1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_SCHED_SIGNAL_H 3 #define _LINUX_SCHED_SIGNAL_H 4 5 #include <linux/rculist.h> 6 #include <linux/signal.h> 7 #include <linux/sched.h> 8 #include <linux/sched/jobctl.h> 9 #include <linux/sched/task.h> 10 #include <linux/cred.h> 11 #include <linux/refcount.h> 12 #include <linux/posix-timers.h> 13 #include <linux/mm_types.h> 14 #include <asm/ptrace.h> 15 16 /* 17 * Types defining task->signal and task->sighand and APIs using them: 18 */ 19 20 struct sighand_struct { 21 spinlock_t siglock; 22 refcount_t count; 23 wait_queue_head_t signalfd_wqh; 24 struct k_sigaction action[_NSIG]; 25 }; 26 27 /* 28 * Per-process accounting stats: 29 */ 30 struct pacct_struct { 31 int ac_flag; 32 long ac_exitcode; 33 unsigned long ac_mem; 34 u64 ac_utime, ac_stime; 35 unsigned long ac_minflt, ac_majflt; 36 }; 37 38 struct cpu_itimer { 39 u64 expires; 40 u64 incr; 41 }; 42 43 /* 44 * This is the atomic variant of task_cputime, which can be used for 45 * storing and updating task_cputime statistics without locking. 46 */ 47 struct task_cputime_atomic { 48 atomic64_t utime; 49 atomic64_t stime; 50 atomic64_t sum_exec_runtime; 51 }; 52 53 #define INIT_CPUTIME_ATOMIC \ 54 (struct task_cputime_atomic) { \ 55 .utime = ATOMIC64_INIT(0), \ 56 .stime = ATOMIC64_INIT(0), \ 57 .sum_exec_runtime = ATOMIC64_INIT(0), \ 58 } 59 /** 60 * struct thread_group_cputimer - thread group interval timer counts 61 * @cputime_atomic: atomic thread group interval timers. 62 * 63 * This structure contains the version of task_cputime, above, that is 64 * used for thread group CPU timer calculations. 65 */ 66 struct thread_group_cputimer { 67 struct task_cputime_atomic cputime_atomic; 68 }; 69 70 struct multiprocess_signals { 71 sigset_t signal; 72 struct hlist_node node; 73 }; 74 75 /* 76 * NOTE! "signal_struct" does not have its own 77 * locking, because a shared signal_struct always 78 * implies a shared sighand_struct, so locking 79 * sighand_struct is always a proper superset of 80 * the locking of signal_struct. 81 */ 82 struct signal_struct { 83 refcount_t sigcnt; 84 atomic_t live; 85 int nr_threads; 86 struct list_head thread_head; 87 88 wait_queue_head_t wait_chldexit; /* for wait4() */ 89 90 /* current thread group signal load-balancing target: */ 91 struct task_struct *curr_target; 92 93 /* shared signal handling: */ 94 struct sigpending shared_pending; 95 96 /* For collecting multiprocess signals during fork */ 97 struct hlist_head multiprocess; 98 99 /* thread group exit support */ 100 int group_exit_code; 101 /* overloaded: 102 * - notify group_exit_task when ->count is equal to notify_count 103 * - everyone except group_exit_task is stopped during signal delivery 104 * of fatal signals, group_exit_task processes the signal. 105 */ 106 int notify_count; 107 struct task_struct *group_exit_task; 108 109 /* thread group stop support, overloads group_exit_code too */ 110 int group_stop_count; 111 unsigned int flags; /* see SIGNAL_* flags below */ 112 113 /* 114 * PR_SET_CHILD_SUBREAPER marks a process, like a service 115 * manager, to re-parent orphan (double-forking) child processes 116 * to this process instead of 'init'. The service manager is 117 * able to receive SIGCHLD signals and is able to investigate 118 * the process until it calls wait(). All children of this 119 * process will inherit a flag if they should look for a 120 * child_subreaper process at exit. 121 */ 122 unsigned int is_child_subreaper:1; 123 unsigned int has_child_subreaper:1; 124 125 #ifdef CONFIG_POSIX_TIMERS 126 127 /* POSIX.1b Interval Timers */ 128 int posix_timer_id; 129 struct list_head posix_timers; 130 131 /* ITIMER_REAL timer for the process */ 132 struct hrtimer real_timer; 133 ktime_t it_real_incr; 134 135 /* 136 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 137 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 138 * values are defined to 0 and 1 respectively 139 */ 140 struct cpu_itimer it[2]; 141 142 /* 143 * Thread group totals for process CPU timers. 144 * See thread_group_cputimer(), et al, for details. 145 */ 146 struct thread_group_cputimer cputimer; 147 148 #endif 149 /* Empty if CONFIG_POSIX_TIMERS=n */ 150 struct posix_cputimers posix_cputimers; 151 152 /* PID/PID hash table linkage. */ 153 struct pid *pids[PIDTYPE_MAX]; 154 155 #ifdef CONFIG_NO_HZ_FULL 156 atomic_t tick_dep_mask; 157 #endif 158 159 struct pid *tty_old_pgrp; 160 161 /* boolean value for session group leader */ 162 int leader; 163 164 struct tty_struct *tty; /* NULL if no tty */ 165 166 #ifdef CONFIG_SCHED_AUTOGROUP 167 struct autogroup *autogroup; 168 #endif 169 /* 170 * Cumulative resource counters for dead threads in the group, 171 * and for reaped dead child processes forked by this group. 172 * Live threads maintain their own counters and add to these 173 * in __exit_signal, except for the group leader. 174 */ 175 seqlock_t stats_lock; 176 u64 utime, stime, cutime, cstime; 177 u64 gtime; 178 u64 cgtime; 179 struct prev_cputime prev_cputime; 180 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 181 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 182 unsigned long inblock, oublock, cinblock, coublock; 183 unsigned long maxrss, cmaxrss; 184 struct task_io_accounting ioac; 185 186 /* 187 * Cumulative ns of schedule CPU time fo dead threads in the 188 * group, not including a zombie group leader, (This only differs 189 * from jiffies_to_ns(utime + stime) if sched_clock uses something 190 * other than jiffies.) 191 */ 192 unsigned long long sum_sched_runtime; 193 194 /* 195 * We don't bother to synchronize most readers of this at all, 196 * because there is no reader checking a limit that actually needs 197 * to get both rlim_cur and rlim_max atomically, and either one 198 * alone is a single word that can safely be read normally. 199 * getrlimit/setrlimit use task_lock(current->group_leader) to 200 * protect this instead of the siglock, because they really 201 * have no need to disable irqs. 202 */ 203 struct rlimit rlim[RLIM_NLIMITS]; 204 205 #ifdef CONFIG_BSD_PROCESS_ACCT 206 struct pacct_struct pacct; /* per-process accounting information */ 207 #endif 208 #ifdef CONFIG_TASKSTATS 209 struct taskstats *stats; 210 #endif 211 #ifdef CONFIG_AUDIT 212 unsigned audit_tty; 213 struct tty_audit_buf *tty_audit_buf; 214 #endif 215 216 /* 217 * Thread is the potential origin of an oom condition; kill first on 218 * oom 219 */ 220 bool oom_flag_origin; 221 short oom_score_adj; /* OOM kill score adjustment */ 222 short oom_score_adj_min; /* OOM kill score adjustment min value. 223 * Only settable by CAP_SYS_RESOURCE. */ 224 struct mm_struct *oom_mm; /* recorded mm when the thread group got 225 * killed by the oom killer */ 226 227 struct mutex cred_guard_mutex; /* guard against foreign influences on 228 * credential calculations 229 * (notably. ptrace) 230 * Deprecated do not use in new code. 231 * Use exec_update_mutex instead. 232 */ 233 struct mutex exec_update_mutex; /* Held while task_struct is being 234 * updated during exec, and may have 235 * inconsistent permissions. 236 */ 237 } __randomize_layout; 238 239 /* 240 * Bits in flags field of signal_struct. 241 */ 242 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 243 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ 244 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ 245 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */ 246 /* 247 * Pending notifications to parent. 248 */ 249 #define SIGNAL_CLD_STOPPED 0x00000010 250 #define SIGNAL_CLD_CONTINUED 0x00000020 251 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 252 253 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 254 255 #define SIGNAL_STOP_MASK (SIGNAL_CLD_MASK | SIGNAL_STOP_STOPPED | \ 256 SIGNAL_STOP_CONTINUED) 257 258 static inline void signal_set_stop_flags(struct signal_struct *sig, 259 unsigned int flags) 260 { 261 WARN_ON(sig->flags & (SIGNAL_GROUP_EXIT|SIGNAL_GROUP_COREDUMP)); 262 sig->flags = (sig->flags & ~SIGNAL_STOP_MASK) | flags; 263 } 264 265 /* If true, all threads except ->group_exit_task have pending SIGKILL */ 266 static inline int signal_group_exit(const struct signal_struct *sig) 267 { 268 return (sig->flags & SIGNAL_GROUP_EXIT) || 269 (sig->group_exit_task != NULL); 270 } 271 272 extern void flush_signals(struct task_struct *); 273 extern void ignore_signals(struct task_struct *); 274 extern void flush_signal_handlers(struct task_struct *, int force_default); 275 extern int dequeue_signal(struct task_struct *task, 276 sigset_t *mask, kernel_siginfo_t *info); 277 278 static inline int kernel_dequeue_signal(void) 279 { 280 struct task_struct *task = current; 281 kernel_siginfo_t __info; 282 int ret; 283 284 spin_lock_irq(&task->sighand->siglock); 285 ret = dequeue_signal(task, &task->blocked, &__info); 286 spin_unlock_irq(&task->sighand->siglock); 287 288 return ret; 289 } 290 291 static inline void kernel_signal_stop(void) 292 { 293 spin_lock_irq(¤t->sighand->siglock); 294 if (current->jobctl & JOBCTL_STOP_DEQUEUED) 295 set_special_state(TASK_STOPPED); 296 spin_unlock_irq(¤t->sighand->siglock); 297 298 schedule(); 299 } 300 #ifdef __ARCH_SI_TRAPNO 301 # define ___ARCH_SI_TRAPNO(_a1) , _a1 302 #else 303 # define ___ARCH_SI_TRAPNO(_a1) 304 #endif 305 #ifdef __ia64__ 306 # define ___ARCH_SI_IA64(_a1, _a2, _a3) , _a1, _a2, _a3 307 #else 308 # define ___ARCH_SI_IA64(_a1, _a2, _a3) 309 #endif 310 311 int force_sig_fault_to_task(int sig, int code, void __user *addr 312 ___ARCH_SI_TRAPNO(int trapno) 313 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 314 , struct task_struct *t); 315 int force_sig_fault(int sig, int code, void __user *addr 316 ___ARCH_SI_TRAPNO(int trapno) 317 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)); 318 int send_sig_fault(int sig, int code, void __user *addr 319 ___ARCH_SI_TRAPNO(int trapno) 320 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 321 , struct task_struct *t); 322 323 int force_sig_mceerr(int code, void __user *, short); 324 int send_sig_mceerr(int code, void __user *, short, struct task_struct *); 325 326 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper); 327 int force_sig_pkuerr(void __user *addr, u32 pkey); 328 329 int force_sig_ptrace_errno_trap(int errno, void __user *addr); 330 331 extern int send_sig_info(int, struct kernel_siginfo *, struct task_struct *); 332 extern void force_sigsegv(int sig); 333 extern int force_sig_info(struct kernel_siginfo *); 334 extern int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp); 335 extern int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid); 336 extern int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, struct pid *, 337 const struct cred *); 338 extern int kill_pgrp(struct pid *pid, int sig, int priv); 339 extern int kill_pid(struct pid *pid, int sig, int priv); 340 extern __must_check bool do_notify_parent(struct task_struct *, int); 341 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 342 extern void force_sig(int); 343 extern int send_sig(int, struct task_struct *, int); 344 extern int zap_other_threads(struct task_struct *p); 345 extern struct sigqueue *sigqueue_alloc(void); 346 extern void sigqueue_free(struct sigqueue *); 347 extern int send_sigqueue(struct sigqueue *, struct pid *, enum pid_type); 348 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 349 350 static inline int restart_syscall(void) 351 { 352 set_tsk_thread_flag(current, TIF_SIGPENDING); 353 return -ERESTARTNOINTR; 354 } 355 356 static inline int signal_pending(struct task_struct *p) 357 { 358 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 359 } 360 361 static inline int __fatal_signal_pending(struct task_struct *p) 362 { 363 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 364 } 365 366 static inline int fatal_signal_pending(struct task_struct *p) 367 { 368 return signal_pending(p) && __fatal_signal_pending(p); 369 } 370 371 static inline int signal_pending_state(long state, struct task_struct *p) 372 { 373 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 374 return 0; 375 if (!signal_pending(p)) 376 return 0; 377 378 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 379 } 380 381 /* 382 * This should only be used in fault handlers to decide whether we 383 * should stop the current fault routine to handle the signals 384 * instead, especially with the case where we've got interrupted with 385 * a VM_FAULT_RETRY. 386 */ 387 static inline bool fault_signal_pending(vm_fault_t fault_flags, 388 struct pt_regs *regs) 389 { 390 return unlikely((fault_flags & VM_FAULT_RETRY) && 391 (fatal_signal_pending(current) || 392 (user_mode(regs) && signal_pending(current)))); 393 } 394 395 /* 396 * Reevaluate whether the task has signals pending delivery. 397 * Wake the task if so. 398 * This is required every time the blocked sigset_t changes. 399 * callers must hold sighand->siglock. 400 */ 401 extern void recalc_sigpending_and_wake(struct task_struct *t); 402 extern void recalc_sigpending(void); 403 extern void calculate_sigpending(void); 404 405 extern void signal_wake_up_state(struct task_struct *t, unsigned int state); 406 407 static inline void signal_wake_up(struct task_struct *t, bool resume) 408 { 409 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0); 410 } 411 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume) 412 { 413 signal_wake_up_state(t, resume ? __TASK_TRACED : 0); 414 } 415 416 void task_join_group_stop(struct task_struct *task); 417 418 #ifdef TIF_RESTORE_SIGMASK 419 /* 420 * Legacy restore_sigmask accessors. These are inefficient on 421 * SMP architectures because they require atomic operations. 422 */ 423 424 /** 425 * set_restore_sigmask() - make sure saved_sigmask processing gets done 426 * 427 * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code 428 * will run before returning to user mode, to process the flag. For 429 * all callers, TIF_SIGPENDING is already set or it's no harm to set 430 * it. TIF_RESTORE_SIGMASK need not be in the set of bits that the 431 * arch code will notice on return to user mode, in case those bits 432 * are scarce. We set TIF_SIGPENDING here to ensure that the arch 433 * signal code always gets run when TIF_RESTORE_SIGMASK is set. 434 */ 435 static inline void set_restore_sigmask(void) 436 { 437 set_thread_flag(TIF_RESTORE_SIGMASK); 438 } 439 440 static inline void clear_tsk_restore_sigmask(struct task_struct *task) 441 { 442 clear_tsk_thread_flag(task, TIF_RESTORE_SIGMASK); 443 } 444 445 static inline void clear_restore_sigmask(void) 446 { 447 clear_thread_flag(TIF_RESTORE_SIGMASK); 448 } 449 static inline bool test_tsk_restore_sigmask(struct task_struct *task) 450 { 451 return test_tsk_thread_flag(task, TIF_RESTORE_SIGMASK); 452 } 453 static inline bool test_restore_sigmask(void) 454 { 455 return test_thread_flag(TIF_RESTORE_SIGMASK); 456 } 457 static inline bool test_and_clear_restore_sigmask(void) 458 { 459 return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK); 460 } 461 462 #else /* TIF_RESTORE_SIGMASK */ 463 464 /* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */ 465 static inline void set_restore_sigmask(void) 466 { 467 current->restore_sigmask = true; 468 } 469 static inline void clear_tsk_restore_sigmask(struct task_struct *task) 470 { 471 task->restore_sigmask = false; 472 } 473 static inline void clear_restore_sigmask(void) 474 { 475 current->restore_sigmask = false; 476 } 477 static inline bool test_restore_sigmask(void) 478 { 479 return current->restore_sigmask; 480 } 481 static inline bool test_tsk_restore_sigmask(struct task_struct *task) 482 { 483 return task->restore_sigmask; 484 } 485 static inline bool test_and_clear_restore_sigmask(void) 486 { 487 if (!current->restore_sigmask) 488 return false; 489 current->restore_sigmask = false; 490 return true; 491 } 492 #endif 493 494 static inline void restore_saved_sigmask(void) 495 { 496 if (test_and_clear_restore_sigmask()) 497 __set_current_blocked(¤t->saved_sigmask); 498 } 499 500 extern int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize); 501 502 static inline void restore_saved_sigmask_unless(bool interrupted) 503 { 504 if (interrupted) 505 WARN_ON(!test_thread_flag(TIF_SIGPENDING)); 506 else 507 restore_saved_sigmask(); 508 } 509 510 static inline sigset_t *sigmask_to_save(void) 511 { 512 sigset_t *res = ¤t->blocked; 513 if (unlikely(test_restore_sigmask())) 514 res = ¤t->saved_sigmask; 515 return res; 516 } 517 518 static inline int kill_cad_pid(int sig, int priv) 519 { 520 return kill_pid(cad_pid, sig, priv); 521 } 522 523 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 524 #define SEND_SIG_NOINFO ((struct kernel_siginfo *) 0) 525 #define SEND_SIG_PRIV ((struct kernel_siginfo *) 1) 526 527 /* 528 * True if we are on the alternate signal stack. 529 */ 530 static inline int on_sig_stack(unsigned long sp) 531 { 532 /* 533 * If the signal stack is SS_AUTODISARM then, by construction, we 534 * can't be on the signal stack unless user code deliberately set 535 * SS_AUTODISARM when we were already on it. 536 * 537 * This improves reliability: if user state gets corrupted such that 538 * the stack pointer points very close to the end of the signal stack, 539 * then this check will enable the signal to be handled anyway. 540 */ 541 if (current->sas_ss_flags & SS_AUTODISARM) 542 return 0; 543 544 #ifdef CONFIG_STACK_GROWSUP 545 return sp >= current->sas_ss_sp && 546 sp - current->sas_ss_sp < current->sas_ss_size; 547 #else 548 return sp > current->sas_ss_sp && 549 sp - current->sas_ss_sp <= current->sas_ss_size; 550 #endif 551 } 552 553 static inline int sas_ss_flags(unsigned long sp) 554 { 555 if (!current->sas_ss_size) 556 return SS_DISABLE; 557 558 return on_sig_stack(sp) ? SS_ONSTACK : 0; 559 } 560 561 static inline void sas_ss_reset(struct task_struct *p) 562 { 563 p->sas_ss_sp = 0; 564 p->sas_ss_size = 0; 565 p->sas_ss_flags = SS_DISABLE; 566 } 567 568 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig) 569 { 570 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp)) 571 #ifdef CONFIG_STACK_GROWSUP 572 return current->sas_ss_sp; 573 #else 574 return current->sas_ss_sp + current->sas_ss_size; 575 #endif 576 return sp; 577 } 578 579 extern void __cleanup_sighand(struct sighand_struct *); 580 extern void flush_itimer_signals(void); 581 582 #define tasklist_empty() \ 583 list_empty(&init_task.tasks) 584 585 #define next_task(p) \ 586 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 587 588 #define for_each_process(p) \ 589 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 590 591 extern bool current_is_single_threaded(void); 592 593 /* 594 * Careful: do_each_thread/while_each_thread is a double loop so 595 * 'break' will not work as expected - use goto instead. 596 */ 597 #define do_each_thread(g, t) \ 598 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 599 600 #define while_each_thread(g, t) \ 601 while ((t = next_thread(t)) != g) 602 603 #define __for_each_thread(signal, t) \ 604 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node) 605 606 #define for_each_thread(p, t) \ 607 __for_each_thread((p)->signal, t) 608 609 /* Careful: this is a double loop, 'break' won't work as expected. */ 610 #define for_each_process_thread(p, t) \ 611 for_each_process(p) for_each_thread(p, t) 612 613 typedef int (*proc_visitor)(struct task_struct *p, void *data); 614 void walk_process_tree(struct task_struct *top, proc_visitor, void *); 615 616 static inline 617 struct pid *task_pid_type(struct task_struct *task, enum pid_type type) 618 { 619 struct pid *pid; 620 if (type == PIDTYPE_PID) 621 pid = task_pid(task); 622 else 623 pid = task->signal->pids[type]; 624 return pid; 625 } 626 627 static inline struct pid *task_tgid(struct task_struct *task) 628 { 629 return task->signal->pids[PIDTYPE_TGID]; 630 } 631 632 /* 633 * Without tasklist or RCU lock it is not safe to dereference 634 * the result of task_pgrp/task_session even if task == current, 635 * we can race with another thread doing sys_setsid/sys_setpgid. 636 */ 637 static inline struct pid *task_pgrp(struct task_struct *task) 638 { 639 return task->signal->pids[PIDTYPE_PGID]; 640 } 641 642 static inline struct pid *task_session(struct task_struct *task) 643 { 644 return task->signal->pids[PIDTYPE_SID]; 645 } 646 647 static inline int get_nr_threads(struct task_struct *task) 648 { 649 return task->signal->nr_threads; 650 } 651 652 static inline bool thread_group_leader(struct task_struct *p) 653 { 654 return p->exit_signal >= 0; 655 } 656 657 static inline 658 bool same_thread_group(struct task_struct *p1, struct task_struct *p2) 659 { 660 return p1->signal == p2->signal; 661 } 662 663 static inline struct task_struct *next_thread(const struct task_struct *p) 664 { 665 return list_entry_rcu(p->thread_group.next, 666 struct task_struct, thread_group); 667 } 668 669 static inline int thread_group_empty(struct task_struct *p) 670 { 671 return list_empty(&p->thread_group); 672 } 673 674 #define delay_group_leader(p) \ 675 (thread_group_leader(p) && !thread_group_empty(p)) 676 677 extern struct sighand_struct *__lock_task_sighand(struct task_struct *task, 678 unsigned long *flags); 679 680 static inline struct sighand_struct *lock_task_sighand(struct task_struct *task, 681 unsigned long *flags) 682 { 683 struct sighand_struct *ret; 684 685 ret = __lock_task_sighand(task, flags); 686 (void)__cond_lock(&task->sighand->siglock, ret); 687 return ret; 688 } 689 690 static inline void unlock_task_sighand(struct task_struct *task, 691 unsigned long *flags) 692 { 693 spin_unlock_irqrestore(&task->sighand->siglock, *flags); 694 } 695 696 static inline unsigned long task_rlimit(const struct task_struct *task, 697 unsigned int limit) 698 { 699 return READ_ONCE(task->signal->rlim[limit].rlim_cur); 700 } 701 702 static inline unsigned long task_rlimit_max(const struct task_struct *task, 703 unsigned int limit) 704 { 705 return READ_ONCE(task->signal->rlim[limit].rlim_max); 706 } 707 708 static inline unsigned long rlimit(unsigned int limit) 709 { 710 return task_rlimit(current, limit); 711 } 712 713 static inline unsigned long rlimit_max(unsigned int limit) 714 { 715 return task_rlimit_max(current, limit); 716 } 717 718 #endif /* _LINUX_SCHED_SIGNAL_H */ 719