 #define do_each_thread(g, t) \ 626 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 627 628 #define while_each_thread(g, t) \ 629 while ((t = next_thread(t)) != g) 630 631 #define __for_each_thread(signal, t) \ 632 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node) 633 634 #define for_each_thread(p, t) \ 635 __for_each_thread((p)->signal, t) 636 637 /* Careful: this is a double loop, 'break' won't work as expected. */ 638 #define for_each_process_thread(p, t) \ 639 for_each_process(p) for_each_thread(p, t) 640 641 typedef int (*proc_visitor)(struct task_struct *p, void *data); 642 void walk_process_tree(struct task_struct *top, proc_visitor, void *); 643 644 static inline 645 struct pid *task_pid_type(struct task_struct *task, enum pid_type type) 646 { 647 struct pid *pid; 648 if (type == PIDTYPE_PID) 649 pid = task_pid(task); 650 else 651 pid = task->signal->pids[type]; 652 return pid; 653 } 654 655 static inline struct pid *task_tgid(struct task_struct *task) 656 { 657 return task->signal->pids[PIDTYPE_TGID]; 658 } 659 660 /* 661 * Without tasklist or RCU lock it is not safe to dereference 662 * the result of task_pgrp/task_session even if task == current, 663 * we can race with another thread doing sys_setsid/sys_setpgid. 664 */ 665 static inline struct pid *task_pgrp(struct task_struct *task) 666 { 667 return task->signal->pids[PIDTYPE_PGID]; 668 } 669 670 static inline struct pid *task_session(struct task_struct *task) 671 { 672 return task->signal->pids[PIDTYPE_SID]; 673 } 674 675 static inline int get_nr_threads(struct task_struct *task) 676 { 677 return task->signal->nr_threads; 678 } 679 680 static inline bool thread_group_leader(struct task_struct *p) 681 { 682 return p->exit_signal >= 0; 683 } 684 685 static inline 686 bool same_thread_group(struct task_struct *p1, struct task_struct *p2) 687 { 688 return p1->signal == p2->signal; 689 } 690 691 static inline struct task_struct *next_thread(const struct task_struct *p) 692 { 693 return list_entry_rcu(p->thread_group.next, 694 struct task_struct, thread_group); 695 } 696 697 static inline int thread_group_empty(struct task_struct *p) 698 { 699 return list_empty(&p->thread_group); 700 } 701 702 #define delay_group_leader(p) \ 703 (thread_group_leader(p) && !thread_group_empty(p)) 704 705 extern bool thread_group_exited(struct pid *pid); 706 707 extern struct sighand_struct *__lock_task_sighand(struct task_struct *task, 708 unsigned long *flags); 709 710 static inline struct sighand_struct *lock_task_sighand(struct task_struct *task, 711 unsigned long *flags) 712 { 713 struct sighand_struct *ret; 714 715 ret = __lock_task_sighand(task, flags); 716 (void)__cond_lock(&task->sighand->siglock, ret); 717 return ret; 718 } 719 720 static inline void unlock_task_sighand(struct task_struct *task, 721 unsigned long *flags) 722 { 723 spin_unlock_irqrestore(&task->sighand->siglock, *flags); 724 } 725 726 #ifdef CONFIG_LOCKDEP 727 extern void lockdep_assert_task_sighand_held(struct task_struct *task); 728 #else 729 static inline void lockdep_assert_task_sighand_held(struct task_struct *task) { } 730 #endif 731 732 static inline unsigned long task_rlimit(const struct task_struct *task, 733 unsigned int limit) 734 { 735 return READ_ONCE(task->signal->rlim[limit].rlim_cur); 736 } 737 738 static inline unsigned long task_rlimit_max(const struct task_struct *task, 739 unsigned int limit) 740 { 741 return READ_ONCE(task->signal->rlim[limit].rlim_max); 742 } 743 744 static inline unsigned long rlimit(unsigned int limit) 745 { 746 return task_rlimit(current, limit); 747 } 748 749 static inline unsigned long rlimit_max(unsigned int limit) 750 { 751 return task_rlimit_max(current, limit); 752 } 753 754 #endif /* _LINUX_SCHED_SIGNAL_H */ 755