1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_SCHED_SIGNAL_H 3 #define _LINUX_SCHED_SIGNAL_H 4 5 #include <linux/rculist.h> 6 #include <linux/signal.h> 7 #include <linux/sched.h> 8 #include <linux/sched/jobctl.h> 9 #include <linux/sched/task.h> 10 #include <linux/cred.h> 11 12 /* 13 * Types defining task->signal and task->sighand and APIs using them: 14 */ 15 16 struct sighand_struct { 17 atomic_t count; 18 struct k_sigaction action[_NSIG]; 19 spinlock_t siglock; 20 wait_queue_head_t signalfd_wqh; 21 }; 22 23 /* 24 * Per-process accounting stats: 25 */ 26 struct pacct_struct { 27 int ac_flag; 28 long ac_exitcode; 29 unsigned long ac_mem; 30 u64 ac_utime, ac_stime; 31 unsigned long ac_minflt, ac_majflt; 32 }; 33 34 struct cpu_itimer { 35 u64 expires; 36 u64 incr; 37 }; 38 39 /* 40 * This is the atomic variant of task_cputime, which can be used for 41 * storing and updating task_cputime statistics without locking. 42 */ 43 struct task_cputime_atomic { 44 atomic64_t utime; 45 atomic64_t stime; 46 atomic64_t sum_exec_runtime; 47 }; 48 49 #define INIT_CPUTIME_ATOMIC \ 50 (struct task_cputime_atomic) { \ 51 .utime = ATOMIC64_INIT(0), \ 52 .stime = ATOMIC64_INIT(0), \ 53 .sum_exec_runtime = ATOMIC64_INIT(0), \ 54 } 55 /** 56 * struct thread_group_cputimer - thread group interval timer counts 57 * @cputime_atomic: atomic thread group interval timers. 58 * @running: true when there are timers running and 59 * @cputime_atomic receives updates. 60 * @checking_timer: true when a thread in the group is in the 61 * process of checking for thread group timers. 62 * 63 * This structure contains the version of task_cputime, above, that is 64 * used for thread group CPU timer calculations. 65 */ 66 struct thread_group_cputimer { 67 struct task_cputime_atomic cputime_atomic; 68 bool running; 69 bool checking_timer; 70 }; 71 72 struct multiprocess_signals { 73 sigset_t signal; 74 struct hlist_node node; 75 }; 76 77 /* 78 * NOTE! "signal_struct" does not have its own 79 * locking, because a shared signal_struct always 80 * implies a shared sighand_struct, so locking 81 * sighand_struct is always a proper superset of 82 * the locking of signal_struct. 83 */ 84 struct signal_struct { 85 atomic_t sigcnt; 86 atomic_t live; 87 int nr_threads; 88 struct list_head thread_head; 89 90 wait_queue_head_t wait_chldexit; /* for wait4() */ 91 92 /* current thread group signal load-balancing target: */ 93 struct task_struct *curr_target; 94 95 /* shared signal handling: */ 96 struct sigpending shared_pending; 97 98 /* For collecting multiprocess signals during fork */ 99 struct hlist_head multiprocess; 100 101 /* thread group exit support */ 102 int group_exit_code; 103 /* overloaded: 104 * - notify group_exit_task when ->count is equal to notify_count 105 * - everyone except group_exit_task is stopped during signal delivery 106 * of fatal signals, group_exit_task processes the signal. 107 */ 108 int notify_count; 109 struct task_struct *group_exit_task; 110 111 /* thread group stop support, overloads group_exit_code too */ 112 int group_stop_count; 113 unsigned int flags; /* see SIGNAL_* flags below */ 114 115 /* 116 * PR_SET_CHILD_SUBREAPER marks a process, like a service 117 * manager, to re-parent orphan (double-forking) child processes 118 * to this process instead of 'init'. The service manager is 119 * able to receive SIGCHLD signals and is able to investigate 120 * the process until it calls wait(). All children of this 121 * process will inherit a flag if they should look for a 122 * child_subreaper process at exit. 123 */ 124 unsigned int is_child_subreaper:1; 125 unsigned int has_child_subreaper:1; 126 127 #ifdef CONFIG_POSIX_TIMERS 128 129 /* POSIX.1b Interval Timers */ 130 int posix_timer_id; 131 struct list_head posix_timers; 132 133 /* ITIMER_REAL timer for the process */ 134 struct hrtimer real_timer; 135 ktime_t it_real_incr; 136 137 /* 138 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 139 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 140 * values are defined to 0 and 1 respectively 141 */ 142 struct cpu_itimer it[2]; 143 144 /* 145 * Thread group totals for process CPU timers. 146 * See thread_group_cputimer(), et al, for details. 147 */ 148 struct thread_group_cputimer cputimer; 149 150 /* Earliest-expiration cache. */ 151 struct task_cputime cputime_expires; 152 153 struct list_head cpu_timers[3]; 154 155 #endif 156 157 /* PID/PID hash table linkage. */ 158 struct pid *pids[PIDTYPE_MAX]; 159 160 #ifdef CONFIG_NO_HZ_FULL 161 atomic_t tick_dep_mask; 162 #endif 163 164 struct pid *tty_old_pgrp; 165 166 /* boolean value for session group leader */ 167 int leader; 168 169 struct tty_struct *tty; /* NULL if no tty */ 170 171 #ifdef CONFIG_SCHED_AUTOGROUP 172 struct autogroup *autogroup; 173 #endif 174 /* 175 * Cumulative resource counters for dead threads in the group, 176 * and for reaped dead child processes forked by this group. 177 * Live threads maintain their own counters and add to these 178 * in __exit_signal, except for the group leader. 179 */ 180 seqlock_t stats_lock; 181 u64 utime, stime, cutime, cstime; 182 u64 gtime; 183 u64 cgtime; 184 struct prev_cputime prev_cputime; 185 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 186 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 187 unsigned long inblock, oublock, cinblock, coublock; 188 unsigned long maxrss, cmaxrss; 189 struct task_io_accounting ioac; 190 191 /* 192 * Cumulative ns of schedule CPU time fo dead threads in the 193 * group, not including a zombie group leader, (This only differs 194 * from jiffies_to_ns(utime + stime) if sched_clock uses something 195 * other than jiffies.) 196 */ 197 unsigned long long sum_sched_runtime; 198 199 /* 200 * We don't bother to synchronize most readers of this at all, 201 * because there is no reader checking a limit that actually needs 202 * to get both rlim_cur and rlim_max atomically, and either one 203 * alone is a single word that can safely be read normally. 204 * getrlimit/setrlimit use task_lock(current->group_leader) to 205 * protect this instead of the siglock, because they really 206 * have no need to disable irqs. 207 */ 208 struct rlimit rlim[RLIM_NLIMITS]; 209 210 #ifdef CONFIG_BSD_PROCESS_ACCT 211 struct pacct_struct pacct; /* per-process accounting information */ 212 #endif 213 #ifdef CONFIG_TASKSTATS 214 struct taskstats *stats; 215 #endif 216 #ifdef CONFIG_AUDIT 217 unsigned audit_tty; 218 struct tty_audit_buf *tty_audit_buf; 219 #endif 220 221 /* 222 * Thread is the potential origin of an oom condition; kill first on 223 * oom 224 */ 225 bool oom_flag_origin; 226 short oom_score_adj; /* OOM kill score adjustment */ 227 short oom_score_adj_min; /* OOM kill score adjustment min value. 228 * Only settable by CAP_SYS_RESOURCE. */ 229 struct mm_struct *oom_mm; /* recorded mm when the thread group got 230 * killed by the oom killer */ 231 232 struct mutex cred_guard_mutex; /* guard against foreign influences on 233 * credential calculations 234 * (notably. ptrace) */ 235 } __randomize_layout; 236 237 /* 238 * Bits in flags field of signal_struct. 239 */ 240 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 241 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ 242 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ 243 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */ 244 /* 245 * Pending notifications to parent. 246 */ 247 #define SIGNAL_CLD_STOPPED 0x00000010 248 #define SIGNAL_CLD_CONTINUED 0x00000020 249 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 250 251 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 252 253 #define SIGNAL_STOP_MASK (SIGNAL_CLD_MASK | SIGNAL_STOP_STOPPED | \ 254 SIGNAL_STOP_CONTINUED) 255 256 static inline void signal_set_stop_flags(struct signal_struct *sig, 257 unsigned int flags) 258 { 259 WARN_ON(sig->flags & (SIGNAL_GROUP_EXIT|SIGNAL_GROUP_COREDUMP)); 260 sig->flags = (sig->flags & ~SIGNAL_STOP_MASK) | flags; 261 } 262 263 /* If true, all threads except ->group_exit_task have pending SIGKILL */ 264 static inline int signal_group_exit(const struct signal_struct *sig) 265 { 266 return (sig->flags & SIGNAL_GROUP_EXIT) || 267 (sig->group_exit_task != NULL); 268 } 269 270 extern void flush_signals(struct task_struct *); 271 extern void ignore_signals(struct task_struct *); 272 extern void flush_signal_handlers(struct task_struct *, int force_default); 273 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info); 274 275 static inline int kernel_dequeue_signal(void) 276 { 277 struct task_struct *tsk = current; 278 kernel_siginfo_t __info; 279 int ret; 280 281 spin_lock_irq(&tsk->sighand->siglock); 282 ret = dequeue_signal(tsk, &tsk->blocked, &__info); 283 spin_unlock_irq(&tsk->sighand->siglock); 284 285 return ret; 286 } 287 288 static inline void kernel_signal_stop(void) 289 { 290 spin_lock_irq(¤t->sighand->siglock); 291 if (current->jobctl & JOBCTL_STOP_DEQUEUED) 292 set_special_state(TASK_STOPPED); 293 spin_unlock_irq(¤t->sighand->siglock); 294 295 schedule(); 296 } 297 #ifdef __ARCH_SI_TRAPNO 298 # define ___ARCH_SI_TRAPNO(_a1) , _a1 299 #else 300 # define ___ARCH_SI_TRAPNO(_a1) 301 #endif 302 #ifdef __ia64__ 303 # define ___ARCH_SI_IA64(_a1, _a2, _a3) , _a1, _a2, _a3 304 #else 305 # define ___ARCH_SI_IA64(_a1, _a2, _a3) 306 #endif 307 308 int force_sig_fault(int sig, int code, void __user *addr 309 ___ARCH_SI_TRAPNO(int trapno) 310 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 311 , struct task_struct *t); 312 int send_sig_fault(int sig, int code, void __user *addr 313 ___ARCH_SI_TRAPNO(int trapno) 314 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 315 , struct task_struct *t); 316 317 int force_sig_mceerr(int code, void __user *, short, struct task_struct *); 318 int send_sig_mceerr(int code, void __user *, short, struct task_struct *); 319 320 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper); 321 int force_sig_pkuerr(void __user *addr, u32 pkey); 322 323 int force_sig_ptrace_errno_trap(int errno, void __user *addr); 324 325 extern int send_sig_info(int, struct kernel_siginfo *, struct task_struct *); 326 extern void force_sigsegv(int sig, struct task_struct *p); 327 extern int force_sig_info(int, struct kernel_siginfo *, struct task_struct *); 328 extern int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp); 329 extern int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid); 330 extern int kill_pid_info_as_cred(int, struct kernel_siginfo *, struct pid *, 331 const struct cred *); 332 extern int kill_pgrp(struct pid *pid, int sig, int priv); 333 extern int kill_pid(struct pid *pid, int sig, int priv); 334 extern __must_check bool do_notify_parent(struct task_struct *, int); 335 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 336 extern void force_sig(int, struct task_struct *); 337 extern int send_sig(int, struct task_struct *, int); 338 extern int zap_other_threads(struct task_struct *p); 339 extern struct sigqueue *sigqueue_alloc(void); 340 extern void sigqueue_free(struct sigqueue *); 341 extern int send_sigqueue(struct sigqueue *, struct pid *, enum pid_type); 342 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 343 344 static inline int restart_syscall(void) 345 { 346 set_tsk_thread_flag(current, TIF_SIGPENDING); 347 return -ERESTARTNOINTR; 348 } 349 350 static inline int signal_pending(struct task_struct *p) 351 { 352 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 353 } 354 355 static inline int __fatal_signal_pending(struct task_struct *p) 356 { 357 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 358 } 359 360 static inline int fatal_signal_pending(struct task_struct *p) 361 { 362 return signal_pending(p) && __fatal_signal_pending(p); 363 } 364 365 static inline int signal_pending_state(long state, struct task_struct *p) 366 { 367 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 368 return 0; 369 if (!signal_pending(p)) 370 return 0; 371 372 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 373 } 374 375 /* 376 * Reevaluate whether the task has signals pending delivery. 377 * Wake the task if so. 378 * This is required every time the blocked sigset_t changes. 379 * callers must hold sighand->siglock. 380 */ 381 extern void recalc_sigpending_and_wake(struct task_struct *t); 382 extern void recalc_sigpending(void); 383 extern void calculate_sigpending(void); 384 385 extern void signal_wake_up_state(struct task_struct *t, unsigned int state); 386 387 static inline void signal_wake_up(struct task_struct *t, bool resume) 388 { 389 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0); 390 } 391 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume) 392 { 393 signal_wake_up_state(t, resume ? __TASK_TRACED : 0); 394 } 395 396 void task_join_group_stop(struct task_struct *task); 397 398 #ifdef TIF_RESTORE_SIGMASK 399 /* 400 * Legacy restore_sigmask accessors. These are inefficient on 401 * SMP architectures because they require atomic operations. 402 */ 403 404 /** 405 * set_restore_sigmask() - make sure saved_sigmask processing gets done 406 * 407 * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code 408 * will run before returning to user mode, to process the flag. For 409 * all callers, TIF_SIGPENDING is already set or it's no harm to set 410 * it. TIF_RESTORE_SIGMASK need not be in the set of bits that the 411 * arch code will notice on return to user mode, in case those bits 412 * are scarce. We set TIF_SIGPENDING here to ensure that the arch 413 * signal code always gets run when TIF_RESTORE_SIGMASK is set. 414 */ 415 static inline void set_restore_sigmask(void) 416 { 417 set_thread_flag(TIF_RESTORE_SIGMASK); 418 WARN_ON(!test_thread_flag(TIF_SIGPENDING)); 419 } 420 static inline void clear_restore_sigmask(void) 421 { 422 clear_thread_flag(TIF_RESTORE_SIGMASK); 423 } 424 static inline bool test_restore_sigmask(void) 425 { 426 return test_thread_flag(TIF_RESTORE_SIGMASK); 427 } 428 static inline bool test_and_clear_restore_sigmask(void) 429 { 430 return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK); 431 } 432 433 #else /* TIF_RESTORE_SIGMASK */ 434 435 /* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */ 436 static inline void set_restore_sigmask(void) 437 { 438 current->restore_sigmask = true; 439 WARN_ON(!test_thread_flag(TIF_SIGPENDING)); 440 } 441 static inline void clear_restore_sigmask(void) 442 { 443 current->restore_sigmask = false; 444 } 445 static inline bool test_restore_sigmask(void) 446 { 447 return current->restore_sigmask; 448 } 449 static inline bool test_and_clear_restore_sigmask(void) 450 { 451 if (!current->restore_sigmask) 452 return false; 453 current->restore_sigmask = false; 454 return true; 455 } 456 #endif 457 458 static inline void restore_saved_sigmask(void) 459 { 460 if (test_and_clear_restore_sigmask()) 461 __set_current_blocked(¤t->saved_sigmask); 462 } 463 464 static inline sigset_t *sigmask_to_save(void) 465 { 466 sigset_t *res = ¤t->blocked; 467 if (unlikely(test_restore_sigmask())) 468 res = ¤t->saved_sigmask; 469 return res; 470 } 471 472 static inline int kill_cad_pid(int sig, int priv) 473 { 474 return kill_pid(cad_pid, sig, priv); 475 } 476 477 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 478 #define SEND_SIG_NOINFO ((struct kernel_siginfo *) 0) 479 #define SEND_SIG_PRIV ((struct kernel_siginfo *) 1) 480 481 /* 482 * True if we are on the alternate signal stack. 483 */ 484 static inline int on_sig_stack(unsigned long sp) 485 { 486 /* 487 * If the signal stack is SS_AUTODISARM then, by construction, we 488 * can't be on the signal stack unless user code deliberately set 489 * SS_AUTODISARM when we were already on it. 490 * 491 * This improves reliability: if user state gets corrupted such that 492 * the stack pointer points very close to the end of the signal stack, 493 * then this check will enable the signal to be handled anyway. 494 */ 495 if (current->sas_ss_flags & SS_AUTODISARM) 496 return 0; 497 498 #ifdef CONFIG_STACK_GROWSUP 499 return sp >= current->sas_ss_sp && 500 sp - current->sas_ss_sp < current->sas_ss_size; 501 #else 502 return sp > current->sas_ss_sp && 503 sp - current->sas_ss_sp <= current->sas_ss_size; 504 #endif 505 } 506 507 static inline int sas_ss_flags(unsigned long sp) 508 { 509 if (!current->sas_ss_size) 510 return SS_DISABLE; 511 512 return on_sig_stack(sp) ? SS_ONSTACK : 0; 513 } 514 515 static inline void sas_ss_reset(struct task_struct *p) 516 { 517 p->sas_ss_sp = 0; 518 p->sas_ss_size = 0; 519 p->sas_ss_flags = SS_DISABLE; 520 } 521 522 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig) 523 { 524 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp)) 525 #ifdef CONFIG_STACK_GROWSUP 526 return current->sas_ss_sp; 527 #else 528 return current->sas_ss_sp + current->sas_ss_size; 529 #endif 530 return sp; 531 } 532 533 extern void __cleanup_sighand(struct sighand_struct *); 534 extern void flush_itimer_signals(void); 535 536 #define tasklist_empty() \ 537 list_empty(&init_task.tasks) 538 539 #define next_task(p) \ 540 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 541 542 #define for_each_process(p) \ 543 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 544 545 extern bool current_is_single_threaded(void); 546 547 /* 548 * Careful: do_each_thread/while_each_thread is a double loop so 549 * 'break' will not work as expected - use goto instead. 550 */ 551 #define do_each_thread(g, t) \ 552 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 553 554 #define while_each_thread(g, t) \ 555 while ((t = next_thread(t)) != g) 556 557 #define __for_each_thread(signal, t) \ 558 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node) 559 560 #define for_each_thread(p, t) \ 561 __for_each_thread((p)->signal, t) 562 563 /* Careful: this is a double loop, 'break' won't work as expected. */ 564 #define for_each_process_thread(p, t) \ 565 for_each_process(p) for_each_thread(p, t) 566 567 typedef int (*proc_visitor)(struct task_struct *p, void *data); 568 void walk_process_tree(struct task_struct *top, proc_visitor, void *); 569 570 static inline 571 struct pid *task_pid_type(struct task_struct *task, enum pid_type type) 572 { 573 struct pid *pid; 574 if (type == PIDTYPE_PID) 575 pid = task_pid(task); 576 else 577 pid = task->signal->pids[type]; 578 return pid; 579 } 580 581 static inline struct pid *task_tgid(struct task_struct *task) 582 { 583 return task->signal->pids[PIDTYPE_TGID]; 584 } 585 586 /* 587 * Without tasklist or RCU lock it is not safe to dereference 588 * the result of task_pgrp/task_session even if task == current, 589 * we can race with another thread doing sys_setsid/sys_setpgid. 590 */ 591 static inline struct pid *task_pgrp(struct task_struct *task) 592 { 593 return task->signal->pids[PIDTYPE_PGID]; 594 } 595 596 static inline struct pid *task_session(struct task_struct *task) 597 { 598 return task->signal->pids[PIDTYPE_SID]; 599 } 600 601 static inline int get_nr_threads(struct task_struct *tsk) 602 { 603 return tsk->signal->nr_threads; 604 } 605 606 static inline bool thread_group_leader(struct task_struct *p) 607 { 608 return p->exit_signal >= 0; 609 } 610 611 /* Do to the insanities of de_thread it is possible for a process 612 * to have the pid of the thread group leader without actually being 613 * the thread group leader. For iteration through the pids in proc 614 * all we care about is that we have a task with the appropriate 615 * pid, we don't actually care if we have the right task. 616 */ 617 static inline bool has_group_leader_pid(struct task_struct *p) 618 { 619 return task_pid(p) == task_tgid(p); 620 } 621 622 static inline 623 bool same_thread_group(struct task_struct *p1, struct task_struct *p2) 624 { 625 return p1->signal == p2->signal; 626 } 627 628 static inline struct task_struct *next_thread(const struct task_struct *p) 629 { 630 return list_entry_rcu(p->thread_group.next, 631 struct task_struct, thread_group); 632 } 633 634 static inline int thread_group_empty(struct task_struct *p) 635 { 636 return list_empty(&p->thread_group); 637 } 638 639 #define delay_group_leader(p) \ 640 (thread_group_leader(p) && !thread_group_empty(p)) 641 642 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 643 unsigned long *flags); 644 645 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 646 unsigned long *flags) 647 { 648 struct sighand_struct *ret; 649 650 ret = __lock_task_sighand(tsk, flags); 651 (void)__cond_lock(&tsk->sighand->siglock, ret); 652 return ret; 653 } 654 655 static inline void unlock_task_sighand(struct task_struct *tsk, 656 unsigned long *flags) 657 { 658 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 659 } 660 661 static inline unsigned long task_rlimit(const struct task_struct *tsk, 662 unsigned int limit) 663 { 664 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur); 665 } 666 667 static inline unsigned long task_rlimit_max(const struct task_struct *tsk, 668 unsigned int limit) 669 { 670 return READ_ONCE(tsk->signal->rlim[limit].rlim_max); 671 } 672 673 static inline unsigned long rlimit(unsigned int limit) 674 { 675 return task_rlimit(current, limit); 676 } 677 678 static inline unsigned long rlimit_max(unsigned int limit) 679 { 680 return task_rlimit_max(current, limit); 681 } 682 683 #endif /* _LINUX_SCHED_SIGNAL_H */ 684