xref: /linux/include/linux/sched/signal.h (revision 56fb34d86e875dbb0d3e6a81c5d3d035db373031)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_SIGNAL_H
3 #define _LINUX_SCHED_SIGNAL_H
4 
5 #include <linux/rculist.h>
6 #include <linux/signal.h>
7 #include <linux/sched.h>
8 #include <linux/sched/jobctl.h>
9 #include <linux/sched/task.h>
10 #include <linux/cred.h>
11 #include <linux/refcount.h>
12 #include <linux/posix-timers.h>
13 
14 /*
15  * Types defining task->signal and task->sighand and APIs using them:
16  */
17 
18 struct sighand_struct {
19 	spinlock_t		siglock;
20 	refcount_t		count;
21 	wait_queue_head_t	signalfd_wqh;
22 	struct k_sigaction	action[_NSIG];
23 };
24 
25 /*
26  * Per-process accounting stats:
27  */
28 struct pacct_struct {
29 	int			ac_flag;
30 	long			ac_exitcode;
31 	unsigned long		ac_mem;
32 	u64			ac_utime, ac_stime;
33 	unsigned long		ac_minflt, ac_majflt;
34 };
35 
36 struct cpu_itimer {
37 	u64 expires;
38 	u64 incr;
39 };
40 
41 /*
42  * This is the atomic variant of task_cputime, which can be used for
43  * storing and updating task_cputime statistics without locking.
44  */
45 struct task_cputime_atomic {
46 	atomic64_t utime;
47 	atomic64_t stime;
48 	atomic64_t sum_exec_runtime;
49 };
50 
51 #define INIT_CPUTIME_ATOMIC \
52 	(struct task_cputime_atomic) {				\
53 		.utime = ATOMIC64_INIT(0),			\
54 		.stime = ATOMIC64_INIT(0),			\
55 		.sum_exec_runtime = ATOMIC64_INIT(0),		\
56 	}
57 /**
58  * struct thread_group_cputimer - thread group interval timer counts
59  * @cputime_atomic:	atomic thread group interval timers.
60  *
61  * This structure contains the version of task_cputime, above, that is
62  * used for thread group CPU timer calculations.
63  */
64 struct thread_group_cputimer {
65 	struct task_cputime_atomic cputime_atomic;
66 };
67 
68 struct multiprocess_signals {
69 	sigset_t signal;
70 	struct hlist_node node;
71 };
72 
73 /*
74  * NOTE! "signal_struct" does not have its own
75  * locking, because a shared signal_struct always
76  * implies a shared sighand_struct, so locking
77  * sighand_struct is always a proper superset of
78  * the locking of signal_struct.
79  */
80 struct signal_struct {
81 	refcount_t		sigcnt;
82 	atomic_t		live;
83 	int			nr_threads;
84 	struct list_head	thread_head;
85 
86 	wait_queue_head_t	wait_chldexit;	/* for wait4() */
87 
88 	/* current thread group signal load-balancing target: */
89 	struct task_struct	*curr_target;
90 
91 	/* shared signal handling: */
92 	struct sigpending	shared_pending;
93 
94 	/* For collecting multiprocess signals during fork */
95 	struct hlist_head	multiprocess;
96 
97 	/* thread group exit support */
98 	int			group_exit_code;
99 	/* overloaded:
100 	 * - notify group_exit_task when ->count is equal to notify_count
101 	 * - everyone except group_exit_task is stopped during signal delivery
102 	 *   of fatal signals, group_exit_task processes the signal.
103 	 */
104 	int			notify_count;
105 	struct task_struct	*group_exit_task;
106 
107 	/* thread group stop support, overloads group_exit_code too */
108 	int			group_stop_count;
109 	unsigned int		flags; /* see SIGNAL_* flags below */
110 
111 	/*
112 	 * PR_SET_CHILD_SUBREAPER marks a process, like a service
113 	 * manager, to re-parent orphan (double-forking) child processes
114 	 * to this process instead of 'init'. The service manager is
115 	 * able to receive SIGCHLD signals and is able to investigate
116 	 * the process until it calls wait(). All children of this
117 	 * process will inherit a flag if they should look for a
118 	 * child_subreaper process at exit.
119 	 */
120 	unsigned int		is_child_subreaper:1;
121 	unsigned int		has_child_subreaper:1;
122 
123 #ifdef CONFIG_POSIX_TIMERS
124 
125 	/* POSIX.1b Interval Timers */
126 	int			posix_timer_id;
127 	struct list_head	posix_timers;
128 
129 	/* ITIMER_REAL timer for the process */
130 	struct hrtimer real_timer;
131 	ktime_t it_real_incr;
132 
133 	/*
134 	 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
135 	 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
136 	 * values are defined to 0 and 1 respectively
137 	 */
138 	struct cpu_itimer it[2];
139 
140 	/*
141 	 * Thread group totals for process CPU timers.
142 	 * See thread_group_cputimer(), et al, for details.
143 	 */
144 	struct thread_group_cputimer cputimer;
145 
146 #endif
147 	/* Empty if CONFIG_POSIX_TIMERS=n */
148 	struct posix_cputimers posix_cputimers;
149 
150 	/* PID/PID hash table linkage. */
151 	struct pid *pids[PIDTYPE_MAX];
152 
153 #ifdef CONFIG_NO_HZ_FULL
154 	atomic_t tick_dep_mask;
155 #endif
156 
157 	struct pid *tty_old_pgrp;
158 
159 	/* boolean value for session group leader */
160 	int leader;
161 
162 	struct tty_struct *tty; /* NULL if no tty */
163 
164 #ifdef CONFIG_SCHED_AUTOGROUP
165 	struct autogroup *autogroup;
166 #endif
167 	/*
168 	 * Cumulative resource counters for dead threads in the group,
169 	 * and for reaped dead child processes forked by this group.
170 	 * Live threads maintain their own counters and add to these
171 	 * in __exit_signal, except for the group leader.
172 	 */
173 	seqlock_t stats_lock;
174 	u64 utime, stime, cutime, cstime;
175 	u64 gtime;
176 	u64 cgtime;
177 	struct prev_cputime prev_cputime;
178 	unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
179 	unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
180 	unsigned long inblock, oublock, cinblock, coublock;
181 	unsigned long maxrss, cmaxrss;
182 	struct task_io_accounting ioac;
183 
184 	/*
185 	 * Cumulative ns of schedule CPU time fo dead threads in the
186 	 * group, not including a zombie group leader, (This only differs
187 	 * from jiffies_to_ns(utime + stime) if sched_clock uses something
188 	 * other than jiffies.)
189 	 */
190 	unsigned long long sum_sched_runtime;
191 
192 	/*
193 	 * We don't bother to synchronize most readers of this at all,
194 	 * because there is no reader checking a limit that actually needs
195 	 * to get both rlim_cur and rlim_max atomically, and either one
196 	 * alone is a single word that can safely be read normally.
197 	 * getrlimit/setrlimit use task_lock(current->group_leader) to
198 	 * protect this instead of the siglock, because they really
199 	 * have no need to disable irqs.
200 	 */
201 	struct rlimit rlim[RLIM_NLIMITS];
202 
203 #ifdef CONFIG_BSD_PROCESS_ACCT
204 	struct pacct_struct pacct;	/* per-process accounting information */
205 #endif
206 #ifdef CONFIG_TASKSTATS
207 	struct taskstats *stats;
208 #endif
209 #ifdef CONFIG_AUDIT
210 	unsigned audit_tty;
211 	struct tty_audit_buf *tty_audit_buf;
212 #endif
213 
214 	/*
215 	 * Thread is the potential origin of an oom condition; kill first on
216 	 * oom
217 	 */
218 	bool oom_flag_origin;
219 	short oom_score_adj;		/* OOM kill score adjustment */
220 	short oom_score_adj_min;	/* OOM kill score adjustment min value.
221 					 * Only settable by CAP_SYS_RESOURCE. */
222 	struct mm_struct *oom_mm;	/* recorded mm when the thread group got
223 					 * killed by the oom killer */
224 
225 	struct mutex cred_guard_mutex;	/* guard against foreign influences on
226 					 * credential calculations
227 					 * (notably. ptrace) */
228 } __randomize_layout;
229 
230 /*
231  * Bits in flags field of signal_struct.
232  */
233 #define SIGNAL_STOP_STOPPED	0x00000001 /* job control stop in effect */
234 #define SIGNAL_STOP_CONTINUED	0x00000002 /* SIGCONT since WCONTINUED reap */
235 #define SIGNAL_GROUP_EXIT	0x00000004 /* group exit in progress */
236 #define SIGNAL_GROUP_COREDUMP	0x00000008 /* coredump in progress */
237 /*
238  * Pending notifications to parent.
239  */
240 #define SIGNAL_CLD_STOPPED	0x00000010
241 #define SIGNAL_CLD_CONTINUED	0x00000020
242 #define SIGNAL_CLD_MASK		(SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
243 
244 #define SIGNAL_UNKILLABLE	0x00000040 /* for init: ignore fatal signals */
245 
246 #define SIGNAL_STOP_MASK (SIGNAL_CLD_MASK | SIGNAL_STOP_STOPPED | \
247 			  SIGNAL_STOP_CONTINUED)
248 
249 static inline void signal_set_stop_flags(struct signal_struct *sig,
250 					 unsigned int flags)
251 {
252 	WARN_ON(sig->flags & (SIGNAL_GROUP_EXIT|SIGNAL_GROUP_COREDUMP));
253 	sig->flags = (sig->flags & ~SIGNAL_STOP_MASK) | flags;
254 }
255 
256 /* If true, all threads except ->group_exit_task have pending SIGKILL */
257 static inline int signal_group_exit(const struct signal_struct *sig)
258 {
259 	return	(sig->flags & SIGNAL_GROUP_EXIT) ||
260 		(sig->group_exit_task != NULL);
261 }
262 
263 extern void flush_signals(struct task_struct *);
264 extern void ignore_signals(struct task_struct *);
265 extern void flush_signal_handlers(struct task_struct *, int force_default);
266 extern int dequeue_signal(struct task_struct *task,
267 			  sigset_t *mask, kernel_siginfo_t *info);
268 
269 static inline int kernel_dequeue_signal(void)
270 {
271 	struct task_struct *task = current;
272 	kernel_siginfo_t __info;
273 	int ret;
274 
275 	spin_lock_irq(&task->sighand->siglock);
276 	ret = dequeue_signal(task, &task->blocked, &__info);
277 	spin_unlock_irq(&task->sighand->siglock);
278 
279 	return ret;
280 }
281 
282 static inline void kernel_signal_stop(void)
283 {
284 	spin_lock_irq(&current->sighand->siglock);
285 	if (current->jobctl & JOBCTL_STOP_DEQUEUED)
286 		set_special_state(TASK_STOPPED);
287 	spin_unlock_irq(&current->sighand->siglock);
288 
289 	schedule();
290 }
291 #ifdef __ARCH_SI_TRAPNO
292 # define ___ARCH_SI_TRAPNO(_a1) , _a1
293 #else
294 # define ___ARCH_SI_TRAPNO(_a1)
295 #endif
296 #ifdef __ia64__
297 # define ___ARCH_SI_IA64(_a1, _a2, _a3) , _a1, _a2, _a3
298 #else
299 # define ___ARCH_SI_IA64(_a1, _a2, _a3)
300 #endif
301 
302 int force_sig_fault_to_task(int sig, int code, void __user *addr
303 	___ARCH_SI_TRAPNO(int trapno)
304 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
305 	, struct task_struct *t);
306 int force_sig_fault(int sig, int code, void __user *addr
307 	___ARCH_SI_TRAPNO(int trapno)
308 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr));
309 int send_sig_fault(int sig, int code, void __user *addr
310 	___ARCH_SI_TRAPNO(int trapno)
311 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
312 	, struct task_struct *t);
313 
314 int force_sig_mceerr(int code, void __user *, short);
315 int send_sig_mceerr(int code, void __user *, short, struct task_struct *);
316 
317 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper);
318 int force_sig_pkuerr(void __user *addr, u32 pkey);
319 
320 int force_sig_ptrace_errno_trap(int errno, void __user *addr);
321 
322 extern int send_sig_info(int, struct kernel_siginfo *, struct task_struct *);
323 extern void force_sigsegv(int sig);
324 extern int force_sig_info(struct kernel_siginfo *);
325 extern int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp);
326 extern int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid);
327 extern int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, struct pid *,
328 				const struct cred *);
329 extern int kill_pgrp(struct pid *pid, int sig, int priv);
330 extern int kill_pid(struct pid *pid, int sig, int priv);
331 extern __must_check bool do_notify_parent(struct task_struct *, int);
332 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
333 extern void force_sig(int);
334 extern int send_sig(int, struct task_struct *, int);
335 extern int zap_other_threads(struct task_struct *p);
336 extern struct sigqueue *sigqueue_alloc(void);
337 extern void sigqueue_free(struct sigqueue *);
338 extern int send_sigqueue(struct sigqueue *, struct pid *, enum pid_type);
339 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
340 
341 static inline int restart_syscall(void)
342 {
343 	set_tsk_thread_flag(current, TIF_SIGPENDING);
344 	return -ERESTARTNOINTR;
345 }
346 
347 static inline int signal_pending(struct task_struct *p)
348 {
349 	return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
350 }
351 
352 static inline int __fatal_signal_pending(struct task_struct *p)
353 {
354 	return unlikely(sigismember(&p->pending.signal, SIGKILL));
355 }
356 
357 static inline int fatal_signal_pending(struct task_struct *p)
358 {
359 	return signal_pending(p) && __fatal_signal_pending(p);
360 }
361 
362 static inline int signal_pending_state(long state, struct task_struct *p)
363 {
364 	if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
365 		return 0;
366 	if (!signal_pending(p))
367 		return 0;
368 
369 	return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
370 }
371 
372 /*
373  * Reevaluate whether the task has signals pending delivery.
374  * Wake the task if so.
375  * This is required every time the blocked sigset_t changes.
376  * callers must hold sighand->siglock.
377  */
378 extern void recalc_sigpending_and_wake(struct task_struct *t);
379 extern void recalc_sigpending(void);
380 extern void calculate_sigpending(void);
381 
382 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
383 
384 static inline void signal_wake_up(struct task_struct *t, bool resume)
385 {
386 	signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
387 }
388 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
389 {
390 	signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
391 }
392 
393 void task_join_group_stop(struct task_struct *task);
394 
395 #ifdef TIF_RESTORE_SIGMASK
396 /*
397  * Legacy restore_sigmask accessors.  These are inefficient on
398  * SMP architectures because they require atomic operations.
399  */
400 
401 /**
402  * set_restore_sigmask() - make sure saved_sigmask processing gets done
403  *
404  * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code
405  * will run before returning to user mode, to process the flag.  For
406  * all callers, TIF_SIGPENDING is already set or it's no harm to set
407  * it.  TIF_RESTORE_SIGMASK need not be in the set of bits that the
408  * arch code will notice on return to user mode, in case those bits
409  * are scarce.  We set TIF_SIGPENDING here to ensure that the arch
410  * signal code always gets run when TIF_RESTORE_SIGMASK is set.
411  */
412 static inline void set_restore_sigmask(void)
413 {
414 	set_thread_flag(TIF_RESTORE_SIGMASK);
415 }
416 
417 static inline void clear_tsk_restore_sigmask(struct task_struct *task)
418 {
419 	clear_tsk_thread_flag(task, TIF_RESTORE_SIGMASK);
420 }
421 
422 static inline void clear_restore_sigmask(void)
423 {
424 	clear_thread_flag(TIF_RESTORE_SIGMASK);
425 }
426 static inline bool test_tsk_restore_sigmask(struct task_struct *task)
427 {
428 	return test_tsk_thread_flag(task, TIF_RESTORE_SIGMASK);
429 }
430 static inline bool test_restore_sigmask(void)
431 {
432 	return test_thread_flag(TIF_RESTORE_SIGMASK);
433 }
434 static inline bool test_and_clear_restore_sigmask(void)
435 {
436 	return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK);
437 }
438 
439 #else	/* TIF_RESTORE_SIGMASK */
440 
441 /* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */
442 static inline void set_restore_sigmask(void)
443 {
444 	current->restore_sigmask = true;
445 }
446 static inline void clear_tsk_restore_sigmask(struct task_struct *task)
447 {
448 	task->restore_sigmask = false;
449 }
450 static inline void clear_restore_sigmask(void)
451 {
452 	current->restore_sigmask = false;
453 }
454 static inline bool test_restore_sigmask(void)
455 {
456 	return current->restore_sigmask;
457 }
458 static inline bool test_tsk_restore_sigmask(struct task_struct *task)
459 {
460 	return task->restore_sigmask;
461 }
462 static inline bool test_and_clear_restore_sigmask(void)
463 {
464 	if (!current->restore_sigmask)
465 		return false;
466 	current->restore_sigmask = false;
467 	return true;
468 }
469 #endif
470 
471 static inline void restore_saved_sigmask(void)
472 {
473 	if (test_and_clear_restore_sigmask())
474 		__set_current_blocked(&current->saved_sigmask);
475 }
476 
477 extern int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize);
478 
479 static inline void restore_saved_sigmask_unless(bool interrupted)
480 {
481 	if (interrupted)
482 		WARN_ON(!test_thread_flag(TIF_SIGPENDING));
483 	else
484 		restore_saved_sigmask();
485 }
486 
487 static inline sigset_t *sigmask_to_save(void)
488 {
489 	sigset_t *res = &current->blocked;
490 	if (unlikely(test_restore_sigmask()))
491 		res = &current->saved_sigmask;
492 	return res;
493 }
494 
495 static inline int kill_cad_pid(int sig, int priv)
496 {
497 	return kill_pid(cad_pid, sig, priv);
498 }
499 
500 /* These can be the second arg to send_sig_info/send_group_sig_info.  */
501 #define SEND_SIG_NOINFO ((struct kernel_siginfo *) 0)
502 #define SEND_SIG_PRIV	((struct kernel_siginfo *) 1)
503 
504 /*
505  * True if we are on the alternate signal stack.
506  */
507 static inline int on_sig_stack(unsigned long sp)
508 {
509 	/*
510 	 * If the signal stack is SS_AUTODISARM then, by construction, we
511 	 * can't be on the signal stack unless user code deliberately set
512 	 * SS_AUTODISARM when we were already on it.
513 	 *
514 	 * This improves reliability: if user state gets corrupted such that
515 	 * the stack pointer points very close to the end of the signal stack,
516 	 * then this check will enable the signal to be handled anyway.
517 	 */
518 	if (current->sas_ss_flags & SS_AUTODISARM)
519 		return 0;
520 
521 #ifdef CONFIG_STACK_GROWSUP
522 	return sp >= current->sas_ss_sp &&
523 		sp - current->sas_ss_sp < current->sas_ss_size;
524 #else
525 	return sp > current->sas_ss_sp &&
526 		sp - current->sas_ss_sp <= current->sas_ss_size;
527 #endif
528 }
529 
530 static inline int sas_ss_flags(unsigned long sp)
531 {
532 	if (!current->sas_ss_size)
533 		return SS_DISABLE;
534 
535 	return on_sig_stack(sp) ? SS_ONSTACK : 0;
536 }
537 
538 static inline void sas_ss_reset(struct task_struct *p)
539 {
540 	p->sas_ss_sp = 0;
541 	p->sas_ss_size = 0;
542 	p->sas_ss_flags = SS_DISABLE;
543 }
544 
545 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
546 {
547 	if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
548 #ifdef CONFIG_STACK_GROWSUP
549 		return current->sas_ss_sp;
550 #else
551 		return current->sas_ss_sp + current->sas_ss_size;
552 #endif
553 	return sp;
554 }
555 
556 extern void __cleanup_sighand(struct sighand_struct *);
557 extern void flush_itimer_signals(void);
558 
559 #define tasklist_empty() \
560 	list_empty(&init_task.tasks)
561 
562 #define next_task(p) \
563 	list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
564 
565 #define for_each_process(p) \
566 	for (p = &init_task ; (p = next_task(p)) != &init_task ; )
567 
568 extern bool current_is_single_threaded(void);
569 
570 /*
571  * Careful: do_each_thread/while_each_thread is a double loop so
572  *          'break' will not work as expected - use goto instead.
573  */
574 #define do_each_thread(g, t) \
575 	for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
576 
577 #define while_each_thread(g, t) \
578 	while ((t = next_thread(t)) != g)
579 
580 #define __for_each_thread(signal, t)	\
581 	list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
582 
583 #define for_each_thread(p, t)		\
584 	__for_each_thread((p)->signal, t)
585 
586 /* Careful: this is a double loop, 'break' won't work as expected. */
587 #define for_each_process_thread(p, t)	\
588 	for_each_process(p) for_each_thread(p, t)
589 
590 typedef int (*proc_visitor)(struct task_struct *p, void *data);
591 void walk_process_tree(struct task_struct *top, proc_visitor, void *);
592 
593 static inline
594 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
595 {
596 	struct pid *pid;
597 	if (type == PIDTYPE_PID)
598 		pid = task_pid(task);
599 	else
600 		pid = task->signal->pids[type];
601 	return pid;
602 }
603 
604 static inline struct pid *task_tgid(struct task_struct *task)
605 {
606 	return task->signal->pids[PIDTYPE_TGID];
607 }
608 
609 /*
610  * Without tasklist or RCU lock it is not safe to dereference
611  * the result of task_pgrp/task_session even if task == current,
612  * we can race with another thread doing sys_setsid/sys_setpgid.
613  */
614 static inline struct pid *task_pgrp(struct task_struct *task)
615 {
616 	return task->signal->pids[PIDTYPE_PGID];
617 }
618 
619 static inline struct pid *task_session(struct task_struct *task)
620 {
621 	return task->signal->pids[PIDTYPE_SID];
622 }
623 
624 static inline int get_nr_threads(struct task_struct *task)
625 {
626 	return task->signal->nr_threads;
627 }
628 
629 static inline bool thread_group_leader(struct task_struct *p)
630 {
631 	return p->exit_signal >= 0;
632 }
633 
634 /* Do to the insanities of de_thread it is possible for a process
635  * to have the pid of the thread group leader without actually being
636  * the thread group leader.  For iteration through the pids in proc
637  * all we care about is that we have a task with the appropriate
638  * pid, we don't actually care if we have the right task.
639  */
640 static inline bool has_group_leader_pid(struct task_struct *p)
641 {
642 	return task_pid(p) == task_tgid(p);
643 }
644 
645 static inline
646 bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
647 {
648 	return p1->signal == p2->signal;
649 }
650 
651 static inline struct task_struct *next_thread(const struct task_struct *p)
652 {
653 	return list_entry_rcu(p->thread_group.next,
654 			      struct task_struct, thread_group);
655 }
656 
657 static inline int thread_group_empty(struct task_struct *p)
658 {
659 	return list_empty(&p->thread_group);
660 }
661 
662 #define delay_group_leader(p) \
663 		(thread_group_leader(p) && !thread_group_empty(p))
664 
665 extern struct sighand_struct *__lock_task_sighand(struct task_struct *task,
666 							unsigned long *flags);
667 
668 static inline struct sighand_struct *lock_task_sighand(struct task_struct *task,
669 						       unsigned long *flags)
670 {
671 	struct sighand_struct *ret;
672 
673 	ret = __lock_task_sighand(task, flags);
674 	(void)__cond_lock(&task->sighand->siglock, ret);
675 	return ret;
676 }
677 
678 static inline void unlock_task_sighand(struct task_struct *task,
679 						unsigned long *flags)
680 {
681 	spin_unlock_irqrestore(&task->sighand->siglock, *flags);
682 }
683 
684 static inline unsigned long task_rlimit(const struct task_struct *task,
685 		unsigned int limit)
686 {
687 	return READ_ONCE(task->signal->rlim[limit].rlim_cur);
688 }
689 
690 static inline unsigned long task_rlimit_max(const struct task_struct *task,
691 		unsigned int limit)
692 {
693 	return READ_ONCE(task->signal->rlim[limit].rlim_max);
694 }
695 
696 static inline unsigned long rlimit(unsigned int limit)
697 {
698 	return task_rlimit(current, limit);
699 }
700 
701 static inline unsigned long rlimit_max(unsigned int limit)
702 {
703 	return task_rlimit_max(current, limit);
704 }
705 
706 #endif /* _LINUX_SCHED_SIGNAL_H */
707