xref: /linux/include/linux/sched/signal.h (revision d9c5252295218df4cfe64353aa860d7b5c8700ef)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_SIGNAL_H
3 #define _LINUX_SCHED_SIGNAL_H
4 
5 #include <linux/rculist.h>
6 #include <linux/signal.h>
7 #include <linux/sched.h>
8 #include <linux/sched/jobctl.h>
9 #include <linux/sched/task.h>
10 #include <linux/cred.h>
11 #include <linux/refcount.h>
12 
13 /*
14  * Types defining task->signal and task->sighand and APIs using them:
15  */
16 
17 struct sighand_struct {
18 	spinlock_t		siglock;
19 	refcount_t		count;
20 	wait_queue_head_t	signalfd_wqh;
21 	struct k_sigaction	action[_NSIG];
22 };
23 
24 /*
25  * Per-process accounting stats:
26  */
27 struct pacct_struct {
28 	int			ac_flag;
29 	long			ac_exitcode;
30 	unsigned long		ac_mem;
31 	u64			ac_utime, ac_stime;
32 	unsigned long		ac_minflt, ac_majflt;
33 };
34 
35 struct cpu_itimer {
36 	u64 expires;
37 	u64 incr;
38 };
39 
40 /*
41  * This is the atomic variant of task_cputime, which can be used for
42  * storing and updating task_cputime statistics without locking.
43  */
44 struct task_cputime_atomic {
45 	atomic64_t utime;
46 	atomic64_t stime;
47 	atomic64_t sum_exec_runtime;
48 };
49 
50 #define INIT_CPUTIME_ATOMIC \
51 	(struct task_cputime_atomic) {				\
52 		.utime = ATOMIC64_INIT(0),			\
53 		.stime = ATOMIC64_INIT(0),			\
54 		.sum_exec_runtime = ATOMIC64_INIT(0),		\
55 	}
56 /**
57  * struct thread_group_cputimer - thread group interval timer counts
58  * @cputime_atomic:	atomic thread group interval timers.
59  * @running:		true when there are timers running and
60  *			@cputime_atomic receives updates.
61  * @checking_timer:	true when a thread in the group is in the
62  *			process of checking for thread group timers.
63  *
64  * This structure contains the version of task_cputime, above, that is
65  * used for thread group CPU timer calculations.
66  */
67 struct thread_group_cputimer {
68 	struct task_cputime_atomic cputime_atomic;
69 	bool running;
70 	bool checking_timer;
71 };
72 
73 struct multiprocess_signals {
74 	sigset_t signal;
75 	struct hlist_node node;
76 };
77 
78 /*
79  * NOTE! "signal_struct" does not have its own
80  * locking, because a shared signal_struct always
81  * implies a shared sighand_struct, so locking
82  * sighand_struct is always a proper superset of
83  * the locking of signal_struct.
84  */
85 struct signal_struct {
86 	refcount_t		sigcnt;
87 	atomic_t		live;
88 	int			nr_threads;
89 	struct list_head	thread_head;
90 
91 	wait_queue_head_t	wait_chldexit;	/* for wait4() */
92 
93 	/* current thread group signal load-balancing target: */
94 	struct task_struct	*curr_target;
95 
96 	/* shared signal handling: */
97 	struct sigpending	shared_pending;
98 
99 	/* For collecting multiprocess signals during fork */
100 	struct hlist_head	multiprocess;
101 
102 	/* thread group exit support */
103 	int			group_exit_code;
104 	/* overloaded:
105 	 * - notify group_exit_task when ->count is equal to notify_count
106 	 * - everyone except group_exit_task is stopped during signal delivery
107 	 *   of fatal signals, group_exit_task processes the signal.
108 	 */
109 	int			notify_count;
110 	struct task_struct	*group_exit_task;
111 
112 	/* thread group stop support, overloads group_exit_code too */
113 	int			group_stop_count;
114 	unsigned int		flags; /* see SIGNAL_* flags below */
115 
116 	/*
117 	 * PR_SET_CHILD_SUBREAPER marks a process, like a service
118 	 * manager, to re-parent orphan (double-forking) child processes
119 	 * to this process instead of 'init'. The service manager is
120 	 * able to receive SIGCHLD signals and is able to investigate
121 	 * the process until it calls wait(). All children of this
122 	 * process will inherit a flag if they should look for a
123 	 * child_subreaper process at exit.
124 	 */
125 	unsigned int		is_child_subreaper:1;
126 	unsigned int		has_child_subreaper:1;
127 
128 #ifdef CONFIG_POSIX_TIMERS
129 
130 	/* POSIX.1b Interval Timers */
131 	int			posix_timer_id;
132 	struct list_head	posix_timers;
133 
134 	/* ITIMER_REAL timer for the process */
135 	struct hrtimer real_timer;
136 	ktime_t it_real_incr;
137 
138 	/*
139 	 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
140 	 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
141 	 * values are defined to 0 and 1 respectively
142 	 */
143 	struct cpu_itimer it[2];
144 
145 	/*
146 	 * Thread group totals for process CPU timers.
147 	 * See thread_group_cputimer(), et al, for details.
148 	 */
149 	struct thread_group_cputimer cputimer;
150 
151 	/* Earliest-expiration cache. */
152 	struct task_cputime cputime_expires;
153 
154 	struct list_head cpu_timers[3];
155 
156 #endif
157 
158 	/* PID/PID hash table linkage. */
159 	struct pid *pids[PIDTYPE_MAX];
160 
161 #ifdef CONFIG_NO_HZ_FULL
162 	atomic_t tick_dep_mask;
163 #endif
164 
165 	struct pid *tty_old_pgrp;
166 
167 	/* boolean value for session group leader */
168 	int leader;
169 
170 	struct tty_struct *tty; /* NULL if no tty */
171 
172 #ifdef CONFIG_SCHED_AUTOGROUP
173 	struct autogroup *autogroup;
174 #endif
175 	/*
176 	 * Cumulative resource counters for dead threads in the group,
177 	 * and for reaped dead child processes forked by this group.
178 	 * Live threads maintain their own counters and add to these
179 	 * in __exit_signal, except for the group leader.
180 	 */
181 	seqlock_t stats_lock;
182 	u64 utime, stime, cutime, cstime;
183 	u64 gtime;
184 	u64 cgtime;
185 	struct prev_cputime prev_cputime;
186 	unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
187 	unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
188 	unsigned long inblock, oublock, cinblock, coublock;
189 	unsigned long maxrss, cmaxrss;
190 	struct task_io_accounting ioac;
191 
192 	/*
193 	 * Cumulative ns of schedule CPU time fo dead threads in the
194 	 * group, not including a zombie group leader, (This only differs
195 	 * from jiffies_to_ns(utime + stime) if sched_clock uses something
196 	 * other than jiffies.)
197 	 */
198 	unsigned long long sum_sched_runtime;
199 
200 	/*
201 	 * We don't bother to synchronize most readers of this at all,
202 	 * because there is no reader checking a limit that actually needs
203 	 * to get both rlim_cur and rlim_max atomically, and either one
204 	 * alone is a single word that can safely be read normally.
205 	 * getrlimit/setrlimit use task_lock(current->group_leader) to
206 	 * protect this instead of the siglock, because they really
207 	 * have no need to disable irqs.
208 	 */
209 	struct rlimit rlim[RLIM_NLIMITS];
210 
211 #ifdef CONFIG_BSD_PROCESS_ACCT
212 	struct pacct_struct pacct;	/* per-process accounting information */
213 #endif
214 #ifdef CONFIG_TASKSTATS
215 	struct taskstats *stats;
216 #endif
217 #ifdef CONFIG_AUDIT
218 	unsigned audit_tty;
219 	struct tty_audit_buf *tty_audit_buf;
220 #endif
221 
222 	/*
223 	 * Thread is the potential origin of an oom condition; kill first on
224 	 * oom
225 	 */
226 	bool oom_flag_origin;
227 	short oom_score_adj;		/* OOM kill score adjustment */
228 	short oom_score_adj_min;	/* OOM kill score adjustment min value.
229 					 * Only settable by CAP_SYS_RESOURCE. */
230 	struct mm_struct *oom_mm;	/* recorded mm when the thread group got
231 					 * killed by the oom killer */
232 
233 	struct mutex cred_guard_mutex;	/* guard against foreign influences on
234 					 * credential calculations
235 					 * (notably. ptrace) */
236 } __randomize_layout;
237 
238 /*
239  * Bits in flags field of signal_struct.
240  */
241 #define SIGNAL_STOP_STOPPED	0x00000001 /* job control stop in effect */
242 #define SIGNAL_STOP_CONTINUED	0x00000002 /* SIGCONT since WCONTINUED reap */
243 #define SIGNAL_GROUP_EXIT	0x00000004 /* group exit in progress */
244 #define SIGNAL_GROUP_COREDUMP	0x00000008 /* coredump in progress */
245 /*
246  * Pending notifications to parent.
247  */
248 #define SIGNAL_CLD_STOPPED	0x00000010
249 #define SIGNAL_CLD_CONTINUED	0x00000020
250 #define SIGNAL_CLD_MASK		(SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
251 
252 #define SIGNAL_UNKILLABLE	0x00000040 /* for init: ignore fatal signals */
253 
254 #define SIGNAL_STOP_MASK (SIGNAL_CLD_MASK | SIGNAL_STOP_STOPPED | \
255 			  SIGNAL_STOP_CONTINUED)
256 
257 static inline void signal_set_stop_flags(struct signal_struct *sig,
258 					 unsigned int flags)
259 {
260 	WARN_ON(sig->flags & (SIGNAL_GROUP_EXIT|SIGNAL_GROUP_COREDUMP));
261 	sig->flags = (sig->flags & ~SIGNAL_STOP_MASK) | flags;
262 }
263 
264 /* If true, all threads except ->group_exit_task have pending SIGKILL */
265 static inline int signal_group_exit(const struct signal_struct *sig)
266 {
267 	return	(sig->flags & SIGNAL_GROUP_EXIT) ||
268 		(sig->group_exit_task != NULL);
269 }
270 
271 extern void flush_signals(struct task_struct *);
272 extern void ignore_signals(struct task_struct *);
273 extern void flush_signal_handlers(struct task_struct *, int force_default);
274 extern int dequeue_signal(struct task_struct *task,
275 			  sigset_t *mask, kernel_siginfo_t *info);
276 
277 static inline int kernel_dequeue_signal(void)
278 {
279 	struct task_struct *task = current;
280 	kernel_siginfo_t __info;
281 	int ret;
282 
283 	spin_lock_irq(&task->sighand->siglock);
284 	ret = dequeue_signal(task, &task->blocked, &__info);
285 	spin_unlock_irq(&task->sighand->siglock);
286 
287 	return ret;
288 }
289 
290 static inline void kernel_signal_stop(void)
291 {
292 	spin_lock_irq(&current->sighand->siglock);
293 	if (current->jobctl & JOBCTL_STOP_DEQUEUED)
294 		set_special_state(TASK_STOPPED);
295 	spin_unlock_irq(&current->sighand->siglock);
296 
297 	schedule();
298 }
299 #ifdef __ARCH_SI_TRAPNO
300 # define ___ARCH_SI_TRAPNO(_a1) , _a1
301 #else
302 # define ___ARCH_SI_TRAPNO(_a1)
303 #endif
304 #ifdef __ia64__
305 # define ___ARCH_SI_IA64(_a1, _a2, _a3) , _a1, _a2, _a3
306 #else
307 # define ___ARCH_SI_IA64(_a1, _a2, _a3)
308 #endif
309 
310 int force_sig_fault_to_task(int sig, int code, void __user *addr
311 	___ARCH_SI_TRAPNO(int trapno)
312 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
313 	, struct task_struct *t);
314 int force_sig_fault(int sig, int code, void __user *addr
315 	___ARCH_SI_TRAPNO(int trapno)
316 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr));
317 int send_sig_fault(int sig, int code, void __user *addr
318 	___ARCH_SI_TRAPNO(int trapno)
319 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
320 	, struct task_struct *t);
321 
322 int force_sig_mceerr(int code, void __user *, short);
323 int send_sig_mceerr(int code, void __user *, short, struct task_struct *);
324 
325 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper);
326 int force_sig_pkuerr(void __user *addr, u32 pkey);
327 
328 int force_sig_ptrace_errno_trap(int errno, void __user *addr);
329 
330 extern int send_sig_info(int, struct kernel_siginfo *, struct task_struct *);
331 extern void force_sigsegv(int sig);
332 extern int force_sig_info(struct kernel_siginfo *);
333 extern int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp);
334 extern int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid);
335 extern int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, struct pid *,
336 				const struct cred *);
337 extern int kill_pgrp(struct pid *pid, int sig, int priv);
338 extern int kill_pid(struct pid *pid, int sig, int priv);
339 extern __must_check bool do_notify_parent(struct task_struct *, int);
340 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
341 extern void force_sig(int);
342 extern int send_sig(int, struct task_struct *, int);
343 extern int zap_other_threads(struct task_struct *p);
344 extern struct sigqueue *sigqueue_alloc(void);
345 extern void sigqueue_free(struct sigqueue *);
346 extern int send_sigqueue(struct sigqueue *, struct pid *, enum pid_type);
347 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
348 
349 static inline int restart_syscall(void)
350 {
351 	set_tsk_thread_flag(current, TIF_SIGPENDING);
352 	return -ERESTARTNOINTR;
353 }
354 
355 static inline int signal_pending(struct task_struct *p)
356 {
357 	return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
358 }
359 
360 static inline int __fatal_signal_pending(struct task_struct *p)
361 {
362 	return unlikely(sigismember(&p->pending.signal, SIGKILL));
363 }
364 
365 static inline int fatal_signal_pending(struct task_struct *p)
366 {
367 	return signal_pending(p) && __fatal_signal_pending(p);
368 }
369 
370 static inline int signal_pending_state(long state, struct task_struct *p)
371 {
372 	if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
373 		return 0;
374 	if (!signal_pending(p))
375 		return 0;
376 
377 	return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
378 }
379 
380 /*
381  * Reevaluate whether the task has signals pending delivery.
382  * Wake the task if so.
383  * This is required every time the blocked sigset_t changes.
384  * callers must hold sighand->siglock.
385  */
386 extern void recalc_sigpending_and_wake(struct task_struct *t);
387 extern void recalc_sigpending(void);
388 extern void calculate_sigpending(void);
389 
390 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
391 
392 static inline void signal_wake_up(struct task_struct *t, bool resume)
393 {
394 	signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
395 }
396 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
397 {
398 	signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
399 }
400 
401 void task_join_group_stop(struct task_struct *task);
402 
403 #ifdef TIF_RESTORE_SIGMASK
404 /*
405  * Legacy restore_sigmask accessors.  These are inefficient on
406  * SMP architectures because they require atomic operations.
407  */
408 
409 /**
410  * set_restore_sigmask() - make sure saved_sigmask processing gets done
411  *
412  * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code
413  * will run before returning to user mode, to process the flag.  For
414  * all callers, TIF_SIGPENDING is already set or it's no harm to set
415  * it.  TIF_RESTORE_SIGMASK need not be in the set of bits that the
416  * arch code will notice on return to user mode, in case those bits
417  * are scarce.  We set TIF_SIGPENDING here to ensure that the arch
418  * signal code always gets run when TIF_RESTORE_SIGMASK is set.
419  */
420 static inline void set_restore_sigmask(void)
421 {
422 	set_thread_flag(TIF_RESTORE_SIGMASK);
423 }
424 
425 static inline void clear_tsk_restore_sigmask(struct task_struct *task)
426 {
427 	clear_tsk_thread_flag(task, TIF_RESTORE_SIGMASK);
428 }
429 
430 static inline void clear_restore_sigmask(void)
431 {
432 	clear_thread_flag(TIF_RESTORE_SIGMASK);
433 }
434 static inline bool test_tsk_restore_sigmask(struct task_struct *task)
435 {
436 	return test_tsk_thread_flag(task, TIF_RESTORE_SIGMASK);
437 }
438 static inline bool test_restore_sigmask(void)
439 {
440 	return test_thread_flag(TIF_RESTORE_SIGMASK);
441 }
442 static inline bool test_and_clear_restore_sigmask(void)
443 {
444 	return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK);
445 }
446 
447 #else	/* TIF_RESTORE_SIGMASK */
448 
449 /* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */
450 static inline void set_restore_sigmask(void)
451 {
452 	current->restore_sigmask = true;
453 }
454 static inline void clear_tsk_restore_sigmask(struct task_struct *task)
455 {
456 	task->restore_sigmask = false;
457 }
458 static inline void clear_restore_sigmask(void)
459 {
460 	current->restore_sigmask = false;
461 }
462 static inline bool test_restore_sigmask(void)
463 {
464 	return current->restore_sigmask;
465 }
466 static inline bool test_tsk_restore_sigmask(struct task_struct *task)
467 {
468 	return task->restore_sigmask;
469 }
470 static inline bool test_and_clear_restore_sigmask(void)
471 {
472 	if (!current->restore_sigmask)
473 		return false;
474 	current->restore_sigmask = false;
475 	return true;
476 }
477 #endif
478 
479 static inline void restore_saved_sigmask(void)
480 {
481 	if (test_and_clear_restore_sigmask())
482 		__set_current_blocked(&current->saved_sigmask);
483 }
484 
485 extern int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize);
486 
487 static inline void restore_saved_sigmask_unless(bool interrupted)
488 {
489 	if (interrupted)
490 		WARN_ON(!test_thread_flag(TIF_SIGPENDING));
491 	else
492 		restore_saved_sigmask();
493 }
494 
495 static inline sigset_t *sigmask_to_save(void)
496 {
497 	sigset_t *res = &current->blocked;
498 	if (unlikely(test_restore_sigmask()))
499 		res = &current->saved_sigmask;
500 	return res;
501 }
502 
503 static inline int kill_cad_pid(int sig, int priv)
504 {
505 	return kill_pid(cad_pid, sig, priv);
506 }
507 
508 /* These can be the second arg to send_sig_info/send_group_sig_info.  */
509 #define SEND_SIG_NOINFO ((struct kernel_siginfo *) 0)
510 #define SEND_SIG_PRIV	((struct kernel_siginfo *) 1)
511 
512 /*
513  * True if we are on the alternate signal stack.
514  */
515 static inline int on_sig_stack(unsigned long sp)
516 {
517 	/*
518 	 * If the signal stack is SS_AUTODISARM then, by construction, we
519 	 * can't be on the signal stack unless user code deliberately set
520 	 * SS_AUTODISARM when we were already on it.
521 	 *
522 	 * This improves reliability: if user state gets corrupted such that
523 	 * the stack pointer points very close to the end of the signal stack,
524 	 * then this check will enable the signal to be handled anyway.
525 	 */
526 	if (current->sas_ss_flags & SS_AUTODISARM)
527 		return 0;
528 
529 #ifdef CONFIG_STACK_GROWSUP
530 	return sp >= current->sas_ss_sp &&
531 		sp - current->sas_ss_sp < current->sas_ss_size;
532 #else
533 	return sp > current->sas_ss_sp &&
534 		sp - current->sas_ss_sp <= current->sas_ss_size;
535 #endif
536 }
537 
538 static inline int sas_ss_flags(unsigned long sp)
539 {
540 	if (!current->sas_ss_size)
541 		return SS_DISABLE;
542 
543 	return on_sig_stack(sp) ? SS_ONSTACK : 0;
544 }
545 
546 static inline void sas_ss_reset(struct task_struct *p)
547 {
548 	p->sas_ss_sp = 0;
549 	p->sas_ss_size = 0;
550 	p->sas_ss_flags = SS_DISABLE;
551 }
552 
553 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
554 {
555 	if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
556 #ifdef CONFIG_STACK_GROWSUP
557 		return current->sas_ss_sp;
558 #else
559 		return current->sas_ss_sp + current->sas_ss_size;
560 #endif
561 	return sp;
562 }
563 
564 extern void __cleanup_sighand(struct sighand_struct *);
565 extern void flush_itimer_signals(void);
566 
567 #define tasklist_empty() \
568 	list_empty(&init_task.tasks)
569 
570 #define next_task(p) \
571 	list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
572 
573 #define for_each_process(p) \
574 	for (p = &init_task ; (p = next_task(p)) != &init_task ; )
575 
576 extern bool current_is_single_threaded(void);
577 
578 /*
579  * Careful: do_each_thread/while_each_thread is a double loop so
580  *          'break' will not work as expected - use goto instead.
581  */
582 #define do_each_thread(g, t) \
583 	for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
584 
585 #define while_each_thread(g, t) \
586 	while ((t = next_thread(t)) != g)
587 
588 #define __for_each_thread(signal, t)	\
589 	list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
590 
591 #define for_each_thread(p, t)		\
592 	__for_each_thread((p)->signal, t)
593 
594 /* Careful: this is a double loop, 'break' won't work as expected. */
595 #define for_each_process_thread(p, t)	\
596 	for_each_process(p) for_each_thread(p, t)
597 
598 typedef int (*proc_visitor)(struct task_struct *p, void *data);
599 void walk_process_tree(struct task_struct *top, proc_visitor, void *);
600 
601 static inline
602 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
603 {
604 	struct pid *pid;
605 	if (type == PIDTYPE_PID)
606 		pid = task_pid(task);
607 	else
608 		pid = task->signal->pids[type];
609 	return pid;
610 }
611 
612 static inline struct pid *task_tgid(struct task_struct *task)
613 {
614 	return task->signal->pids[PIDTYPE_TGID];
615 }
616 
617 /*
618  * Without tasklist or RCU lock it is not safe to dereference
619  * the result of task_pgrp/task_session even if task == current,
620  * we can race with another thread doing sys_setsid/sys_setpgid.
621  */
622 static inline struct pid *task_pgrp(struct task_struct *task)
623 {
624 	return task->signal->pids[PIDTYPE_PGID];
625 }
626 
627 static inline struct pid *task_session(struct task_struct *task)
628 {
629 	return task->signal->pids[PIDTYPE_SID];
630 }
631 
632 static inline int get_nr_threads(struct task_struct *task)
633 {
634 	return task->signal->nr_threads;
635 }
636 
637 static inline bool thread_group_leader(struct task_struct *p)
638 {
639 	return p->exit_signal >= 0;
640 }
641 
642 /* Do to the insanities of de_thread it is possible for a process
643  * to have the pid of the thread group leader without actually being
644  * the thread group leader.  For iteration through the pids in proc
645  * all we care about is that we have a task with the appropriate
646  * pid, we don't actually care if we have the right task.
647  */
648 static inline bool has_group_leader_pid(struct task_struct *p)
649 {
650 	return task_pid(p) == task_tgid(p);
651 }
652 
653 static inline
654 bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
655 {
656 	return p1->signal == p2->signal;
657 }
658 
659 static inline struct task_struct *next_thread(const struct task_struct *p)
660 {
661 	return list_entry_rcu(p->thread_group.next,
662 			      struct task_struct, thread_group);
663 }
664 
665 static inline int thread_group_empty(struct task_struct *p)
666 {
667 	return list_empty(&p->thread_group);
668 }
669 
670 #define delay_group_leader(p) \
671 		(thread_group_leader(p) && !thread_group_empty(p))
672 
673 extern struct sighand_struct *__lock_task_sighand(struct task_struct *task,
674 							unsigned long *flags);
675 
676 static inline struct sighand_struct *lock_task_sighand(struct task_struct *task,
677 						       unsigned long *flags)
678 {
679 	struct sighand_struct *ret;
680 
681 	ret = __lock_task_sighand(task, flags);
682 	(void)__cond_lock(&task->sighand->siglock, ret);
683 	return ret;
684 }
685 
686 static inline void unlock_task_sighand(struct task_struct *task,
687 						unsigned long *flags)
688 {
689 	spin_unlock_irqrestore(&task->sighand->siglock, *flags);
690 }
691 
692 static inline unsigned long task_rlimit(const struct task_struct *task,
693 		unsigned int limit)
694 {
695 	return READ_ONCE(task->signal->rlim[limit].rlim_cur);
696 }
697 
698 static inline unsigned long task_rlimit_max(const struct task_struct *task,
699 		unsigned int limit)
700 {
701 	return READ_ONCE(task->signal->rlim[limit].rlim_max);
702 }
703 
704 static inline unsigned long rlimit(unsigned int limit)
705 {
706 	return task_rlimit(current, limit);
707 }
708 
709 static inline unsigned long rlimit_max(unsigned int limit)
710 {
711 	return task_rlimit_max(current, limit);
712 }
713 
714 #endif /* _LINUX_SCHED_SIGNAL_H */
715