1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_SCHED_SIGNAL_H 3 #define _LINUX_SCHED_SIGNAL_H 4 5 #include <linux/rculist.h> 6 #include <linux/signal.h> 7 #include <linux/sched.h> 8 #include <linux/sched/jobctl.h> 9 #include <linux/sched/task.h> 10 #include <linux/cred.h> 11 #include <linux/refcount.h> 12 #include <linux/posix-timers.h> 13 #include <linux/mm_types.h> 14 #include <asm/ptrace.h> 15 16 /* 17 * Types defining task->signal and task->sighand and APIs using them: 18 */ 19 20 struct sighand_struct { 21 spinlock_t siglock; 22 refcount_t count; 23 wait_queue_head_t signalfd_wqh; 24 struct k_sigaction action[_NSIG]; 25 }; 26 27 /* 28 * Per-process accounting stats: 29 */ 30 struct pacct_struct { 31 int ac_flag; 32 long ac_exitcode; 33 unsigned long ac_mem; 34 u64 ac_utime, ac_stime; 35 unsigned long ac_minflt, ac_majflt; 36 }; 37 38 struct cpu_itimer { 39 u64 expires; 40 u64 incr; 41 }; 42 43 /* 44 * This is the atomic variant of task_cputime, which can be used for 45 * storing and updating task_cputime statistics without locking. 46 */ 47 struct task_cputime_atomic { 48 atomic64_t utime; 49 atomic64_t stime; 50 atomic64_t sum_exec_runtime; 51 }; 52 53 #define INIT_CPUTIME_ATOMIC \ 54 (struct task_cputime_atomic) { \ 55 .utime = ATOMIC64_INIT(0), \ 56 .stime = ATOMIC64_INIT(0), \ 57 .sum_exec_runtime = ATOMIC64_INIT(0), \ 58 } 59 /** 60 * struct thread_group_cputimer - thread group interval timer counts 61 * @cputime_atomic: atomic thread group interval timers. 62 * 63 * This structure contains the version of task_cputime, above, that is 64 * used for thread group CPU timer calculations. 65 */ 66 struct thread_group_cputimer { 67 struct task_cputime_atomic cputime_atomic; 68 }; 69 70 struct multiprocess_signals { 71 sigset_t signal; 72 struct hlist_node node; 73 }; 74 75 /* 76 * NOTE! "signal_struct" does not have its own 77 * locking, because a shared signal_struct always 78 * implies a shared sighand_struct, so locking 79 * sighand_struct is always a proper superset of 80 * the locking of signal_struct. 81 */ 82 struct signal_struct { 83 refcount_t sigcnt; 84 atomic_t live; 85 int nr_threads; 86 struct list_head thread_head; 87 88 wait_queue_head_t wait_chldexit; /* for wait4() */ 89 90 /* current thread group signal load-balancing target: */ 91 struct task_struct *curr_target; 92 93 /* shared signal handling: */ 94 struct sigpending shared_pending; 95 96 /* For collecting multiprocess signals during fork */ 97 struct hlist_head multiprocess; 98 99 /* thread group exit support */ 100 int group_exit_code; 101 /* overloaded: 102 * - notify group_exit_task when ->count is equal to notify_count 103 * - everyone except group_exit_task is stopped during signal delivery 104 * of fatal signals, group_exit_task processes the signal. 105 */ 106 int notify_count; 107 struct task_struct *group_exit_task; 108 109 /* thread group stop support, overloads group_exit_code too */ 110 int group_stop_count; 111 unsigned int flags; /* see SIGNAL_* flags below */ 112 113 /* 114 * PR_SET_CHILD_SUBREAPER marks a process, like a service 115 * manager, to re-parent orphan (double-forking) child processes 116 * to this process instead of 'init'. The service manager is 117 * able to receive SIGCHLD signals and is able to investigate 118 * the process until it calls wait(). All children of this 119 * process will inherit a flag if they should look for a 120 * child_subreaper process at exit. 121 */ 122 unsigned int is_child_subreaper:1; 123 unsigned int has_child_subreaper:1; 124 125 #ifdef CONFIG_POSIX_TIMERS 126 127 /* POSIX.1b Interval Timers */ 128 int posix_timer_id; 129 struct list_head posix_timers; 130 131 /* ITIMER_REAL timer for the process */ 132 struct hrtimer real_timer; 133 ktime_t it_real_incr; 134 135 /* 136 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 137 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 138 * values are defined to 0 and 1 respectively 139 */ 140 struct cpu_itimer it[2]; 141 142 /* 143 * Thread group totals for process CPU timers. 144 * See thread_group_cputimer(), et al, for details. 145 */ 146 struct thread_group_cputimer cputimer; 147 148 #endif 149 /* Empty if CONFIG_POSIX_TIMERS=n */ 150 struct posix_cputimers posix_cputimers; 151 152 /* PID/PID hash table linkage. */ 153 struct pid *pids[PIDTYPE_MAX]; 154 155 #ifdef CONFIG_NO_HZ_FULL 156 atomic_t tick_dep_mask; 157 #endif 158 159 struct pid *tty_old_pgrp; 160 161 /* boolean value for session group leader */ 162 int leader; 163 164 struct tty_struct *tty; /* NULL if no tty */ 165 166 #ifdef CONFIG_SCHED_AUTOGROUP 167 struct autogroup *autogroup; 168 #endif 169 /* 170 * Cumulative resource counters for dead threads in the group, 171 * and for reaped dead child processes forked by this group. 172 * Live threads maintain their own counters and add to these 173 * in __exit_signal, except for the group leader. 174 */ 175 seqlock_t stats_lock; 176 u64 utime, stime, cutime, cstime; 177 u64 gtime; 178 u64 cgtime; 179 struct prev_cputime prev_cputime; 180 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 181 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 182 unsigned long inblock, oublock, cinblock, coublock; 183 unsigned long maxrss, cmaxrss; 184 struct task_io_accounting ioac; 185 186 /* 187 * Cumulative ns of schedule CPU time fo dead threads in the 188 * group, not including a zombie group leader, (This only differs 189 * from jiffies_to_ns(utime + stime) if sched_clock uses something 190 * other than jiffies.) 191 */ 192 unsigned long long sum_sched_runtime; 193 194 /* 195 * We don't bother to synchronize most readers of this at all, 196 * because there is no reader checking a limit that actually needs 197 * to get both rlim_cur and rlim_max atomically, and either one 198 * alone is a single word that can safely be read normally. 199 * getrlimit/setrlimit use task_lock(current->group_leader) to 200 * protect this instead of the siglock, because they really 201 * have no need to disable irqs. 202 */ 203 struct rlimit rlim[RLIM_NLIMITS]; 204 205 #ifdef CONFIG_BSD_PROCESS_ACCT 206 struct pacct_struct pacct; /* per-process accounting information */ 207 #endif 208 #ifdef CONFIG_TASKSTATS 209 struct taskstats *stats; 210 #endif 211 #ifdef CONFIG_AUDIT 212 unsigned audit_tty; 213 struct tty_audit_buf *tty_audit_buf; 214 #endif 215 216 /* 217 * Thread is the potential origin of an oom condition; kill first on 218 * oom 219 */ 220 bool oom_flag_origin; 221 short oom_score_adj; /* OOM kill score adjustment */ 222 short oom_score_adj_min; /* OOM kill score adjustment min value. 223 * Only settable by CAP_SYS_RESOURCE. */ 224 struct mm_struct *oom_mm; /* recorded mm when the thread group got 225 * killed by the oom killer */ 226 227 struct mutex cred_guard_mutex; /* guard against foreign influences on 228 * credential calculations 229 * (notably. ptrace) 230 * Deprecated do not use in new code. 231 * Use exec_update_lock instead. 232 */ 233 struct rw_semaphore exec_update_lock; /* Held while task_struct is 234 * being updated during exec, 235 * and may have inconsistent 236 * permissions. 237 */ 238 } __randomize_layout; 239 240 /* 241 * Bits in flags field of signal_struct. 242 */ 243 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 244 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ 245 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ 246 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */ 247 /* 248 * Pending notifications to parent. 249 */ 250 #define SIGNAL_CLD_STOPPED 0x00000010 251 #define SIGNAL_CLD_CONTINUED 0x00000020 252 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 253 254 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 255 256 #define SIGNAL_STOP_MASK (SIGNAL_CLD_MASK | SIGNAL_STOP_STOPPED | \ 257 SIGNAL_STOP_CONTINUED) 258 259 static inline void signal_set_stop_flags(struct signal_struct *sig, 260 unsigned int flags) 261 { 262 WARN_ON(sig->flags & (SIGNAL_GROUP_EXIT|SIGNAL_GROUP_COREDUMP)); 263 sig->flags = (sig->flags & ~SIGNAL_STOP_MASK) | flags; 264 } 265 266 /* If true, all threads except ->group_exit_task have pending SIGKILL */ 267 static inline int signal_group_exit(const struct signal_struct *sig) 268 { 269 return (sig->flags & SIGNAL_GROUP_EXIT) || 270 (sig->group_exit_task != NULL); 271 } 272 273 extern void flush_signals(struct task_struct *); 274 extern void ignore_signals(struct task_struct *); 275 extern void flush_signal_handlers(struct task_struct *, int force_default); 276 extern int dequeue_signal(struct task_struct *task, 277 sigset_t *mask, kernel_siginfo_t *info); 278 279 static inline int kernel_dequeue_signal(void) 280 { 281 struct task_struct *task = current; 282 kernel_siginfo_t __info; 283 int ret; 284 285 spin_lock_irq(&task->sighand->siglock); 286 ret = dequeue_signal(task, &task->blocked, &__info); 287 spin_unlock_irq(&task->sighand->siglock); 288 289 return ret; 290 } 291 292 static inline void kernel_signal_stop(void) 293 { 294 spin_lock_irq(¤t->sighand->siglock); 295 if (current->jobctl & JOBCTL_STOP_DEQUEUED) 296 set_special_state(TASK_STOPPED); 297 spin_unlock_irq(¤t->sighand->siglock); 298 299 schedule(); 300 } 301 #ifdef __ARCH_SI_TRAPNO 302 # define ___ARCH_SI_TRAPNO(_a1) , _a1 303 #else 304 # define ___ARCH_SI_TRAPNO(_a1) 305 #endif 306 #ifdef __ia64__ 307 # define ___ARCH_SI_IA64(_a1, _a2, _a3) , _a1, _a2, _a3 308 #else 309 # define ___ARCH_SI_IA64(_a1, _a2, _a3) 310 #endif 311 312 int force_sig_fault_to_task(int sig, int code, void __user *addr 313 ___ARCH_SI_TRAPNO(int trapno) 314 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 315 , struct task_struct *t); 316 int force_sig_fault(int sig, int code, void __user *addr 317 ___ARCH_SI_TRAPNO(int trapno) 318 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)); 319 int send_sig_fault(int sig, int code, void __user *addr 320 ___ARCH_SI_TRAPNO(int trapno) 321 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 322 , struct task_struct *t); 323 324 int force_sig_mceerr(int code, void __user *, short); 325 int send_sig_mceerr(int code, void __user *, short, struct task_struct *); 326 327 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper); 328 int force_sig_pkuerr(void __user *addr, u32 pkey); 329 330 int force_sig_ptrace_errno_trap(int errno, void __user *addr); 331 332 extern int send_sig_info(int, struct kernel_siginfo *, struct task_struct *); 333 extern void force_sigsegv(int sig); 334 extern int force_sig_info(struct kernel_siginfo *); 335 extern int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp); 336 extern int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid); 337 extern int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, struct pid *, 338 const struct cred *); 339 extern int kill_pgrp(struct pid *pid, int sig, int priv); 340 extern int kill_pid(struct pid *pid, int sig, int priv); 341 extern __must_check bool do_notify_parent(struct task_struct *, int); 342 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 343 extern void force_sig(int); 344 extern int send_sig(int, struct task_struct *, int); 345 extern int zap_other_threads(struct task_struct *p); 346 extern struct sigqueue *sigqueue_alloc(void); 347 extern void sigqueue_free(struct sigqueue *); 348 extern int send_sigqueue(struct sigqueue *, struct pid *, enum pid_type); 349 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 350 351 static inline int restart_syscall(void) 352 { 353 set_tsk_thread_flag(current, TIF_SIGPENDING); 354 return -ERESTARTNOINTR; 355 } 356 357 static inline int task_sigpending(struct task_struct *p) 358 { 359 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 360 } 361 362 static inline int signal_pending(struct task_struct *p) 363 { 364 /* 365 * TIF_NOTIFY_SIGNAL isn't really a signal, but it requires the same 366 * behavior in terms of ensuring that we break out of wait loops 367 * so that notify signal callbacks can be processed. 368 */ 369 if (unlikely(test_tsk_thread_flag(p, TIF_NOTIFY_SIGNAL))) 370 return 1; 371 return task_sigpending(p); 372 } 373 374 static inline int __fatal_signal_pending(struct task_struct *p) 375 { 376 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 377 } 378 379 static inline int fatal_signal_pending(struct task_struct *p) 380 { 381 return task_sigpending(p) && __fatal_signal_pending(p); 382 } 383 384 static inline int signal_pending_state(long state, struct task_struct *p) 385 { 386 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 387 return 0; 388 if (!signal_pending(p)) 389 return 0; 390 391 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 392 } 393 394 /* 395 * This should only be used in fault handlers to decide whether we 396 * should stop the current fault routine to handle the signals 397 * instead, especially with the case where we've got interrupted with 398 * a VM_FAULT_RETRY. 399 */ 400 static inline bool fault_signal_pending(vm_fault_t fault_flags, 401 struct pt_regs *regs) 402 { 403 return unlikely((fault_flags & VM_FAULT_RETRY) && 404 (fatal_signal_pending(current) || 405 (user_mode(regs) && signal_pending(current)))); 406 } 407 408 /* 409 * Reevaluate whether the task has signals pending delivery. 410 * Wake the task if so. 411 * This is required every time the blocked sigset_t changes. 412 * callers must hold sighand->siglock. 413 */ 414 extern void recalc_sigpending_and_wake(struct task_struct *t); 415 extern void recalc_sigpending(void); 416 extern void calculate_sigpending(void); 417 418 extern void signal_wake_up_state(struct task_struct *t, unsigned int state); 419 420 static inline void signal_wake_up(struct task_struct *t, bool resume) 421 { 422 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0); 423 } 424 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume) 425 { 426 signal_wake_up_state(t, resume ? __TASK_TRACED : 0); 427 } 428 429 void task_join_group_stop(struct task_struct *task); 430 431 #ifdef TIF_RESTORE_SIGMASK 432 /* 433 * Legacy restore_sigmask accessors. These are inefficient on 434 * SMP architectures because they require atomic operations. 435 */ 436 437 /** 438 * set_restore_sigmask() - make sure saved_sigmask processing gets done 439 * 440 * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code 441 * will run before returning to user mode, to process the flag. For 442 * all callers, TIF_SIGPENDING is already set or it's no harm to set 443 * it. TIF_RESTORE_SIGMASK need not be in the set of bits that the 444 * arch code will notice on return to user mode, in case those bits 445 * are scarce. We set TIF_SIGPENDING here to ensure that the arch 446 * signal code always gets run when TIF_RESTORE_SIGMASK is set. 447 */ 448 static inline void set_restore_sigmask(void) 449 { 450 set_thread_flag(TIF_RESTORE_SIGMASK); 451 } 452 453 static inline void clear_tsk_restore_sigmask(struct task_struct *task) 454 { 455 clear_tsk_thread_flag(task, TIF_RESTORE_SIGMASK); 456 } 457 458 static inline void clear_restore_sigmask(void) 459 { 460 clear_thread_flag(TIF_RESTORE_SIGMASK); 461 } 462 static inline bool test_tsk_restore_sigmask(struct task_struct *task) 463 { 464 return test_tsk_thread_flag(task, TIF_RESTORE_SIGMASK); 465 } 466 static inline bool test_restore_sigmask(void) 467 { 468 return test_thread_flag(TIF_RESTORE_SIGMASK); 469 } 470 static inline bool test_and_clear_restore_sigmask(void) 471 { 472 return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK); 473 } 474 475 #else /* TIF_RESTORE_SIGMASK */ 476 477 /* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */ 478 static inline void set_restore_sigmask(void) 479 { 480 current->restore_sigmask = true; 481 } 482 static inline void clear_tsk_restore_sigmask(struct task_struct *task) 483 { 484 task->restore_sigmask = false; 485 } 486 static inline void clear_restore_sigmask(void) 487 { 488 current->restore_sigmask = false; 489 } 490 static inline bool test_restore_sigmask(void) 491 { 492 return current->restore_sigmask; 493 } 494 static inline bool test_tsk_restore_sigmask(struct task_struct *task) 495 { 496 return task->restore_sigmask; 497 } 498 static inline bool test_and_clear_restore_sigmask(void) 499 { 500 if (!current->restore_sigmask) 501 return false; 502 current->restore_sigmask = false; 503 return true; 504 } 505 #endif 506 507 static inline void restore_saved_sigmask(void) 508 { 509 if (test_and_clear_restore_sigmask()) 510 __set_current_blocked(¤t->saved_sigmask); 511 } 512 513 extern int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize); 514 515 static inline void restore_saved_sigmask_unless(bool interrupted) 516 { 517 if (interrupted) 518 WARN_ON(!signal_pending(current)); 519 else 520 restore_saved_sigmask(); 521 } 522 523 static inline sigset_t *sigmask_to_save(void) 524 { 525 sigset_t *res = ¤t->blocked; 526 if (unlikely(test_restore_sigmask())) 527 res = ¤t->saved_sigmask; 528 return res; 529 } 530 531 static inline int kill_cad_pid(int sig, int priv) 532 { 533 return kill_pid(cad_pid, sig, priv); 534 } 535 536 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 537 #define SEND_SIG_NOINFO ((struct kernel_siginfo *) 0) 538 #define SEND_SIG_PRIV ((struct kernel_siginfo *) 1) 539 540 /* 541 * True if we are on the alternate signal stack. 542 */ 543 static inline int on_sig_stack(unsigned long sp) 544 { 545 /* 546 * If the signal stack is SS_AUTODISARM then, by construction, we 547 * can't be on the signal stack unless user code deliberately set 548 * SS_AUTODISARM when we were already on it. 549 * 550 * This improves reliability: if user state gets corrupted such that 551 * the stack pointer points very close to the end of the signal stack, 552 * then this check will enable the signal to be handled anyway. 553 */ 554 if (current->sas_ss_flags & SS_AUTODISARM) 555 return 0; 556 557 #ifdef CONFIG_STACK_GROWSUP 558 return sp >= current->sas_ss_sp && 559 sp - current->sas_ss_sp < current->sas_ss_size; 560 #else 561 return sp > current->sas_ss_sp && 562 sp - current->sas_ss_sp <= current->sas_ss_size; 563 #endif 564 } 565 566 static inline int sas_ss_flags(unsigned long sp) 567 { 568 if (!current->sas_ss_size) 569 return SS_DISABLE; 570 571 return on_sig_stack(sp) ? SS_ONSTACK : 0; 572 } 573 574 static inline void sas_ss_reset(struct task_struct *p) 575 { 576 p->sas_ss_sp = 0; 577 p->sas_ss_size = 0; 578 p->sas_ss_flags = SS_DISABLE; 579 } 580 581 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig) 582 { 583 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp)) 584 #ifdef CONFIG_STACK_GROWSUP 585 return current->sas_ss_sp; 586 #else 587 return current->sas_ss_sp + current->sas_ss_size; 588 #endif 589 return sp; 590 } 591 592 extern void __cleanup_sighand(struct sighand_struct *); 593 extern void flush_itimer_signals(void); 594 595 #define tasklist_empty() \ 596 list_empty(&init_task.tasks) 597 598 #define next_task(p) \ 599 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 600 601 #define for_each_process(p) \ 602 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 603 604 extern bool current_is_single_threaded(void); 605 606 /* 607 * Careful: do_each_thread/while_each_thread is a double loop so 608 * 'break' will not work as expected - use goto instead. 609 */ 610 #define do_each_thread(g, t) \ 611 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 612 613 #define while_each_thread(g, t) \ 614 while ((t = next_thread(t)) != g) 615 616 #define __for_each_thread(signal, t) \ 617 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node) 618 619 #define for_each_thread(p, t) \ 620 __for_each_thread((p)->signal, t) 621 622 /* Careful: this is a double loop, 'break' won't work as expected. */ 623 #define for_each_process_thread(p, t) \ 624 for_each_process(p) for_each_thread(p, t) 625 626 typedef int (*proc_visitor)(struct task_struct *p, void *data); 627 void walk_process_tree(struct task_struct *top, proc_visitor, void *); 628 629 static inline 630 struct pid *task_pid_type(struct task_struct *task, enum pid_type type) 631 { 632 struct pid *pid; 633 if (type == PIDTYPE_PID) 634 pid = task_pid(task); 635 else 636 pid = task->signal->pids[type]; 637 return pid; 638 } 639 640 static inline struct pid *task_tgid(struct task_struct *task) 641 { 642 return task->signal->pids[PIDTYPE_TGID]; 643 } 644 645 /* 646 * Without tasklist or RCU lock it is not safe to dereference 647 * the result of task_pgrp/task_session even if task == current, 648 * we can race with another thread doing sys_setsid/sys_setpgid. 649 */ 650 static inline struct pid *task_pgrp(struct task_struct *task) 651 { 652 return task->signal->pids[PIDTYPE_PGID]; 653 } 654 655 static inline struct pid *task_session(struct task_struct *task) 656 { 657 return task->signal->pids[PIDTYPE_SID]; 658 } 659 660 static inline int get_nr_threads(struct task_struct *task) 661 { 662 return task->signal->nr_threads; 663 } 664 665 static inline bool thread_group_leader(struct task_struct *p) 666 { 667 return p->exit_signal >= 0; 668 } 669 670 static inline 671 bool same_thread_group(struct task_struct *p1, struct task_struct *p2) 672 { 673 return p1->signal == p2->signal; 674 } 675 676 static inline struct task_struct *next_thread(const struct task_struct *p) 677 { 678 return list_entry_rcu(p->thread_group.next, 679 struct task_struct, thread_group); 680 } 681 682 static inline int thread_group_empty(struct task_struct *p) 683 { 684 return list_empty(&p->thread_group); 685 } 686 687 #define delay_group_leader(p) \ 688 (thread_group_leader(p) && !thread_group_empty(p)) 689 690 extern bool thread_group_exited(struct pid *pid); 691 692 extern struct sighand_struct *__lock_task_sighand(struct task_struct *task, 693 unsigned long *flags); 694 695 static inline struct sighand_struct *lock_task_sighand(struct task_struct *task, 696 unsigned long *flags) 697 { 698 struct sighand_struct *ret; 699 700 ret = __lock_task_sighand(task, flags); 701 (void)__cond_lock(&task->sighand->siglock, ret); 702 return ret; 703 } 704 705 static inline void unlock_task_sighand(struct task_struct *task, 706 unsigned long *flags) 707 { 708 spin_unlock_irqrestore(&task->sighand->siglock, *flags); 709 } 710 711 static inline unsigned long task_rlimit(const struct task_struct *task, 712 unsigned int limit) 713 { 714 return READ_ONCE(task->signal->rlim[limit].rlim_cur); 715 } 716 717 static inline unsigned long task_rlimit_max(const struct task_struct *task, 718 unsigned int limit) 719 { 720 return READ_ONCE(task->signal->rlim[limit].rlim_max); 721 } 722 723 static inline unsigned long rlimit(unsigned int limit) 724 { 725 return task_rlimit(current, limit); 726 } 727 728 static inline unsigned long rlimit_max(unsigned int limit) 729 { 730 return task_rlimit_max(current, limit); 731 } 732 733 #endif /* _LINUX_SCHED_SIGNAL_H */ 734