1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_SCHED_SIGNAL_H 3 #define _LINUX_SCHED_SIGNAL_H 4 5 #include <linux/rculist.h> 6 #include <linux/signal.h> 7 #include <linux/sched.h> 8 #include <linux/sched/jobctl.h> 9 #include <linux/sched/task.h> 10 #include <linux/cred.h> 11 #include <linux/refcount.h> 12 #include <linux/posix-timers.h> 13 #include <linux/mm_types.h> 14 #include <asm/ptrace.h> 15 16 /* 17 * Types defining task->signal and task->sighand and APIs using them: 18 */ 19 20 struct sighand_struct { 21 spinlock_t siglock; 22 refcount_t count; 23 wait_queue_head_t signalfd_wqh; 24 struct k_sigaction action[_NSIG]; 25 }; 26 27 /* 28 * Per-process accounting stats: 29 */ 30 struct pacct_struct { 31 int ac_flag; 32 long ac_exitcode; 33 unsigned long ac_mem; 34 u64 ac_utime, ac_stime; 35 unsigned long ac_minflt, ac_majflt; 36 }; 37 38 struct cpu_itimer { 39 u64 expires; 40 u64 incr; 41 }; 42 43 /* 44 * This is the atomic variant of task_cputime, which can be used for 45 * storing and updating task_cputime statistics without locking. 46 */ 47 struct task_cputime_atomic { 48 atomic64_t utime; 49 atomic64_t stime; 50 atomic64_t sum_exec_runtime; 51 }; 52 53 #define INIT_CPUTIME_ATOMIC \ 54 (struct task_cputime_atomic) { \ 55 .utime = ATOMIC64_INIT(0), \ 56 .stime = ATOMIC64_INIT(0), \ 57 .sum_exec_runtime = ATOMIC64_INIT(0), \ 58 } 59 /** 60 * struct thread_group_cputimer - thread group interval timer counts 61 * @cputime_atomic: atomic thread group interval timers. 62 * 63 * This structure contains the version of task_cputime, above, that is 64 * used for thread group CPU timer calculations. 65 */ 66 struct thread_group_cputimer { 67 struct task_cputime_atomic cputime_atomic; 68 }; 69 70 struct multiprocess_signals { 71 sigset_t signal; 72 struct hlist_node node; 73 }; 74 75 struct core_thread { 76 struct task_struct *task; 77 struct core_thread *next; 78 }; 79 80 struct core_state { 81 atomic_t nr_threads; 82 struct core_thread dumper; 83 struct completion startup; 84 }; 85 86 /* 87 * NOTE! "signal_struct" does not have its own 88 * locking, because a shared signal_struct always 89 * implies a shared sighand_struct, so locking 90 * sighand_struct is always a proper superset of 91 * the locking of signal_struct. 92 */ 93 struct signal_struct { 94 refcount_t sigcnt; 95 atomic_t live; 96 int nr_threads; 97 struct list_head thread_head; 98 99 wait_queue_head_t wait_chldexit; /* for wait4() */ 100 101 /* current thread group signal load-balancing target: */ 102 struct task_struct *curr_target; 103 104 /* shared signal handling: */ 105 struct sigpending shared_pending; 106 107 /* For collecting multiprocess signals during fork */ 108 struct hlist_head multiprocess; 109 110 /* thread group exit support */ 111 int group_exit_code; 112 /* overloaded: 113 * - notify group_exit_task when ->count is equal to notify_count 114 * - everyone except group_exit_task is stopped during signal delivery 115 * of fatal signals, group_exit_task processes the signal. 116 */ 117 int notify_count; 118 struct task_struct *group_exit_task; 119 120 /* thread group stop support, overloads group_exit_code too */ 121 int group_stop_count; 122 unsigned int flags; /* see SIGNAL_* flags below */ 123 124 struct core_state *core_state; /* coredumping support */ 125 126 /* 127 * PR_SET_CHILD_SUBREAPER marks a process, like a service 128 * manager, to re-parent orphan (double-forking) child processes 129 * to this process instead of 'init'. The service manager is 130 * able to receive SIGCHLD signals and is able to investigate 131 * the process until it calls wait(). All children of this 132 * process will inherit a flag if they should look for a 133 * child_subreaper process at exit. 134 */ 135 unsigned int is_child_subreaper:1; 136 unsigned int has_child_subreaper:1; 137 138 #ifdef CONFIG_POSIX_TIMERS 139 140 /* POSIX.1b Interval Timers */ 141 int posix_timer_id; 142 struct list_head posix_timers; 143 144 /* ITIMER_REAL timer for the process */ 145 struct hrtimer real_timer; 146 ktime_t it_real_incr; 147 148 /* 149 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 150 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 151 * values are defined to 0 and 1 respectively 152 */ 153 struct cpu_itimer it[2]; 154 155 /* 156 * Thread group totals for process CPU timers. 157 * See thread_group_cputimer(), et al, for details. 158 */ 159 struct thread_group_cputimer cputimer; 160 161 #endif 162 /* Empty if CONFIG_POSIX_TIMERS=n */ 163 struct posix_cputimers posix_cputimers; 164 165 /* PID/PID hash table linkage. */ 166 struct pid *pids[PIDTYPE_MAX]; 167 168 #ifdef CONFIG_NO_HZ_FULL 169 atomic_t tick_dep_mask; 170 #endif 171 172 struct pid *tty_old_pgrp; 173 174 /* boolean value for session group leader */ 175 int leader; 176 177 struct tty_struct *tty; /* NULL if no tty */ 178 179 #ifdef CONFIG_SCHED_AUTOGROUP 180 struct autogroup *autogroup; 181 #endif 182 /* 183 * Cumulative resource counters for dead threads in the group, 184 * and for reaped dead child processes forked by this group. 185 * Live threads maintain their own counters and add to these 186 * in __exit_signal, except for the group leader. 187 */ 188 seqlock_t stats_lock; 189 u64 utime, stime, cutime, cstime; 190 u64 gtime; 191 u64 cgtime; 192 struct prev_cputime prev_cputime; 193 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 194 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 195 unsigned long inblock, oublock, cinblock, coublock; 196 unsigned long maxrss, cmaxrss; 197 struct task_io_accounting ioac; 198 199 /* 200 * Cumulative ns of schedule CPU time fo dead threads in the 201 * group, not including a zombie group leader, (This only differs 202 * from jiffies_to_ns(utime + stime) if sched_clock uses something 203 * other than jiffies.) 204 */ 205 unsigned long long sum_sched_runtime; 206 207 /* 208 * We don't bother to synchronize most readers of this at all, 209 * because there is no reader checking a limit that actually needs 210 * to get both rlim_cur and rlim_max atomically, and either one 211 * alone is a single word that can safely be read normally. 212 * getrlimit/setrlimit use task_lock(current->group_leader) to 213 * protect this instead of the siglock, because they really 214 * have no need to disable irqs. 215 */ 216 struct rlimit rlim[RLIM_NLIMITS]; 217 218 #ifdef CONFIG_BSD_PROCESS_ACCT 219 struct pacct_struct pacct; /* per-process accounting information */ 220 #endif 221 #ifdef CONFIG_TASKSTATS 222 struct taskstats *stats; 223 #endif 224 #ifdef CONFIG_AUDIT 225 unsigned audit_tty; 226 struct tty_audit_buf *tty_audit_buf; 227 #endif 228 229 /* 230 * Thread is the potential origin of an oom condition; kill first on 231 * oom 232 */ 233 bool oom_flag_origin; 234 short oom_score_adj; /* OOM kill score adjustment */ 235 short oom_score_adj_min; /* OOM kill score adjustment min value. 236 * Only settable by CAP_SYS_RESOURCE. */ 237 struct mm_struct *oom_mm; /* recorded mm when the thread group got 238 * killed by the oom killer */ 239 240 struct mutex cred_guard_mutex; /* guard against foreign influences on 241 * credential calculations 242 * (notably. ptrace) 243 * Deprecated do not use in new code. 244 * Use exec_update_lock instead. 245 */ 246 struct rw_semaphore exec_update_lock; /* Held while task_struct is 247 * being updated during exec, 248 * and may have inconsistent 249 * permissions. 250 */ 251 } __randomize_layout; 252 253 /* 254 * Bits in flags field of signal_struct. 255 */ 256 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 257 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ 258 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ 259 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */ 260 /* 261 * Pending notifications to parent. 262 */ 263 #define SIGNAL_CLD_STOPPED 0x00000010 264 #define SIGNAL_CLD_CONTINUED 0x00000020 265 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 266 267 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 268 269 #define SIGNAL_STOP_MASK (SIGNAL_CLD_MASK | SIGNAL_STOP_STOPPED | \ 270 SIGNAL_STOP_CONTINUED) 271 272 static inline void signal_set_stop_flags(struct signal_struct *sig, 273 unsigned int flags) 274 { 275 WARN_ON(sig->flags & (SIGNAL_GROUP_EXIT|SIGNAL_GROUP_COREDUMP)); 276 sig->flags = (sig->flags & ~SIGNAL_STOP_MASK) | flags; 277 } 278 279 /* If true, all threads except ->group_exit_task have pending SIGKILL */ 280 static inline int signal_group_exit(const struct signal_struct *sig) 281 { 282 return (sig->flags & SIGNAL_GROUP_EXIT) || 283 (sig->group_exit_task != NULL); 284 } 285 286 extern void flush_signals(struct task_struct *); 287 extern void ignore_signals(struct task_struct *); 288 extern void flush_signal_handlers(struct task_struct *, int force_default); 289 extern int dequeue_signal(struct task_struct *task, 290 sigset_t *mask, kernel_siginfo_t *info); 291 292 static inline int kernel_dequeue_signal(void) 293 { 294 struct task_struct *task = current; 295 kernel_siginfo_t __info; 296 int ret; 297 298 spin_lock_irq(&task->sighand->siglock); 299 ret = dequeue_signal(task, &task->blocked, &__info); 300 spin_unlock_irq(&task->sighand->siglock); 301 302 return ret; 303 } 304 305 static inline void kernel_signal_stop(void) 306 { 307 spin_lock_irq(¤t->sighand->siglock); 308 if (current->jobctl & JOBCTL_STOP_DEQUEUED) 309 set_special_state(TASK_STOPPED); 310 spin_unlock_irq(¤t->sighand->siglock); 311 312 schedule(); 313 } 314 #ifdef __ia64__ 315 # define ___ARCH_SI_IA64(_a1, _a2, _a3) , _a1, _a2, _a3 316 #else 317 # define ___ARCH_SI_IA64(_a1, _a2, _a3) 318 #endif 319 320 int force_sig_fault_to_task(int sig, int code, void __user *addr 321 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 322 , struct task_struct *t); 323 int force_sig_fault(int sig, int code, void __user *addr 324 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)); 325 int send_sig_fault(int sig, int code, void __user *addr 326 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 327 , struct task_struct *t); 328 329 int force_sig_mceerr(int code, void __user *, short); 330 int send_sig_mceerr(int code, void __user *, short, struct task_struct *); 331 332 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper); 333 int force_sig_pkuerr(void __user *addr, u32 pkey); 334 int force_sig_perf(void __user *addr, u32 type, u64 sig_data); 335 336 int force_sig_ptrace_errno_trap(int errno, void __user *addr); 337 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno); 338 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno, 339 struct task_struct *t); 340 int force_sig_seccomp(int syscall, int reason, bool force_coredump); 341 342 extern int send_sig_info(int, struct kernel_siginfo *, struct task_struct *); 343 extern void force_sigsegv(int sig); 344 extern int force_sig_info(struct kernel_siginfo *); 345 extern int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp); 346 extern int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid); 347 extern int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, struct pid *, 348 const struct cred *); 349 extern int kill_pgrp(struct pid *pid, int sig, int priv); 350 extern int kill_pid(struct pid *pid, int sig, int priv); 351 extern __must_check bool do_notify_parent(struct task_struct *, int); 352 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 353 extern void force_sig(int); 354 extern void force_fatal_sig(int); 355 extern int send_sig(int, struct task_struct *, int); 356 extern int zap_other_threads(struct task_struct *p); 357 extern struct sigqueue *sigqueue_alloc(void); 358 extern void sigqueue_free(struct sigqueue *); 359 extern int send_sigqueue(struct sigqueue *, struct pid *, enum pid_type); 360 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 361 362 static inline int restart_syscall(void) 363 { 364 set_tsk_thread_flag(current, TIF_SIGPENDING); 365 return -ERESTARTNOINTR; 366 } 367 368 static inline int task_sigpending(struct task_struct *p) 369 { 370 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 371 } 372 373 static inline int signal_pending(struct task_struct *p) 374 { 375 /* 376 * TIF_NOTIFY_SIGNAL isn't really a signal, but it requires the same 377 * behavior in terms of ensuring that we break out of wait loops 378 * so that notify signal callbacks can be processed. 379 */ 380 if (unlikely(test_tsk_thread_flag(p, TIF_NOTIFY_SIGNAL))) 381 return 1; 382 return task_sigpending(p); 383 } 384 385 static inline int __fatal_signal_pending(struct task_struct *p) 386 { 387 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 388 } 389 390 static inline int fatal_signal_pending(struct task_struct *p) 391 { 392 return task_sigpending(p) && __fatal_signal_pending(p); 393 } 394 395 static inline int signal_pending_state(unsigned int state, struct task_struct *p) 396 { 397 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 398 return 0; 399 if (!signal_pending(p)) 400 return 0; 401 402 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 403 } 404 405 /* 406 * This should only be used in fault handlers to decide whether we 407 * should stop the current fault routine to handle the signals 408 * instead, especially with the case where we've got interrupted with 409 * a VM_FAULT_RETRY. 410 */ 411 static inline bool fault_signal_pending(vm_fault_t fault_flags, 412 struct pt_regs *regs) 413 { 414 return unlikely((fault_flags & VM_FAULT_RETRY) && 415 (fatal_signal_pending(current) || 416 (user_mode(regs) && signal_pending(current)))); 417 } 418 419 /* 420 * Reevaluate whether the task has signals pending delivery. 421 * Wake the task if so. 422 * This is required every time the blocked sigset_t changes. 423 * callers must hold sighand->siglock. 424 */ 425 extern void recalc_sigpending_and_wake(struct task_struct *t); 426 extern void recalc_sigpending(void); 427 extern void calculate_sigpending(void); 428 429 extern void signal_wake_up_state(struct task_struct *t, unsigned int state); 430 431 static inline void signal_wake_up(struct task_struct *t, bool resume) 432 { 433 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0); 434 } 435 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume) 436 { 437 signal_wake_up_state(t, resume ? __TASK_TRACED : 0); 438 } 439 440 void task_join_group_stop(struct task_struct *task); 441 442 #ifdef TIF_RESTORE_SIGMASK 443 /* 444 * Legacy restore_sigmask accessors. These are inefficient on 445 * SMP architectures because they require atomic operations. 446 */ 447 448 /** 449 * set_restore_sigmask() - make sure saved_sigmask processing gets done 450 * 451 * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code 452 * will run before returning to user mode, to process the flag. For 453 * all callers, TIF_SIGPENDING is already set or it's no harm to set 454 * it. TIF_RESTORE_SIGMASK need not be in the set of bits that the 455 * arch code will notice on return to user mode, in case those bits 456 * are scarce. We set TIF_SIGPENDING here to ensure that the arch 457 * signal code always gets run when TIF_RESTORE_SIGMASK is set. 458 */ 459 static inline void set_restore_sigmask(void) 460 { 461 set_thread_flag(TIF_RESTORE_SIGMASK); 462 } 463 464 static inline void clear_tsk_restore_sigmask(struct task_struct *task) 465 { 466 clear_tsk_thread_flag(task, TIF_RESTORE_SIGMASK); 467 } 468 469 static inline void clear_restore_sigmask(void) 470 { 471 clear_thread_flag(TIF_RESTORE_SIGMASK); 472 } 473 static inline bool test_tsk_restore_sigmask(struct task_struct *task) 474 { 475 return test_tsk_thread_flag(task, TIF_RESTORE_SIGMASK); 476 } 477 static inline bool test_restore_sigmask(void) 478 { 479 return test_thread_flag(TIF_RESTORE_SIGMASK); 480 } 481 static inline bool test_and_clear_restore_sigmask(void) 482 { 483 return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK); 484 } 485 486 #else /* TIF_RESTORE_SIGMASK */ 487 488 /* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */ 489 static inline void set_restore_sigmask(void) 490 { 491 current->restore_sigmask = true; 492 } 493 static inline void clear_tsk_restore_sigmask(struct task_struct *task) 494 { 495 task->restore_sigmask = false; 496 } 497 static inline void clear_restore_sigmask(void) 498 { 499 current->restore_sigmask = false; 500 } 501 static inline bool test_restore_sigmask(void) 502 { 503 return current->restore_sigmask; 504 } 505 static inline bool test_tsk_restore_sigmask(struct task_struct *task) 506 { 507 return task->restore_sigmask; 508 } 509 static inline bool test_and_clear_restore_sigmask(void) 510 { 511 if (!current->restore_sigmask) 512 return false; 513 current->restore_sigmask = false; 514 return true; 515 } 516 #endif 517 518 static inline void restore_saved_sigmask(void) 519 { 520 if (test_and_clear_restore_sigmask()) 521 __set_current_blocked(¤t->saved_sigmask); 522 } 523 524 extern int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize); 525 526 static inline void restore_saved_sigmask_unless(bool interrupted) 527 { 528 if (interrupted) 529 WARN_ON(!signal_pending(current)); 530 else 531 restore_saved_sigmask(); 532 } 533 534 static inline sigset_t *sigmask_to_save(void) 535 { 536 sigset_t *res = ¤t->blocked; 537 if (unlikely(test_restore_sigmask())) 538 res = ¤t->saved_sigmask; 539 return res; 540 } 541 542 static inline int kill_cad_pid(int sig, int priv) 543 { 544 return kill_pid(cad_pid, sig, priv); 545 } 546 547 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 548 #define SEND_SIG_NOINFO ((struct kernel_siginfo *) 0) 549 #define SEND_SIG_PRIV ((struct kernel_siginfo *) 1) 550 551 static inline int __on_sig_stack(unsigned long sp) 552 { 553 #ifdef CONFIG_STACK_GROWSUP 554 return sp >= current->sas_ss_sp && 555 sp - current->sas_ss_sp < current->sas_ss_size; 556 #else 557 return sp > current->sas_ss_sp && 558 sp - current->sas_ss_sp <= current->sas_ss_size; 559 #endif 560 } 561 562 /* 563 * True if we are on the alternate signal stack. 564 */ 565 static inline int on_sig_stack(unsigned long sp) 566 { 567 /* 568 * If the signal stack is SS_AUTODISARM then, by construction, we 569 * can't be on the signal stack unless user code deliberately set 570 * SS_AUTODISARM when we were already on it. 571 * 572 * This improves reliability: if user state gets corrupted such that 573 * the stack pointer points very close to the end of the signal stack, 574 * then this check will enable the signal to be handled anyway. 575 */ 576 if (current->sas_ss_flags & SS_AUTODISARM) 577 return 0; 578 579 return __on_sig_stack(sp); 580 } 581 582 static inline int sas_ss_flags(unsigned long sp) 583 { 584 if (!current->sas_ss_size) 585 return SS_DISABLE; 586 587 return on_sig_stack(sp) ? SS_ONSTACK : 0; 588 } 589 590 static inline void sas_ss_reset(struct task_struct *p) 591 { 592 p->sas_ss_sp = 0; 593 p->sas_ss_size = 0; 594 p->sas_ss_flags = SS_DISABLE; 595 } 596 597 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig) 598 { 599 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp)) 600 #ifdef CONFIG_STACK_GROWSUP 601 return current->sas_ss_sp; 602 #else 603 return current->sas_ss_sp + current->sas_ss_size; 604 #endif 605 return sp; 606 } 607 608 extern void __cleanup_sighand(struct sighand_struct *); 609 extern void flush_itimer_signals(void); 610 611 #define tasklist_empty() \ 612 list_empty(&init_task.tasks) 613 614 #define next_task(p) \ 615 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 616 617 #define for_each_process(p) \ 618 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 619 620 extern bool current_is_single_threaded(void); 621 622 /* 623 * Careful: do_each_thread/while_each_thread is a double loop so 624 * 'break' will not work as expected - use goto instead. 625 */ 626 #define do_each_thread(g, t) \ 627 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 628 629 #define while_each_thread(g, t) \ 630 while ((t = next_thread(t)) != g) 631 632 #define __for_each_thread(signal, t) \ 633 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node) 634 635 #define for_each_thread(p, t) \ 636 __for_each_thread((p)->signal, t) 637 638 /* Careful: this is a double loop, 'break' won't work as expected. */ 639 #define for_each_process_thread(p, t) \ 640 for_each_process(p) for_each_thread(p, t) 641 642 typedef int (*proc_visitor)(struct task_struct *p, void *data); 643 void walk_process_tree(struct task_struct *top, proc_visitor, void *); 644 645 static inline 646 struct pid *task_pid_type(struct task_struct *task, enum pid_type type) 647 { 648 struct pid *pid; 649 if (type == PIDTYPE_PID) 650 pid = task_pid(task); 651 else 652 pid = task->signal->pids[type]; 653 return pid; 654 } 655 656 static inline struct pid *task_tgid(struct task_struct *task) 657 { 658 return task->signal->pids[PIDTYPE_TGID]; 659 } 660 661 /* 662 * Without tasklist or RCU lock it is not safe to dereference 663 * the result of task_pgrp/task_session even if task == current, 664 * we can race with another thread doing sys_setsid/sys_setpgid. 665 */ 666 static inline struct pid *task_pgrp(struct task_struct *task) 667 { 668 return task->signal->pids[PIDTYPE_PGID]; 669 } 670 671 static inline struct pid *task_session(struct task_struct *task) 672 { 673 return task->signal->pids[PIDTYPE_SID]; 674 } 675 676 static inline int get_nr_threads(struct task_struct *task) 677 { 678 return task->signal->nr_threads; 679 } 680 681 static inline bool thread_group_leader(struct task_struct *p) 682 { 683 return p->exit_signal >= 0; 684 } 685 686 static inline 687 bool same_thread_group(struct task_struct *p1, struct task_struct *p2) 688 { 689 return p1->signal == p2->signal; 690 } 691 692 static inline struct task_struct *next_thread(const struct task_struct *p) 693 { 694 return list_entry_rcu(p->thread_group.next, 695 struct task_struct, thread_group); 696 } 697 698 static inline int thread_group_empty(struct task_struct *p) 699 { 700 return list_empty(&p->thread_group); 701 } 702 703 #define delay_group_leader(p) \ 704 (thread_group_leader(p) && !thread_group_empty(p)) 705 706 extern bool thread_group_exited(struct pid *pid); 707 708 extern struct sighand_struct *__lock_task_sighand(struct task_struct *task, 709 unsigned long *flags); 710 711 static inline struct sighand_struct *lock_task_sighand(struct task_struct *task, 712 unsigned long *flags) 713 { 714 struct sighand_struct *ret; 715 716 ret = __lock_task_sighand(task, flags); 717 (void)__cond_lock(&task->sighand->siglock, ret); 718 return ret; 719 } 720 721 static inline void unlock_task_sighand(struct task_struct *task, 722 unsigned long *flags) 723 { 724 spin_unlock_irqrestore(&task->sighand->siglock, *flags); 725 } 726 727 #ifdef CONFIG_LOCKDEP 728 extern void lockdep_assert_task_sighand_held(struct task_struct *task); 729 #else 730 static inline void lockdep_assert_task_sighand_held(struct task_struct *task) { } 731 #endif 732 733 static inline unsigned long task_rlimit(const struct task_struct *task, 734 unsigned int limit) 735 { 736 return READ_ONCE(task->signal->rlim[limit].rlim_cur); 737 } 738 739 static inline unsigned long task_rlimit_max(const struct task_struct *task, 740 unsigned int limit) 741 { 742 return READ_ONCE(task->signal->rlim[limit].rlim_max); 743 } 744 745 static inline unsigned long rlimit(unsigned int limit) 746 { 747 return task_rlimit(current, limit); 748 } 749 750 static inline unsigned long rlimit_max(unsigned int limit) 751 { 752 return task_rlimit_max(current, limit); 753 } 754 755 #endif /* _LINUX_SCHED_SIGNAL_H */ 756