1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_SCHED_SIGNAL_H 3 #define _LINUX_SCHED_SIGNAL_H 4 5 #include <linux/rculist.h> 6 #include <linux/signal.h> 7 #include <linux/sched.h> 8 #include <linux/sched/jobctl.h> 9 #include <linux/sched/task.h> 10 #include <linux/cred.h> 11 #include <linux/refcount.h> 12 #include <linux/posix-timers.h> 13 14 /* 15 * Types defining task->signal and task->sighand and APIs using them: 16 */ 17 18 struct sighand_struct { 19 spinlock_t siglock; 20 refcount_t count; 21 wait_queue_head_t signalfd_wqh; 22 struct k_sigaction action[_NSIG]; 23 }; 24 25 /* 26 * Per-process accounting stats: 27 */ 28 struct pacct_struct { 29 int ac_flag; 30 long ac_exitcode; 31 unsigned long ac_mem; 32 u64 ac_utime, ac_stime; 33 unsigned long ac_minflt, ac_majflt; 34 }; 35 36 struct cpu_itimer { 37 u64 expires; 38 u64 incr; 39 }; 40 41 /* 42 * This is the atomic variant of task_cputime, which can be used for 43 * storing and updating task_cputime statistics without locking. 44 */ 45 struct task_cputime_atomic { 46 atomic64_t utime; 47 atomic64_t stime; 48 atomic64_t sum_exec_runtime; 49 }; 50 51 #define INIT_CPUTIME_ATOMIC \ 52 (struct task_cputime_atomic) { \ 53 .utime = ATOMIC64_INIT(0), \ 54 .stime = ATOMIC64_INIT(0), \ 55 .sum_exec_runtime = ATOMIC64_INIT(0), \ 56 } 57 /** 58 * struct thread_group_cputimer - thread group interval timer counts 59 * @cputime_atomic: atomic thread group interval timers. 60 * 61 * This structure contains the version of task_cputime, above, that is 62 * used for thread group CPU timer calculations. 63 */ 64 struct thread_group_cputimer { 65 struct task_cputime_atomic cputime_atomic; 66 }; 67 68 struct multiprocess_signals { 69 sigset_t signal; 70 struct hlist_node node; 71 }; 72 73 /* 74 * NOTE! "signal_struct" does not have its own 75 * locking, because a shared signal_struct always 76 * implies a shared sighand_struct, so locking 77 * sighand_struct is always a proper superset of 78 * the locking of signal_struct. 79 */ 80 struct signal_struct { 81 refcount_t sigcnt; 82 atomic_t live; 83 int nr_threads; 84 struct list_head thread_head; 85 86 wait_queue_head_t wait_chldexit; /* for wait4() */ 87 88 /* current thread group signal load-balancing target: */ 89 struct task_struct *curr_target; 90 91 /* shared signal handling: */ 92 struct sigpending shared_pending; 93 94 /* For collecting multiprocess signals during fork */ 95 struct hlist_head multiprocess; 96 97 /* thread group exit support */ 98 int group_exit_code; 99 /* overloaded: 100 * - notify group_exit_task when ->count is equal to notify_count 101 * - everyone except group_exit_task is stopped during signal delivery 102 * of fatal signals, group_exit_task processes the signal. 103 */ 104 int notify_count; 105 struct task_struct *group_exit_task; 106 107 /* thread group stop support, overloads group_exit_code too */ 108 int group_stop_count; 109 unsigned int flags; /* see SIGNAL_* flags below */ 110 111 /* 112 * PR_SET_CHILD_SUBREAPER marks a process, like a service 113 * manager, to re-parent orphan (double-forking) child processes 114 * to this process instead of 'init'. The service manager is 115 * able to receive SIGCHLD signals and is able to investigate 116 * the process until it calls wait(). All children of this 117 * process will inherit a flag if they should look for a 118 * child_subreaper process at exit. 119 */ 120 unsigned int is_child_subreaper:1; 121 unsigned int has_child_subreaper:1; 122 123 #ifdef CONFIG_POSIX_TIMERS 124 125 /* POSIX.1b Interval Timers */ 126 int posix_timer_id; 127 struct list_head posix_timers; 128 129 /* ITIMER_REAL timer for the process */ 130 struct hrtimer real_timer; 131 ktime_t it_real_incr; 132 133 /* 134 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 135 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 136 * values are defined to 0 and 1 respectively 137 */ 138 struct cpu_itimer it[2]; 139 140 /* 141 * Thread group totals for process CPU timers. 142 * See thread_group_cputimer(), et al, for details. 143 */ 144 struct thread_group_cputimer cputimer; 145 146 #endif 147 /* Empty if CONFIG_POSIX_TIMERS=n */ 148 struct posix_cputimers posix_cputimers; 149 150 /* PID/PID hash table linkage. */ 151 struct pid *pids[PIDTYPE_MAX]; 152 153 #ifdef CONFIG_NO_HZ_FULL 154 atomic_t tick_dep_mask; 155 #endif 156 157 struct pid *tty_old_pgrp; 158 159 /* boolean value for session group leader */ 160 int leader; 161 162 struct tty_struct *tty; /* NULL if no tty */ 163 164 #ifdef CONFIG_SCHED_AUTOGROUP 165 struct autogroup *autogroup; 166 #endif 167 /* 168 * Cumulative resource counters for dead threads in the group, 169 * and for reaped dead child processes forked by this group. 170 * Live threads maintain their own counters and add to these 171 * in __exit_signal, except for the group leader. 172 */ 173 seqlock_t stats_lock; 174 u64 utime, stime, cutime, cstime; 175 u64 gtime; 176 u64 cgtime; 177 struct prev_cputime prev_cputime; 178 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 179 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 180 unsigned long inblock, oublock, cinblock, coublock; 181 unsigned long maxrss, cmaxrss; 182 struct task_io_accounting ioac; 183 184 /* 185 * Cumulative ns of schedule CPU time fo dead threads in the 186 * group, not including a zombie group leader, (This only differs 187 * from jiffies_to_ns(utime + stime) if sched_clock uses something 188 * other than jiffies.) 189 */ 190 unsigned long long sum_sched_runtime; 191 192 /* 193 * We don't bother to synchronize most readers of this at all, 194 * because there is no reader checking a limit that actually needs 195 * to get both rlim_cur and rlim_max atomically, and either one 196 * alone is a single word that can safely be read normally. 197 * getrlimit/setrlimit use task_lock(current->group_leader) to 198 * protect this instead of the siglock, because they really 199 * have no need to disable irqs. 200 */ 201 struct rlimit rlim[RLIM_NLIMITS]; 202 203 #ifdef CONFIG_BSD_PROCESS_ACCT 204 struct pacct_struct pacct; /* per-process accounting information */ 205 #endif 206 #ifdef CONFIG_TASKSTATS 207 struct taskstats *stats; 208 #endif 209 #ifdef CONFIG_AUDIT 210 unsigned audit_tty; 211 struct tty_audit_buf *tty_audit_buf; 212 #endif 213 214 /* 215 * Thread is the potential origin of an oom condition; kill first on 216 * oom 217 */ 218 bool oom_flag_origin; 219 short oom_score_adj; /* OOM kill score adjustment */ 220 short oom_score_adj_min; /* OOM kill score adjustment min value. 221 * Only settable by CAP_SYS_RESOURCE. */ 222 struct mm_struct *oom_mm; /* recorded mm when the thread group got 223 * killed by the oom killer */ 224 225 struct mutex cred_guard_mutex; /* guard against foreign influences on 226 * credential calculations 227 * (notably. ptrace) */ 228 } __randomize_layout; 229 230 /* 231 * Bits in flags field of signal_struct. 232 */ 233 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 234 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ 235 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ 236 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */ 237 /* 238 * Pending notifications to parent. 239 */ 240 #define SIGNAL_CLD_STOPPED 0x00000010 241 #define SIGNAL_CLD_CONTINUED 0x00000020 242 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 243 244 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 245 246 #define SIGNAL_STOP_MASK (SIGNAL_CLD_MASK | SIGNAL_STOP_STOPPED | \ 247 SIGNAL_STOP_CONTINUED) 248 249 static inline void signal_set_stop_flags(struct signal_struct *sig, 250 unsigned int flags) 251 { 252 WARN_ON(sig->flags & (SIGNAL_GROUP_EXIT|SIGNAL_GROUP_COREDUMP)); 253 sig->flags = (sig->flags & ~SIGNAL_STOP_MASK) | flags; 254 } 255 256 /* If true, all threads except ->group_exit_task have pending SIGKILL */ 257 static inline int signal_group_exit(const struct signal_struct *sig) 258 { 259 return (sig->flags & SIGNAL_GROUP_EXIT) || 260 (sig->group_exit_task != NULL); 261 } 262 263 extern void flush_signals(struct task_struct *); 264 extern void ignore_signals(struct task_struct *); 265 extern void flush_signal_handlers(struct task_struct *, int force_default); 266 extern int dequeue_signal(struct task_struct *task, 267 sigset_t *mask, kernel_siginfo_t *info); 268 269 static inline int kernel_dequeue_signal(void) 270 { 271 struct task_struct *task = current; 272 kernel_siginfo_t __info; 273 int ret; 274 275 spin_lock_irq(&task->sighand->siglock); 276 ret = dequeue_signal(task, &task->blocked, &__info); 277 spin_unlock_irq(&task->sighand->siglock); 278 279 return ret; 280 } 281 282 static inline void kernel_signal_stop(void) 283 { 284 spin_lock_irq(¤t->sighand->siglock); 285 if (current->jobctl & JOBCTL_STOP_DEQUEUED) 286 set_special_state(TASK_STOPPED); 287 spin_unlock_irq(¤t->sighand->siglock); 288 289 schedule(); 290 } 291 #ifdef __ARCH_SI_TRAPNO 292 # define ___ARCH_SI_TRAPNO(_a1) , _a1 293 #else 294 # define ___ARCH_SI_TRAPNO(_a1) 295 #endif 296 #ifdef __ia64__ 297 # define ___ARCH_SI_IA64(_a1, _a2, _a3) , _a1, _a2, _a3 298 #else 299 # define ___ARCH_SI_IA64(_a1, _a2, _a3) 300 #endif 301 302 int force_sig_fault_to_task(int sig, int code, void __user *addr 303 ___ARCH_SI_TRAPNO(int trapno) 304 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 305 , struct task_struct *t); 306 int force_sig_fault(int sig, int code, void __user *addr 307 ___ARCH_SI_TRAPNO(int trapno) 308 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)); 309 int send_sig_fault(int sig, int code, void __user *addr 310 ___ARCH_SI_TRAPNO(int trapno) 311 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 312 , struct task_struct *t); 313 314 int force_sig_mceerr(int code, void __user *, short); 315 int send_sig_mceerr(int code, void __user *, short, struct task_struct *); 316 317 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper); 318 int force_sig_pkuerr(void __user *addr, u32 pkey); 319 320 int force_sig_ptrace_errno_trap(int errno, void __user *addr); 321 322 extern int send_sig_info(int, struct kernel_siginfo *, struct task_struct *); 323 extern void force_sigsegv(int sig); 324 extern int force_sig_info(struct kernel_siginfo *); 325 extern int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp); 326 extern int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid); 327 extern int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, struct pid *, 328 const struct cred *); 329 extern int kill_pgrp(struct pid *pid, int sig, int priv); 330 extern int kill_pid(struct pid *pid, int sig, int priv); 331 extern __must_check bool do_notify_parent(struct task_struct *, int); 332 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 333 extern void force_sig(int); 334 extern int send_sig(int, struct task_struct *, int); 335 extern int zap_other_threads(struct task_struct *p); 336 extern struct sigqueue *sigqueue_alloc(void); 337 extern void sigqueue_free(struct sigqueue *); 338 extern int send_sigqueue(struct sigqueue *, struct pid *, enum pid_type); 339 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 340 341 static inline int restart_syscall(void) 342 { 343 set_tsk_thread_flag(current, TIF_SIGPENDING); 344 return -ERESTARTNOINTR; 345 } 346 347 static inline int signal_pending(struct task_struct *p) 348 { 349 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 350 } 351 352 static inline int __fatal_signal_pending(struct task_struct *p) 353 { 354 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 355 } 356 357 static inline int fatal_signal_pending(struct task_struct *p) 358 { 359 return signal_pending(p) && __fatal_signal_pending(p); 360 } 361 362 static inline int signal_pending_state(long state, struct task_struct *p) 363 { 364 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 365 return 0; 366 if (!signal_pending(p)) 367 return 0; 368 369 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 370 } 371 372 /* 373 * Reevaluate whether the task has signals pending delivery. 374 * Wake the task if so. 375 * This is required every time the blocked sigset_t changes. 376 * callers must hold sighand->siglock. 377 */ 378 extern void recalc_sigpending_and_wake(struct task_struct *t); 379 extern void recalc_sigpending(void); 380 extern void calculate_sigpending(void); 381 382 extern void signal_wake_up_state(struct task_struct *t, unsigned int state); 383 384 static inline void signal_wake_up(struct task_struct *t, bool resume) 385 { 386 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0); 387 } 388 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume) 389 { 390 signal_wake_up_state(t, resume ? __TASK_TRACED : 0); 391 } 392 393 void task_join_group_stop(struct task_struct *task); 394 395 #ifdef TIF_RESTORE_SIGMASK 396 /* 397 * Legacy restore_sigmask accessors. These are inefficient on 398 * SMP architectures because they require atomic operations. 399 */ 400 401 /** 402 * set_restore_sigmask() - make sure saved_sigmask processing gets done 403 * 404 * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code 405 * will run before returning to user mode, to process the flag. For 406 * all callers, TIF_SIGPENDING is already set or it's no harm to set 407 * it. TIF_RESTORE_SIGMASK need not be in the set of bits that the 408 * arch code will notice on return to user mode, in case those bits 409 * are scarce. We set TIF_SIGPENDING here to ensure that the arch 410 * signal code always gets run when TIF_RESTORE_SIGMASK is set. 411 */ 412 static inline void set_restore_sigmask(void) 413 { 414 set_thread_flag(TIF_RESTORE_SIGMASK); 415 } 416 417 static inline void clear_tsk_restore_sigmask(struct task_struct *task) 418 { 419 clear_tsk_thread_flag(task, TIF_RESTORE_SIGMASK); 420 } 421 422 static inline void clear_restore_sigmask(void) 423 { 424 clear_thread_flag(TIF_RESTORE_SIGMASK); 425 } 426 static inline bool test_tsk_restore_sigmask(struct task_struct *task) 427 { 428 return test_tsk_thread_flag(task, TIF_RESTORE_SIGMASK); 429 } 430 static inline bool test_restore_sigmask(void) 431 { 432 return test_thread_flag(TIF_RESTORE_SIGMASK); 433 } 434 static inline bool test_and_clear_restore_sigmask(void) 435 { 436 return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK); 437 } 438 439 #else /* TIF_RESTORE_SIGMASK */ 440 441 /* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */ 442 static inline void set_restore_sigmask(void) 443 { 444 current->restore_sigmask = true; 445 } 446 static inline void clear_tsk_restore_sigmask(struct task_struct *task) 447 { 448 task->restore_sigmask = false; 449 } 450 static inline void clear_restore_sigmask(void) 451 { 452 current->restore_sigmask = false; 453 } 454 static inline bool test_restore_sigmask(void) 455 { 456 return current->restore_sigmask; 457 } 458 static inline bool test_tsk_restore_sigmask(struct task_struct *task) 459 { 460 return task->restore_sigmask; 461 } 462 static inline bool test_and_clear_restore_sigmask(void) 463 { 464 if (!current->restore_sigmask) 465 return false; 466 current->restore_sigmask = false; 467 return true; 468 } 469 #endif 470 471 static inline void restore_saved_sigmask(void) 472 { 473 if (test_and_clear_restore_sigmask()) 474 __set_current_blocked(¤t->saved_sigmask); 475 } 476 477 extern int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize); 478 479 static inline void restore_saved_sigmask_unless(bool interrupted) 480 { 481 if (interrupted) 482 WARN_ON(!test_thread_flag(TIF_SIGPENDING)); 483 else 484 restore_saved_sigmask(); 485 } 486 487 static inline sigset_t *sigmask_to_save(void) 488 { 489 sigset_t *res = ¤t->blocked; 490 if (unlikely(test_restore_sigmask())) 491 res = ¤t->saved_sigmask; 492 return res; 493 } 494 495 static inline int kill_cad_pid(int sig, int priv) 496 { 497 return kill_pid(cad_pid, sig, priv); 498 } 499 500 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 501 #define SEND_SIG_NOINFO ((struct kernel_siginfo *) 0) 502 #define SEND_SIG_PRIV ((struct kernel_siginfo *) 1) 503 504 /* 505 * True if we are on the alternate signal stack. 506 */ 507 static inline int on_sig_stack(unsigned long sp) 508 { 509 /* 510 * If the signal stack is SS_AUTODISARM then, by construction, we 511 * can't be on the signal stack unless user code deliberately set 512 * SS_AUTODISARM when we were already on it. 513 * 514 * This improves reliability: if user state gets corrupted such that 515 * the stack pointer points very close to the end of the signal stack, 516 * then this check will enable the signal to be handled anyway. 517 */ 518 if (current->sas_ss_flags & SS_AUTODISARM) 519 return 0; 520 521 #ifdef CONFIG_STACK_GROWSUP 522 return sp >= current->sas_ss_sp && 523 sp - current->sas_ss_sp < current->sas_ss_size; 524 #else 525 return sp > current->sas_ss_sp && 526 sp - current->sas_ss_sp <= current->sas_ss_size; 527 #endif 528 } 529 530 static inline int sas_ss_flags(unsigned long sp) 531 { 532 if (!current->sas_ss_size) 533 return SS_DISABLE; 534 535 return on_sig_stack(sp) ? SS_ONSTACK : 0; 536 } 537 538 static inline void sas_ss_reset(struct task_struct *p) 539 { 540 p->sas_ss_sp = 0; 541 p->sas_ss_size = 0; 542 p->sas_ss_flags = SS_DISABLE; 543 } 544 545 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig) 546 { 547 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp)) 548 #ifdef CONFIG_STACK_GROWSUP 549 return current->sas_ss_sp; 550 #else 551 return current->sas_ss_sp + current->sas_ss_size; 552 #endif 553 return sp; 554 } 555 556 extern void __cleanup_sighand(struct sighand_struct *); 557 extern void flush_itimer_signals(void); 558 559 #define tasklist_empty() \ 560 list_empty(&init_task.tasks) 561 562 #define next_task(p) \ 563 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 564 565 #define for_each_process(p) \ 566 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 567 568 extern bool current_is_single_threaded(void); 569 570 /* 571 * Careful: do_each_thread/while_each_thread is a double loop so 572 * 'break' will not work as expected - use goto instead. 573 */ 574 #define do_each_thread(g, t) \ 575 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 576 577 #define while_each_thread(g, t) \ 578 while ((t = next_thread(t)) != g) 579 580 #define __for_each_thread(signal, t) \ 581 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node) 582 583 #define for_each_thread(p, t) \ 584 __for_each_thread((p)->signal, t) 585 586 /* Careful: this is a double loop, 'break' won't work as expected. */ 587 #define for_each_process_thread(p, t) \ 588 for_each_process(p) for_each_thread(p, t) 589 590 typedef int (*proc_visitor)(struct task_struct *p, void *data); 591 void walk_process_tree(struct task_struct *top, proc_visitor, void *); 592 593 static inline 594 struct pid *task_pid_type(struct task_struct *task, enum pid_type type) 595 { 596 struct pid *pid; 597 if (type == PIDTYPE_PID) 598 pid = task_pid(task); 599 else 600 pid = task->signal->pids[type]; 601 return pid; 602 } 603 604 static inline struct pid *task_tgid(struct task_struct *task) 605 { 606 return task->signal->pids[PIDTYPE_TGID]; 607 } 608 609 /* 610 * Without tasklist or RCU lock it is not safe to dereference 611 * the result of task_pgrp/task_session even if task == current, 612 * we can race with another thread doing sys_setsid/sys_setpgid. 613 */ 614 static inline struct pid *task_pgrp(struct task_struct *task) 615 { 616 return task->signal->pids[PIDTYPE_PGID]; 617 } 618 619 static inline struct pid *task_session(struct task_struct *task) 620 { 621 return task->signal->pids[PIDTYPE_SID]; 622 } 623 624 static inline int get_nr_threads(struct task_struct *task) 625 { 626 return task->signal->nr_threads; 627 } 628 629 static inline bool thread_group_leader(struct task_struct *p) 630 { 631 return p->exit_signal >= 0; 632 } 633 634 /* Do to the insanities of de_thread it is possible for a process 635 * to have the pid of the thread group leader without actually being 636 * the thread group leader. For iteration through the pids in proc 637 * all we care about is that we have a task with the appropriate 638 * pid, we don't actually care if we have the right task. 639 */ 640 static inline bool has_group_leader_pid(struct task_struct *p) 641 { 642 return task_pid(p) == task_tgid(p); 643 } 644 645 static inline 646 bool same_thread_group(struct task_struct *p1, struct task_struct *p2) 647 { 648 return p1->signal == p2->signal; 649 } 650 651 static inline struct task_struct *next_thread(const struct task_struct *p) 652 { 653 return list_entry_rcu(p->thread_group.next, 654 struct task_struct, thread_group); 655 } 656 657 static inline int thread_group_empty(struct task_struct *p) 658 { 659 return list_empty(&p->thread_group); 660 } 661 662 #define delay_group_leader(p) \ 663 (thread_group_leader(p) && !thread_group_empty(p)) 664 665 extern struct sighand_struct *__lock_task_sighand(struct task_struct *task, 666 unsigned long *flags); 667 668 static inline struct sighand_struct *lock_task_sighand(struct task_struct *task, 669 unsigned long *flags) 670 { 671 struct sighand_struct *ret; 672 673 ret = __lock_task_sighand(task, flags); 674 (void)__cond_lock(&task->sighand->siglock, ret); 675 return ret; 676 } 677 678 static inline void unlock_task_sighand(struct task_struct *task, 679 unsigned long *flags) 680 { 681 spin_unlock_irqrestore(&task->sighand->siglock, *flags); 682 } 683 684 static inline unsigned long task_rlimit(const struct task_struct *task, 685 unsigned int limit) 686 { 687 return READ_ONCE(task->signal->rlim[limit].rlim_cur); 688 } 689 690 static inline unsigned long task_rlimit_max(const struct task_struct *task, 691 unsigned int limit) 692 { 693 return READ_ONCE(task->signal->rlim[limit].rlim_max); 694 } 695 696 static inline unsigned long rlimit(unsigned int limit) 697 { 698 return task_rlimit(current, limit); 699 } 700 701 static inline unsigned long rlimit_max(unsigned int limit) 702 { 703 return task_rlimit_max(current, limit); 704 } 705 706 #endif /* _LINUX_SCHED_SIGNAL_H */ 707