1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_SCHED_SIGNAL_H 3 #define _LINUX_SCHED_SIGNAL_H 4 5 #include <linux/rculist.h> 6 #include <linux/signal.h> 7 #include <linux/sched.h> 8 #include <linux/sched/jobctl.h> 9 #include <linux/sched/task.h> 10 #include <linux/cred.h> 11 12 /* 13 * Types defining task->signal and task->sighand and APIs using them: 14 */ 15 16 struct sighand_struct { 17 atomic_t count; 18 struct k_sigaction action[_NSIG]; 19 spinlock_t siglock; 20 wait_queue_head_t signalfd_wqh; 21 }; 22 23 /* 24 * Per-process accounting stats: 25 */ 26 struct pacct_struct { 27 int ac_flag; 28 long ac_exitcode; 29 unsigned long ac_mem; 30 u64 ac_utime, ac_stime; 31 unsigned long ac_minflt, ac_majflt; 32 }; 33 34 struct cpu_itimer { 35 u64 expires; 36 u64 incr; 37 }; 38 39 /* 40 * This is the atomic variant of task_cputime, which can be used for 41 * storing and updating task_cputime statistics without locking. 42 */ 43 struct task_cputime_atomic { 44 atomic64_t utime; 45 atomic64_t stime; 46 atomic64_t sum_exec_runtime; 47 }; 48 49 #define INIT_CPUTIME_ATOMIC \ 50 (struct task_cputime_atomic) { \ 51 .utime = ATOMIC64_INIT(0), \ 52 .stime = ATOMIC64_INIT(0), \ 53 .sum_exec_runtime = ATOMIC64_INIT(0), \ 54 } 55 /** 56 * struct thread_group_cputimer - thread group interval timer counts 57 * @cputime_atomic: atomic thread group interval timers. 58 * @running: true when there are timers running and 59 * @cputime_atomic receives updates. 60 * @checking_timer: true when a thread in the group is in the 61 * process of checking for thread group timers. 62 * 63 * This structure contains the version of task_cputime, above, that is 64 * used for thread group CPU timer calculations. 65 */ 66 struct thread_group_cputimer { 67 struct task_cputime_atomic cputime_atomic; 68 bool running; 69 bool checking_timer; 70 }; 71 72 /* 73 * NOTE! "signal_struct" does not have its own 74 * locking, because a shared signal_struct always 75 * implies a shared sighand_struct, so locking 76 * sighand_struct is always a proper superset of 77 * the locking of signal_struct. 78 */ 79 struct signal_struct { 80 atomic_t sigcnt; 81 atomic_t live; 82 int nr_threads; 83 struct list_head thread_head; 84 85 wait_queue_head_t wait_chldexit; /* for wait4() */ 86 87 /* current thread group signal load-balancing target: */ 88 struct task_struct *curr_target; 89 90 /* shared signal handling: */ 91 struct sigpending shared_pending; 92 93 /* thread group exit support */ 94 int group_exit_code; 95 /* overloaded: 96 * - notify group_exit_task when ->count is equal to notify_count 97 * - everyone except group_exit_task is stopped during signal delivery 98 * of fatal signals, group_exit_task processes the signal. 99 */ 100 int notify_count; 101 struct task_struct *group_exit_task; 102 103 /* thread group stop support, overloads group_exit_code too */ 104 int group_stop_count; 105 unsigned int flags; /* see SIGNAL_* flags below */ 106 107 /* 108 * PR_SET_CHILD_SUBREAPER marks a process, like a service 109 * manager, to re-parent orphan (double-forking) child processes 110 * to this process instead of 'init'. The service manager is 111 * able to receive SIGCHLD signals and is able to investigate 112 * the process until it calls wait(). All children of this 113 * process will inherit a flag if they should look for a 114 * child_subreaper process at exit. 115 */ 116 unsigned int is_child_subreaper:1; 117 unsigned int has_child_subreaper:1; 118 119 #ifdef CONFIG_POSIX_TIMERS 120 121 /* POSIX.1b Interval Timers */ 122 int posix_timer_id; 123 struct list_head posix_timers; 124 125 /* ITIMER_REAL timer for the process */ 126 struct hrtimer real_timer; 127 ktime_t it_real_incr; 128 129 /* 130 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 131 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 132 * values are defined to 0 and 1 respectively 133 */ 134 struct cpu_itimer it[2]; 135 136 /* 137 * Thread group totals for process CPU timers. 138 * See thread_group_cputimer(), et al, for details. 139 */ 140 struct thread_group_cputimer cputimer; 141 142 /* Earliest-expiration cache. */ 143 struct task_cputime cputime_expires; 144 145 struct list_head cpu_timers[3]; 146 147 #endif 148 149 struct pid *leader_pid; 150 151 #ifdef CONFIG_NO_HZ_FULL 152 atomic_t tick_dep_mask; 153 #endif 154 155 struct pid *tty_old_pgrp; 156 157 /* boolean value for session group leader */ 158 int leader; 159 160 struct tty_struct *tty; /* NULL if no tty */ 161 162 #ifdef CONFIG_SCHED_AUTOGROUP 163 struct autogroup *autogroup; 164 #endif 165 /* 166 * Cumulative resource counters for dead threads in the group, 167 * and for reaped dead child processes forked by this group. 168 * Live threads maintain their own counters and add to these 169 * in __exit_signal, except for the group leader. 170 */ 171 seqlock_t stats_lock; 172 u64 utime, stime, cutime, cstime; 173 u64 gtime; 174 u64 cgtime; 175 struct prev_cputime prev_cputime; 176 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 177 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 178 unsigned long inblock, oublock, cinblock, coublock; 179 unsigned long maxrss, cmaxrss; 180 struct task_io_accounting ioac; 181 182 /* 183 * Cumulative ns of schedule CPU time fo dead threads in the 184 * group, not including a zombie group leader, (This only differs 185 * from jiffies_to_ns(utime + stime) if sched_clock uses something 186 * other than jiffies.) 187 */ 188 unsigned long long sum_sched_runtime; 189 190 /* 191 * We don't bother to synchronize most readers of this at all, 192 * because there is no reader checking a limit that actually needs 193 * to get both rlim_cur and rlim_max atomically, and either one 194 * alone is a single word that can safely be read normally. 195 * getrlimit/setrlimit use task_lock(current->group_leader) to 196 * protect this instead of the siglock, because they really 197 * have no need to disable irqs. 198 */ 199 struct rlimit rlim[RLIM_NLIMITS]; 200 201 #ifdef CONFIG_BSD_PROCESS_ACCT 202 struct pacct_struct pacct; /* per-process accounting information */ 203 #endif 204 #ifdef CONFIG_TASKSTATS 205 struct taskstats *stats; 206 #endif 207 #ifdef CONFIG_AUDIT 208 unsigned audit_tty; 209 struct tty_audit_buf *tty_audit_buf; 210 #endif 211 212 /* 213 * Thread is the potential origin of an oom condition; kill first on 214 * oom 215 */ 216 bool oom_flag_origin; 217 short oom_score_adj; /* OOM kill score adjustment */ 218 short oom_score_adj_min; /* OOM kill score adjustment min value. 219 * Only settable by CAP_SYS_RESOURCE. */ 220 struct mm_struct *oom_mm; /* recorded mm when the thread group got 221 * killed by the oom killer */ 222 223 struct mutex cred_guard_mutex; /* guard against foreign influences on 224 * credential calculations 225 * (notably. ptrace) */ 226 } __randomize_layout; 227 228 /* 229 * Bits in flags field of signal_struct. 230 */ 231 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 232 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ 233 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ 234 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */ 235 /* 236 * Pending notifications to parent. 237 */ 238 #define SIGNAL_CLD_STOPPED 0x00000010 239 #define SIGNAL_CLD_CONTINUED 0x00000020 240 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 241 242 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 243 244 #define SIGNAL_STOP_MASK (SIGNAL_CLD_MASK | SIGNAL_STOP_STOPPED | \ 245 SIGNAL_STOP_CONTINUED) 246 247 static inline void signal_set_stop_flags(struct signal_struct *sig, 248 unsigned int flags) 249 { 250 WARN_ON(sig->flags & (SIGNAL_GROUP_EXIT|SIGNAL_GROUP_COREDUMP)); 251 sig->flags = (sig->flags & ~SIGNAL_STOP_MASK) | flags; 252 } 253 254 /* If true, all threads except ->group_exit_task have pending SIGKILL */ 255 static inline int signal_group_exit(const struct signal_struct *sig) 256 { 257 return (sig->flags & SIGNAL_GROUP_EXIT) || 258 (sig->group_exit_task != NULL); 259 } 260 261 extern void flush_signals(struct task_struct *); 262 extern void ignore_signals(struct task_struct *); 263 extern void flush_signal_handlers(struct task_struct *, int force_default); 264 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 265 266 static inline int kernel_dequeue_signal(siginfo_t *info) 267 { 268 struct task_struct *tsk = current; 269 siginfo_t __info; 270 int ret; 271 272 spin_lock_irq(&tsk->sighand->siglock); 273 ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info); 274 spin_unlock_irq(&tsk->sighand->siglock); 275 276 return ret; 277 } 278 279 static inline void kernel_signal_stop(void) 280 { 281 spin_lock_irq(¤t->sighand->siglock); 282 if (current->jobctl & JOBCTL_STOP_DEQUEUED) 283 set_special_state(TASK_STOPPED); 284 spin_unlock_irq(¤t->sighand->siglock); 285 286 schedule(); 287 } 288 #ifdef __ARCH_SI_TRAPNO 289 # define ___ARCH_SI_TRAPNO(_a1) , _a1 290 #else 291 # define ___ARCH_SI_TRAPNO(_a1) 292 #endif 293 #ifdef __ia64__ 294 # define ___ARCH_SI_IA64(_a1, _a2, _a3) , _a1, _a2, _a3 295 #else 296 # define ___ARCH_SI_IA64(_a1, _a2, _a3) 297 #endif 298 299 int force_sig_fault(int sig, int code, void __user *addr 300 ___ARCH_SI_TRAPNO(int trapno) 301 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 302 , struct task_struct *t); 303 int send_sig_fault(int sig, int code, void __user *addr 304 ___ARCH_SI_TRAPNO(int trapno) 305 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 306 , struct task_struct *t); 307 308 int force_sig_mceerr(int code, void __user *, short, struct task_struct *); 309 int send_sig_mceerr(int code, void __user *, short, struct task_struct *); 310 311 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper); 312 int force_sig_pkuerr(void __user *addr, u32 pkey); 313 314 int force_sig_ptrace_errno_trap(int errno, void __user *addr); 315 316 extern int send_sig_info(int, struct siginfo *, struct task_struct *); 317 extern int force_sigsegv(int, struct task_struct *); 318 extern int force_sig_info(int, struct siginfo *, struct task_struct *); 319 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 320 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 321 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *, 322 const struct cred *); 323 extern int kill_pgrp(struct pid *pid, int sig, int priv); 324 extern int kill_pid(struct pid *pid, int sig, int priv); 325 extern __must_check bool do_notify_parent(struct task_struct *, int); 326 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 327 extern void force_sig(int, struct task_struct *); 328 extern int send_sig(int, struct task_struct *, int); 329 extern int zap_other_threads(struct task_struct *p); 330 extern struct sigqueue *sigqueue_alloc(void); 331 extern void sigqueue_free(struct sigqueue *); 332 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 333 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 334 335 static inline int restart_syscall(void) 336 { 337 set_tsk_thread_flag(current, TIF_SIGPENDING); 338 return -ERESTARTNOINTR; 339 } 340 341 static inline int signal_pending(struct task_struct *p) 342 { 343 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 344 } 345 346 static inline int __fatal_signal_pending(struct task_struct *p) 347 { 348 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 349 } 350 351 static inline int fatal_signal_pending(struct task_struct *p) 352 { 353 return signal_pending(p) && __fatal_signal_pending(p); 354 } 355 356 static inline int signal_pending_state(long state, struct task_struct *p) 357 { 358 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 359 return 0; 360 if (!signal_pending(p)) 361 return 0; 362 363 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 364 } 365 366 /* 367 * Reevaluate whether the task has signals pending delivery. 368 * Wake the task if so. 369 * This is required every time the blocked sigset_t changes. 370 * callers must hold sighand->siglock. 371 */ 372 extern void recalc_sigpending_and_wake(struct task_struct *t); 373 extern void recalc_sigpending(void); 374 375 extern void signal_wake_up_state(struct task_struct *t, unsigned int state); 376 377 static inline void signal_wake_up(struct task_struct *t, bool resume) 378 { 379 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0); 380 } 381 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume) 382 { 383 signal_wake_up_state(t, resume ? __TASK_TRACED : 0); 384 } 385 386 #ifdef TIF_RESTORE_SIGMASK 387 /* 388 * Legacy restore_sigmask accessors. These are inefficient on 389 * SMP architectures because they require atomic operations. 390 */ 391 392 /** 393 * set_restore_sigmask() - make sure saved_sigmask processing gets done 394 * 395 * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code 396 * will run before returning to user mode, to process the flag. For 397 * all callers, TIF_SIGPENDING is already set or it's no harm to set 398 * it. TIF_RESTORE_SIGMASK need not be in the set of bits that the 399 * arch code will notice on return to user mode, in case those bits 400 * are scarce. We set TIF_SIGPENDING here to ensure that the arch 401 * signal code always gets run when TIF_RESTORE_SIGMASK is set. 402 */ 403 static inline void set_restore_sigmask(void) 404 { 405 set_thread_flag(TIF_RESTORE_SIGMASK); 406 WARN_ON(!test_thread_flag(TIF_SIGPENDING)); 407 } 408 static inline void clear_restore_sigmask(void) 409 { 410 clear_thread_flag(TIF_RESTORE_SIGMASK); 411 } 412 static inline bool test_restore_sigmask(void) 413 { 414 return test_thread_flag(TIF_RESTORE_SIGMASK); 415 } 416 static inline bool test_and_clear_restore_sigmask(void) 417 { 418 return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK); 419 } 420 421 #else /* TIF_RESTORE_SIGMASK */ 422 423 /* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */ 424 static inline void set_restore_sigmask(void) 425 { 426 current->restore_sigmask = true; 427 WARN_ON(!test_thread_flag(TIF_SIGPENDING)); 428 } 429 static inline void clear_restore_sigmask(void) 430 { 431 current->restore_sigmask = false; 432 } 433 static inline bool test_restore_sigmask(void) 434 { 435 return current->restore_sigmask; 436 } 437 static inline bool test_and_clear_restore_sigmask(void) 438 { 439 if (!current->restore_sigmask) 440 return false; 441 current->restore_sigmask = false; 442 return true; 443 } 444 #endif 445 446 static inline void restore_saved_sigmask(void) 447 { 448 if (test_and_clear_restore_sigmask()) 449 __set_current_blocked(¤t->saved_sigmask); 450 } 451 452 static inline sigset_t *sigmask_to_save(void) 453 { 454 sigset_t *res = ¤t->blocked; 455 if (unlikely(test_restore_sigmask())) 456 res = ¤t->saved_sigmask; 457 return res; 458 } 459 460 static inline int kill_cad_pid(int sig, int priv) 461 { 462 return kill_pid(cad_pid, sig, priv); 463 } 464 465 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 466 #define SEND_SIG_NOINFO ((struct siginfo *) 0) 467 #define SEND_SIG_PRIV ((struct siginfo *) 1) 468 #define SEND_SIG_FORCED ((struct siginfo *) 2) 469 470 /* 471 * True if we are on the alternate signal stack. 472 */ 473 static inline int on_sig_stack(unsigned long sp) 474 { 475 /* 476 * If the signal stack is SS_AUTODISARM then, by construction, we 477 * can't be on the signal stack unless user code deliberately set 478 * SS_AUTODISARM when we were already on it. 479 * 480 * This improves reliability: if user state gets corrupted such that 481 * the stack pointer points very close to the end of the signal stack, 482 * then this check will enable the signal to be handled anyway. 483 */ 484 if (current->sas_ss_flags & SS_AUTODISARM) 485 return 0; 486 487 #ifdef CONFIG_STACK_GROWSUP 488 return sp >= current->sas_ss_sp && 489 sp - current->sas_ss_sp < current->sas_ss_size; 490 #else 491 return sp > current->sas_ss_sp && 492 sp - current->sas_ss_sp <= current->sas_ss_size; 493 #endif 494 } 495 496 static inline int sas_ss_flags(unsigned long sp) 497 { 498 if (!current->sas_ss_size) 499 return SS_DISABLE; 500 501 return on_sig_stack(sp) ? SS_ONSTACK : 0; 502 } 503 504 static inline void sas_ss_reset(struct task_struct *p) 505 { 506 p->sas_ss_sp = 0; 507 p->sas_ss_size = 0; 508 p->sas_ss_flags = SS_DISABLE; 509 } 510 511 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig) 512 { 513 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp)) 514 #ifdef CONFIG_STACK_GROWSUP 515 return current->sas_ss_sp; 516 #else 517 return current->sas_ss_sp + current->sas_ss_size; 518 #endif 519 return sp; 520 } 521 522 extern void __cleanup_sighand(struct sighand_struct *); 523 extern void flush_itimer_signals(void); 524 525 #define tasklist_empty() \ 526 list_empty(&init_task.tasks) 527 528 #define next_task(p) \ 529 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 530 531 #define for_each_process(p) \ 532 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 533 534 extern bool current_is_single_threaded(void); 535 536 /* 537 * Careful: do_each_thread/while_each_thread is a double loop so 538 * 'break' will not work as expected - use goto instead. 539 */ 540 #define do_each_thread(g, t) \ 541 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 542 543 #define while_each_thread(g, t) \ 544 while ((t = next_thread(t)) != g) 545 546 #define __for_each_thread(signal, t) \ 547 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node) 548 549 #define for_each_thread(p, t) \ 550 __for_each_thread((p)->signal, t) 551 552 /* Careful: this is a double loop, 'break' won't work as expected. */ 553 #define for_each_process_thread(p, t) \ 554 for_each_process(p) for_each_thread(p, t) 555 556 typedef int (*proc_visitor)(struct task_struct *p, void *data); 557 void walk_process_tree(struct task_struct *top, proc_visitor, void *); 558 559 static inline int get_nr_threads(struct task_struct *tsk) 560 { 561 return tsk->signal->nr_threads; 562 } 563 564 static inline bool thread_group_leader(struct task_struct *p) 565 { 566 return p->exit_signal >= 0; 567 } 568 569 /* Do to the insanities of de_thread it is possible for a process 570 * to have the pid of the thread group leader without actually being 571 * the thread group leader. For iteration through the pids in proc 572 * all we care about is that we have a task with the appropriate 573 * pid, we don't actually care if we have the right task. 574 */ 575 static inline bool has_group_leader_pid(struct task_struct *p) 576 { 577 return task_pid(p) == p->signal->leader_pid; 578 } 579 580 static inline 581 bool same_thread_group(struct task_struct *p1, struct task_struct *p2) 582 { 583 return p1->signal == p2->signal; 584 } 585 586 static inline struct task_struct *next_thread(const struct task_struct *p) 587 { 588 return list_entry_rcu(p->thread_group.next, 589 struct task_struct, thread_group); 590 } 591 592 static inline int thread_group_empty(struct task_struct *p) 593 { 594 return list_empty(&p->thread_group); 595 } 596 597 #define delay_group_leader(p) \ 598 (thread_group_leader(p) && !thread_group_empty(p)) 599 600 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 601 unsigned long *flags); 602 603 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 604 unsigned long *flags) 605 { 606 struct sighand_struct *ret; 607 608 ret = __lock_task_sighand(tsk, flags); 609 (void)__cond_lock(&tsk->sighand->siglock, ret); 610 return ret; 611 } 612 613 static inline void unlock_task_sighand(struct task_struct *tsk, 614 unsigned long *flags) 615 { 616 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 617 } 618 619 static inline unsigned long task_rlimit(const struct task_struct *tsk, 620 unsigned int limit) 621 { 622 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur); 623 } 624 625 static inline unsigned long task_rlimit_max(const struct task_struct *tsk, 626 unsigned int limit) 627 { 628 return READ_ONCE(tsk->signal->rlim[limit].rlim_max); 629 } 630 631 static inline unsigned long rlimit(unsigned int limit) 632 { 633 return task_rlimit(current, limit); 634 } 635 636 static inline unsigned long rlimit_max(unsigned int limit) 637 { 638 return task_rlimit_max(current, limit); 639 } 640 641 #endif /* _LINUX_SCHED_SIGNAL_H */ 642