xref: /linux/include/linux/sched/signal.h (revision b24413180f5600bcb3bb70fbed5cf186b60864bd)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_SIGNAL_H
3 #define _LINUX_SCHED_SIGNAL_H
4 
5 #include <linux/rculist.h>
6 #include <linux/signal.h>
7 #include <linux/sched.h>
8 #include <linux/sched/jobctl.h>
9 #include <linux/sched/task.h>
10 #include <linux/cred.h>
11 
12 /*
13  * Types defining task->signal and task->sighand and APIs using them:
14  */
15 
16 struct sighand_struct {
17 	atomic_t		count;
18 	struct k_sigaction	action[_NSIG];
19 	spinlock_t		siglock;
20 	wait_queue_head_t	signalfd_wqh;
21 };
22 
23 /*
24  * Per-process accounting stats:
25  */
26 struct pacct_struct {
27 	int			ac_flag;
28 	long			ac_exitcode;
29 	unsigned long		ac_mem;
30 	u64			ac_utime, ac_stime;
31 	unsigned long		ac_minflt, ac_majflt;
32 };
33 
34 struct cpu_itimer {
35 	u64 expires;
36 	u64 incr;
37 };
38 
39 /*
40  * This is the atomic variant of task_cputime, which can be used for
41  * storing and updating task_cputime statistics without locking.
42  */
43 struct task_cputime_atomic {
44 	atomic64_t utime;
45 	atomic64_t stime;
46 	atomic64_t sum_exec_runtime;
47 };
48 
49 #define INIT_CPUTIME_ATOMIC \
50 	(struct task_cputime_atomic) {				\
51 		.utime = ATOMIC64_INIT(0),			\
52 		.stime = ATOMIC64_INIT(0),			\
53 		.sum_exec_runtime = ATOMIC64_INIT(0),		\
54 	}
55 /**
56  * struct thread_group_cputimer - thread group interval timer counts
57  * @cputime_atomic:	atomic thread group interval timers.
58  * @running:		true when there are timers running and
59  *			@cputime_atomic receives updates.
60  * @checking_timer:	true when a thread in the group is in the
61  *			process of checking for thread group timers.
62  *
63  * This structure contains the version of task_cputime, above, that is
64  * used for thread group CPU timer calculations.
65  */
66 struct thread_group_cputimer {
67 	struct task_cputime_atomic cputime_atomic;
68 	bool running;
69 	bool checking_timer;
70 };
71 
72 /*
73  * NOTE! "signal_struct" does not have its own
74  * locking, because a shared signal_struct always
75  * implies a shared sighand_struct, so locking
76  * sighand_struct is always a proper superset of
77  * the locking of signal_struct.
78  */
79 struct signal_struct {
80 	atomic_t		sigcnt;
81 	atomic_t		live;
82 	int			nr_threads;
83 	struct list_head	thread_head;
84 
85 	wait_queue_head_t	wait_chldexit;	/* for wait4() */
86 
87 	/* current thread group signal load-balancing target: */
88 	struct task_struct	*curr_target;
89 
90 	/* shared signal handling: */
91 	struct sigpending	shared_pending;
92 
93 	/* thread group exit support */
94 	int			group_exit_code;
95 	/* overloaded:
96 	 * - notify group_exit_task when ->count is equal to notify_count
97 	 * - everyone except group_exit_task is stopped during signal delivery
98 	 *   of fatal signals, group_exit_task processes the signal.
99 	 */
100 	int			notify_count;
101 	struct task_struct	*group_exit_task;
102 
103 	/* thread group stop support, overloads group_exit_code too */
104 	int			group_stop_count;
105 	unsigned int		flags; /* see SIGNAL_* flags below */
106 
107 	/*
108 	 * PR_SET_CHILD_SUBREAPER marks a process, like a service
109 	 * manager, to re-parent orphan (double-forking) child processes
110 	 * to this process instead of 'init'. The service manager is
111 	 * able to receive SIGCHLD signals and is able to investigate
112 	 * the process until it calls wait(). All children of this
113 	 * process will inherit a flag if they should look for a
114 	 * child_subreaper process at exit.
115 	 */
116 	unsigned int		is_child_subreaper:1;
117 	unsigned int		has_child_subreaper:1;
118 
119 #ifdef CONFIG_POSIX_TIMERS
120 
121 	/* POSIX.1b Interval Timers */
122 	int			posix_timer_id;
123 	struct list_head	posix_timers;
124 
125 	/* ITIMER_REAL timer for the process */
126 	struct hrtimer real_timer;
127 	ktime_t it_real_incr;
128 
129 	/*
130 	 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
131 	 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
132 	 * values are defined to 0 and 1 respectively
133 	 */
134 	struct cpu_itimer it[2];
135 
136 	/*
137 	 * Thread group totals for process CPU timers.
138 	 * See thread_group_cputimer(), et al, for details.
139 	 */
140 	struct thread_group_cputimer cputimer;
141 
142 	/* Earliest-expiration cache. */
143 	struct task_cputime cputime_expires;
144 
145 	struct list_head cpu_timers[3];
146 
147 #endif
148 
149 	struct pid *leader_pid;
150 
151 #ifdef CONFIG_NO_HZ_FULL
152 	atomic_t tick_dep_mask;
153 #endif
154 
155 	struct pid *tty_old_pgrp;
156 
157 	/* boolean value for session group leader */
158 	int leader;
159 
160 	struct tty_struct *tty; /* NULL if no tty */
161 
162 #ifdef CONFIG_SCHED_AUTOGROUP
163 	struct autogroup *autogroup;
164 #endif
165 	/*
166 	 * Cumulative resource counters for dead threads in the group,
167 	 * and for reaped dead child processes forked by this group.
168 	 * Live threads maintain their own counters and add to these
169 	 * in __exit_signal, except for the group leader.
170 	 */
171 	seqlock_t stats_lock;
172 	u64 utime, stime, cutime, cstime;
173 	u64 gtime;
174 	u64 cgtime;
175 	struct prev_cputime prev_cputime;
176 	unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
177 	unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
178 	unsigned long inblock, oublock, cinblock, coublock;
179 	unsigned long maxrss, cmaxrss;
180 	struct task_io_accounting ioac;
181 
182 	/*
183 	 * Cumulative ns of schedule CPU time fo dead threads in the
184 	 * group, not including a zombie group leader, (This only differs
185 	 * from jiffies_to_ns(utime + stime) if sched_clock uses something
186 	 * other than jiffies.)
187 	 */
188 	unsigned long long sum_sched_runtime;
189 
190 	/*
191 	 * We don't bother to synchronize most readers of this at all,
192 	 * because there is no reader checking a limit that actually needs
193 	 * to get both rlim_cur and rlim_max atomically, and either one
194 	 * alone is a single word that can safely be read normally.
195 	 * getrlimit/setrlimit use task_lock(current->group_leader) to
196 	 * protect this instead of the siglock, because they really
197 	 * have no need to disable irqs.
198 	 */
199 	struct rlimit rlim[RLIM_NLIMITS];
200 
201 #ifdef CONFIG_BSD_PROCESS_ACCT
202 	struct pacct_struct pacct;	/* per-process accounting information */
203 #endif
204 #ifdef CONFIG_TASKSTATS
205 	struct taskstats *stats;
206 #endif
207 #ifdef CONFIG_AUDIT
208 	unsigned audit_tty;
209 	struct tty_audit_buf *tty_audit_buf;
210 #endif
211 
212 	/*
213 	 * Thread is the potential origin of an oom condition; kill first on
214 	 * oom
215 	 */
216 	bool oom_flag_origin;
217 	short oom_score_adj;		/* OOM kill score adjustment */
218 	short oom_score_adj_min;	/* OOM kill score adjustment min value.
219 					 * Only settable by CAP_SYS_RESOURCE. */
220 	struct mm_struct *oom_mm;	/* recorded mm when the thread group got
221 					 * killed by the oom killer */
222 
223 	struct mutex cred_guard_mutex;	/* guard against foreign influences on
224 					 * credential calculations
225 					 * (notably. ptrace) */
226 } __randomize_layout;
227 
228 /*
229  * Bits in flags field of signal_struct.
230  */
231 #define SIGNAL_STOP_STOPPED	0x00000001 /* job control stop in effect */
232 #define SIGNAL_STOP_CONTINUED	0x00000002 /* SIGCONT since WCONTINUED reap */
233 #define SIGNAL_GROUP_EXIT	0x00000004 /* group exit in progress */
234 #define SIGNAL_GROUP_COREDUMP	0x00000008 /* coredump in progress */
235 /*
236  * Pending notifications to parent.
237  */
238 #define SIGNAL_CLD_STOPPED	0x00000010
239 #define SIGNAL_CLD_CONTINUED	0x00000020
240 #define SIGNAL_CLD_MASK		(SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
241 
242 #define SIGNAL_UNKILLABLE	0x00000040 /* for init: ignore fatal signals */
243 
244 #define SIGNAL_STOP_MASK (SIGNAL_CLD_MASK | SIGNAL_STOP_STOPPED | \
245 			  SIGNAL_STOP_CONTINUED)
246 
247 static inline void signal_set_stop_flags(struct signal_struct *sig,
248 					 unsigned int flags)
249 {
250 	WARN_ON(sig->flags & (SIGNAL_GROUP_EXIT|SIGNAL_GROUP_COREDUMP));
251 	sig->flags = (sig->flags & ~SIGNAL_STOP_MASK) | flags;
252 }
253 
254 /* If true, all threads except ->group_exit_task have pending SIGKILL */
255 static inline int signal_group_exit(const struct signal_struct *sig)
256 {
257 	return	(sig->flags & SIGNAL_GROUP_EXIT) ||
258 		(sig->group_exit_task != NULL);
259 }
260 
261 extern void flush_signals(struct task_struct *);
262 extern void ignore_signals(struct task_struct *);
263 extern void flush_signal_handlers(struct task_struct *, int force_default);
264 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
265 
266 static inline int kernel_dequeue_signal(siginfo_t *info)
267 {
268 	struct task_struct *tsk = current;
269 	siginfo_t __info;
270 	int ret;
271 
272 	spin_lock_irq(&tsk->sighand->siglock);
273 	ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info);
274 	spin_unlock_irq(&tsk->sighand->siglock);
275 
276 	return ret;
277 }
278 
279 static inline void kernel_signal_stop(void)
280 {
281 	spin_lock_irq(&current->sighand->siglock);
282 	if (current->jobctl & JOBCTL_STOP_DEQUEUED)
283 		__set_current_state(TASK_STOPPED);
284 	spin_unlock_irq(&current->sighand->siglock);
285 
286 	schedule();
287 }
288 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
289 extern int force_sigsegv(int, struct task_struct *);
290 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
291 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
292 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
293 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
294 				const struct cred *, u32);
295 extern int kill_pgrp(struct pid *pid, int sig, int priv);
296 extern int kill_pid(struct pid *pid, int sig, int priv);
297 extern __must_check bool do_notify_parent(struct task_struct *, int);
298 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
299 extern void force_sig(int, struct task_struct *);
300 extern int send_sig(int, struct task_struct *, int);
301 extern int zap_other_threads(struct task_struct *p);
302 extern struct sigqueue *sigqueue_alloc(void);
303 extern void sigqueue_free(struct sigqueue *);
304 extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
305 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
306 
307 static inline int restart_syscall(void)
308 {
309 	set_tsk_thread_flag(current, TIF_SIGPENDING);
310 	return -ERESTARTNOINTR;
311 }
312 
313 static inline int signal_pending(struct task_struct *p)
314 {
315 	return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
316 }
317 
318 static inline int __fatal_signal_pending(struct task_struct *p)
319 {
320 	return unlikely(sigismember(&p->pending.signal, SIGKILL));
321 }
322 
323 static inline int fatal_signal_pending(struct task_struct *p)
324 {
325 	return signal_pending(p) && __fatal_signal_pending(p);
326 }
327 
328 static inline int signal_pending_state(long state, struct task_struct *p)
329 {
330 	if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
331 		return 0;
332 	if (!signal_pending(p))
333 		return 0;
334 
335 	return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
336 }
337 
338 /*
339  * Reevaluate whether the task has signals pending delivery.
340  * Wake the task if so.
341  * This is required every time the blocked sigset_t changes.
342  * callers must hold sighand->siglock.
343  */
344 extern void recalc_sigpending_and_wake(struct task_struct *t);
345 extern void recalc_sigpending(void);
346 
347 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
348 
349 static inline void signal_wake_up(struct task_struct *t, bool resume)
350 {
351 	signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
352 }
353 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
354 {
355 	signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
356 }
357 
358 #ifdef TIF_RESTORE_SIGMASK
359 /*
360  * Legacy restore_sigmask accessors.  These are inefficient on
361  * SMP architectures because they require atomic operations.
362  */
363 
364 /**
365  * set_restore_sigmask() - make sure saved_sigmask processing gets done
366  *
367  * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code
368  * will run before returning to user mode, to process the flag.  For
369  * all callers, TIF_SIGPENDING is already set or it's no harm to set
370  * it.  TIF_RESTORE_SIGMASK need not be in the set of bits that the
371  * arch code will notice on return to user mode, in case those bits
372  * are scarce.  We set TIF_SIGPENDING here to ensure that the arch
373  * signal code always gets run when TIF_RESTORE_SIGMASK is set.
374  */
375 static inline void set_restore_sigmask(void)
376 {
377 	set_thread_flag(TIF_RESTORE_SIGMASK);
378 	WARN_ON(!test_thread_flag(TIF_SIGPENDING));
379 }
380 static inline void clear_restore_sigmask(void)
381 {
382 	clear_thread_flag(TIF_RESTORE_SIGMASK);
383 }
384 static inline bool test_restore_sigmask(void)
385 {
386 	return test_thread_flag(TIF_RESTORE_SIGMASK);
387 }
388 static inline bool test_and_clear_restore_sigmask(void)
389 {
390 	return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK);
391 }
392 
393 #else	/* TIF_RESTORE_SIGMASK */
394 
395 /* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */
396 static inline void set_restore_sigmask(void)
397 {
398 	current->restore_sigmask = true;
399 	WARN_ON(!test_thread_flag(TIF_SIGPENDING));
400 }
401 static inline void clear_restore_sigmask(void)
402 {
403 	current->restore_sigmask = false;
404 }
405 static inline bool test_restore_sigmask(void)
406 {
407 	return current->restore_sigmask;
408 }
409 static inline bool test_and_clear_restore_sigmask(void)
410 {
411 	if (!current->restore_sigmask)
412 		return false;
413 	current->restore_sigmask = false;
414 	return true;
415 }
416 #endif
417 
418 static inline void restore_saved_sigmask(void)
419 {
420 	if (test_and_clear_restore_sigmask())
421 		__set_current_blocked(&current->saved_sigmask);
422 }
423 
424 static inline sigset_t *sigmask_to_save(void)
425 {
426 	sigset_t *res = &current->blocked;
427 	if (unlikely(test_restore_sigmask()))
428 		res = &current->saved_sigmask;
429 	return res;
430 }
431 
432 static inline int kill_cad_pid(int sig, int priv)
433 {
434 	return kill_pid(cad_pid, sig, priv);
435 }
436 
437 /* These can be the second arg to send_sig_info/send_group_sig_info.  */
438 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
439 #define SEND_SIG_PRIV	((struct siginfo *) 1)
440 #define SEND_SIG_FORCED	((struct siginfo *) 2)
441 
442 /*
443  * True if we are on the alternate signal stack.
444  */
445 static inline int on_sig_stack(unsigned long sp)
446 {
447 	/*
448 	 * If the signal stack is SS_AUTODISARM then, by construction, we
449 	 * can't be on the signal stack unless user code deliberately set
450 	 * SS_AUTODISARM when we were already on it.
451 	 *
452 	 * This improves reliability: if user state gets corrupted such that
453 	 * the stack pointer points very close to the end of the signal stack,
454 	 * then this check will enable the signal to be handled anyway.
455 	 */
456 	if (current->sas_ss_flags & SS_AUTODISARM)
457 		return 0;
458 
459 #ifdef CONFIG_STACK_GROWSUP
460 	return sp >= current->sas_ss_sp &&
461 		sp - current->sas_ss_sp < current->sas_ss_size;
462 #else
463 	return sp > current->sas_ss_sp &&
464 		sp - current->sas_ss_sp <= current->sas_ss_size;
465 #endif
466 }
467 
468 static inline int sas_ss_flags(unsigned long sp)
469 {
470 	if (!current->sas_ss_size)
471 		return SS_DISABLE;
472 
473 	return on_sig_stack(sp) ? SS_ONSTACK : 0;
474 }
475 
476 static inline void sas_ss_reset(struct task_struct *p)
477 {
478 	p->sas_ss_sp = 0;
479 	p->sas_ss_size = 0;
480 	p->sas_ss_flags = SS_DISABLE;
481 }
482 
483 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
484 {
485 	if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
486 #ifdef CONFIG_STACK_GROWSUP
487 		return current->sas_ss_sp;
488 #else
489 		return current->sas_ss_sp + current->sas_ss_size;
490 #endif
491 	return sp;
492 }
493 
494 extern void __cleanup_sighand(struct sighand_struct *);
495 extern void flush_itimer_signals(void);
496 
497 #define tasklist_empty() \
498 	list_empty(&init_task.tasks)
499 
500 #define next_task(p) \
501 	list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
502 
503 #define for_each_process(p) \
504 	for (p = &init_task ; (p = next_task(p)) != &init_task ; )
505 
506 extern bool current_is_single_threaded(void);
507 
508 /*
509  * Careful: do_each_thread/while_each_thread is a double loop so
510  *          'break' will not work as expected - use goto instead.
511  */
512 #define do_each_thread(g, t) \
513 	for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
514 
515 #define while_each_thread(g, t) \
516 	while ((t = next_thread(t)) != g)
517 
518 #define __for_each_thread(signal, t)	\
519 	list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
520 
521 #define for_each_thread(p, t)		\
522 	__for_each_thread((p)->signal, t)
523 
524 /* Careful: this is a double loop, 'break' won't work as expected. */
525 #define for_each_process_thread(p, t)	\
526 	for_each_process(p) for_each_thread(p, t)
527 
528 typedef int (*proc_visitor)(struct task_struct *p, void *data);
529 void walk_process_tree(struct task_struct *top, proc_visitor, void *);
530 
531 static inline int get_nr_threads(struct task_struct *tsk)
532 {
533 	return tsk->signal->nr_threads;
534 }
535 
536 static inline bool thread_group_leader(struct task_struct *p)
537 {
538 	return p->exit_signal >= 0;
539 }
540 
541 /* Do to the insanities of de_thread it is possible for a process
542  * to have the pid of the thread group leader without actually being
543  * the thread group leader.  For iteration through the pids in proc
544  * all we care about is that we have a task with the appropriate
545  * pid, we don't actually care if we have the right task.
546  */
547 static inline bool has_group_leader_pid(struct task_struct *p)
548 {
549 	return task_pid(p) == p->signal->leader_pid;
550 }
551 
552 static inline
553 bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
554 {
555 	return p1->signal == p2->signal;
556 }
557 
558 static inline struct task_struct *next_thread(const struct task_struct *p)
559 {
560 	return list_entry_rcu(p->thread_group.next,
561 			      struct task_struct, thread_group);
562 }
563 
564 static inline int thread_group_empty(struct task_struct *p)
565 {
566 	return list_empty(&p->thread_group);
567 }
568 
569 #define delay_group_leader(p) \
570 		(thread_group_leader(p) && !thread_group_empty(p))
571 
572 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
573 							unsigned long *flags);
574 
575 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
576 						       unsigned long *flags)
577 {
578 	struct sighand_struct *ret;
579 
580 	ret = __lock_task_sighand(tsk, flags);
581 	(void)__cond_lock(&tsk->sighand->siglock, ret);
582 	return ret;
583 }
584 
585 static inline void unlock_task_sighand(struct task_struct *tsk,
586 						unsigned long *flags)
587 {
588 	spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
589 }
590 
591 static inline unsigned long task_rlimit(const struct task_struct *tsk,
592 		unsigned int limit)
593 {
594 	return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
595 }
596 
597 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
598 		unsigned int limit)
599 {
600 	return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
601 }
602 
603 static inline unsigned long rlimit(unsigned int limit)
604 {
605 	return task_rlimit(current, limit);
606 }
607 
608 static inline unsigned long rlimit_max(unsigned int limit)
609 {
610 	return task_rlimit_max(current, limit);
611 }
612 
613 #endif /* _LINUX_SCHED_SIGNAL_H */
614